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Abstract. Mathematicians judge proofs to possess, or lack, a variety of different qualities, in-
cluding, for example, explanatory power, depth, purity, beauty and fit. Philosophers of mathematical
practice have begun to investigate the nature of such qualities. However, mathematicians frequently
draw attention to another desirable proof quality: being motivated. Intuitively, motivated proofs
contain no “puzzling” steps, but they have received little further analysis. In this article, I begin a
philosophical investigation into motivated proofs. I suggest that a proof is motivated if and only if
mathematicians can identify (i) the tasks each step is intended to perform; and (ii) where each step
could have reasonably come from. I argue that motivated proofs promote understanding, convey
new mathematical resources and stimulate new discoveries. They thus have significant epistemic
benefits and directly contribute to the efficient dissemination and advancement of mathematical
knowledge. Given their benefits, I also discuss the more practical matter of how we can produce
motivated proofs. Finally I consider the relationship between motivated proofs and proofs which are
explanatory, beautiful and fitting.

§1. Introduction. Mathematicians judge proofs to possess, or lack, a variety of dif-
ferent qualities. For example, they may praise a proof for being explanatory, deep, pure,
beautiful or fitting. Philosophers of mathematical practice have attempted to clarify these
virtues and explore their benefits. With respect to mathematical explanation, Steiner (1978)
and Kitcher (1989), for example, have proposed different theories. On Steiner’s approach,
an explanatory proof is one which refers to a “characterizing property” and is, moreover,
generalizable (Steiner, 1978, pp. 143–144). However, according to Kitcher, an explanatory
proof is one which is a member of the most unifying systematization of a set of mathemat-
ical beliefs (Kitcher, 1989, sec. 4).1 The explanatory power of a proof may also connect di-
rectly to its depth. For example, Lange has argued that “depth is constituted (at least partly)
by explanatory power” (Lange, 2015, footnote 1). On the topic of proof purity, Detlefsen &
Arana (2011) have offered an analysis of what they call “topical purity,” and have further
argued that proofs which are pure in this sense have particular epistemic benefits. With
respect to mathematical beauty, Rota (1997) and Cellucci (2015), for example, have argued
that beautiful proofs are ones which are “enlightening” or promote understanding. Finally,
Raman-Sundström & Öhman (2018) have identified six senses in which a proof may be
said to fit a theorem, and have further discussed how these senses of fit relate to other
virtues, including beauty and explanation.
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1 Kitcher’s main focus was scientific explanation, but he explicitly noted that his theory applied to
mathematics as well (Kitcher, 1989, p. 437).
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However, these are not the only qualities that mathematicians judge proofs for possess-
ing or lacking. In particular, mathematicians value proofs that are motivated. Intuitively,
such proofs are perspicuous and do not contain any “puzzling” steps. For example math-
ematicians have had the following to say about motivation (italics added): “To someone
unsteeped in Hermite’s technique the motivation for this proof must be unclear” (Jones,
2010, p. 556); “The most surprising aspect of this proof is the integral formulas, which
have no apparent motivation” (Cohn, 2006, p. 59); “The proof of this generalization is
simpler and the steps are better motivated than the proof of the original result” (Corrádi &
Szadó, 1993, p. 4119); “A second purpose [of this article] is . . . to emphasize that this leads
to much more clearly motivated proofs” (Rogers, 1973, p. 491).2

Moreover, mathematicians talk about motivated proofs in ways that suggest they have
epistemic benefits. Pólya’s discussions, for example, indicate that unmotivated proofs have
two important deficiencies: (i) they prevent the reader from fully understanding the argu-
ment; (ii) they fail to help the reader tackle her own mathematical problems (Pólya, 1949,
sec. 3). Motivated proofs, on the other hand, are said to be free from such difficulties. For
example, when discussing two versions of the same proof, one with motivational material
and the other without, Pólya wrote of the former “Now we may understand how it was
humanly possible to discover [a previously puzzling step] . . . The derivation . . . becomes
also more understandable” (Pólya, 1949, p. 690). In other words, motivated proofs appear
to help the reader better understand the argument and, by helping her to see how the steps
could have been discovered, put her in a good position to adapt and reuse the ideas in her
own mathematical work.

Although motivated proofs thus feature in mathematical practice and appear to have
epistemic benefits, they have been subject to little analysis. The goal of this article, then,
is to begin a philosophical investigation into motivated proofs. I start in §2 by discussing
Pólya’s work, which I refine and develop into an explication of motivated proofs in §3.
In order to illustrate how this explication works in practice, I apply it to a proof of the
Cauchy–Schwarz Inequality in §4 and to a proof of the General Arithmetic-Geometric
Mean Inequality in §5. In §6 I analyze the epistemic benefits that motivated proofs provide,
before addressing the more practical matter of how to produce motivated proofs in §7. In
§8, I discuss the connection between motivated proofs and proofs which are explanatory,
beautiful and fitting. Finally, in §9 I call for an interdisciplinary investigation into motiva-
tional power in mathematics.

§2. Pólya on motivated proofs.

2.1. “With, or without, motivation?”. Although there have been few attempts to clar-
ify the notion of motivated proofs, Pólya’s article, “With, or without, motivation?”, serves
as a notable exception. Although Pólya did not present a precise definition of motivated
proofs, he offered an example of a perfectly rigorous but unmotivated proof, discussed
why it was deficient, and attempted to improve it with additional clarificatory material.3

The unmotivated proof that Pólya analyzed was of a result called Carleman’s inequality,
which states the following (see, e.g., Pólya (1949, p. 684)):

2 See Morris (2015, sec. 2.1) for more details and further examples.
3 Sandborg (1997, 1998) presented a nice discussion of Pólya’s proof and subsequent analysis with

respect to mathematical explanation.
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THEOREM 2.1 (Carleman’s Inequality). Let a1, a2, a3, . . . be a sequence of nonnegative
real numbers, not all equal to 0. Then

∞∑
n=1

(a1a2a3 . . . an)
1
n < e

∞∑
n=1

an.

To prove Carleman’s inequality, we’ll need to make use of the following three theorems,
whose proofs I omit:4

THEOREM 2.2 (Arithmetic-Geometric Mean Inequality (AGMI)). If a1, a2, . . . , an is a
sequence of nonnegative real numbers, then

(a1a2 . . . an)
1
n ≤ a1 + a2 + · · · + an

n
,

with equality if and only if a1 = a2 = · · · = an.

THEOREM 2.3 (Sum of Telescoping Series (TS)).

∞∑
n=k

(
1

n
− 1

(n + 1)

)
= 1

k
.

THEOREM 2.4 (Lower Bound for e (LB)). For all k = 1, 2, . . . , n, . . .(
k + 1

k

)k

< e.

We can now turn to Pólya’s unmotivated proof of Carleman’s inequality (see Pólya
(1949, pp. 684–685)):5

Proof. Define the sequence c1, c2, c3, . . . by

c1c2c3 . . . cn = (n + 1)n,

for n = 1, 2, 3, . . . Note that cn = (n+1)n

nn−1 . We then have:

∞∑
n=1

(a1a2 . . . an)
1
n =

∞∑
n=1

(a1c1a2c2 . . . ancn)
1
n

n + 1
(def of ci)

≤
∞∑

n=1

a1c1 + a2c2 + . . . ancn

n(n + 1)
(AGMI)

=
∞∑

k=1

akck

∑
n≥k

1

n(n + 1)

=
∞∑

k=1

akck

∞∑
n=k

(
1

n
− 1

n + 1

)

=
∞∑

k=1

ak
(k + 1)k

kk−1
· 1

k
(def of ck & TS)

4 A proof of the General Arithmetic-Geometric Mean Inequality will be analyzed in §5. For another
proof and proofs of the other theorems, see, e.g., Steele (2004, p. 20, p. 29, p. 30).

