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Solitary waves on a ferrofluid jet
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The propagation of axisymmetric solitary waves on the surface of an otherwise
cylindrical ferrofluid jet subjected to a magnetic field is investigated. An azimuthal
magnetic field is generated by an electric current flowing along a stationary metal
rod which is mounted along the axis of the moving jet. A numerical method is used
to compute fully nonlinear travelling solitary waves, and the predictions of elevation
waves and depression waves made by Rannacher and Engel (New J. Phys., vol. 8,
2006, pp. 108–123) using a weakly nonlinear theory are confirmed in the appropriate
ranges of the magnetic Bond number. New nonlinear branches of solitary wave
solutions are identified. As the Bond number is varied, the solitary wave profiles may
approach a limiting configuration with a trapped toroidal-shaped bubble, or they may
approach a static wave (i.e. one with zero phase speed). For a sufficiently large axial
rod, the limiting profile may exhibit a cusp.

Key words: solitary waves, waves/free-surface flows

1. Introduction
Since their first observation by Scott Russell on the Edinburgh–Glasgow Union

canal in 1834, solitary waves have been the subject of intense scientific interest.
Hydrodynamic solitary waves are localised structures which propagate along the
surface of a fluid at constant speed while preserving their form. To date most
theoretical studies have been devoted to the subject of two-dimensional solitary
waves (see, e.g., Miles (1980) for a review), but more recently computations of
three-dimensional solitary waves have been reported (Părău, Vanden-Broeck & Cooker
2005). Mathematically, solitary wave solutions emerge as bifurcations from the neutral
wave branch of non-amplifying and non-decaying travelling waves in an inviscid fluid,
either from the long-wave limit or from the minimum point of the corresponding
dispersion curve relating wave speed to wavenumber (e.g. Dias & Kharif 1999).

In this paper we examine the propagation of axisymmetric solitary waves along the
surface of an inviscid liquid jet in the absence of gravity. It is well known that such
a jet is linearly unstable to long-wave disturbances with wavelength greater than the
circumference of the jet (Rayleigh 1878). Periodic disturbances of wavelength less
than this are stable and propagate with fixed amplitude (Vanden-Broeck, Miloh &
Spivack 1998; Osborne & Forbes 2001). Since the long-wave limit is unstable, and
the dispersion curve for the fixed-amplitude travelling waves covers all possible speeds
and does not have a minimum, there are not expected to be any bifurcations to solitary
wave solution branches, nor have any such bifurcations been found.
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It has been observed that a magnetic field can be used to suppress the long-wave
Rayleigh instability and stabilise a jet composed of a ferrofluid; see Arkhipenko et al.
(1980) and Rosensweig (1985) for a review. Ferrofluids are liquids which contain
in suspension tiny magnetisable particles; consequently, the fluid experiences a body
force in the presence of an external magnetic field. Working on the basis that a jet can
be stabilised in this way, Bashtovoi, Rex & Foigel (1983) showed that the classical
Korteweg–de Vries (KdV) equation provides a model for describing weakly nonlinear
disturbances on the surface of the jet. Taking a set-up in which a ferrofluid jet is
subjected to an azimuthal magnetic field generated by a thin current-carrying wire
positioned along the axis of the jet, Rannacher & Engel (2006), henceforth referred
to as RE, confirmed via a linear stability analysis that the jet is indeed stabilised
and derived the KdV equation describing axisymmetric weakly nonlinear disturbances.
They identified solitary wave solutions to this equation and, specifically, showed that
these are elevation waves (with a hump at the centre of the wave) if 1<B< 3/2, are
depression waves (with a dip at the centre of the wave) if 3/2<B< 9, and are again
elevation waves if B > 9, where B is the magnetic Bond number. They also studied
interactions between two solitary waves. Note that when B < 1 the jet is unstable
(Arkhipenko & Barkov 1980).

