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Abstract
This paper examines the effects of alternative assumptions regarding the curvature 
of utility upon estimated discount rates in experimental data. To do so, it introduces 
a novel design to elicit time preference building upon a translation of the Holt and 
Laury method for risk. The results demonstrate that utility elicited directly from 
choice over time is significantly concave, but far closer to linear than utility elicited 
under risk. As a result, the effect of adjusting discount rates for this curvature is 
modest compared to assuming linear utility, and considerably less than when utility 
from a risk preference task is imposed.

Keywords Time preference · Measurement of utility · Discounted utility · Choice 
list

JEL Classifications C91 · D01 · D90

1 Introduction

In both standard and behavioral theories of choice under risk and over time, the 
value of a risky or temporal prospect is typically modeled as a weighted sum of 
the utilities of its constituent elements. Thus, in the standard model of risk prefer-
ence (von Neumann and Morgenstern 1944), the expected utility of a lottery is given 
by the probability-weighted sum of the utilities of its individual prizes, as evalu-
ated by a Bernoulli utility function. Under expected utility, concavity of the Ber-
noulli function captures classical risk aversion, giving rise to a preference for more 
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equally-distributed payoffs over states of nature. Analogously, in the standard model 
of time preference (Samuelson 1937), the discounted utility of a stream of payoffs is 
given by the (exponentially-) discounted sum of the utilities of its individual payoffs, 
as evaluated by an instantaneous utility function. Under discounted utility, concavity 
of instantaneous utility captures resistance to intertemporal substitution, giving rise 
to a preference to smooth payoffs over time. Leading behavioral alternatives, such 
as rank-dependent utility and cumulative prospect theory for risk (Quiggin 1982; 
Tversky and Kahneman 1992), and (quasi-) hyperbolic discounting for time (Lai-
bson 1997; Loewenstein and Prelec 1992), retain this underlying additive structure 
while relaxing the assumptions of linear probability weighting and exponential dis-
counting, respectively.

In principle, risk aversion and intertemporal substitution describe conceptually 
distinct preferences. Nonetheless, in settings where both risk and time are present it 
is common—and perhaps even natural—to assume that Bernoulli utility for risk is 
one and the same as instantaneous utility for time. In standard theory, this gives rise 
to the model of discounted expected utility, which has been a workhorse model of 
economics dating back at least to Phelps (1962). Alternatives to the standard model 
take divergent approaches to the question of whether interchangeability of Bernoulli 
and instantaneous utilities is maintained. On one hand, the class of recursive prefer-
ence models developed by Kreps and Porteus (1978) and Epstein and Zin (1989) 
set out precisely to break the nexus—described by Weil (1990, p. 29) as a “purely 
mechanical restriction ... devoid of any economic rationale”—between risk aver-
sion and intertemporal substitution. On the other hand, prospect-theoretic models of 
time-dependent probability weighting (Halevy 2008; Epper et al. 2011; Epper and 
Fehr-Duda 2012) posit a relationship between probability weighting and hyperbolic 
discounting, under the assumption that a single function characterizes utility for 
both risk and time.

The question of whether utility under risk is interchangeable with utility over 
time is also a core issue in the design of experiments to elicit time preference, even 
though such experiments need not of necessity entail any interaction between risk 
and time. The primary objective of such studies is usually to estimate the parameters 
of a discount function. However, since choices are a product of both the utility and 
discount functions, it is necessary to allow for the possibility of non-linear utility.

Unfortunately, until quite recently there were essentially no known methods to 
elicit the curvature of utility outside the domain of risk. This resulted in the preva-
lence of two main approaches. First, Coller and Williams (1999) estimate discount 
rates under the maintained assumption that utility is linear. These estimates are 
potentially biased if utility is in fact concave (Frederick et al. 2002, pp. 381–382).1 
Second, Andersen et  al. (2008) measure utility by eliciting subjects’ risk prefer-
ences, and combine risk and time preference data to jointly estimate a discount 

1 Consider a subject who is presented with a binary choice between a smaller-sooner payoff or a larger-
later one, and suppose the former is chosen. There are two factors that combine to lead this subject to 
reject the larger-later alternative, namely time discounting and diminishing marginal utility. Therefore if 
the latter is assumed away, then the effect of the former will be overstated.
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function adjusted for the curvature of utility. This assumes that utility under risk 
also represents utility over time; it is found that adjusting for this degree of curvature 
results in substantially lower discount rates than when utility is assumed to be linear.

The objectives of this paper are twofold. First, I introduce a novel experiment 
design that allows a clean comparison of the curvature of utility elicited under risk 
(in the absence of delay) and over time (in the absence of risk). This design builds 
upon and extends the well-known Holt and Laury (2002, hereinafter HL) procedure 
for risk preference, by transposing that design from state-payoff space into time-
dated payoffs. The HL task is popular in its own right as means of eliciting the cur-
vature of utility under risk, and also forms the basis for the curvature adjustment in 
the joint estimation approach. Second, I examine the effect upon estimated discount 
rates of alternative measurements of utility—namely whether utility is assumed to 
be linear, inferred from risk preferences, or revealed through choices over time.

Several related studies have likewise sought to measure the curvature of utility 
directly from choices over time.2 In common with this paper, these studies share 
the key insight that to identify the curvature of instantaneous utility it is necessary 
to construct choices involving bundles of time-dated payoffs, as opposed to bound-
ary choices between all-sooner versus all-later payoffs.3 These studies find, again in 
common with this paper, that instantaneous utility is significantly concave yet close 
to linear. In the following paragraphs, I discuss these studies, and explain how this 
paper differs from each of them.

Abdellaoui et al. (2013) compare the curvature of utilities elicited under risk and 
over time, however they are not concerned with implications for the estimation of 
discount rates. For risk, they elicit the certainty equivalent (CE) of a risky prospect 
that pays x with probability p or otherwise y. For time, they elicit the present equiva-
lent (PE) of a temporal prospect that pays x at time k and y today. Thus notice that 
these two procedures are not exactly comparable. For risk, the CE is an amount paid 
in both states. This implies, firstly, that the impact of diminishing marginal utility 
upon the marginal rate of substitution vanishes at the CE (see Eq. 2 in Sect. 2.1), and 
secondly that the CE lies between x and y. By contrast for time, the PE is an amount 
paid solely on a single date. The impact of diminishing marginal utility is thus maxi-
mized because the difference in payoffs between the two dates is also maximal (as 
the payoff on the second date, k, is implicitly zero), and the PE may be larger than 
both x and y. Thus Abdellaoui et al. measure the curvature of utility over different 
intervals of payoffs for risk and time, and in such a way that diminishing marginal 

2 For an expanded discussion of related literature, see Cheung (2016). Other relevant approaches, dis-
cussed in detail there, include those of Takeuchi (2011), Laury et al. (2012), and Attema et al. (2016).
3 A distinct but complementary literature studies the preference for improving sequences. In a hypo-
thetical survey framed as choice over wage profiles, Loewenstein and Sicherman (1991) document a 
preference for increasing over decreasing sequences. However, this was not replicated by Gigliotti and 
Sopher (1997) and Manzini et al. (2010) in incentivized experiments using money. Note that in this line 
of research, the undiscounted sum of payoffs is held constant, whereas experiments focused on discount-
ing incorporate positive and varying interest rates. The literature on sequence preference also motivates 
psychological models, well outside the framework of discounted utility, such as those of Loewenstein 
and Prelec (1993) and Scholten et al. (2016).
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utility has differing effects upon the trade-offs faced in the two domains. The design 
of the experiment in this paper seeks to avoid these confounds.

Andreoni and Sprenger (2012a) and Andreoni et al. (2015) compare estimates of 
utility curvature and discounting elicited using the Convex Time Budget (CTB) pro-
cedure to measures derived using the binary choice methodology of Andersen et al. 
(2008). The CTB design of Andreoni and Sprenger (2012a) identifies instantaneous 
utility by allowing subjects to choose any convex combination between an all-sooner 
and an all-later extreme, while the modified CTB of Andreoni et  al. (2015) sim-
plifies this to a multinomial choice. In this environment, the preference to smooth 
payoffs over time is expressed through the choice of an interior allocation. In fact, 
when payments on both dates are sent with certainty, choices occur predominantly 
at the corners of the budget set, indicating that utility is close to linear.4 Andreoni 
and Sprenger (2012a) and Andreoni et al. (2015) compare this finding to that of a 
binary choice risk task of the type used by Andersen et al. (2008). They find that 
the latter indicates substantially greater utility curvature, and that the two curvature 
measures are uncorrelated at an individual level. Andreoni et al. (2015) further show 
that the risk-elicited curvature measure overstates the preference for interior alloca-
tions in the modified CTB.

Thus, Andreoni and Sprenger (2012a) and Andreoni et al. (2015) compare utili-
ties for risk and time elicited using different experimental designs (binary choice for 
risk and CTB for time), with different associated estimation procedures. However, it 
is well-known that owing to violations of procedure invariance, risk and time pref-
erences may not be stable across elicitation procedures (e.g., Tversky et  al. 1990; 
Loomes and Pogrebna 2014; Freeman et al. 2016). Moreover, the bulk of previous 
research on time preference uses binary choices, and estimation techniques for such 
data are well established in both the risk and time preference literatures. Estimation 
methodology for continuous and multinomial CTB data is less settled (see discus-
sions in Andreoni and Sprenger 2012a; Harrison et al. 2013; Andreoni et al. 2015). 
Thus, inferences from binary choice data for risk and CTB data for time may dif-
fer through any combination of: differences in experimental design, differences in 
estimation procedures,5 or genuine differences in the curvatures of Bernoulli and 
instantaneous utility.

I seek to avoid these confounds by comparing the curvatures of utility for risk 
and time within a unified design and estimation framework, using binary choices for 
both. Moreover, my binary choice task for time is derived from a transposition of the 
standard HL task for risk: rather than varying probabilities (holding payoffs fixed), 
it is a payment date that varies instead. This ensures that when comparing these 
results to the risk preference task (or a joint estimation procedure as in Andersen 

5 To illustrate, Harrison et al. (2013) find convex utility in the data of Andreoni and Sprenger (2012a) 
using a different estimator.

4 Andreoni and Sprenger (2012b) study the case where payments on both dates are subject to risk, find-
ing that interior allocations become more prevalent. One interpretation is that utility under risk may be 
more concave than under certainty. However, since the design involves an interaction of risk and time, 
the interpretation of this result is open to debate (Harrison et al. 2013; Cheung 2015; Epper and Fehr-
Duda 2015; Schmidt 2014).
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et al. 2008), the estimation apparatus remains unchanged and it is only the source of 
information on the curvature of utility that differs.