5 I have edited Pólya’s proof by including additional details to make it easier to follow.
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=
∞∑

k=1

ak

(
k + 1

k

)k

< e
∞∑

k=1

ak (LB)
�

As previously mentioned, the above proof is perfectly rigorous, yet unsatisfactory be-
cause it fails to be motivated. Pólya suggested that the motivational problem lies in the
very first step: the introduction of the ci sequence. As to why, exactly, it is problematic, he
considered a variety of responses:

“It pops up from nowhere. It looks so arbitrary. It has no visible motive
or purpose.”
“I hate to walk in the dark. I hate to take a step, when I cannot see any
reason why it should bring me nearer to the goal.”
“Perhaps the author knows the purpose of this step, but I do not and,
therefore, I cannot follow him with confidence.”
[. . . ]
“Look here, I am not here just to admire you. I wish to learn how to do
problems by myself. Yet I cannot see how it was humanly possible to hit
upon your . . . definition. So what can I learn here? How could I find such
a . . . definition by myself?” (Pólya, 1949, p. 685)

The problem with the ci sequence is thus not that the reader cannot verify that it is used
correctly, i.e., that it is used in accordance with the rules of logic. Rather, the first three
quotes suggest that the problem is that the imagined reader will find it difficult to identify
its role in the argument. The fourth quote suggests a related, though different problem: it
is difficult for the intended readers to grasp the insight behind its introduction.6,7

Having diagnosed the problem, Pólya sets out to fix it by providing a rational reconstruc-
tion of how the proof was discovered (Pólya, 1949, pp. 686–690). This reconstruction helps
readers to better grasp (i) the role that the ci sequence plays in establishing the theorem and
(ii) the insight that led to its introduction.8 Below I will sketch part of Pólya’s reconstruc-

6 Pólya did not separate these two problems. Instead, he suggested the problem was that the reader
could not recognize the appropriateness of the ci sequence, where “[a] step of a mathematical
argument is appropriate, if it is essentially connected with the purpose, if it brings us nearer to the
goal” (Pólya, 1949, p. 685).

7 There are strong similarities between Pólya’s work and Mac Lane’s. For example, Mac Lane
remarked “[. . . ] there is some definite reason for the inclusion of each one of these steps in
the proof; that is, each individual step is taken for some specific purpose” (MacLane, 1935, p.
125). He further explained “To give a reason for a step means essentially to show why that step
should be taken under the given conditions. In other words, given the form of the theorem to
be proved, a knowledge of the steps already taken in its proof and a knowledge of the already
established theorems which might be used in the next step, why should this particular step be
taken?” (MacLane, 1935, p. 126).

8 There may be a connection linking the distinction between the role of a step and the insight behind
it and the distinction between “how” (or “what”) and “why.” For example we might think of the
role of a step as the answer to the how-question “How does this step work?” or the what-question
“What does this step do?” Furthermore, we might think of the insight behind the step as the
answer to the why-question “Why did the author take this step?” However the connection may
not be completely clear cut. For instance, the insight behind a step could be considered to be the
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tion to bring the role of the sequence and the insight that prompted its introduction into
sharper focus.

First, it helps to know a general heuristic for working with inequalities, which I’ll
call Steele’s heuristic: “Wherever we hope to apply some underlying inequality to a new
problem, the success or failure of the application will often depend on our ability to recast
the problem so that the inequality is applied in one of those pleasing circumstances where
the inequality is sharp, or nearly sharp” (Steele, 2004, p. 26). In other words, if we are
going to apply an inequality to try to prove a new result, it’s often a good idea to try to
apply it when the inequality becomes (close to) an equality.

Now let’s return to Pólya’s proof. He begins by noting that we are led to Carleman’s
inequality when we try to prove a related result, namely, that

∑∞
n=1 an < ∞ implies∑∞

n=1 (a1a2 . . . an)
1
n < ∞. When attempting to prove this, a natural first step would be

to apply the Arithmetic-Geometric Mean Inequality to the sequence a1, a2, . . .. This gives
us (Pólya, 1949, p. 687):

∞∑
n=1

(a1a2 . . . an)
1
n ≤

∞∑
n=1

a1 + a2 + · · · + an

n

=
∞∑

k=1

ak

∞∑
n=k

1

n

As the last series is divergent, our proof attempt gets us nowhere. The problem is that
the ai sequence we applied the inequality to may have terms which are “very unequal”
(Pólya, 1949, p. 687).9 Why is this problematic? Because the Arithmetic-Geometric Mean
Inequality will be (nearly) sharp when and only when the terms of the sequence it is applied
to are (nearly) equal. In other words, applying the inequality directly to the ai sequence is
not applying it where it is most effective, and so it is not surprising that the approach fails.
However, now that we know what the problem is, we can start to think of ways to solve it.
One straightforward way is to introduce a “fudge factor” (Steele, 2004, p. 28) to make the
terms of the sequence we apply the Arithmetic-Geometric Mean Inequality to more equal.
Thus we are led to the idea of introducing an auxiliary sequence, ci.

The above sketch thus sheds some light on the insight that led to the introduction of the ci

sequence, as well as the role that it plays in establishing the theorem. In terms of insight, it
reveals how Steele’s heuristic prompted the introduction of an auxiliary sequence. In terms
of the role it plays, the sketch reveals that the sequence was chosen to make the terms of
the ai sequence more equal.

However, there is more to be said about the insight behind the ci sequence and the role
that it plays in the argument. In particular, the sketch I presented focused only on the
general strategy of introducing an auxiliary sequence—it did not say anything about the
particular choice of such a sequence. Pólya’s full rational reconstruction addresses this as
well, but the considerations are more technical and so I omit them here.

answer to the how-question “How did the author come up with this step?” or the what-question
“What led the author to introduce this step?” rather than a why-question. Similarly, although the
why-question “Why did the author take this step?” can be naturally interpreted as inquiring after
the insight behind a step, it could be interpreted as asking about the role that it plays instead. That
is to say, someone asking this question could be expecting an answer of the form “The author
took this step because it plays role X.”

9 The terms are unequal because
∑∞

n=1 an is assumed to be convergent.
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2.2. Discussion. Pólya’s analysis thus highlights that we want two things from mo-
tivated proofs: (i) to be able to identify the role of each step; (ii) to be able to identify
the insight behind each step. In §3 I will develop these desiderata into an explication of
motivated proofs before illustrating how it is to be understood in practice by applying it to
particular case studies in §4 and §5. To reflect the fact that different mathematical agents
will differ in their ability to identify the role of a proof step or the insight behind it, the
account that I offer will be a relative one. More precisely, it will be relative to a given
mathematical background, which I term the context.

After elaborating on the epistemic benefits of motivated proofs in §6, I will then consider
ways in which we can write better motivated proofs in §7. In particular, while Pólya’s ratio-
nal reconstruction was an effective way to motivate the unsatisfactory proof of Carleman’s
inequality, I will show that motivational efficacy can often be improved by making more
subtle changes to the proof itself. As we shall see, issues relating to how a proof manages
information are particularly important.

Before offering an explication of motivated proofs, however, I want to address potential
objections to desideratum (ii) based on its connection to mathematical discovery. For exam-
ple, it might be thought that the discovery process cannot be analyzed, and so we cannot say
much about whether a mathematical agent reading a proof can identify the insight behind
a given step. However, as we have already seen from Pólya’s rational reconstruction, it is
often possible to analyze what lies behind these discoveries, and, as I will suggest in §3–§5,
it is also possible to assess whether an agent with a given mathematical background could
reconstruct such reasoning.

Another potential objection to desideratum (ii) is that, being closely connected to dis-
covery, it goes beyond the purview of philosophy even if it can be analyzed. However, as
Rav has emphasized, a core function of proofs is to convey new mathematical resources:
“Proofs are for the mathematician what experimental procedures are for the experimental
scientist: in studying them one learns of new ideas, new concepts, new strategies—devices
which can be assimilated for one’s own research and be further developed” (Rav, 1999, p.
20). Part of doing this successfully involves not just conveying the resources themselves,
but also information about when it is useful to try applying them. Proofs that help readers
to identify the insight behind each step provide more useful information about the circum-
stances under which their resources can be applied. Thus desideratum (ii) connects closely
to a core function of proofs and so should not be dismissed.