In this paper we revisit the problem studied by RE, with the primary goal of
extending the previous results into the fully nonlinear regime. We consider a more
general set-up in which the magnetic field is generated by a current-carrying rod of
arbitrary radius. One advantage of this is that it allows us to compare results with
the experimental observations which have recently been reported by Bourdin, Bacri &
Falcon (2010). The structure of the remainder of the paper is as follows. In § 2 we
formulate the problem. In § 3 we conduct a linear stability analysis for axisymmetric
disturbances. In § 4 we discuss static solutions for which there is no flow. In § 5 we
carry out a far-field analysis. In §§ 6 and 7 we describe our numerical method for
the fully nonlinear computations and present our results. Finally, in § 8, we discuss
our findings.

2. Problem formulation

We consider the inviscid, incompressible, irrotational flow of a liquid jet of density
ρ flowing along the outside of a solid cylindrical metal rod of radius b∗. The liquid
flows in the x∗ direction of a cylindrical polar coordinate system (r∗, θ, x∗). In the
basic configuration the jet surface is a circular cylinder of radius a∗. Henceforth
we assume conditions of asixymmetry so that all variables are independent of θ .
The liquid in the jet is assumed to be a ferrofluid, that is to say, a liquid that can
be magnetised and thereby experience a body force in the presence of an external
magnetic field. The axial rod carries a current I in the x∗ direction which generates
an azimuthal magnetic field B = µ0Ieθ/(2πr∗), where eθ is the unit vector in the
θ direction. The magnetic field induces a radial body force per unit volume in the
ferrofluid given by (e.g. Rosensweig 1985)

F= (χ/µ0)B · ∇B=−µ0χ I2

4π2r∗3
er, (2.1)

where er is the unit vector in the r∗ direction, χ is the magnetic susceptibility of the
ferrofluid and µ0 = 4π× 10−7 H m−1 is the magnetic permeability in a vacuum.
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It is convenient to introduce the dimensionless spatial variables (r, x)= (r∗, x∗)/a∗
and the dimensionless time t = t∗/(a∗3ρ/γ )1/2, where γ is the surface tension at the
free surface of the jet. The dimensionless rod radius is defined to be

b= b∗

a∗
. (2.2)

Assuming the presence of waves on the jet surface, we work in a frame of reference
travelling at the as-yet-unknown dimensionless wave speed c, and introduce the
travelling wave coordinate z= x− ct. In the travelling frame, the surface of the jet is
located at r= S(z). The flow in the fluid is described by the Laplace equation

∇2φ = 0, (2.3)

where φ is the velocity potential. At the axial rod we demand that

φr = 0 (2.4)

on r= b. At the free surface, the kinematic condition requires that

φr = φzSz (2.5)

on r= S. Applying the Bernoulli equation at the free surface and making use of the
kinematic condition (2.5), we find that

1
2
φ2

z (1+ S2
z )−

Szz

(1+ S2
z )

3/2
+ 1

S(1+ S2
z )

1/2
− B

2S2
= 1

2
c2 + 1− B

2
, (2.6)

where the first term is evaluated at r= S and we have used the condition that φz→−c
as |z|→∞. The magnetic Bond number is given by

B= µ0χ I2

4π2γ a∗
. (2.7)

The second and third terms on the left-hand side of (2.6) represent the capillary
pressure at the surface of the jet, and the fourth term on the left-hand side represents
the effect of the magnetic stress.

The Bernoulli constant on the right-hand side has been fixed by demanding that
S→ 1 as |z| →∞. Curiously, the same Bernoulli constant is obtained by taking the
alternative limit S→S0, where S0=B/(2−B), as |z|→∞. At first glance, it appears
then that a second equilibrium state is possible in the far field, counter to physical
intuition. To reconcile the issue, we note that under the transformation

φ =
√

S0 φ̂, c= 1√
S0

ĉ, S=S0Ŝ, (z, r)=S0(ẑ, r̂), B= 2− B̂, (2.8a–e)

the problem (2.3)–(2.6) is unchanged and, consequently, solutions computed by taking
S=S0 in the far field are simply transformations of those obtained by taking S= 1 in
the far field. Therefore, as is expected on physical grounds, it is sufficient to consider
solutions for which S→ 1 as |z|→∞.