The remainder of the paper proceeds as follows. Section 2 first interprets the HL 
design for risk in a state-preference framework before showing how it can be trans-
lated into time-dated payoffs and extended to identify both utility and discounting. 
The full experiment design consists of a series of choice lists that differ in whether 
the smaller-sooner option offers a more or less temporally-balanced combination of 
payoffs. If instantaneous utility is linear, a subject will have the same switch point 
in all lists, identifying the discount rate. However if utility is concave, this generates 
a preference for more temporally-balanced payoff bundles, resulting in systematic 
shifts in switching behavior across lists. Section 3 presents the results. The pattern 
implied by concave instantaneous utility is indeed observed, and is highly signifi-
cant, but the magnitude is not large. The curvature of utility estimated from these 
choices is significantly concave, but less so than utility under risk, with the CRRA 
coefficient being an order of magnitude smaller. Adjusting for this degree of curva-
ture has only a modest effect upon estimated discount rates compared to assuming 
linear utility, and a much smaller effect than when utility is inferred from risk prefer-
ence using joint estimation. At an individual level, the curvatures of Bernoulli and 
instantaneous utility are uncorrelated. Joint estimates that constrain them to be the 
same predict time preference choices poorly because they overstate the preference 
for temporally-balanced payoff bundles. Section 4 concludes.

2  Design

2.1  State‑preference representation of the HL design for risk

The HL experiment consists of a set of choices between two alternatives, labeled 
Options A and B, and is customarily presented as a choice list. Each alternative is a 
risky prospect that pays a low prize xb in the “bad” state, with probability 1 − pg , or 
a high prize xg > xb in the “good” state, with probability pg . Options A and B repre-
sent two distinct payoff vectors, and in a given row of the choice list the probability 
pg is the same for both alternatives. Moving down the rows of the list, the payoff 
vectors remain unchanged and it is only the probability pg that varies.

Figure 1 illustrates using the payoffs used in this paper. Option A is a lottery that 
pays $17 in the bad state (plotted on the horizontal axis), and $20 in the good state 
(on the vertical).6 Option B pays $1 in the bad state, and $38 in the good state.7 
Option A is safer in that the difference in payoffs xg − xb is relatively small, whereas 
Option B is risky in comparison; in Fig. 1, this is represented by the fact that Option 

6 All payments are in Australian dollars. At the time of the experiments, one AUD was worth roughly 
USD 0.93 or EUR 0.68.
7 These payoffs are thus approximately ten times the nominal stakes in the original HL experiment, 
however they have been modified slightly to generate more moderate interest rates when transposed into 
time-dated payoffs. The original HL payoffs were A =

(

$1.60, $2.00
)

 and B =
(

$0.10, $3.85
)

.
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A lies closer to the diagonal, whereas Option B is close to the axis. In keeping with 
the original HL design, the probability pg starts at 0.1 in the first row, and increases 
in increments of 0.1 up to a value of 1.0 in the final row.8 The expected value of 
Option B thus increases more rapidly than that of Option A, and in the final row 
Option A is a dominated choice.

The rank-dependent utility of a risky prospect that pays xb with probability 1 − pg 
and xg > xb otherwise is:

where w(p) is the probability weighting function, and u(x) is the Bernoulli utility 
function. The (absolute) slope of an indifference curve is thus:

This slope is a product of two terms: 
[

1 − w
(

pg
)]

∕w
(

pg
)

 is the probability-
weighted odds of the bad state, while the ratio of marginal utilities u�

(

xb
)

∕u�
(

xg
)

 
captures the preference to smooth payoffs over the good and bad states of nature.

For the benchmark case of expected utility with a linear utility function, w(p) = p 
and u(x) = x , the slope reduces to the objective odds 

(

1 − pg
)

∕pg and the indiffer-
ence curves are linear. In the early rows of the choice list pg is small and the indif-
ference curves steeper than the chord AB, such that a risk-neutral subject prefers 
Option A. Moving down the rows of the list, as pg increases the indifference curves 
become flatter, and the subject eventually switches to Option B. In particular, a risk-
neutral subject chooses Option A in the first four rows, and Option B thereafter.9

Relative to this benchmark, a risk-averse subject continues to choose Option A at 
higher probabilities of the good state pg . This may occur as the subject over-weights 
the odds of the bad state,10 such that 

[

1 − w
(

pg
)]

∕w
(

pg
)

>
(

1 − pg
)

∕pg and/or as 
Bernoulli utility is concave, such that u�

(

xb
)

∕u�
(

xg
)

> 1 . The impact of diminishing 
marginal utility vanishes when xg = xb , while it increases as the difference in payoffs 
grows. The indifference curves thus become steeper as they approach the vertical 
axis, such that the subject chooses Option A at larger values of pg owing to a prefer-
ence to avoid unequal payoffs across states.

(1)RDU
(

xb, 1 − pg; xg, pg
)

=
[

1 − w
(

pg
)]

⋅ u
(

xb
)

+ w
(

pg
)

⋅ u
(

xg
)

(2)−
dxg

dxb

|

|

|

|

|RDU

=
1 − w

(

pg
)

w
(

pg
) ⋅

u�
(

xb
)

u�
(

xg
)

8 Full parameters of the risk preference experiment are enumerated in Appendix C.1.
9 This is true both for the original HL parameters in footnote 7, as well as the modified parameters used 
here.
10 Under rank-dependent utility, the indifference curves will be kinked at the 45-degree diagonal where 
the rank-ordering of prizes is reversed. Figure 1 thus depicts stylized indifference curves under expected 
utility.
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2.2  Time‑dated translation of the HL design for time

To translate the logic of the HL procedure into the domain of time preference, 
Options A and B are recast as temporal prospects that pay an amount xt on a 
“sooner” date t, and an additional amount xt+k on a “later” date t + k . Letting the 
date of the experiment be 0, t is the “front-end delay” to the sooner payment, while 
k is the “back-end delay” between the sooner and later payments. Throughout this 
paper, t and k are expressed in weeks, while interest and discount rates are expressed 
in annualized terms. Consistent with the HL procedure for risk, each set of choices 
is presented as a choice list. Within a given list, Options A and B represent two 
distinct payoff vectors, and in a given row the payment dates are the same for both 
alternatives. Moving down the rows of the list, the payoff vectors remain unchanged 
and it is only the payment dates, and specifically only the back-end delay k, that 
varies.

Figure 2 presents the format of the choice list for the pair of payoff vectors cor-
responding to the risk preference task described in Sect. 2.1. In the first row, Option 
A offers $17 in 1 week and $20 in 28 weeks, while Option B offers $1 in 1 week 
and $38 in 28 weeks. Thus Option A is “smaller-sooner” in that it offers a smaller 
total payment in undiscounted terms, but more on the sooner date, while Option B is 
“larger-later”. The front-end delay t is constant and equal to 1 week for all choices. 
The back-end delay k starts at 27 weeks in the first row and falls in decrements of 3 
weeks down to 0 weeks in the final row. Thus in the final row all payments accrue 
after 1 week, such that Option A is a dominated choice.

By choosing Option B in a given row, a subject forgoes $17 − $1 = $16 from 
the sooner payment and in exchange receives an additional $38 − $20 = $18 in the 
later payment, a return of 12.5%. Since the subject must wait k weeks to attain this 

xb1 17

xg

20

38

A

B

u” = 0, choose A

u” = 0, choose B

u” < 0, choose A

↑pg

xg = xb

Fig. 1  State-preference representation of the HL design for risk
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return, the implied annual interest rate is r = 1.12552∕k − 1 . As k falls, the subject 
waits a shorter length of time to realize the same return, and so the annual interest 
rate increases.11

Relative to a more conventional time preference choice list, this design differs 
in two key respects. First, all choices involve bundles of payments on two dates, 
as opposed to either the sooner or later date. Second, variation in the interest rate 
is generated by varying payment dates while holding the payoffs constant, rather 
than the other way around. As I explain next, this makes it possible to vary interest 
rates orthogonally to implications for intertemporal substitution, i.e. whether it is 
the sooner, later, or neither option that offers a more temporally-balanced bundle of 
payoffs.

2.3  Disentangling utility curvature and time discounting

The discounted utility of a temporal prospect that pays xt on date t and xt+k on date 
t + k is:

where D(t) is the discount function, and v(x) is the instantaneous utility function.12 
The (absolute) slope of an indifference curve is thus:

This slope is again a product of two terms: D(t)∕D(t + k) is the relative value of 
utility at date t compared to t + k , while v�

(

xt
)

∕v�
(

xt+k
)

 captures the preference to 
smooth payoffs over time.

For the benchmark case of exponential discounting with linear instantaneous 
utility, D(t) = 1∕(1 + �)t∕52 (where � is the annual discount rate) and v(x) = x , the 
slope reduces to (1 + �)k∕52 and the indifference curves are linear. In early rows of 
the choice list, k is large and the indifference curves relatively steep, so a subject for 
whom � is sufficiently large initially prefers Option A. Moving down the list, as k 
decreases the indifference curves become flatter, and the subject eventually switches 
to Option B. In particular, the subject chooses Option A as (1 + 𝜌)k∕52 > 1.125 , i.e. 
as 𝜌 > r , and Option B otherwise.

Thus in the benchmark case, this design functions exactly as a conventional time 
preference choice list, in that the “switch point” from smaller-sooner to larger-later 
identifies bounds on the discount rate. Therefore, in contrast to the benchmark case 

(3)DU
(

xt, t; xt+k, t + k
)

= D(t) ⋅ v
(

xt
)

+ D(t + k) ⋅ v
(

xt+k
)

(4)−
dxt+k

dxt

|

|

|

|DU

=
D(t)

D(t + k)
⋅

v�
(

xt
)

v�
(

xt+k
)

11 At ten times the original HL stakes for risk in footnote 7, we would have a return of 23.3% over k 
weeks, and the resulting annual interest rates would thus be considerably higher.
12 The arguments in this section extend also to certain specifications in which intertemporal utility is 
not additively separable, such as the one studied by Andersen et al. (2018) and Cheung (2015). This is 
because, in contrast to those studies, the design here purposefully avoids interacting risk with time. See 
Appendix A.2 on this point.
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DECISION TABLE 1 

Make your choices by marking an “X” in the appropriate box in each row. 