§3. An explication of motivated proofs. In this section I will sketch an explication
of motivated proofs that incorporates the desiderata emphasized by Pólya. I will build up
to the notion of motivated proofs from the notion of motivated steps. The account that I
provide is thus reductionist. However there may be other kinds of motivation that cannot
be captured by a reductionist analysis and instead require a more holistic approach. Such
types of motivation may focus on, for example, a proof’s interestingness or its connections
to other results.10 These types of motivation are important and should also be investigated,
though they will not be my focus here.

Now for some preliminaries. In what follows, when I refer to a proof, I am referring to
the proof as it is written, for example, in a journal article. I will assume that the reader
of the proof is a finite mathematical agent and, consequently, has only limited cognitive

10 I am grateful to an anonymous reviewer for highlighting the possibility of other more holistic
notions of motivation.
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resources. Moreover, while finite agents may differ in the amount of cognitive resources
they have available, I will ignore these differences and focus instead on a typical finite
agent, whose cognitive resources are neither impoverished nor exceptional.

Furthermore, I will assume that the reader has access to a specific mathematical “toolkit,”
which I will call the context. The context contains mathematical resources, including
definitions, theorems, proofs, techniques and heuristics. By techniques, I mean precise
approaches that can be applied to a variety of problems, for example the technique of com-
pleting the square in algebra, mathematical induction in number theory, or double counting
in combinatorics. By heuristics, I mean guidance about how to try solving problems, like
Steele’s heuristic.

Additionally, each resource comes with a range of application within which it can be re-
liably applied.11,12 For example, a given resource may have a narrow range of application,
so that it can only be reliably applied in very limited circumstances, whereas a resource
with a wide range could be reliably applied even in new and unusual circumstances. A
medium range resource, then, would fall somewhere in between.

For instance, a technique concerning polynomials that has a narrow range of applica-
tion might only be reliably applied in situations which are explicitly about polynomials.
However, a technique with a wide range of application could be reliably applied even
if polynomials appear in a nonstandard or unusual form. Finally, if the technique has
a medium range then it could be reliably applied even if it is not made explicit that
polynomials are under discussion, but not if the polynomials appear in a nonstandard or
unusual form. I will illustrate these considerations with respect to a particular case study
in §4.

Finally, in what follows I will only be considering proofs relative to contexts that allow
typical finite agents with access to them to verify that the proof is correct. This is because,
if a typical finite agent with access only to a given context cannot verify that the proof is
correct, she cannot recognize it as a proof and so it cannot be judged to be a motivated (or
indeed unmotivated) proof relative to that context.

3.1. Motivated steps. Let’s say that an agent can identify the role a step plays in a
proof if and only if she can identify the tasks that it is intended to perform. Intended tasks
can be purely logical, i.e., instantiating logical inference rules. However, they often go
beyond this and include things like introducing useful notation, concepts or definitions,
simplifying expressions, instantiating mathematical resources or “fine-tuning” them to
make the argument work in just the right way. The task that the ci sequence was intended
to perform, making the terms of the sequence the Arithmetic-Geometric Mean Inequality
was applied to closer together, is an example of such “fine-tuning.” Now let’s say that a
step is role motivated relative to a context C if and only if a typical finite agent can identify
the role that it plays, i.e., if and only if she can identify the tasks that it is intended to
perform.13

11 I am intending “reliably applied” to be understood broadly, so as to include, for example,
recognizing when a resource is, or can be, used.

12 The context could, conceivably, contain more information. It might include, for example, certain
shared conventions among practitioners, or indications that certain resources are to be preferred
over others.

13 Role motivation can come in degrees. For example, an agent may be able to identify, in a general
way, a step’s intended tasks but be unable to provide full details. In such a case, the step would
be partially role motivated relative to the context.
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Furthermore, let’s say that an agent can identify the insight behind a proof step if and
only if she can identify where it could have reasonably come from. Sometimes steps will
come from the application of a mathematical technique. For example, if we are using the
technique of mathematical induction, we know that after we’ve proven the base case, the
next step is to assume that the induction hypothesis holds for n = k. In other words,
that step comes directly from the application of the technique of induction. Steps can also
come from the application of a heuristic, like, for example, how the ci sequence in Pólya’s
proof came from the application of Steele’s heuristic. Sometimes steps come from chains
of informal reasoning which can be complicated and rely on a variety of mathematical
resources. Now let’s say that a step is insight motivated relative to a context C if and only
if a typical finite agent with access to C can identify the insight behind it, i.e., she can
identify where it could have reasonably come from.14

Sometimes it is very easy for a typical finite agent with access only to a given context
to identify a step’s intended tasks or where it could have reasonably come from. For
example, a step’s only intended task might be to instantiate part of a logical inference rule
in a routine way. Or it might come from the straightforward application of an available
mathematical technique. Other times, however, it requires considerably more effort to
identify a step’s intended task or where it came from. For example, in Pólya’s proof of
Carleman’s inequality, the intended task of the ci sequence and where it came from are
only revealed when we think about what happens if we try to get by without introducing
it and analyze what happens—the proof attempt fails because the terms of the ai sequence
are too far apart and need to be made closer together so that the Arithmetic-Geometric
Mean Inequality is applied when it is (nearly) sharp.

Next let’s consider what factors affect whether a typical finite agent with access to a
given context can identify the tasks a step was intended to perform or where it could have
reasonably come from. The resources that are involved in the step’s intended tasks or where
it reasonably came from need to be available in the agent’s context and she must success-
fully connect them to the proof step in question for it to be role and insight motivated. If the
necessary resources are not available, then she cannot make the connection and so the step
will fail to be role or insight motivated. If they are available but only have a narrow range
and the step’s intended task or where it comes from involve the resources in a nonstandard
way, then the agent will be unable to make the connection and so the step will fail to be
role or insight motivated.

Now suppose that all the resources a typical finite reader needs to identify the step’s
intended task and where it could have reasonably come from are contained within the
context with wide enough range. Nonetheless her finite nature will affect whether she can
successfully identify the step’s intended tasks or where it came from. Making connections
between the proof and the resources within her context requires cognitive effort, which
she has in only limited supply. If the cost of making the connection is too high, then our
finite agent will not be able to make it and the step will fail to be role or insight motivated.
For example, a connection may be difficult to make, perhaps requiring the agent to make
other connections first, and that is why its cost is too high. Alternatively, the cost of the
connection may be too high because the proof is poorly organized or includes a slew of
irrelevant information, which makes the cost of making connections higher than it needs
to be. I will return to these factors when discussing how to write motivated proofs in §7.

14 Insight motivation can come in degrees. For example, an agent may be able to identify, in a
general way, where a step could have reasonably come from, but be unable to provide full details.
In such a case, the step would be partially insight motivated relative to the context.
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We can also consider how role and insight motivation are related. In the discussion of
the proof of the Generalized Arithmetic-Geometric Mean Inequality in §5 we will see that
it is sometimes possible for a step to be role but not insight motivated. Furthermore, in
the discussion of the Cauchy–Schwarz Inequality in §4, we will see that it is sometimes
possible for the insight behind a step to reveal its role. This raises two follow-up questions:
(i) is it sometimes possible for a step to be insight but not role motivated?; (ii) is it
sometimes possible for the role of a step to reveal the insight behind it?15 I do not have a
definite answer to these questions, but in both cases I suspect the answer is “yes.”

First consider question (i). Although we will see that sometimes the insight behind a
step involves its intended tasks and thereby reveals its role, it doesn’t seem necessary for
the insight behind a step to involve its intended tasks. For instance, perhaps the insight
behind a particular step focuses solely on what the proof looks like before its introduction,
whereas its intended tasks only come into play in the later parts of the proof. In such a case
the insight behind the step will not, in and of itself, reveal its role. Thus a reader with acess
to a suitable context could identify the insight behind the step, i.e., identify where it could
have reasonably come from, without identifying its role, i.e., its intended tasks. In such a
situation, the step would be insight but not role motivated.