3. Small-amplitude theory
Under a small perturbation, the jet surface is displaced to the new location

S= 1+ δAeikz, (3.1)

where δ� 1 is a small parameter, A is a constant complex amplitude to be determined
and c and k are, respectively, the complex wave speed and wavenumber of the
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disturbance. The velocity potential is perturbed similarly, so that

φ =−cz+ δf (r)eikz, (3.2)

where f (r) is to be found and the first term on the right-hand side corresponds to the
uniform velocity of the undisturbed jet. Substituting (3.1) and (3.2) into the problem
given by (2.3)–(2.6), we ultimately derive the dispersion relation (Arkhipenko &
Barkov 1980)

c2 = 1
k

(
I1(k)K1(kb)− I1(kb)K1(k)
I1(kb)K0(k)+ I0(k)K1(kb)

)
(k2 − 1+ B), (3.3)

where I0, I1 and K0, K1 are modified Bessel functions. Note that the fraction inside
the first bracket in (3.3) is positive for all positive k (Radwam 1988). Formula (3.3)
reduces to that given by RE in the limit b→ 0. In the long-wave limit k→ 0, we find
that

c2 = c2
0 +O(k2), c0 =

(
B− 1

2

)1/2

(1− b2)1/2. (3.4a,b)

A key observation to be made from (3.3) is that the jet is unstable when B< 1, in
which case there is a range of wavenumbers k < (1 − B)1/2 for which c is purely
imaginary and disturbances are amplified. When B > 1, the wave speed c is real
and neutral waves exist for arbitrary wavenumber k. It follows that a magnetic field
of sufficient intensity can stabilise the Rayleigh capillary mode responsible for jet
breakup under normal conditions. This result underpins the studies of RE and Bourdin
et al. (2010), as it provides a firm basis for both the theoretical and the experimental
search for solitary wave solutions, which appear as bifurcations from the neutral wave
branch. A second important observation from (3.3) is that a minimum, cM, appears on
the dispersion curve when B> B2, where B2 depends on the radius of the axial rod
b. For small b, we find that

B2 = 9+ 24b2 +O(b4). (3.5)

The general dependence of B2 on b is readily found, but the formula is algebraically
complicated and so is not given here. Drawing an analogy with capillary–gravity
waves on water of finite depth (see the discussion in the next paragraph), we expect
that when B is below the threshold for a minimum, a branch of solitary wave
solutions should appear as a bifurcation from the neutral wave branch at k= 0. When
B exceeds the threshold and a minimum is present, then the solitary wave branch
should bifurcate from the neutral branch at k= kM, where c(kM)= cM.

Figure 1(a) shows typical dispersion curves for b= 0 (thin axial rod) corresponding
to (3.3) for several different values of B. Figure 1(b), also for the thin-rod b= 0 case,
shows the locus of the minimum cM versus the Bond number B for B> 9 and also the
graph of c0 versus B. The shaded areas indicate regions in which weakly nonlinear
theory is expected to hold. Since the full weakly nonlinear theory for the present
problem has not yet been developed, it is useful to draw a parallel with gravity–
capillary waves in two-dimensional free-surface flow, on which topic there has been a
great deal of discussion in the literature (Dias & Kharif 1999; Vanden-Broeck 2010).
For such waves, the dispersion curves have the same qualitative characteristics as here,
with a minimum appearing when the dimensionless surface tension parameter is below
a threshold. Above this threshold, the standard KdV equation provides an accurate
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FIGURE 1. (Colour online) (a) Dispersion curves according to (3.3) for b= 0 and for B
ranging from 1 to 30 in equally spaced intervals from the lowest curve to the uppermost
curve; the curves meet the vertical axis at c= c0, and for B> 9 there is a minimum at
c = cM. (b) Sketch of the domains of interest for b = 0 (the case of no axial rod): the
dashed line shows c0 = (B− 1)1/2/