Weeks 
from 
today

 Su M Tu W Th F Sa
Decision Op�on A Your Choice Op�on B2014

May
 1 2 3

1 
$17 in 1 week

and 
$20 in 28 weeks

Op�on A □   Op�on B □
$1 in 1 week

and 
$38 in 28 weeks

0 4 5 6 7 8 9 10

1 11 12 13 14 15 16 17
2  18 19 20 21 22 23 24

2 
$17 in 1 week

and 
$20 in 25 weeks

Op�on A □   Op�on B □
$1 in 1 week

and 
$38 in 25 weeks

3 25 26 27 28 29 30 31

June
4  1 2 3 4 5 6 7

3 
$17 in 1 week

and 
$20 in 22 weeks

Op�on A □   Op�on B □
$1 in 1 week

and 
$38 in 22 weeks

5 8 9 10 11 12 13 14

6 15 16 17 18 19 20 21
7  22 23 24 25 26 27 28

4 
$17 in 1 week

and 
$20 in 19 weeks

Op�on A □   Op�on B □
$1 in 1 week

and 
$38 in 19 weeks

8 29 30

July
8  1 2 3 4 5

5 
$17 in 1 week

and 
$20 in 16 weeks

Op�on A □   Op�on B □
$1 in 1 week

and 
$38 in 16 weeks

9 6 7 8 9 10 11 12
10 13 14 15 16 17 18 19
11  20 21 22 23 24 25 26

6 
$17 in 1 week

and 
$20 in 13 weeks

Op�on A □   Op�on B □
$1 in 1 week

and 
$38 in 13 weeks

12 27 28 29 30 31
August

12 31  1 2
7 

$17 in 1 week
and 

$20 in 10 weeks
Op�on A □   Op�on B □

$1 in 1 week
and 

$38 in 10 weeks
13 3 4 5 6 7 8 9

14 10 11 12 13 14 15 16
15  17 18 19 20 21 22 23

8 
$17 in 1 week

and 
$20 in 7 weeks

Op�on A □   Op�on B □
$1 in 1 week

and 
$38 in 7 weeks

16 24 25 26 27 28 29 30

September
17  1 2 3 4 5 6

9 
$17 in 1 week

and 
$20 in 4 weeks

Op�on A □   Op�on B □
$1 in 1 week

and 
$38 in 4 weeks

18 7 8 9 10 11 12 13
19 14 15 16 17 18 19 20
20  21 22 23 24 25 26 27

10 
$17 in 1 week

and 
$20 in 1 week

Op�on A □   Op�on B □
$1 in 1 week

and 
$38 in 1 week

21 28 29 30
October

21  1 2 3 4
22 5 6 7 8 9 10 11

23 12 13 14 15 16 17 18
24 19 20 21 22 23 24 25

25 26 27 28 29 30 31
November

25 30  1

26 2 3 4 5 6 7 8
27 9 10 11 12 13 14 15

28 16 17 18 19 20 21 22
29 23 24 25 26 27 28 29

Su M Tu W Th F Sa

Fig. 2  Sample choice list instrument for time preference elicitation
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for risk, there is no point prediction for the number of sooner choices. This simply 
reflects the fact that the discount rate � is an additional preference parameter that 
must be estimated, whereas in the case of risk the odds are objectively determined 
by the experimenter.

For the more general case of non-linear instantaneous utility, it follows that it 
will not be possible to also identify the curvature of utility from a single choice list. 
Figure 3 depicts indifference curves for two subjects who both prefer Option A in 
a given row of the list. The first, represented by the linear indifference curve, pre-
fers Option A on account of impatience, i.e. 𝜌 > r . The second, represented by the 
convex indifference curve, is relatively patient, i.e. 𝜌 < r,13 but has concave instan-
taneous utility (such that v�

(

xt
)

∕v�
(

xt+k
)

> 1 for xt+k > xt ) and prefers A because it 
offers a more temporally-balanced stream of payoffs. Clearly, it is not possible to 
distinguish these cases simply by observing the switch point in a single choice list.

Figure 3 also suggests two strategies by which it may be possible to distinguish 
between the cases. First, suppose subjects also face choices between A and C, where 
C is the payoff vector 

(

$33, $2
)

 . Relative to A, where B represents a deferral of pay-
ment, C represents expediting of payment at the same interest rate of 12.5% over 
k weeks. Then at the same row of an analogously-constructed CA choice list, the 
impatient subject with linear utility prefers C. On the other hand, the patient subject 
with concave utility continues to prefer A, both on account of the return for delay 

xt1 17

xt+k

20

38

A

B

ρ < r, v” < 0

ρ > r, v” = 0

C

C’

B’29

11

2
9 25 33

xt+k = xt

Fig. 3  Time-dated payoff representation of the HL design for time

13 Where the indifference curve meets the diagonal xt+k = xt , the impact of diminishing marginal utility 
vanishes and the slope in Eq. 4 reflects the pure effect of discounting. At this point, the tangent of the 
indifference curve is flatter than the chord AB.
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(discounting) and because A offers a more temporally-balanced stream of payoffs 
(utility). Second, consider choices between A and the payoff vector B’ =

(

$9, $29
)

 , 
which is the midpoint of AB. Relative to A, B’ again represents deferral of payment, 
however the amount being deferred is smaller such that B’ is less unbalanced than 
B. At the same row of an AB’ choice list, the impatient subject with linear utility 
continues to prefer A. However the patient subject with concave utility may choose 
B’, but not B, if willing to save a smaller, but not a larger, amount.

2.4  Full design

The full design involves the five payoff vectors depicted in Fig.  3: C =
(

$33, $2
)

 , 
C’ =

(

$25, $11
)

 , A =
(

$17, $20
)

 , B’ =
(

$9, $29
)

 , and B =
(

$1, $38
)

 . Of these, C is 
“smallest-soonest”, while B is “largest-latest”. By construction, for any two vectors, 
the return for choosing the larger-later one is 12.5% over k weeks. Each subject com-
pleted six time preference choice lists, each in the format shown in Fig. 2, using the 
following pairs of payoff vectors: CA, C’A, AB’, AB, CB, and C’B’.14 In each list, 
the smaller-sooner option was shown on the left as Option A, while the larger-later 
one was shown on the right as Option B—thus the alternatives were not identified as 
C, B’, etc. in materials presented to subjects. The front-end delay t was always one 
week, and the back-end delay k declined from 27 down to 0 weeks in each choice 
list, generating annual interest rates that increase from 25.46% up to infinity (in the 
final dominated choice).15

Because this design varies interest rates orthogonally to how near or far the pay-
off vectors are from the diagonal in Fig. 3, it is possible to identify both the discount 
rate and curvature of instantaneous utility directly from choices over time—without 
relying on a separate risk preference task or assuming that utility is the same for 
both risk and time.

Since by design the interest rate is the same at the corresponding row of each 
choice list, a subject with linear utility will have the same switch point in each. This 
is the analog to the point prediction that a risk-neutral subject makes four safe lot-
tery choices in the risk task. On the other hand, a subject with concave instantaneous 
utility prefers to smooth payoffs over time. This subject will have a later switch point 
in the AB and AB’ choice lists, in which the smaller-sooner option is more tempo-
rally-balanced, than in the CA and C’A lists, in which it is the larger-later option that 
is more balanced. Details of this prediction are set out in Appendix A.1. It should be 

14 Thus note that, had a subject faced a choice from the full menu of five bundles, this would amount to 
an instance of the modified CTB of Andreoni et al. (2015). Naturally, binary choices contain more infor-
mation at the cost of requiring more responses. Suppose, for example, that B is chosen from the choice 
set {C,A,B} in Fig. 3. Then it can be inferred that B would also be chosen from {A,B} , but the choice 
from {C,A} cannot be determined. The experiment in this paper tests the prediction that a subject with 
concave utility switches from C to A before (at a lower interest rate than) switching from A to B.
15 The annual rates are: 25.46% at k = 27 weeks; 29.07% at k = 24 ; 33.86% at k = 21 ; 40.53% at k = 18 ; 
50.43% at k = 15 ; 66.59% at k = 12 ; 97.49% at k = 9 ; 177.54% at k = 6 ; 670.27% at k = 3 ; and infinity 
at k = 0 . Full parameters of all time preference choice lists are enumerated in Appendix C.2.
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emphasized that this prediction holds regardless of the shape of the discount func-
tion, and does not rely upon exponential discounting.

In addition to the six time preference choice lists, each subject also completed a 
single risk preference choice list, using the classic AB parameter set described in 
Sect. 2.1. This makes it possible to compare the curvature of utility elicited under 
risk and over time, in a within-subjects design.

Two limitations of the design may be acknowledged. First, the annual interest 
rates offered in the experiment are rather high,16 as it was not possible to extend k 
beyond six months since the last payment date fell shortly before the start of summer 
vacation.17 Second, as all choice lists have the same front-end delay of one week, it 
is not possible to identify parameters of a non-exponential discount function. Rather, 
it is only possible to estimate an exponential discount rate (which may also be inter-
preted as the exponential component of a quasi-hyperbolic model). This design 
choice was made because the focus of this paper is to examine implications of con-
cave instantaneous utility that do not depend on the shape of the discount function.

2.5  Procedures

A total of 122 student subjects participated in the experiment at the research labora-
tory of the School of Economics at The University of Sydney between 6 and 13 May 
2014. The mean age of subjects was 20.4 years, and 55.7% were males. Subjects 
were recruited using ORSEE (Greiner 2015). To ensure that subjects would still be 
at university when payments were sent, students already in their final semester of 
study were not eligible to participate. Each session ran for approximately 75 minutes 
including instruction and payment, and the average payment was $45.2 (approxi-
mately USD 42.0 or EUR 28.5), inclusive of a $10 show-up fee. A total of 12 ses-
sions were conducted, and the order of presentation of time preference choice lists 
was varied between sessions.18 Each choice list consisted of ten decisions, so each 
subject made 70 choices in total. The experiment was conducted by pen-and-paper.

At the end of the session, one decision was drawn randomly and independently 
for each subject, and they were paid according to the choice made in that decision. 
Following the procedure of Andreoni and Sprenger (2012a), the $10 show-up fee 
was split into two equal installments of $5 paid by check on the sooner and later 
payment dates of the decision selected to count for payment. The payments chosen 
by the subject were added to these checks. Since the subject would in any case have 
to bank two checks, this ensured that there was no convenience benefit from choos-
ing a more unbalanced payoff vector in order to amass payment on a single date. 