Now consider question (ii). When we’re part way through proving a theorem and think-
ing about the next step to take, we might notice that if a certain task or tasks can be
completed, then the proof will also be complete. We can then use this information to (try
to) find and introduce a step that achieves these tasks. In such cases, the role of a step
plays a central part in revealing where the step came from, i.e., the insight behind it. Thus
if a reader can identify the role of the step in such a case, so long as she has access to an
appropriate context, she should also be able to identify the insight behind it.

Admittedly, some amount of vagueness remains in the notions of role and insight moti-
vation. This is to be expected as they must be open ended to capture a wide variety of tasks
a step can be intended to perform and places a step could have reasonably come from.
However the case studies presented in §4 and §5 will provide further illustrations of the
terms and how they are to be applied in practice.

3.2. Motivated proofs. We can use the notions of role and insight motivation, relative
to a particular context, to sketch an explication of what it means for a proof to be motivated:
a proof is motivated with respect to context C if and only if each of its steps are both role
and insight motivated relative to C.16 In other words, a proof is motivated relative to C if
and only if a typical finite reader with access only to C can identify the tasks each step is
intended to perform and where each step could have reasonably come from.

This explication thus makes the intuition that a motivated proof is one that doesn’t con-
tain any puzzling steps more precise. Specifically, the notions of role and insight motivation
rule out two different ways in a which a proof step could be puzzling. For instance, a step
that fails to be role motivated will cause puzzlement by leaving the reader in the dark as
to what the step is being used to accomplish. For example, a step that introduces a clever
construction that is not role motivated will elicit questions like “I see that this works, but
what, exactly, is it doing?” Similarly a step that fails to be insight motivated will cause
puzzlement by leaving the reader at a loss as to how the proof author could have come up

15 I am grateful to an anonymous reviewer for raising these questions.
16 Note that, just as role and insight motivation can come in degrees, so too can the motivational

power of a proof.

https://doi.org/10.1017/S1755020319000583 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000583


32 REBECCA LEA MORRIS

with it. For example, a step that sets a variable to be a certain value that makes the proof
work out perfectly but which fails to be insight motivated will be unsatisfying and lead to
questions like “What could have led the proof author to choose that value?” The conditions
of role and insight motivation are thus necessary to prevent a step from being intuitively
puzzling, as can be further appreciated from the discussion of the proof of Carleman’s
Inequality as well as the case studies in §4 and §5.

I do not, however, have an argument to show that the conditions of role and insight mo-
tivation are sufficient to prevent a step from being intuitively puzzling. While the puzzling
steps in the proofs I examine both in this article and elsewhere (Morris, 2015) have failed
to be either role or insight motivated, it may nonetheless be possible for a step to be both
role and insight motivated yet still intuitively puzzling. If this turns out to be the case, the
definition of motivated proofs I have given above will not fully capture the intuitive notion
of motivation. To fix it, further conditions would need to be added to rule out the additional
ways in which a proof step can be puzzling. The definition proposed above is thus best
understood as a conjecture about the nature of motivated proofs. While it’s possible that the
definition is incomplete, it still provides a useful starting point from which to characterize
and analyze motivation in mathematics.

§4. Case study: The Cauchy–Schwarz Inequality. To illustrate and further clarify
the explication of motivated proofs just presented, I will apply it to a case study from
linear algebra: the Cauchy–Schwarz Inequality.

4.1. Proof of The Cauchy–Schwarz Inequality. Before stating the Cauchy–Schwarz
Inequality, I will first briefly review real inner product spaces. Let V be a real vector space
and 〈, 〉 a function from V×V to R satisfying the following conditions17 for all x, y, z ∈ V:

1. 0 ≤ 〈x, x〉 with equality if and only if x = 0.

2. 〈y, x〉 = 〈x, y〉.
3. for any α, β ∈ R 〈αx + βy, z〉 = α〈x, z〉 + β〈y, z〉.

Then (V, 〈, 〉) is called a real inner product space. Furthermore, given a real inner product
space, we can define a new function, || . || : V → R, called a norm, as follows: ||x|| =
〈x, x〉 1

2 .
We can now state the Cauchy–Schwarz inequality for a real inner product space:

THEOREM 4.1. Let (V, 〈, 〉) be a real inner product space. Then for all x, y ∈ V

|〈x, y〉| ≤ ||x|| · ||y||
with equality if and only if x and y are linearly dependent.

Consider the proof, below, which loosely follows the presentation by Deutsch (2012, p.
3), though includes more details.

Proof. First suppose that x and y are linearly dependent. Then x = αy for some α ∈ R.
Thus we have

|〈x, y〉| = |〈αy, y〉| = |α〈y, y〉| = |α|||y||2 = ||αy|| · ||y|| = ||x|| · ||y||.

17 For more details on real inner product spaces, see e.g., Steele (2004, p. 7). Note that I have
condensed the 5 axioms from Steele’s presentation to 3.

https://doi.org/10.1017/S1755020319000583 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020319000583


MOTIVATED PROOFS 33

Now suppose that x and y are linearly independent. Then for no α ∈ R do we have
y − αx = 0. Thus for all α

0 < 〈y − αx, y − αx〉 = 〈y, y − αx〉 − α〈x, y − αx〉
= 〈y, y〉 − α〈x, y〉 − α〈y, x〉 + α2〈x, x〉
= 〈y, y〉 − 2α〈x, y〉 + α2〈x, x〉.

Now let α := <x,y>
<x,x> . Substituting this in the above yields

0 < 〈y − 〈x, y〉
〈x, x〉x, y − 〈x, y〉

〈x, x〉x〉 = 〈y, y〉 − 2
〈x, y〉
〈x, x〉 〈x, y〉 + 〈x, y〉2

〈x, x〉2
〈x, x〉

= 〈y, y〉 − 〈x, y〉2

〈x, x〉 .

Rearranging thus yields

〈x, y〉2

〈x, x〉 < 〈y, y〉.
Hence

〈x, y〉2 < 〈x, x〉〈y, y〉.
Finally, taking square roots of both sides,

|〈x, y〉| < ||x|| · ||y||. �

4.2. Motivational efficacy. I will focus on one step in the proof of the Cauchy–Schwarz
Inequality: the step in which α is set to be <x,y>

<x,x> . As I will describe below, this step per-
forms a specific task within the proof and comes from an application of Steele’s heuristic.
Nonetheless, the step fails to be role and insight motivated, relative to a particular context
that I will describe later on. This is because, while a typical agent with access only to that
context can verify the correctness of the proof, she cannot identify the step’s intended task
or where it could have reasonably come from.

First, to facilitate discussion, I am extracting and numbering the steps surrounding the
choice of α below:

For all α ∈ R, 0 < 〈y, y〉 − 2α〈x, y〉 + α2〈x, x〉 (1)
Let α := <x,y>

<x,x> (2)

Then 0 < 〈y, y〉 − 〈x,y〉2

〈x,x〉 (3)

To start, let’s focus on the intended task of Step (2): to introduce a value of α that
minimizes 〈y, y〉 − 2α〈x, y〉 + α2〈x, x〉. That this value of α successfully performs this
task can be checked using techniques from calculus or by completing the square, since
〈y, y〉− 2α〈x, y〉+α2〈x, x〉 is a quadratic in α. For example, here is Steele’s demonstration
via completing the square (Steele, 2004, p. 57):

〈y − αx, y − αx〉 = 〈y, y〉 − 2α〈x, y〉 + α2〈x, x〉
= 〈x, x〉

( 〈y, y〉
〈x, x〉 − 2α

〈x, y〉
〈x, x〉 + α2

)

= 〈x, x〉
{(

α − 〈x, y〉
〈x, x〉

)2

+ 〈y, y〉
〈x, x〉 − 〈x, y〉2

〈x, x〉2

}
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In the above, 〈x, x〉 is nonnegative and 〈y,y〉
〈x,x〉 − 〈x,y〉2

〈x,x〉2 is a constant. Thus to minimize

〈y −αx, y −αx〉, we need to minimize (α − 〈x, y〉/〈x, x〉)2. But this is always nonnegative,

taking its minimum value of 0 when α = 〈x,y〉
〈x,x〉 .