√
2 plotted against the Bond number B, and the solid

line shows cM versus B. The horizontal and vertical dotted lines indicate the point cM = 2,
B= 9 at which the minimum emerges.

description of the weakly nonlinear dynamics; around the threshold, the standard KdV
equation breaks down, but a fifth-order modified KdV equation may be derived for
weakly nonlinear predictions (Hunter & Vanden-Broeck 1983). Below the threshold, a
weakly nonlinear description is sought around the wave speed at the minimum of the
dispersion curve. Such an analysis leads to the nonlinear Schrödinger equation (Akylas
1993). For the present problem, around the region I indicated in figure 1(b), the KdV
equation is expected to hold, and indeed this equation has already been derived in
the thin-rod case b = 0 by Bashtovoi & Foigel (1983) (see also RE). This equation
breaks down at B= 9. Above this limit, in region II marked in figure 1(b), it should
be possible to derive an analogue of the nonlinear Schrödinger equation.

The focus of the present study is on the numerical computation of fully nonlinear
solitary waves, and for this reason we do not attempt a weakly nonlinear analysis.
The discussion is helpful, however, as it serves as a guide to the types of waves, and
the number of solution branches, which we should expect over different ranges of the
Bond number. The KdV equation derived by Bashtovoi & Foigel (1983) (see also RE)
for the b = 0 case suggests that, for general b, there are small-amplitude elevation
solitary waves with c < c0 in the range 1 6 B 6 B1 and small-amplitude depression
solitary waves with c < c0 in the range B1 6 B 6 B2. For B > B2, the nonlinear
Schrödinger equation provides a clue to the possible solution branches, as will be
discussed below. We note that the dependence of B1 on b is at present unclear, as it
should be determined through a weakly nonlinear analysis similar to that performed
by RE. Here we note simply that RE found that B1= 1.5 when b= 0. Further insight
into the possible solution branches is obtained by considering the case where there is
no motion in the liquid and seeking stationary solitary wave solutions supported by a
balance between surface tension and the magnetic body force at the free surface. This
is discussed next.
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4. Static solutions
Here we consider the possible equilibrium configurations of the liquid surface in the

absence of any flow. For a quiescent fluid, the Bernoulli equation (2.6) reduces to

− Sxx

(1+ S2
x)

3/2
+ 1

S(1+ S2
x)

1/2
− B

2S2
= 1− B

2
. (4.1)

To proceed, it is helpful to recast this equation in the form of the two-dimensional
conservative dynamical system

d
dx

(
S
α

)
=
(

sin α
B/2− 1+ cos α/S− B/(2S2)

)
, (4.2)

where α is the angle between the tangent to the curve and the horizontal. Fixed points
of this system occur at

(S, α)= (1, 2nπ), (S0, 2nπ), (−S0, (2n+ 1)π), (−1, (2n+ 1)π), (4.3)

where S0 = B/(2 − B) and n is an integer. The last fixed point, with S = −1, is
removed from further consideration on physical grounds.

The energy, E, associated with the system (4.2) is given by

E= S cos α + 1
2

(
B
2
− 1
)

S2 −
(

B
2

)
log S, (4.4)

and trajectories in the (S, α) plane are given by lines of constant E. The qualitative
structure of the phase portrait in this plane depends on the size of the Bond number.
As has already been discussed, solutions for 0< B< 1 may be obtained by a simple
transformation from those for B > 1, and so we may confine our attention to the
latter range. For B> 1, the fixed points (S, α)= (1, 2nπ) correspond to a cylindrical
interface, and a standard local analysis reveals that they are saddle points. For 1 <
B < 2 we have S0 > 0, and of the fixed points listed in (4.3) the one at (S0, 0)
is the only other point of physical relevance. It can readily be shown that since E
attains its minimum value here, this point is a centre (e.g. Strogatz 2000, p. 163).
A typical phase portrait in this Bond number range is shown in the upper panel of
figure 2(a) for the case where B=1.25. The homoclinic orbit which connects the point
(S, α) = (1, 0) to itself corresponds to a deformed free-surface shape with a single
hump, as illustrated in the upper panel of figure 2(b). This solution was computed
numerically using Runge–Kutta integration. The closed orbits contained within the
homoclinic orbit in figure 2(a) correspond to static solutions with a periodic wavy
profile. The heteroclinic orbit connecting the neighbouring saddle points at α = 2nπ
and α = 2(n+ 1)π corresponds to a physical profile with a point of self-intersection.