16 The interest rates are comparable to those offered by Andreoni and Sprenger (2012a) (which vary 
from 20.5 to 1300.9%), but higher than those offered by Andersen et al. (2014) (which vary from 5 to 
50%).
17 Alternatively, it would be possible to generate lower interest rates by making the payoff vectors closer 
in undiscounted terms.
18 Instructions for one of the orders are in Appendix D. There were four orders in total, enumerated in 
Appendix C.3. Within each, the first four choice lists were a different permutation of CA, C’A, AB’ and 
AB, and the risk preference task was always last.
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If one of the ten risk preference decisions was selected to count for payment, the 
realization of the chosen lottery was paid in cash at the end of the session, however 
the show-up fee was still paid in two checks of $5, sent one and sixteen weeks after 
the experiment. This ensured that any wealth effect attributable to the show-up fee 
would be the same for both risk and time preference decisions.19

The procedures also incorporated several measures introduced by Andreoni and 
Sprenger (2012a), as adapted by Cheung (2015), to enhance the credibility of payment 
and minimize the background risk of receiving payment in the future. First, all checks 
were drawn on the campus branch of the National Australia Bank and mailed by Australia 
Post guaranteed Express Post. Australia Post guarantees next-day delivery for articles 
mailed by Express Post, at a cost of $6 per envelope. Since every subject addressed their 
own envelopes prior to making their choices, they could observe that the experimenter 
was willing to pay $6 to mail a check to the value of as little as $5 by Express Post. This 
imparted a high level of credibility to the payments.20 At the end of the session, each sub-
ject wrote their own payment amounts and dates on the inside of each envelope, and was 
given a copy of the receipt form showing these amounts and dates, as well as the business 
card of the experimenter to contact in the event of a payment not arriving as expected.

3  Results

Section 3.1 describes aggregate behavior in the risk and time preference tasks, before 
Sects. 3.2 and 3.3 report structural estimates of utility and discount functions for a rep-
resentative agent. The key findings are that instantaneous utility is significantly con-
cave, but less so than Bernoulli utility for risk, and the effect of correcting for the cur-
vature of instantaneous utility upon the discount rate is modest. Section 3.4 considers 
joint estimation, which has a more pronounced effect, while Sect.  3.5 introduces an 
alternative to discounted utility that is compatible with more substantial utility curva-
ture. Section 3.6 reports a number of robustness checks to the representative agent esti-
mates. Section 3.7 turns to estimation and prediction at an individual level. It shows that 
the curvatures of Bernoulli and instantaneous utility are not significantly correlated, and 
individual estimates that infer the curvature of utility from choices over time predict 
subjects’ time preference choices better than linear utility, while joint estimates do not.

3.1  Descriptive analysis

Figure 4 summarizes aggregate choice behavior in the experiment. The upper left 
panel reports the percentage of subjects who choose the safer Option A for each row 
of the risk preference task. The dashed line depicts the benchmark prediction under 
risk neutrality, the solid line depicts observed choices, and error bars represent 

19 Sixteen weeks represents the median of the (non-degenerate) later payment dates used in the time 
preference tasks.
20 In the post-experiment questionnaire, all but two subjects reported trusting that they would be paid as 
stated in the instructions.
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± one standard error of the mean for a binomial proportion. The lower left panel 
reports a histogram of the number of safe choices made by each subject. The median 
subject makes six such choices, and the number of safe choices differs significantly 
from the risk-neutral benchmark of four, with p < 0.0001 in both a sign test and a 
Wilcoxon signed-ranks test (all tests reported throughout the paper are two-sided).21

Turning to behavior in time preference tasks, the upper right panel reports the 
percentage of smaller-sooner choices as a function of the back-end delay, separately 
for the pooled AB/AB’ and CA/C’A choice lists. Appendix B.1 reports separate fig-
ures for each list. The proportion of sooner choices declines smoothly as the back-
end delay falls and the interest rate increases, suggesting that subjects understood 
the underlying trade-off entailed in waiting a longer or shorter time for a given-sized 
increase in undiscounted payoffs.

Under linear utility subjects are predicted to make the same choices in all lists, 
while departures from linearity are expressed as differences across lists. In par-
ticular, a subject with concave utility prefers to smooth payoffs over time, and thus 
makes more sooner choices in AB/AB’ choice lists (in which the smaller-sooner 
option is more temporally balanced) than in CA/C’A lists (in which the larger-later 
option is more balanced). The upper right panel of Fig.  4 confirms a small, but 
clearly discernible shift in the direction predicted by concave utility. At every back-
end delay except zero (where the sooner option is dominated), subjects make more 
sooner choices in AB/AB’ than in CA/C’A. To illustrate the magnitude of these dif-
ferences, the error bars represent ± one standard error of the mean for a binomial 
proportion.

The lower right panel of Fig. 4 reports a histogram of the difference in the num-
ber of sooner choices made by each subject between the AB/AB’ and CA/C’A 
choice lists. The mode of this distribution is at zero, corresponding to linear utility, 
but there is greater mass to the right indicating a tendency toward concavity. The 
median subject makes a total of 13 sooner choices in the combined AB/AB’ choice 
lists, compared to 11.5 in the CA/C’A lists. This difference is highly significant, with 
p = 0.0013 in a sign test, or p = 0.0006 in a Wilcoxon signed-ranks test.22 This evi-
dence of a systematic tendency to prefer the more balanced payoff vector A, consist-
ent with a preference to smooth payoffs over time, does not rely on any assumptions 
on the functional form of utility.23

21 The difference remains highly significant when four subjects who reswitch by choosing Option A after 
previously choosing Option B are excluded from the analysis. All four subjects reswitch exactly once, 
and one also makes a dominated choice by choosing Option A in the final row.
22 The difference remains highly significant when 30 subjects who make one or more non-monotonic 
choices are excluded from the analysis. There are 26 subjects who reswitch by choosing smaller-sooner 
after previously choosing larger-later within a given list: 13 reswitch once, seven twice, and six more 
than twice over six choice lists. There are 17 who make dominated choices by choosing smaller-sooner 
in the final row of a list: six do so once, eight twice, and three more than twice. Note that dominated 
choices are less costly in the time preference tasks: in the AB choice list the cost is $2, compared to $18 
in the risk preference task. The stochastic choice model in Eq. 9 allows that non-monotonic choices may 
occasionally occur.
23 As discussed in Sect. 2.3, concave utility may also motivate differences in behavior between AB’ and 
AB, or between CA and C’A, however no significant differences were found.

Downloaded from https://www.cambridge.org/core. 17 Mar 2025 at 03:55:53, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


507

1 3

Eliciting utility curvature in time preference  

Figure 4 establishes that, in both risk and time preference, there is clear evidence 
of the choice patterns implied by concave utility. The finding for risk replicates other 
studies that use the HL design, while the finding for time is a novel result of trans-
posing that design into the domain of time preference. Moreover, while both effects 
are highly significant, it is clear that the magnitude is smaller in choice over time. 
This suggests that while instantaneous utility for time is indeed concave, it may be 
less concave than Bernoulli utility for risk. To formalize this observation, I next esti-
mate structural preference models for a representative agent, building upon well-
established procedures documented by Harrison and Rutström (2008) for risk and 
Andersen et al. (2008, 2014) for time.

0

20

40

60

80

100
P

er
ce

nt
 s

af
e 

ch
oi

ce
s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Observed Risk-neutral

Probability of high lottery prize

0

20

40

60

80

100

P
er

ce
nt

 s
oo

ne
r c

ho
ic

es

0369121518212427

AB/AB' CA/C'A

Back-end delay in weeks

0

10

20

30

P
er

ce
nt

0 2 4 6 8 10
Number of safe choices

0

5

10

15

20

25

P
er

ce
nt

-20 -10 0 10 20
Difference in sooner choices (AB/AB' - CA/C'A)

Note: Error bars represent +/- one SEM.

Fig. 4  Choice behavior in risk and time preference tasks
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3.2  Utility curvature under risk

For risk preference, I assume a constant relative risk aversion (CRRA) functional 
form for Bernoulli utility:

such that � = 0 corresponds to linear utility, while 𝛼 > 0 implies concave utility. I 
begin with expected utility, but the exposition treats this as the special case of rank-
dependent utility with w(p) = p . Given some candidate value of � (and probabil-
ity weighting parameters), the rank-dependent utility of each lottery is evaluated. 
Then, adopting a “contextual” error specification (Wilcox 2011), the probability that 
Option B is chosen is modeled as:

where Λ(⋅) is the cumulative logistic distribution function, � is the difference 
between the maximum and minimum utilities over all prizes in the choice set,24 and 
� is a structural “noise” parameter for the risk preference choices. As � goes to zero, 
the lottery with the larger RDU is chosen deterministically, while as � goes to infin-
ity, the choice probability goes to one-half such that choices are essentially random. 
The data consists of 1220 observations, being ten binary choices in the risk prefer-
ence task for each of 122 subjects. The parameters are estimated to maximize the 
likelihood of the observed choices using Stata 16, with robust standard errors clus-
tered at the level of individual subjects.

Model (1) in Table 1 reports estimates under expected utility. The point estimate 
of � is 0.547, with a standard error of 0.036. This implies substantial concavity of 
Bernoulli utility, and sits comfortably within the range of previously-reported esti-
mates using similar experimental designs and estimation procedures.25

As discussed in Sect. 2.1, risk aversion in HL-style tasks may be driven by cur-
vature of the utility function, and/or by non-linear probability weighting. Therefore, 
just as assuming linear utility may cause estimates of the discount rate to be biased 
in choice over time, assuming linear probability weighting may cause estimates of 
the utility function to be biased in choice under risk. Indeed, Drichoutis and Lusk 
(2016) claim that risk aversion in HL tasks may be solely a product of probabil-
ity weighting as opposed to utility curvature: in their estimates of a rank-dependent 

(5)u(x) =
x1−�

1 − �

(6)Pr (B) = Λ
(((

RDUB − RDUA

)

∕�
)

∕�
)

24 Division by � ensures that the normalized utility difference lies in the unit interval. Since subjects only 
face a single choice set for risk, this amounts to re-scaling the “noise” parameter with no effect on esti-
mates of the core preference parameters. However, this contextual error specification will be generalized 
to choices over time, where different decisions involve different payoff sets.
25 For example, Harrison and Rutström (2008, Table 8) report CRRA estimates under expected utility 
for three data sets, using similar estimation techniques to those adopted here. For the data of Hey and 
Orme (1994), the CRRA estimate is 0.61 (standard error 0.03), while in their replication of that design it 
is 0.53 (standard error 0.05). For the data of Holt and Laury (2005), the estimate is 0.76 (standard error 
0.04). More recently in a field setting, Andersen et al. (2014) report an estimate of 0.65 (standard error 
0.04) in a model that employs the Wilcox (2011) contextual error specification.
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model they find significant non-linear probability weighting, while the CRRA coef-
ficient does not differ significantly from zero. While this finding is arguably at odds 
with other existing literature,26 it highlights the importance of allowing for probabil-
ity weighting when comparing the curvature of utility elicited under risk and over 
time.