Now let’s consider where Step (2) came from. First recall that we have an inequality in
Step (1). Then remember Steele’s heuristic: it’s generally a good idea to apply inequalities
where they are (nearly) sharp. This supports introducing a value of α that minimizes the
right hand side of the inequality, as this will make the inequality as sharp as possible.

However, while typical agents with access only to the context C, described below, will be
able to check the correctness of the proof, they will fail to identify Step (2)’s intended task
(introducing a value that minimizes a quadratic) and where it could have reasonably come
from (Steele’s heuristic). Thus, relative to this context, Step (2) fails to be both role and
insight motivated and so the proof itself fails to be motivated. Let context C be described
in broad terms as follows:

Medium range resources: Real inner product spaces (definition of a real inner
product space, definition of norm, definition of vector space, definition of linear
(in)dependence, etc); Algebra (theorem stating that the min or max of a quadratic
ax2 + bx + c occurs at −b/2a, technique of completing the square, techniques for
manipulating algebraic expressions); Logic (standard inference rules)
Missing resources: Steele’s heuristic (try to apply inequalities where they are
sharp)18

Let’s first consider whether the step in question is role motivated relative to C. There
are two ways a reader could identify the step’s intended task. The first is by connecting
the expression 〈y, y〉 − 2α〈x, y〉 + α2〈x, x〉 from Step (1) and the value 〈x,y〉

〈x,x〉 from Step
(2) to the algebraic resources in her context. For example, the reader could recognize that
this pair have the general form ax2 + bx + c and −b/2a and then make a connection to
the theorem in her context that states that the minimum or maximum value of a quadratic
ax2 + bx + c occurs at −b/2a. This would then allow her to infer that the value of α is
chosen to minimize 〈y, y〉 − 2α〈x, y〉 + α2〈x, x〉 and she would have successfully identified
the step’s intended task.

However, a typical finite agent with access to context C cannot connect 〈y, y〉−2α〈x, y〉+
α2〈x, x〉 and the value 〈x,y〉

〈x,x〉 to the quadratic resources within her context. This is because
these resources only come with a medium range, meaning they cannot be reliably applied
(or recognized as applying) when quadratics appear in a nonstandard or unusual form.
Yet the quadratic in the proof does appear in a nonstandard form. More precisely, three
features of the expression 〈y, y〉 − 2α〈x, y〉 + α2〈x, x〉 obscure its quadratic nature. First,
the expression uses a nonstandard choice of variable, α. Second, the coefficients have a
complex form, being expressed in terms of inner products, and are written to the right of
the variable, not to the left as is standard. Third, while quadratics are standardly written
starting with the second degree term then the first degree term and finally the constant
term, this one is written in reverse. Consequently a typical finite agent cannot identify the
step’s intended task in this way.

18 Note that this context is not “artificial” for lacking Steele’s heuristic. Steele’s heuristic is
somewhat technical and agents do not need to have it available to them in order to understand
linear algebra. So, while it may be included in sophisticated contexts, omitting in from an
intermediate context like C does not make C unrealistic.
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The second way that a reader could come to identify the intended task of Step (2) is
by first identifying where it could have reasonably come from. For example, if the reader
recognizes that it is a good idea to exploit the inequality 0 < 〈y, y〉 − 2α〈x, y〉 + α2〈x, x〉
where it is as sharp as possible, she can then infer that this means minimizing the right
hand side. Next, she could use the algebraic resources in her context (either the technique
of completing the square or the theorem concerning min/max values) to confirm that the
choice of α is the minimizing value and thus identify the intended task of Step (2).

However, a typical finite agent with access to context C cannot identify Step (2)’s
intended task in this way. First, Steele’s heuristic, which states that it is useful to apply
inequalities where they are as sharp as possible, is not available. Thus the reader cannot
complete the first part of the reasoning, i.e., cannot recognize that the proof should exploit
the inequality 0 < 〈y, y〉 − 2α〈x, y〉 + α2〈x, x〉 where it is as sharp as possible. Second, the
quadratic 〈y, y〉−2α〈x, y〉+α2〈x, x〉 still appears in nonstandard form, so the reader cannot
reliably apply the quadratic resources from her context. Thus the reader cannot complete
the second part of the reasoning, either.

The considerations in the previous paragraph also show that Step (2) fails to be insight
motivated relative to C. This is because, in order to identify where the step could have
reasonably come from the reader needs to apply Steele’s heuristic, but this resource is not
available within her context. Consequently, Step (2) is neither role nor insight motivated
relative to C. Thus the proof fails to be motivated relative to C.

However, we can use our analysis of why the proof fails to be motivated relative to C to
improve it. There are two issues that we need to address: (i) the contextual resources about
quadratics only have a medium range of application; (ii) the contextual resources do not
include Steele’s heuristic.

Consider first the issue of the quadratic resources having only a medium range of ap-
plication. If the proof explicitly points out that 〈y, y〉 − 2α〈x, y〉 + α2〈x, x〉 is a quadratic
in α, its nature will no longer be obscured. Thus such a comment will bring the quadratic
within the range of application of the contextual resources, and so put the reader in a better
position to successfully make connections between her context and the proof. This will
then allow her to identify the intended task of Step (2).

Similarly, to compensate for the fact that Steele’s heuristic is missing, the proof could
include a small remark to explain that applying the inequality where it is as sharp as
possible allows the most information to be extracted from it. The reader could then identify
where this particular value of α could have come from. Moreover, it would provide her with
the heuristic which she could then reuse in future.

More concretely, we could replace the part of the original proof in which the particular
value of α is introduced with the following:

To get the most information out of this inequality, we should apply it
where it is as sharp as possible. Thus we should apply it when the quadratic
〈y, y〉−2α〈x, y〉+α2〈x, x〉 takes its minimum value. So let α = 〈x,y〉

〈x,x〉 and
substitute this back into the inequality . . .

This relatively minor tweak should be sufficient to significantly improve the proof’s
motivational power relative to context C.

§5. Case study: The General Arithmetic-Geometric Mean Inequality. As another
illustration of the explication of motivated proofs presented in §3, I will now apply it to a
proof of the General Arithmetic-Geometric Mean Inequality.
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5.1. Proof of the General Arithmetic-Geometric Mean Inequality. The General
Arithmetic-Geometric Mean Inequality can be stated as follows (see e.g., Steele (2004,
p. 23)):

THEOREM 5.1. Let p1, p2, . . . , pn be nonnegative real numbers such that
∑n

i=1 pi = 1 and
a1, a2, . . . , an be nonnegative real numbers. Then we have ap1

1 ap2
2 . . . apn

n ≤ p1a1 + p2a2 +
· · · + pnan.

In fact, when proving this we can assume all of the pk and ak are positive. If pi = 0,
for example, we can ignore the terms corresponding to this on either side of the inequality
as they do not contribute anything. If pi 
= 0 and ai = 0 then ap1

1 ap2
2 . . . apn

n = 0 and the
inequality holds.

A proof of this inequality, which Pólya discovered while dreaming, makes use of the
following bound for the exponential function: 1 + x ≤ ex for all x ∈ R with equality if and
only if x = 0.19 By a change of variables from x to x − 1 this becomes:

THEOREM 5.2 (Bound on ex−1). For all x ∈ R, x ≤ ex−1 with equality if and only if x = 1.

With this theorem in hand, we can now prove the General Arithmetic-Geometric Mean
Inequality as follows (see e.g., Steele (2004, pp. 23–25), Art of Problem Solving (nd)).

Proof. Let G = ap1
1 ap2

2 . . . apn
n and A = p1a1 + p2a2 + · · · + pnan. Now define αk = ak

A
for 1 ≤ k ≤ n. We apply the bound on ex−1 when x = αk to get αk ≤ eαk−1, i.e.,

ak

A
≤ e

ak
A −1.

Raising to the power pk and multiplying we get

(a1

A

)p1
(a2

A

)p2
. . .

(an

A

)pn ≤ exp

({
n∑

k=1

pk
ak

A

}
− 1

)
= 1.