If B > 2, then S0 < 0 and the physically relevant fixed points are the saddles at
(S, α) = (1, 2nπ) and the fixed points at (−S0, (2n + 1)π), which can be shown
to be centres. A typical phase portrait in this Bond number range is shown in the
lower panel of figure 2(a) for the case where B= 30. Two heteroclinic orbits connect
each neighbouring pair of saddle points at α = 2nπ and α = 2(n + 1)π. The free-
surface depression profile S corresponding to the lower heteroclinic orbit is shown in
figure 2(b); it evidently self-intersects and so appears not to be a physically acceptable
solution. The elevation profile corresponding to the upper heteroclinic orbit also self-
intersects, but it is not shown here. When B= 2, the only fixed points are the saddle
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FIGURE 2. (Colour online) (a) Phase portraits for the system (4.2) at B = 1.25 (upper
panel) and B= 30 (lower panel); fixed points are indicated by solid dots. (b) The static
solitary wave profiles corresponding to the homoclinic/heteroclinic orbits in the phase
portraits in (a); the thick line overlaid on the lower graph shows one half of a symmetric
cusp solution.

points at (S, α) = (1, 2nπ). Heteroclinic orbits corresponding to depression waves
connect neighbouring saddle points in the phase plane, and the corresponding physical
profiles self-intersect as in the lower panel of figure 2(b).

Although the free-surface depression profiles that correspond to the heteroclinic
orbits connecting neighbouring saddles self-intersect, they are still open to physical
interpretation. Hunter & Vanden-Broeck (1983) constructed limiting stationary
solutions for two-dimensional gravity–capillary solitary waves in finite depth for
which the wave profile just touches the bottom in a cusp. Analogous solutions may
be constructed here. The thick line overlaid on the self-intersecting profile shown in
the lower panel of figure 2(b) illustrates one half of such a symmetric cusp solution
which just touches the axial rod (whose location is indicated by a dashed line). The
other half of the solution may be constructed by reflection in the obvious way. The
thick line as shown meets the axial rod at a contact angle of π/2. Cusp solutions
with contact angle smaller than π/2 may be extracted for any axial rod radius chosen
between the dashed line and the surface level S= 1.

To determine the permissible range of cusp solutions, we restrict attention to the
range 0 6 α < 2π without loss of generality. The energy level on the pertinent
heteroclinic orbit is E = (B + 2)/4. The physical profile corresponding to this orbit
meets the rod at α=π/2 and S= Sm, say, in a cusp of maximum permissible contact
angle π/2. Then, from (4.4) we have that

1
2

(
B
2
− 1
)

S2
m −

(
B
2

)
log Sm = B

4
+ 1

2
. (4.5)

As discussed above, we are concerned only with the range B > 1. In this range we
find that Sm is a monotonic increasing function of B, and the minimum value at B= 1
is given by Sm = 0.218. Also, Sm→ 1− as B→∞.
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To summarise the results of this section, we have found that in the range 16B< 2,
there exist smooth, static, pulse-like free-surface profiles. In the range B> 1, solutions
featuring a cusp exist and may be interpreted physically provided the cusp occurs at
the surface of the axial rod; this is possible if b > Sm(B). In the range B > 2, no
smooth solutions exist.