To examine the robustness of concave Bernoulli utility to the possibility of non-
linear probability weighting, I estimate rank-dependent models for each parametric 
form of the probability weighting function in Section  3.6 of the survey by Fehr-
Duda and Epper (2012). The Bayesian information criterion (BIC) in fact selects the 
expected utility specification of model (1) in Table 1. The Akaike information cri-
terion (AIC), which penalizes model complexity less severely than the BIC, selects 
a model with a single-parameter weighting function from the theory of disappoint-
ment aversion of Gul (1991): w(p) = p∕

[

1 + (1 − p)�
]

 . The resulting estimates are 
set out as model (2) in Table  1. This weighting function simplifies to linearity at 
� = 0 , a restriction that is clearly rejected with p = 0.005 . The implied weighting 
function is convex, and is depicted by the dashed line in Fig. 5. For the purpose of 
this paper, the effect on the estimate of utility curvature is of greatest interest. This 
estimate is now smaller (and less precisely estimated) than under expected utility. 
However, it will transpire that it is still considerably greater than the curvature of 
instantaneous utility estimated from choices over time.

3.3  Utility curvature and discounting over time

I next set out how the data from the six time preference choice lists can be used to 
estimate both the curvature of instantaneous utility and the discount rate, adopting 
similar procedures to Sect. 3.2 and Andersen et al. (2008, 2014). I assume a CRRA 
form for the instantaneous utility function:

and an exponential form for the discount function:

where � captures the curvature of instantaneous utility and � is the annual discount 
rate. Given candidate values of � and � , the discounted utility of each alternative is 

(7)v(x) =
x1−�

1 − �

(8)D(t) =
1

(1 + �)
t

52

26 For example, in their re-analysis of the data of Holt and Laury (2005), Harrison and Rutström (2008, 
Table 8) estimate the same rank-dependent specification—with CRRA utility and a Tversky and Kah-
neman (1992) weighting function—as Drichoutis and Lusk (2016). In this specification, Harrison and 
Rutström do not find significant non-linear probability weighting, while their point estimate of the CRRA 
coefficient is actually (insignificantly) larger than in the corresponding expected utility specification. In 
a representative sample of adult Danes, Andersen et  al. (2014) find evidence of non-linear probability 
weighting but conclude that the bulk of aversion to risk derives from concavity of the utility function.
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evaluated and the probability that the alternative presented as Option B is chosen is 
modeled as:

where � is a contextual normalization term,27 and � is a noise parameter for the time 
preference choices.

It is worth emphasizing that this framework is essentially the same as that of 
Andersen et al. (2008, 2014), except that information on utility curvature is obtained 
directly from choices over time instead of a separate risk preference task, so it is not 
necessary to equate Bernoulli utility for risk with instantaneous utility for time. The 
data consists of 7320 observations, being ten binary choices in each of six time pref-
erence choice lists for each of 122 subjects. The parameters � , � , and � are estimated 
by maximum likelihood in Stata 16, with robust standard errors clustered at the level 
of individual subjects.

Before turning to the full results, model (3) in Table  1 reports a linear utility 
specification, with � constrained to zero, giving an estimated annual discount rate 
of 63.9%. While this is higher than prevailing market interest rates, it is not extreme 
by the standards of the literature.28 Model (4) reports a linear utility specification 
using only the data of the CB choice list in which the smaller-sooner option pays 
(

$33, $2
)

 while larger-later pays 
(

$1, $38
)

 . This is included for comparability with 
more conventional designs that offer all-sooner or all-later payments, as well as the 
subsequent replication of joint estimation invoking utility from the risk preference 
task in Sect. 3.4. The resulting estimate of the discount rate is very close to that of 
model (3).

Model (5) reports the main discounted utility estimates, allowing non-linear 
instantaneous utility revealed through data on choices over time. In this model, the 
point estimate of � is 0.018 with a standard error of 0.006, indicating significantly 
concave utility. This is consistent with the model-free analysis in Sect. 3.1. However, 
the estimate of � is an order of magnitude smaller than estimates of � from risk pref-
erence data in models (1) and (2). Because the estimated curvature of instantaneous 
utility is modest, the effect of correcting for this concavity upon the discount rate is 
mild: the estimate of � falls from 63.9% in model (3) to 62.6% in model (5). Both the 

(9)Pr (B) = Λ
(((

DUB − DUA

)

∕�
)

∕�
)

27 In Eq.  6 for risk, � represented the difference between the best and worst lotteries in the 
choice context, being the utilities of the best or worst prizes implicitly received in both states 
of nature. In Eq.  9 for time, � now represents the difference between the best and worst payoff 
streams, being the discounted utilities of the best or worst payoffs received on both dates. That is, 
� = (D(t) + D(t + k)) ⋅

(

v
(

xmax
)

− v
(

xmin
))

 , where xmax and xmin are the best and worst payoffs in a given 
choice context. See Andersen et  al. (2018, equation 12) for a related extension of contextual utility to 
choice over time.
28 Among recent studies, Takeuchi (2011) imputes an annual discount rate of 726% in a design that theo-
retically controls for non-linear utility, while Benhabib et al. (2010) report annual discount rates on the 
order of 472%. However, neither of these studies employ a front-end delay. Laury et  al. (2012) is an 
example of a modern study using student subjects and a front-end delay design. Their dollar discount 
rate task (Task D) is a standard time preference choice list in the manner of Coller and Williams (1999). 
From this task, they estimate an annual discount rate of 55.5% assuming linear utility, which is compara-
ble to the estimate reported here.
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AIC and BIC select the non-linear utility specification of model (5) over the more 
parsimonious linear utility specification in model (3).

3.4  Joint estimation

The modest effect of correcting for the curvature of instantaneous utility may be 
contrasted with that of a joint estimation procedure that combines risk and time pref-
erence data and imposes a single utility function upon both. To illustrate, I pool the 
data of the risk task with that of the CB choice list, which is comparable to conven-
tional time preference data in that the payoffs are essentially at the all-sooner or all-
later corners. The probability of making a risky lottery choice is modeled by Eq. 6 
while that of making a larger-later choice is modeled by Eq. 9. The noise terms � 
and � are allowed to differ across risk and time preference tasks, but the utility func-
tion is constrained to be the same for both, such that � = � . The data consists of 
2440 observations, being ten risk and ten time preference choices for each of 122 
subjects, and the parameters are estimated to maximize the joint likelihood of both 
sets of choices.

Model (6) in Table 1 reports joint estimates assuming expected utility for risk. 
The estimate of utility curvature is 0.456 with a standard error of 0.012, reflecting 
the influence of risk aversion in the lottery choices, while the estimated annual dis-
count rate falls to 6.5%. This compares to an estimate of 62.2% in model (4), which 
uses the same CB time preference data but assumes linear utility.

0.0

0.2

0.4

0.6

0.8

1.0

w
 (p

)

0.0 0.2 0.4 0.6 0.8 1.0

Model (2) Model (7)

p

Fig. 5  Estimated probability weighting functions
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To allow for non-linear probability weighting in the risk preference data, I again 
re-estimate the joint model assuming rank-dependent utility for each parametric 
weighting function in Fehr-Duda and Epper (2012). The effect upon utility and dis-
counting is very similar across all specifications: the estimate of utility curvature 
falls to between 0.419 and 0.427 while the estimated discount rate increases slightly 
to between 10.0 and 10.9%. Both the AIC and BIC select a specification with a sin-
gle-parameter weighting function from Prelec (1998): w(p) = exp (−(− ln (p))� ) , and 
the resulting estimates are reported as model (7) in Table 1. This weighting func-
tion simplifies to linearity at � = 1 , a restriction that is rejected with p < 0.0001 in 
a Wald test. The implied weighting function is inverse-S shaped, and is depicted by 
the solid line in Fig. 5.

For the purpose of this paper, the key conclusions are twofold. First, even allow-
ing for probability weighting, joint estimates of utility curvature which impose the 
restriction that � = � are considerably larger than the discounted utility estimate 
in model (5) which imposes no such restriction. Second, relative to the linear util-
ity benchmark of model (4), the effect upon the discount rate of correcting for this 
amount of curvature is dramatic. The discount rates in models (6) and (7) are sub-
stantially smaller than the lowest interest rate offered in the experiment, suggesting 
that joint estimation may have yielded an over-correction.

3.5  Discounted incremental utility

In Sects. 3.3 and 3.4, and models (3) through (7) in Table 1, I explored the effect 
of alternative assumptions about the nature of instantaneous utility—whether it is 
taken to be linear as in models (3) and (4), revealed through responses to varying 
opportunities for intertemporal substitution as in model (5), or equated with Ber-
noulli utility for risk as in models (6) and (7). It was assumed throughout that the 
underlying framework to evaluate streams of payoffs over time is given by the dis-
counted utility model in Eq. 3.

Blavatskyy (2016) has argued that discounted utility may give rise to violations 
of intertemporal monotonicity when utility is not linear. In particular, it is possible 
for discounted utility to increase when a payoff is split into two parts, one of which 
is slightly delayed. That is, if v(x) is sufficiently concave while D(t + k) is close to 
D(t) it is possible to have:

This implies that there may be a benefit to delay without any compensating increase 
in the magnitude of the payoff. The issue occurs when the impact of diminishing 
marginal utility as a payoff is divided in two outweighs the impact of discounting as 
a portion of it is delayed. This may occur in any model that has the discounted utility 
structure of Eq. 3, and is not specific to any functional form of the discount function 
D(t) such as exponential discounting. Assuming discounted utility, it can be avoided 
only if utility is linear. It thus represents a theoretical argument for why discounted 
utility may be incompatible with substantial non-linearity of instantaneous utility, as 
found empirically in model (5) of Table 1.