Rearranging we obtain

ap1
1 ap2

2 . . . apn
n ≤ Ap1+p2+···+pn ,

i.e.,

G ≤ Ap1+p2+···+pn .

As p1 + p2 + · · · + pn = 1 we thus have G ≤ A �

5.2. Motivational efficacy. As in the previous case study, I will focus only on one step
in the proof of the General Arithmetic-Geometric Mean Inequality: the step in which αk

is defined to be ak
A . As I will describe below, this step performs a specific task within the

proof and comes from recognizing that the general theorem can be reduced to a special
case. Relative to a particular context that I describe later on this step will be role, but not
insight, motivated. This is because, while a typical finite agent with access only to that
context can verify the correctness of the proof and identify the step’s intended task, she
cannot identify where it could have reasonably come from.

First, to facilitate discussion, I am extracting and numbering the steps surrounding the
definition of αk below:

19 For a variety of different proofs of this bound, see the answers to the Math StackExchange post
by Montanaro (2013).
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Let G = ap1
1 ap2

2 . . . apn
n and A = p1a1 + p2a2 + · · · + pnan. (1)

Define αk = ak
A for 1 ≤ k ≤ n. (2)

Apply the bound on ex−1 when x = αk to get αk ≤ eαk−1. (3)

The intended task of Step (2) is relatively straightforward: to rescale the variables ak

so that
∑n

k=1 pkαk = 1. That the definition of αk achieves this is clear by inspection. The
insight behind Step (2), however, is more complicated. Below I sketch Steele’s reconstruc-
tion of how the proof could have been discovered, as this nicely illustrates where Step (2)
comes from (Steele, 2004, pp. 23–25).

Steele starts by applying the bound for ex−1 when x = ak to obtain ak ≤ eak−1. Raising
each side to the power pk and then multiplying the resulting inequalities he obtains

G = ap1
1 ap2

2 . . . apn
n ≤ exp

({
n∑

k=1

pkak

}
− 1

)
= eA−1.

By applying the bound for ex−1 when x = A he also finds

A ≤ eA−1.

In other words, he has a double bound, expressed by

max {A, G} ≤ eA−1.

If A = eA−1 then the General Arithmetic-Geometric Mean Inequality will be established.
A = eA−1 when and only when A = 1, so the inequality is in fact proven for the special
case when A = 1. Steele now tries to reduce the general case to the special one.20 This can
be done by rescaling the ak so that their weighted sum is 1. Hence the introduction of the
variables αk = ak

A since then
∑n

k=1 pkαk = 1.
In summary, Step (2) comes from recognizing that we can prove the theorem for a special

case and that we can reduce the general case to the special one by rescaling variables.
Having seen both the intended task of Step (2) (to rescale the ak) and where it could have

reasonably come from (reducing the general to a special case), let us consider whether the
proof is motivated relative to the intermediate context C described below.

Medium range resources: Inequalities (techniques for working with inequalities,
e.g., rescaling variables, raising inequalities to powers, multiplying inequalities;
theorem for bound on ex−1); Algebra (techniques for operating with sums and
products); Problem solving (heuristics such as “Try finding a special case and
reduce the general case to the special one”); Logic (standard inference rules)

First note that a typical finite agent with access to context C will have no trouble check-
ing the correctness of the proof of the General Arithmetic-Geometric Mean Inequality.
Moreover, such an agent can identify the intended task of Step (2): to introduce rescaled
variables whose weighted sum is 1. This is because the technique of rescaling is available
within the context with medium range, and there is nothing nonstandard or unusual that
would place Step (2) outside of this range. This means that Step (2) is role motivated
relative to C.

Step (2) fails to be insight motivated relative to C, however. Recall that we saw, above,
that Step (2) comes from reducing the general case to a special one. However, to reconstruct

20 “Try finding a special case and reduce the general case to the special one” is a general problem
solving heuristic. Gowers (2008) briefly discusses this heuristic in connection with two examples.
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this, the agent must first realize that the theorem can be proven in a special case and then
figure out how to reduce the general case to the special one. Recognizing that the theorem
can be proven in a special case itself involves a number of steps: Show G ≤ eA−1; Infer A ≤
eA−1; Infer max {A, G} ≤ eA−1; Conclude G ≤ A if A = 1. In other words, the reasoning
involved in identifying where Step (2) comes from has a number of different pieces and
the agent has to complete each of them and put them together successfully. Furthermore,
the above proof of the inequality does not provide the reader with any prompts to help her
complete these parts. Rather, she has to complete them on her own, without guidance. As
she is only a typical finite agent, however, the more parts she must complete on her own
like this, the less likely it is that she can complete them all successfully. In other words,
as the reasoning needed to identify where the step comes from involves numerous parts, it
makes it less likely that the step will be insight motivated.

Moreover, although the heuristic “Try finding a special case and reduce the general case
to the special one” is available in C, a typical finite agent won’t be able to apply it in this
case. This is because once the agent has obtained the double bound max {A, G} ≤ eA−1 she
may feel as though she is at a dead end and not realize she has established the theorem for
a special case. Indeed Steele refers to the task of obtaining an inequality between G and A
from a bound on their maximum as “a modest paradox” (Steele, 2004, p. 24) and remarks
that a reader “might be discouraged” (Steele, 2004, p. 25) at this point. If the reader does
not recognize she has established the theorem for a special case, then she cannot try to
reduce the general case to it. So even if she can reconstruct the reasoning to this point,
she will not be able to complete it and so Step (2) will fail to be insight motivated relative
to C.

As Step (2) fails to be insight motivated, the proof fails to be motivated relative to C.
However, again our analysis can help us determine how to better motivate the proof. There
were two main problems for an agent trying to determine where Step (2) came from: (i) she
needed to reconstruct multiple pieces of reasoning entirely on her own, with no guidance
from the proof; (ii) part of the reasoning looked like a dead-end. These issues can be
remedied by preceding the proof with a sketch of the reconstruction of its discovery. In
fact, this is exactly how Steele (2004, pp. 23–25) proceeds, so his version of the proof is
motivated relative to C.

§6. Epistemic benefits of motivated proofs. A proof that is motivated relative to a
given context provides its readers (i.e., the practitioners of that context) with epistemic
benefits. In particular, taking ‘understanding’ in a pre-theoretical sense, motivated proofs
promote understanding, convey new mathematical resources and stimulate new
discoveries.

Mathematicians often point to understanding as the main goal of mathematics. For
example, Thurston remarked “The measure of our success is whether what we do enables
people to understand and think more clearly and effectively about mathematics” (Thurston,
1994, p. 163). A proof that is motivated relative to a given context promotes understanding
among practitioners of that context by providing them with more useful information than
an unmotivated proof. More precisely, a motivated proof helps practitioners to identify
(i) the intended tasks of each step in the proof; and (ii) where each step could have rea-
sonably come from. This additional information enables readers to better understand how
the different proof steps work together to establish the result. Furthermore, it promotes
understanding of the theorem itself. In particular, if a reader can identify the intended task
of each step and where they reasonably came from, she should be able to grasp why certain
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conditions are included in the statement of the theorem, or whether they can be loosened,
for example.21

Rav has drawn attention, as we saw in §2.2, to the fact that a central function of proofs
is to convey new mathematical resources. Part of successfully conveying these resources
means showing how they can be used and communicating when it is useful to apply them.
Proofs that are motivated relative to a given context will be more successful at this than
unmotivated ones.22 In particular, as practitioners can identify the intended task of each
step in a motivated proof, they will better learn how the resources within the proof can be
used. By identifying where each step could have reasonably come from, the practitioners
will also be learning when it is useful to try to apply these resources in future.

Moreover, motivated proofs can sometimes directly stimulate discovery of new results.
For example, identifying a step’s intended task or where it reasonably came from can
suggest new proofs of new results.23 For a concrete example of this, consider the following
toy example: every odd integer can be represented as the difference of two squares. The
proof of this is very simple. If n is an odd integer, then we can write n = 2k + 1 for
some integer k. Then we just have to notice that (k + 1)2 − k2 = 2k + 1 and the proof is
complete.