5. Far-field analysis
Returning to the wave propagation problem, in this section we examine the rate and

manner of the decay back to the uniform state as z→∞. A long way downstream,
we seek a solution which is a small perturbation about the uniform state by writing

S= 1+ Ae−µz (5.1)

for a constant A to be found, and investigate possible values of the constant µ, which
is in general complex. Similarly, we expand the velocity potential by writing

φ =−cz+ e−µzf (r), (5.2)

where f is a function to be determined. Demanding that φ satisfies Laplace’s equation
(2.3), we find that f (r)= a1J0(µr)+ a2Y0(µr), where a1 and a2 are constants and J0
and Y0 are Bessel functions. To satisfy the boundary conditions, we require thatcµJ0(µ) cµY0(µ) µ2 + (1− B)

J1(µ) Y1(µ) −c
J1(µb) Y1(µb) 0

αβ
A

= 0, (5.3)

where J1 and Y1 are Bessel functions. The rows of this matrix enforce the Bernoulli
condition (2.6) at the free surface, the kinematic condition (2.5) at the free surface and
the no-penetration condition (2.4) at the axial rod, respectively. Seeking a non-trivial
solution, we set the determinant of the matrix on the left-hand side of (5.3) to zero
to yield a nonlinear equation for the decay constant µ.

When c= 0 and there is no flow, the appropriate decay rate is given by

µ= (B− 1)1/2. (5.4)

Note that the other possible values of µ arising at c = 0, namely the zeros of
Q ≡ J1(µ)Y1(µb) − J1(µb)Y1(µ) = 0, must be disregarded since they correspond to
the degenerate case of A = 0. They represent exact separable solutions of Laplace’s
equation inside the annular region b 6 r 6 1, which satisfy the boundary conditions
at r = b and r = 1 and which decay at either z =∞ or z = −∞ but not both. The
corresponding values of µ are therefore inadmissible, as they do not describe the
far-field decay of globally acceptable solutions.

In figure 3(a) we show the real and imaginary parts of the decay rate µ for the case
where b= 0.1 and B= 1.25. The decay rate vanishes at c= c0= 0.35. For c< c0, µ is
real and so solitary wave solutions are expected to decay monotonically in the far field.
For c> c0, the decay rate µ is purely imaginary, suggesting that only periodic wave
solutions are possible in this range, in agreement with the linear theory presented in
§ 3. Figure 3(b) shows the more complicated picture that emerges for the decay rates
for the larger Bond number B= 30. The dot–dash lines in the figure indicate decay
rate branches which we believe to be spurious since they connect to the degenerate
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FIGURE 3. (Colour online) Complex decay rate plotted against wave speed c for b= 0.1
and (a) B = 1.25, (b) B = 30. The real and imaginary parts of µ are shown with solid
and dashed lines, respectively. In (a) we have c0 = 0.35, and there is one real rate in
0 < c < c0 and one imaginary rate in c > c0 within the range shown. In (b) we have
c0= 3.8 and cM = 3.1; the decay rate is complex in the range 1.1< c< cM , and there are
two imaginary rates in cM < c< c0. The dot–dash lines in (b) correspond to spurious µ
values which connect to zeros of Q at c = 0. In both (a) and (b), the circles at c = 0
indicate the rates µ= (B− 1)1/2.

case with A= 0 at c= 0 described above. The curves are shown here for completeness:
they illustrate the need to be careful when picking out the decay rate, as it does not
necessarily correspond to the smallest (in real part) computed value of µ. Immediately
below the minimum in the dispersion curve (see the uppermost curve in figure 1a),
i.e. for c< cM = 3.1, the decay rate is complex, suggesting that waves have oscillatory
decay in the far field. (This is what happens for two-dimensional gravity–capillary
waves.) Somewhat unexpectedly, however, the decay rate becomes real when c< 1.1,
suggesting monotonic decay in the far field. We will pick up on this point again in § 7.
In the range cM< c< c0, there are two decay rates, both of which are purely imaginary,
suggesting that only waves with non-decaying periodic tails are permissible.

We have examined the decay of the static solutions in § 4 and confirmed excellent
agreement with the decay rates predicted here at c= 0 over a range of different Bond
numbers. For c> 0 the decay rates give an indication of the kind of behaviour to be
expected in the far field and, moreover, provide a quantitative means of corroborating
the full numerical solutions to be discussed below.