D(t) ⋅ v(x) < D(t) ⋅ v(x∕2) + D(t + k) ⋅ v(x∕2)
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The argument of Blavatskyy (2016) is analogous to how simple probability 
weighting may violate first-order stochastic dominance in the original prospect 
theory of Kahneman and Tversky (1979). In that setting, the solution proposed by 
Quiggin (1982) is to construct decision weights from a transformation of the cumu-
lative probabilities instead of directly transforming the probabilities themselves. In 
the context of time, the solution proposed by Blavatskyy (2016) is to apply a util-
ity transformation to the cumulative payoffs instead of directly to the payoffs them-
selves. This gives rise to the model of discounted incremental utility (Blavatskyy 
2016, equation 3) which replaces discounted utility by:

This states that future payoffs are evaluated by the discounted value of their incre-
mental contribution to the utility of the cumulated payoffs, V(⋅).

Estimation of the discounted incremental model requires data on choices over 
non-degenerate streams, such as that reported in this paper,29 as opposed to conven-
tional choices over all-sooner versus all-later payoffs which never cumulate. If the 
cumulative utility function is linear then Eq. 10, like Eq. 3, simplifies to discounted 
linear utility, in which case a subject is again predicted to have the same switch point 
in all six choice lists. However if the cumulative utility function is concave, I show 
in Appendix A.3 that discounted incremental utility again predicts a later switch 
point in AB/AB’ than in CA/C’A choice lists.

To estimate the model I again assume a CRRA form, this time for the utility of 
cumulated payoffs, X:

and the exponential discount function of Eq. 8, and define choice probabilities anal-
ogously to Eq.  9 except replacing DU by DIU. The model is estimated using the 
same set of 7320 observations from six time preference choice lists as used in mod-
els (3) and (5) of Table 1.

Estimates of the discounted incremental specification are reported as model (8) in 
Table 1. The curvature of cumulative utility is significantly concave, with a CRRA 
coefficient of 0.226 and standard error of 0.060. This is substantially larger than the 
estimated curvature of instantaneous utility in the discounted utility specification of 
model (5). Allowing for this amount of curvature reduces the estimate of the annual 
discount rate from 63.9% under linear utility in model (3) to 50.4% in model (8). 
The discounted incremental specification has the same number of parameters as the 
discounted utility model, and a superior log-likelihood. As a result, both the AIC 
and BIC select this model over both the discounted utility and linear models.

(10)DIU
(

xt, t; xt+k, t + k
)

= D(t) ⋅ V
(

xt
)

+ D(t + k) ⋅
[

V
(

xt + xt+k
)

− V
(

xt
)]

(11)V(X) =
X1−�

1 − �

29 See also Blavatskyy and Maafi (2018) who estimate points on the utility function non-parametrically, 
and are concerned with issues of model fit as opposed to the curvature of utility.
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3.6  Robustness checks

In this section, I report several robustness checks of the key representative agent 
estimates to alternative structural assumptions. Table 2 reports expected utility, dis-
counted utility, joint, and discounted incremental estimates assuming a constant 
absolute risk aversion form for utility: u(x) = (1 − exp (−ax))∕a . Table  3 reports 
corresponding estimates assuming expo-power utility (Saha 1993; Holt and Laury 
2002): u(x) =

(

1 − exp
(

−ax1−r
))

∕a . These analyses replicate all key implications 
of Table 1: instantaneous utility in model (5) is significantly concave30 though sub-
stantially less so than Bernoulli utility in model (1); the discount rate in model (5) 
is only marginally smaller than that assuming linear utility (c.f. Table 1, model (3)), 
whereas the one obtained from joint estimation in model (6) is substantially lower; 
and the effects of discounted incremental utility in model (8) are similar to those in 
Table 1.

Table 4 reports linear, discounted utility, joint, and discounted incremental esti-
mates for CRRA utility using an alternative contextual normalization that replaces 
the expression in footnote 27 with � = v

(

xmax
)

− v
(

xmin
)

 (see Blavatskyy and Maafi 
2018, p. 278). That is, instead of normalizing by the difference in discounted utili-
ties between the best and worst payoff streams, these estimates normalize by the 
difference in instantaneous utilities between the best and worst payoffs, which does 
not depend upon the discount function.31 Again, all key implications of Table 1 are 
maintained.

3.7  Individual estimation and prediction

In this section, I extend the analysis to estimation at an individual level, and examine 
the performance of individual estimates in predicting subjects’ choices in the risk 
and time preference decisions respectively.

In the full sample of 122 subjects there are fifteen who choose larger-later in all 
60 time preference decisions, and four who choose smaller-sooner in all 54 deci-
sions where it is not dominated. I thus focus on the remaining 103 subjects in indi-
vidual estimation. Since there is only a single risk preference choice list, it is not 
possible to estimate probability weighting parameters at an individual level. I thus 
report individual estimates for five models: the expected utility specification in 
model (1) of Table 1, the linear utility specification in model (3), the discounted util-
ity specification in model (5), the joint estimation specification in model (6), and the 
discounted incremental specification in model (8). Individual estimation was per-
formed in Matlab R2018b, after first replicating the corresponding representative 
agent estimates from Table 1.

30 For expo-power utility, the two utility parameters are jointly significant with p = 0.004 in model (5).
31 There is no effect upon the expected utility estimates, as this is simply an alternative generalization of 
Wilcox (2011) contextual utility to choices over time and moreover, as noted in footnote 24, there was in 
any case only a single choice context for risk.
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Table 2  Representative agent estimates under CARA utility

Clustered standard errors in parentheses. Column numbers indicate corresponding models in Table 1

(1) (5) (6) (8)
EU DU Joint-EU DIU

CARA utility curvature 0.041 0.001 0.040 0.018
(0.003) (0.000) (0.002) (0.005)

Annual discount rate ( �) 0.624 0.068 0.424
(0.073) (0.016) (0.065)

Decision “noise” for risk ( �) 0.081 0.081
(0.009) (0.009)

Decision “noise” for time ( �) 0.028 0.006 0.027
(0.002) (0.001) (0.002)

AIC 689.875 8790.505 2063.699 8780.517
BIC 700.089 8811.200 2086.898 8801.212
LL – 342.938 – 4392.252 – 1027.849 – 4387.259
Risk preference data Yes Yes
Time preference data Yes CB only Yes
N 1220 7320 2440 7320

Table 3  Representative agent estimates under expo-power utility

Clustered standard errors in parentheses. Column numbers indicate corresponding models in Table 1

(1) (5) (6) (8)
EU DU Joint-EU DIU

Utility curvature (expo) 0.041 – 0.001 0.039 0.017
(0.012) (0.005) (0.008) (0.004)

Utility curvature (power) 0.002 0.036 – 0.015 – 0.123
(0.185) (0.059) (0.132) (0.120)

Annual discount rate ( �) 0.627 0.068 0.390
(0.074) (0.015) (0.066)

Decision “noise” for risk ( �) 0.081 0.081
(0.009) (0.009)

Decision “noise” for time ( �) 0.028 0.006 0.027
(0.002) (0.001) (0.002)

H0 : Linear utility (p-value) 0.000 0.004 0.000 0.000
AIC 691.875 8792.053 2065.676 8781.630
BIC 707.195 8819.646 2094.675 8809.223
LL – 342.938 – 4392.026 – 1027.838 – 4386.815
Risk preference data Yes Yes
Time preference data Yes CB only Yes
N 1220 7320 2440 7320
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Table 5 reports summary statistics for four individual measures of CRRA util-
ity curvature (not estimated under linear utility) and four individual estimates of 
the annual discount rate (not estimated under expected utility). Histograms for 
each set of estimates are reported in Appendix B.2. For utility curvature, the 
mean and median estimates under expected utility, discounted utility and joint 
estimation are very similar to the corresponding representative agent estimates. 
However for discounted incremental utility, the mean and median curvature are 
closer to linearity than the aggregate estimate, and the variance is considerable. 
For discounting, the mean and median estimates are consistently larger than the 

Table 4  Representative agent estimates under alternative contextual normalization

Clustered standard errors in parentheses. Column numbers indicate corresponding models in Table 1

(3) (5) (6) (8)
Linear DU Joint-EU DIU

CRRA utility curvature 0.018 0.455 0.180
(0.006) (0.012) (0.066)

Annual discount rate ( �) 0.662 0.648 0.066 0.543
(0.083) (0.080) (0.017) (0.076)

Decision “noise” for risk ( �) 0.083
(0.008)

Decision “noise” for time ( �) 0.053 0.052 0.012 0.046
(0.004) (0.004) (0.003) (0.004)

AIC 8771.565 8754.908 2082.580 8759.751
BIC 8785.362 8775.603 2105.779 8780.446
LL – 4383.783 – 4374.454 – 1037.290 – 4376.875
Risk preference data Yes
Time preference data Yes Yes CB only Yes
N 7320 7320 2440 7320

Table 5  Summary statistics of individual utility curvature and discount rate estimates

Mean SD P10 P25 P50 P75 P90

Utility curvature
 Expected utility 0.557 0.461 – 0.064 0.336 0.504 0.789 1.127
 Discounted utility 0.001 0.259 – 0.049 – 0.008 0.010 0.053 0.123
 Joint estimation 0.418 0.320 – 0.065 0.230 0.476 0.504 0.787
 Discounted incremental 0.050 1.394 – 1.394 – 0.295 0.064 0.577 1.056

Annual discount rate
 Linear utility 2.350 2.788 0.250 0.489 1.144 2.947 6.904
 Discounted utility 2.219 2.699 0.240 0.464 1.035 2.535 6.707
 Joint estimation 1.387 2.910 – 0.105 0.000 0.101 1.297 6.417
 Discounted incremental utility 2.058 2.936 0.101 0.306 0.783 2.616 6.703
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corresponding estimates in Table 1, in part reflecting the fact that the individual 
estimation sample excludes the fifteen most patient subjects.32

Table  6 reports the Spearman rank correlation matrix for the four individual 
measures of utility curvature. This strongly supports the conjecture that risk and 
time preferences reflect two distinct notions of utility. On one hand, the expected 
utility and joint estimates, which infer curvature from choices under risk, are highly 
significantly correlated. On the other hand, the discounted utility and discounted 
incremental estimates, which infer curvature from choices over time, are also highly 
significantly correlated. However the remaining four coefficients, which compare 
one measure elicited under risk to another measure elicited over time, are consist-
ently small (Spearman rho less than 0.11) and far from statistically significant.