The only nontrivial part of this proof is the insight behind the introduction of the wit-
nesses to the desired representation of n. However, here’s a rational reconstruction of where
these witnesses came from (see e.g., Clark (2013)): To prove the theorem, we want to find
integers x and y such that 2k + 1 = x2 − y2. We can rewrite this as 2k + 1 = (x − y)(x + y).
Now, to try to make the left hand side of the above equation look more like the right hand
side, we can again rewrite it as 1 · (2k +1) = (x− y)(x+ y). At this point, we make a guess
to see if we can get further and try setting x − y = 1 and x + y = 2k + 1. Then we have a
pair of simultaneous equations in two unknowns. Moreover, we find that they are solvable,
yielding x = k + 1, y = k.

Notice that part of this informal reasoning involves a guess (which is italicised). This
may prompt us to ask: are there circumstances under which it isn’t a guess? And the answer
is: yes! If p is an odd prime then its only divisors are 1 and itself. Thus (x − y) must be
1 and (x + y) must be 2k + 1. Recognizing this, we may then be led to a proof of a new
result: every odd prime can be represented uniquely as a difference of two squares. Notice
that this does not hold for odd numbers generally since, for example, 15 = 82 − 72 and
15 = 42 − 12.

Motivated proofs thus provide significant benefits to the practitioners of a given context.
By promoting understanding, they help mathematicians to achieve one of their fundamental
goals. By conveying how and when to apply mathematical resources, they better serve one
of the core functions of proof. By directly stimulating discovery, they contribute to the
advancement of mathematical knowledge.

21 It is also possible for a reader to come to gain understanding of a theorem independently. In
particular, I do not mean to imply that a reader will only fully understand a theorem after reading
a motivated proof. A reader may gain understanding of a theorem by, for example, considering
specific instances or special cases of the theorem or via visualization.

22 Motivated proofs thus have the instrumental benefit of promoting reuse of their resources. See
Morris (2019) for details about reuse in mathematics.

23 This means that sometimes un-motivated proofs can prompt discovery in this way because some
(but not all) steps in an unmotivated proof may be role and insight motivated relative to the given
context. However, as all steps in a motivated proof are role and insight motivated, they will prompt
such discovery more reliably than unmotivated ones.
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§7. Writing motivated proofs. As motivated proofs thus have significant benefits, we
should consider the more practical matter of how we can produce them.24 To do this, we
need to consider both the context that a proof will be assessed against, and the fact that
readers of the proof are finite agents with limited cognitive resources.

In terms of the context, we need to consider whether the resources needed to identify
each step’s intended task and where each step could have reasonably come from are (i)
available in the context; (ii) associated with a wide enough range of application. If required
resources are not present in the context, then, to produce a motivated proof, the writer will
need to include additional content to make up for the missing resources. If the required
resources are present, but do not have a wide enough range of application, then the writer
will need to help the reader connect the relevant resources to the proof. The suggested
improvements to the proofs of the Cauchy–Schwarz Inequality discussed in §4 are of this
form, for example.

However, to ensure that we produce motivated proofs we also need to take into account
the fact that the reader is a finite mathematical agent, with limited cognitive resources. Thus
the proof writer should aim to make it as easy as possible for her to make connections
between the resources in her context and the proof, even if the required resources are
available and associated with a wide enough range of application. This is because, the
more effort it takes for a reader to make those connections, the more difficult it is to make
them and the less likely it is that a typical reader can identify each step’s intended task and
where it reasonably came from.

If, for example, a lengthy chain of reasoning is needed to identify a step’s intended
tasks or where it reasonably came from, the reader must make all of the connections in
the chain to do so, which will be cognitively expensive. To address this, the proof writer
could include prompts to make some of the connections for the reader, so that she does
not need to make them all by herself. Similarly, if a single connection is particularly
difficult, i.e., cognitively expensive, to make, the proof writer should add a prompt to
reduce the cost of making the connection. The suggested improvements to the proof of
the General Arithmetic-Geometric Mean Inequality discussed in §5 are of this form, for
example.

Furthermore, the proof writer can reduce the cognitive cost of making connections by
paying close attention to how the proof manages information.25 Generally speaking, a
proof that manages information well highlights information when it is relevant and hides it
when it is not. The proof writer should consider how the proof manages information at both
a local and global level. At the local level, for example, displaying too much information
can make the proof much harder to parse than it needs to be. Making the proof harder to
parse means that it will take more effort for the reader to make connections between her
context and the proof, and thus make it less likely that the steps will be role and insight
motivated.

24 I am not claiming that it is always possible to write motivated proofs with respect to a
given context. Some proofs may only appear motivated to agents with access to suitably
sophisticated contexts and perhaps there are proofs that are not motivated relative to any known
context.

25 Avigad (2018) has discussed information management in the form of modularity and Sieg (2010)
has discussed the related concept of “hierarchical organization.” Additionally Avigad & Morris
(2014, 2016) have analyzed a detailed case study from the history of mathematics highlighting
different forms of information management and their importance.
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As a concrete example, consider Wilson’s Theorem.26 This result from elementary num-
ber theory states that if p is prime, then (p − 1)! + 1 is evenly divisible by p. The first
proof of this theorem was given by Lagrange and works by considering the polynomial
(x + 1)(x + 2) . . . (x + p − 1) and setting up a recurrence relation between its coefficients.
The recurrence relation is exploited to show that the constant coefficient plus one is evenly
divisible by p and the constant coefficient is then shown to be (p − 1)!. However, different
ways of presenting the proof can have a big effect on how easy it is to parse.

Consider, for example, the proof that starts as follows:

Proof Extract (Style 1)

Let (x + 1)(x + 2) · · · (x + p − 1) = xp−1 + A1xp−2 + · · · + Ap−1

Then we have

(x + 2)(x + 3) · · · (x + p) = (x + 1)p−1 + A1(x + 1)p−2 + · · · + Ap−1

And so we can infer

(x + p)(xp−1 + A1xp−2 + · · · + Ap−1)

= (x + 1)p + A1(x + 1)p−1 + · · · + Ap−1(x + 1)

. . .

Compare this with the following, which presents the same reasoning in a different way:

Proof Extract (Style 2)

Let L(x) = (x + 1)(x + 2) · · · (x + p − 1)

Then we have

L(x + 1) = (x + 2)(x + 3) · · · (x + p)

And so we can infer

(x + p)L(x) = (x + 1)L(x + 1)

. . .

The second style of proof hides information when it is not relevant. More precisely, it
does not introduce the coefficients A1, A2, . . . , Ap−1 at the start of the proof, as they are
not yet needed. Removing this information, and including a handy abbreviation for the
polynomial, makes the resulting proof extract much easier to parse.

However, how the proof manages information at a more global level is also important.
In particular, if the structure of a proof is clear, then this puts the reader in a good position
to make relevant connections between the proof and her context. For example, if the proof
is split up into a series of lemmas, then seeing that step S occurs in the proof of lemma L
can help direct the reader’s search by narrowing down the connections she should consider.
This in turn can help her to more easily identify the intended task(s) of S, as well as where
it reasonably came from.

26 For a detailed historical case study on Wilson’s Theorem and motivation, see Morris (2015, sec.
3.4).
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Breaking out lemmas27 from within a large complicated proof is thus one way that a
proof writer can help manage information effectively on a more global scale. Another
possible approach for complicated proofs is to provide a brief sketch or outline. This will
again provide the reader with information about the proof structure that can help guide
her search for connections and thus help her to more easily identify each step’s intended
task(s), as well as where they reasonably came from.

Ultimately, writing motivated proofs relative to a given context can be difficult. Indeed,
historical case studies document the substantial time and effort required to craft proofs
which manage information efficiently.28 Nonetheless, because motivated proofs help dis-
seminate and advance mathematical knowledge, it is time and effort well spent!

§8. Motivation and other virtues. Now that we have obtained a more precise analysis
of motivated proofs, we can consider the relationship between motivational power and
other desirable proof qualities. Here I will focus on explanatory power, beauty and fit.