Figure 6 depicts a scatter plot of the individual estimates of � under expected util-
ity and � under discounted utility, these being the standard normative benchmarks 
for risk and time preference respectively.33 According to the model of discounted 
expected utility, these measures are interchangeable and so all points should lie on a 
45-degree diagonal. Instead, not only do the two sets of estimates differ considerably 
in magnitude, they are also essentially uncorrelated.34

To further examine the implications of alternative assumptions regarding the 
nature of utility, I use each set of estimates to generate predicted choices for each 
subject in each of the ten risk and 60 time preference decisions, and compare these 
predictions to their actual choices.35

For risk preference, simply assuming linear utility (i.e., that every subject 
switches from safe to risky after four rows) suffices to correctly predict 76.7% of the 
data. Relative to this benchmark, individual curvature estimates from the discounted 
utility model correctly predict 76.8% of risk preference choices, while those of the 
discounted incremental model correctly predict 74.6%. Treating individual subjects 
as independent observations, the proportion of their choices correctly predicted by 
either model does not differ significantly from the proportion correctly predicted 
by linear utility, in either a sign test or a signed-ranks test. By contrast, individual 
expected utility estimates correctly predict 98.5% of choices, and joint estimates 
95.0%, both improving significantly upon linear utility with p < 0.0001 in both a 
sign test and a signed-ranks test.

For time preference, individual discount rates assuming linear utility correctly 
predict 86.6% of the data. This increases to 89.4% allowing non-linear utility in a 
discounted utility model, or 87.3% in a discounted incremental model. Again treat-
ing individual subjects as independent observations, both sets of estimates improve 

32 When the representative agent model (5) for discounted utility is re-estimated using only the 103 sub-
jects used in individual estimation, the estimated annual discount rate increases to 80.6%, which is still 
less than the median individual estimate.
33 For clarity, the scatter plot omits two subjects with large negative estimates of � . However these sub-
jects are included in the calculation of the linear fit depicted by the dashed line.
34 Scatter plots for individual estimates of the discounted incremental utility parameter Θ may be found 
in Appendix B.3.
35 The expected utility model for risk does not estimate a discount rate, and so cannot be used to predict 
choices over time.
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significantly upon linear utility.36 By contrast, individual joint estimates correctly 
predict only 68.4% of the data. Recall that joint estimation uses only the CB choice 
list for time. Individual linear utility estimates using only CB data (corresponding to 
model (4) in Table 1) correctly predict 84.1% of the data. The individual joint esti-
mates predict significantly worse than this linear-CB benchmark, with p < 0.0001 in 
both a sign test and a signed-ranks test.

Figure  7 examines prediction performance of individual estimates in greater 
detail. The top panel relates to the risk preference task, while the lower two pan-
els pool the AB/AB’ and CA/C’A choice lists for time, respectively. In each panel, 
the solid line depicts observed safe or sooner choices at each row.37 The shorter-
dashed line depicts predictions of the joint estimation model (which infers utility 
curvature from choice under risk), while the longer-dashed line depicts predictions 
of the discounted utility model (which infers curvature from choice over time). The 
comparison between these predictions thus illustrates the effect of assuming equiva-
lence between Bernoulli and instantaneous utility versus allowing for them to be 
separated. The figure illustrates how both sets of estimates make poor out-of-sample 
predictions, because they reflect quantitatively different degrees of concavity. Since 
instantaneous utility for time is near-linear, it wrongly predicts near risk-neutral 
behavior in choice under risk. But conversely, since Bernoulli utility for risk is more 
concave, it greatly exaggerates the preference for the temporally-balanced payoff 
vector A, both when it is smaller-sooner as in AB/AB’, and when it is larger-later as 
in CA/C’A.

Table 6  Spearman rank 
correlation matrix of individual 
utility curvature estimates

p-values in parentheses

EU DU Joint DIU

EU 1.000
DU 0.101 1.000

(0.309)
Joint 0.931 0.106 1.000

(0.000) (0.286)
DIU 0.099 0.749 0.069 1.000

(0.320) (0.000) (0.489)

36 For discounted utility, p < 0.0001 in both the sign test and signed-ranks test. For discounted incre-
mental utility, p = 0.0031 in a sign test and p = 0.0015 in a signed-ranks test. Moreover, the discounted 
utility model improves significantly upon discounted incremental utility, with p = 0.0054 in a sign test 
and p = 0.0020 in a signed-ranks test.
37 This differs from Fig. 4 as it only includes the individual estimation sample of 103 subjects.
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4  Conclusion

In this paper, I introduce a novel method to elicit the curvature of instantaneous 
utility, together with the discount rate, directly from binary choices over bundles 
of time-dated payoffs. Owing to a lack of suitable measurement techniques, until 
recently little was known about the shape of utility outside the domain of risk. This 
made it difficult to evaluate the assumption—frequently invoked in both theoreti-
cal and empirical literatures—that a single utility function characterizes preferences 
both under risk and over time.

My approach builds upon design and estimation principles well-established in the 
literature. Abdellaoui et al. (2013) and Andreoni and Sprenger (2012a) use outcome 
sequences to identify instantaneous utility, although the former are not concerned 
with implications for discounting while the latter compare the results of different 
elicitation procedures for risk and time. The Holt and Laury (2002) design is a 
standard instrument often used as the risk preference measure in studies which, fol-
lowing Andersen et al. (2008), assume equivalence of instantaneous and Bernoulli 
utility in jointly estimating risk and time preferences. By translating the HL design 
from state payoffs into time-dated payoffs, I retain the estimation apparatus devel-
oped by Andersen et al. (2008, 2014), with the important distinction that the curva-
ture of utility is inferred directly from choices over time. This makes it possible to 
compare the estimated curvature of utility under risk and over time within a unified 
design and estimation framework. Thus, while many of my results replicate findings 
in Andreoni and Sprenger (2012a) and Andreoni et al. (2015), I establish that these 
results are not artefacts of differences between the elicitation procedures or estima-
tion techniques they use for risk and time. Stated differently, I show that—as regards 
the curvature of instantaneous utility—the results of a binary choice methodology 
are in alignment with those of a continuous or multinomial choice paradigm.

The results demonstrate that instantaneous utility is significantly concave. 
This affirms the underlying theoretical concern of Frederick et  al. (2002) over 
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the confounding influence of utility curvature upon estimates of the discount rate, 
which has motivated the development of the joint estimation approach as well as 
alternative strategies such as those of Takeuchi (2011) and Laury et  al. (2012). 
However, whereas each of those approaches assume a single utility function 
for both risk and time, I find the curvature of instantaneous utility elicited from 
choices over time to be substantially less than that of Bernoulli utility elicited 
from choices under risk, and moreover the two measures are uncorrelated at an 
individual level. It follows that just as assuming linear utility may cause estimates 
of discount rates to be biased, so too may assuming the equivalence of utility 
for risk and time. Indeed, I find the effect of correcting for time-elicited utility 
curvature, relative to assuming linear utility, to be no more than a few percentage 
points.
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The experiment in this paper involved choices over money, and in the struc-
tural estimation (though not the model-free analysis of Sect.  3.1) it was assumed 
that payoffs are consumed upon receipt. This presumes, generally, that subjects do 
not integrate experimental payments with money or consumption plans outside the 
experiment and, specifically, that they do not engage in arbitrage. Indeed, the find-
ing of near-linear utility in the CTB experiment of Andreoni and Sprenger (2012a) 
has subsequently been interpreted by Andreoni and Sprenger (2015) and Sprenger 
(2015) as evidence suggestive of arbitrage. When subjects engage in arbitrage, their 
choices simply reveal their market interest rate as opposed to a true discount rate, 
yet the estimates in excess of 60% in Table 1 are unreasonably high by that standard. 
Moreover, the interest rates offered in the experiment were sufficiently high as to 
realistically permit only one direction of arbitrage, namely to “borrow low” outside 
the experiment and “save high” within it (Meier and Sprenger 2010). In that case, 
arbitrage would predict highly patient choices in the experiment, again inconsistent 
with the behavior of the majority of subjects. Andreoni et al. (2018) report a CTB 
experiment designed specifically to test implications of arbitrage, but find little sup-
port for it.

The more general issue, that subjects may integrate experimental rewards with 
money or consumption outside the laboratory,38 has also been raised in the domain 
of risk. In that context, Rabin (2000) argues that an expected utility maximizer who 
integrates small-stakes lotteries with background wealth must exhibit near-linear 
utility toward such lotteries. This prediction is robustly rejected by a large body of 
experimental research, including results in this paper, strongly suggesting that—in 
choice under risk—the subjects in this experiment framed the payoffs narrowly and 
in isolation from external wealth. That being the case, it is not obvious why—in 
making choices over time—those same subjects would frame broadly and integrate.

If the results of this experiment reflect subjects’ genuine preferences, and not 
some artefact of monetary payoffs, how are these preferences to be understood? 
A subtle but important distinction between the domains of risk and time, perhaps 
obscured by the formal analogy between Eqs. 1 and 3, concerns the realization of 
payoffs. In choice under risk, while the payoffs in a lottery are evaluated as a bundle 
ex ante, only one is ultimately realized ex post. By contrast in choice over time, all 
of the payoffs that make up a stream are to be realized, and it is only a question of 
when. Viewed in this light, it seems natural that subjects’ choices would reflect a 
stronger motive to smooth payoffs over states of nature than over dates in time.

It has been argued by Blavatskyy (2016) that the discounted utility model is 
incompatible with substantial non-linearity of instantaneous utility as it results in 
violations of intertemporal monotonicity. In his alternative model of discounted 
incremental utility, I indeed find more substantial concavity when utility is defined 
over cumulated payoffs, at least in representative agent estimates. This points to the 
exciting opportunities for future empirical research to focus not only on the forms of 

38 This concern is not specific to choices over money. In a time preference experiment involving real 
consumption or effort, subjects may likewise adjust their outside consumption or leisure plans in con-
junction with choices made within the experiment, confounding structural interpretation of the data.
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the utility and discount functions, but also on alternatives to the discounted utility 
model itself.