8.1. Explanation. The explication of motivated proofs, proposed in §3, may invite
comparisons to explanatory proofs. For example, we might think that role and insight mo-
tivation are types of explanation, and so conclude that a motivated proof is also explanatory.
However, it is difficult to compare motivated proofs to explanatory ones because there is
little consensus over what constitutes an explanatory proof. Indeed, mathematicians and
philosophers have strong and vastly different intuitions about which proofs are explana-
tory.29 Moreover, the accounts of explanatory proofs that have been proposed are also
strikingly different from each other. For example, Steiner (1978) focused on properties of
individual proofs, while Kitcher (1989) focused on unification of a mathematical domain.

Nonetheless, while it is difficult to make a full comparison, there do seem to be important
differences between motivated proofs and explanatory ones. Elsewhere (Morris, 2015,
sec. 5) I have proposed certain proofs that are, according to my account, motivated with
respect to specific natural contexts but fail to be explanatory according to Steiner’s and
Kitcher’s theories. At a more general level, we can also note that theories of mathematical
explanation are not usually sensitive to whether the explanation is recognized as such by
mathematicians. However, such recognition is built into the definition of role and insight
motivation—recall that for a step to count as role or insight motivated relative to a given
context, agents with access to that context must identify the intended task of each step, as
well as where each step could have reasonably come from.

Moreover there seem to be important differences between the instrumental value of
motivated and explanatory proofs. Elsewhere (Morris, 2019) I identified reuse of resources
as an important mathematical goal and argued that explanatory proofs do not generally
help mathematicians to achieve it. However, as we have seen in §6, motivated proofs
communicate how and when to apply mathematical resources and thus do promote reuse
of their resources.

27 Breaking out lemmas is one way to increase the modularity of a proof. Avigad (2018) has analyzed
the benefits of such proofs. Note that if we break out lemmas, then we must decide when and how
to present these lemmas to the readers. These issues relate directly to Sieg’s notion of “hierarchical
organization” (Sieg, 2010).

28 See, for example, the case study discussed by Avigad & Morris (2014, 2016) in which such
changes took around 100 years.

29 See e.g., Lange (2009) for a discussion of competing intuitions over proofs by induction.
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Nonetheless, there may be a connection between motivated proofs and scientific expla-
nation.30 According to Hempel’s deductive-nomological account, an explanation shows
that the occurrence of some phenomenon was to be expected, given the specific conditions
and relevant laws (Woodward, 2017). The notion of insight motivation involves identifying
where a given step could have reasonably come from and thus seems to relate to grasping
why that step was to be expected.

The relationship between motivational and explanatory power is thus both interesting
and complicated and should be further explored.

8.2. Beauty. Although the notion of beauty, like explanation, provokes conflicting
intuitions, there is a closer connection between motivational power and beauty, at least on
Cellucci’s account. According to Cellucci “. . . a mathematical demonstration or theorem is
beautiful when it provides understanding” (Cellucci, 2015, abstract), where “understand-
ing” is defined as “recognition of the fitness of the parts to each other and to the whole”
(Cellucci, 2015, sec. 8, para 3). Cellucci further explained: “There is fitness of the parts of
a demonstration to each other and to the whole when it is clear what the whole idea of the
demonstration is, what the contribution of each part of the demonstration to the whole idea
is, and why such contribution is essential” (Cellucci, 2015, sec. 10, para 1).

The notions of role and insight motivation seem to capture some of the ways in which
proof steps can “fit” with each other and the whole demonstration in the way that Cellucci
described. Furthermore, as readers of a motivated proof, relative to a given context, can
identify the intended task(s) of each step, as well as where each step could have reasonably
come from, they would thus recognize their fit. Consequently, it appears that a motivated
proof, relative to a suitable natural context, is also beautiful on Cellucci’s account.

8.3. Fit. We have already seen, in the discussion of beauty, that there is a close re-
lationship between motivated proofs and “fit.” Raman-Sundström & Öhman (2018) have
analyzed fit in its own right and have identified three general kinds, each of which has two
subtypes: direct fit (coherence, specificity); presentational fit (level of detail, transparency);
and familial fit (generality, connectedness). Their notion of transparency seems most re-
lated to motivated proofs. Indeed, Raman-Sundström and Öhman described transparency in
the following terms “In a proof that is strong in this criterion, it is easy to see ‘what is going
on.’ In other words, the structure of the proof is natural for the particular argument and there
is no deus ex machina component” (Raman-Sundström & Öhman, 2018, p. 5). They further
explained that “. . . if a proof is transparent, a reader with the appropriate background should
be in an ideal position to grasp the ideas of the proof” (Raman-Sundström & Öhman, 2018,
p. 5).

As readers of a motivated proof, relative to a suitable context, can identify each step’s
intended task(s), as well as where each step could have reasonably come from, it should
indeed be easy for them to grasp “what is going on.” Consequently, motivated proofs also
appear to be transparent. However, perhaps it is possible to grasp “what is going on” in
a proof without all of its steps being role or insight motivated. For example, perhaps it
is possible to understand the core ideas of a proof and have a high level grasp of “what
is going on” within it while still finding a few steps involving the technical details to be
puzzling. If so, then it is possible for there to be proofs which are transparent but fail to be
fully motivated.

30 I am grateful to an anonymous reviewer for pointing out this connection.
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§9. Concluding remarks. In this article I have offered a context-sensitive explication
of motivated proofs. Recall from §3 that a proof is motivated relative to a given context
if and only if each step is both role and insight motivated relative to the context. In other
words, a proof is motivated relative to a given context if and only if a reader with access
to that context can identify the tasks each step was intended to perform, as well as where
each step could have reasonably come from. This explication thus reflects the intuition that
motivated proofs are those which do not contain any “puzzling” steps, as role and insight
motivation rule out potential sources of confusion for the reader. Moreover, as we saw in
§6, such proofs have three main epistemic benefits: (i) they promote understanding; (ii)
they successfully convey new mathematical resources; (iii) they stimulate new discoveries.
Ultimately, then, such proofs serve to disseminate and advance mathematical knowledge
among practitioners of a given context.

However, there may be other, alternative definitions of motivated proofs that are of
interest. For example, while the account I have developed here is reductionist, it may be
possible to give an alternative, holistic, definition focusing on how interesting a proof is or
how it connects to other areas of mathematics. Furthermore, mathematicians often speak
of proofs which are, for example, “geometrically motivated” (Sherali, 1987) or “physically
motivated” (Halliwell, 2014). Proofs which are motivated in these ways are worthy of
investigation in their own right.

Moreover, while I have focused on motivated proofs here, other mathematical artifacts
are often said to be motivated. For example, mathematicians call attention to definitions
and theories which are (or fail to be) well motivated. Here are two examples:

It is well known that not all algorithms are feasible; whether an al-
gorithm is feasible or not depends on how many computational steps
this algorithm requires. The problem with the existing definitions of
feasibility is that they are rather ad hoc. Our goal is to use the maximum
entropy (MaxEnt) approach and get more motivated definitions. (Cooke,
Kreinovich, & Longpré, 1998, p. 25)

Starting from a small number of well-motivated axioms, we derive a
unique definition of sums with a noninteger number of addends. (Müller
& Schleicher, 2011)

This suggests that it may be of interest to develop an account of motivational power
that applies to these artifacts as well. Indeed, there will likely be connections between
the accounts themselves, as well as between accounts of other virtues. I have already dis-
cussed, in §8, the relationship between motivated proofs, explanatory power, beauty and fit.
Developing accounts of motivated definitions and theories may reveal further connections
to virtues such as fruitfulness, which has been analyzed by Tappenden (2008) and Yap
(2011). Finally, given the close connection between mathematics and science, the notions
of motivated mathematical artifacts may generalize so as to apply to scientific concepts and
theories. Consequently the work presented here is just the beginning of an investigation into
motivational power.

However, it is not just philosophical work that remains to be done. Investigation into
the topic of motivated proofs, and motivated mathematical and scientific artifacts more
generally, should be highly interdisciplinary, incorporating insights from, for example,
philosophy, history, psychology and education.
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