Acknowledgements I thank the Co-Editors Marie Claire Villeval and Charles Noussair; three anony-
mous referees; Mohammed Abdellaoui, Pavlo Blavatskyy, Keith Marzilli Ericson, Glenn Harrison, Steph-
anie Heger, Graham Loomes, Daniel Read, and Peter Wakker; seminar audiences at Monash University, 
Queensland University of Technology, University of Technology Sydney, and University of Queensland; 
and participants of the Australia and New Zealand Workshop on Experimental Economics, the Annual 
Congress of the European Economic Association, and the International, European, and North Ameri-
can meetings of the Economic Science Association. I acknowledge support from the Australian Research 
Council under DP160101794, and I am grateful to the Behavioural Science Group at Warwick Business 
School and the School of Accounting, Finance and Economics at Griffith University for hospitality dur-
ing the preparation of portions of this manuscript.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, 
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Abdellaoui, M., Bleichrodt, H., l’Haridon, O., & Paraschiv, C. (2013). Is there one unifying concept of 
utility? An experimental comparison of utility under risk and utility over time. Management Sci-
ence, 59(9), 2153–2169.

Andersen, S., Harrison, G. W., Lau, M. I., & Rutström, E. E. (2008). Eliciting risk and time preferences. 
Econometrica, 76(3), 583–618.

Andersen, S., Harrison, G. W., Lau, M. I., & Rutström, E. E. (2014). Discounting behavior: A reconsid-
eration. European Economic Review, 71, 15–33.

Andersen, S., Harrison, G. W., Lau, M. I., & Rutström, E. E. (2018). Multiattribute utility theory, inter-
temporal utility, and correlation aversion. International Economic Review, 59(2), 537–555.

Andreoni, J., Gravert, C., Kuhn, M. A., Saccardo, S., & Yang, Y. (2018). Arbitrage or narrow bracket-
ing? On using money to measure intertemporal preferences. Working Paper 25232, National Bureau 
of Economic Research.

Andreoni, J., Kuhn, M. A., & Sprenger, C. (2015). Measuring time preferences: A comparison of experi-
mental methods. Journal of Economic Behavior and Organization, 116, 451–464.

Andreoni, J., & Sprenger, C. (2012a). Estimating time preferences from convex budgets. American Eco-
nomic Review, 102(7), 3333–3356.

Andreoni, J., & Sprenger, C. (2012b). Risk preferences are not time preferences. American Economic 
Review, 102(7), 3357–3376.

Andreoni, J., & Sprenger, C. (2015). Risk preferences are not time preferences: Reply. American Eco-
nomic Review, 105(7), 2287–93.

Attema, A. E., Bleichrodt, H., Gao, Y., Huang, Z., & Wakker, P. P. (2016). Measuring discounting with-
out measuring utility. American Economic Review, 106(6), 1476–94.

Benhabib, J., Bisin, A., & Schotter, A. (2010). Present-bias, quasi-hyperbolic discounting, and fixed 
costs. Games and Economic Behavior, 69(2), 205–223.

Blavatskyy, P. R. (2016). A monotone model of intertemporal choice. Economic Theory, 62(4), 785–812.
Blavatskyy, P. R., & Maafi, H. (2018). Estimating representations of time preferences and models of 

probabilistic intertemporal choice on experimental data. Journal of Risk and Uncertainty, 56(3), 
259–287.

Cheung, S. L. (2015). Comment on “Risk preferences are not time preferences”: On the elicitation of 
time preference under conditions of risk. American Economic Review, 105(7), 2242–2260.

Cheung, S. L. (2016). Recent developments in the experimental elicitation of time preference. Journal of 
Behavioral and Experimental Finance, 11, 1–8.

Downloaded from https://www.cambridge.org/core. 17 Mar 2025 at 03:55:53, subject to the Cambridge Core terms of use.

http://creativecommons.org/licenses/by/4.0/
https://www.cambridge.org/core


524 S. L. Cheung 

1 3

Coller, M., & Williams, M. B. (1999). Eliciting individual discount rates. Experimental Economics, 2(2), 
107–127.

Drichoutis, A. C., & Lusk, J. L. (2016). What can multiple price lists really tell us about risk preferences? 
Journal of Risk and Uncertainty, 53(2), 89–106.

Epper, T., & Fehr-Duda, H. (2012). The missing link: Unifying risk taking and time discounting. Working 
paper 096, Department of Economics, University of Zurich.

Epper, T., & Fehr-Duda, H. (2015). Comment on “Risk preferences are not time preferences”: Balancing 
on a budget line. American Economic Review, 105(7), 2261–2271.

Epper, T., Fehr-Duda, H., & Bruhin, A. (2011). Viewing the future through a warped lens: Why uncer-
tainty generates hyperbolic discounting. Journal of Risk and Uncertainty, 43(3), 169–203.

Epstein, L. G., & Zin, S. E. (1989). Substitution, risk aversion, and the temporal behavior of consumption 
and asset returns: A theoretical framework. Econometrica, 57(4), 937–969.

Fehr-Duda, H., & Epper, T. (2012). Probability and risk: Foundations and economic implications of prob-
ability-dependent risk preferences. Annual Review of Economics, 4(1), 567–593.

Frederick, S., Loewenstein, G., & O’Donoghue, T. (2002). Time discounting and time preference: A criti-
cal review. Journal of Economic Literature, 40(2), 351–401.

Freeman, D., Manzini, P., Mariotti, M., & Mittone, L. (2016). Procedures for eliciting time preferences. 
Journal of Economic Behavior and Organization, 126, 235–242.

Gigliotti, G., & Sopher, B. (1997). Violations of present-value maximization in income choice. Theory 
and Decision, 43(1), 45–69.

Greiner, B. (2015). Subject pool recruitment procedures: Organizing experiments with ORSEE. Journal 
of the Economic Science Association, 1(1), 114–125.

Gul, F. (1991). A theory of disappointment aversion. Econometrica, 59(3), 667–686.
Halevy, Y. (2008). Strotz meets Allais: Diminishing impatience and the certainty effect. American Eco-

nomic Review, 98(3), 1145–62.
Harrison, G. W., Lau, M.  I., & Rutström, E. E. (2013). Identifying time preferences with experiments: 

Comment. Working paper 2013-09, Center for the Economic Analysis of Risk, Georgia State 
University.

Harrison, G. W., & Rutström, E. E. (2008). Risk aversion in the laboratory. In J. C. Cox & G. W. Harrison 
(Eds.), Risk aversion in experiments (Vol. 12, pp. 41–196)., Research in experimental economics 
Bingley: Emerald.

Hey, J. D., & Orme, C. (1994). Investigating generalizations of expected utility theory using experimental 
data. Econometrica, 62(6), 1291–1326.

Holt, C. A., & Laury, S. K. (2002). Risk aversion and incentive effects. American Economic Review, 
92(5), 1644–1655.

Holt, C. A., & Laury, S. K. (2005). Risk aversion and incentive effects: New data without order effects. 
American Economic Review, 95(3), 902–904.

Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 
47(2), 263–291.

Kreps, D. M., & Porteus, E. L. (1978). Temporal resolution of uncertainty and dynamic choice theory. 
Econometrica, 46(1), 185–200.

Laibson, D. (1997). Golden eggs and hyperbolic discounting. Quarterly Journal of Economics, 112(2), 
443–478.

Laury, S. K., McInnes, M. M., & Swarthout, J. T. (2012). Avoiding the curves: Direct elicitation of time 
preferences. Journal of Risk and Uncertainty, 44(3), 181–217.

Loewenstein, G., & Prelec, D. (1992). Anomalies in intertemporal choice: Evidence and an interpreta-
tion. Quarterly Journal of Economics, 107(2), 573–597.

Loewenstein, G., & Prelec, D. (1993). Preferences for sequences of outcomes. Psychological Review, 
100(1), 91–108.

Loewenstein, G., & Sicherman, N. (1991). Do workers prefer increasing wage profiles? Journal of Labor 
Economics, 9(1), 67–84.

Loomes, G., & Pogrebna, G. (2014). Measuring individual risk attitudes when preferences are imprecise. 
Economic Journal, 124(576), 569–593.

Manzini, P., Mariotti, M., & Mittone, L. (2010). Choosing monetary sequences: Theory and experimental 
evidence. Theory and Decision, 69(3), 327–354.

Meier, S., & Sprenger, C. (2010). Present-biased preferences and credit card borrowing. American Eco-
nomic Journal: Applied Economics, 2(1), 193–210.

Downloaded from https://www.cambridge.org/core. 17 Mar 2025 at 03:55:53, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


525

1 3

Eliciting utility curvature in time preference  

Phelps, E. S. (1962). The accumulation of risky capital: A sequential utility analysis. Econometrica, 
30(4), 729–743.

Prelec, D. (1998). The probability weighting function. Econometrica, 66(3), 497–527.
Quiggin, J. (1982). A theory of anticipated utility. Journal of Economic Behavior and Organization, 3(4), 

323–343.
Rabin, M. (2000). Risk aversion and expected-utility theory: A calibration theorem. Econometrica, 68(5), 

1281–1292.
Saha, A. (1993). Expo-power utility: A ‘flexible’ form for absolute and relative risk aversion. American 

Journal of Agricultural Economics, 75(4), 905–913.
Samuelson, P. A. (1937). A note on the measurement of utility. Review of Economic Studies, 4, 155–161.
Schmidt, U. (2014). Risk preferences may be time preferences: A comment on Andreoni and Sprenger 

(2012). Working paper 1942, Kiel Institute for the World Economy.
Scholten, M., Read, D., & Sanborn, A. (2016). Cumulative weighing of time in intertemporal tradeoffs. 

Journal of Experimental Psychology: General, 145(9), 1177–1205.
Sprenger, C. (2015). Judging experimental evidence on dynamic inconsistency. American Economic 

Review: Papers and Proceedings, 105(5), 280–85.
Takeuchi, K. (2011). Non-parametric test of time consistency: Present bias and future bias. Games and 

Economic Behavior, 71(2), 456–478.
Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncer-

tainty. Journal of Risk and Uncertainty, 5(4), 297–323.
Tversky, A., Slovic, P., & Kahneman, D. (1990). The causes of preference reversal. American Economic 

Review, 80(1), 204–217.
von Neumann, J., & Morgenstern, O. (1944). Theory of Games and Economic Behavior. Princeton: 

Princeton University Press.
Weil, P. (1990). Nonexpected utility in macroeconomics. Quarterly Journal of Economics, 105(1), 29–42.
Wilcox, N. T. (2011). ‘Stochastically more risk averse:’ A contextual theory of stochastic discrete choice 

under risk. Journal of Econometrics, 162(1), 89–104.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

Downloaded from https://www.cambridge.org/core. 17 Mar 2025 at 03:55:53, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core