6. Numerical method
To compute fully nonlinear solitary wave solutions, we use a finite-difference

method based on a formulation originally due to Jeppson (1970). The same approach
has been used successfully by Vanden-Broeck et al. (1998) to compute periodic
axisymmetric capillary waves.

First we introduce the Stokes stream function ψ , defined so that

u=−1
r
∂ψ

∂z
= ∂φ
∂r
, w= 1

r
∂ψ

∂r
= ∂φ
∂z
, (6.1a,b)
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where u and w are the velocity components in the r and z directions, respectively.
Following Jeppson (1970), we have that

∂r
∂φ
=−1

J
∂ψ

∂z
,

∂r
∂ψ
= 1

J
∂φ

∂z
,

∂z
∂φ
= 1

J
∂ψ

∂r
,

∂z
∂ψ
=−1

J
∂φ

∂r
, (6.2a–d)

where

J = ∂φ
∂z
∂ψ

∂r
− ∂φ
∂r
∂ψ

∂z
, J = r

[
r2

(
∂r
∂ψ

)2

+
(
∂r
∂φ

)2
]−1

. (6.3a,b)

We note that to obtain (6.3 b), we have used the relations

∂z
∂ψ
=−1

r
∂r
∂φ
,

∂r
∂ψ
= 1

r
∂z
∂φ
, (6.4a,b)

which are themselves found by substituting (6.2) into (6.1).
The idea is to reformulate the problem (2.3)–(2.6) in the (φ, ψ) plane and solve

for the unknowns r(φ, ψ) and z(φ, ψ). The physical domain of interest in the (r, z)
plane corresponds to the rectangular region

−∞<φ <∞, 0 6ψ 6ψS (6.5a,b)

in the (φ, ψ) plane, where ψS = c(1− b2)/2. The axial rod is located at ψ = 0 and
the free surface of the jet is located at ψ =ψS. We recast Laplace’s equation (2.3) in
the form

r3 ∂
2r

∂ψ2
+ r

∂2r
∂φ2
+ r2

(
∂r
∂ψ

)2

−
(
∂r
∂φ

)2

= 0. (6.6)

The no-normal-flow condition at the axial rod, (2.4), becomes

∂r
∂φ
= 0 (6.7)

at ψ = 0. The Bernoulli condition (2.6) becomes

1
2

[
r2

(
∂r
∂ψ

)2

+
(
∂r
∂φ

)2
]−1

− κ − B
2r2
= 1

2
c2 + 1− B

2
(6.8)

at ψ =ψS, where

κ =
(

r
∂r
∂ψ

∂2r
∂φ2
−
(
∂r
∂φ

)2
∂r
∂ψ
− r

∂r
∂φ

∂2r
∂φ∂ψ

)[(
∂r
∂φ

)2

+ r2

(
∂r
∂ψ

)2
]−3/2

−
[(

∂r
∂φ

)2

+ r2

(
∂r
∂ψ

)2
]−1/2 ∣∣∣∣ ∂r

∂ψ

∣∣∣∣ . (6.9)

Exploiting the anticipated left/right symmetry of the waves, we choose to solve over
half of the domain, 0 6 φ <∞, and impose the symmetry condition

∂r
∂φ
= 0 (6.10)

at φ = 0.
The calculations were performed by first discretising (6.6) using centred differences

over a truncated rectangular grid, with N equally spaced mesh points in φ over the
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range [0, φ∞], where φ∞ is a specified truncation level, and with M equally spaced
mesh points in ψ over the range [0, ψS]. The Bernoulli condition (6.8) is discretised
using backward differences for the ψ-derivatives and centred differences for the
φ-derivatives (and using the symmetry condition (6.10) at the mesh points on φ = 0,
as well as imposing the condition that ∂r/∂φ= 0 at φ=φ∞). Enforcing the discretised
form of (6.6) at the interior mesh points and the boundary conditions at the edges
as described, we compile a system of NM nonlinear algebraic equations which
we solve using Newton’s method. The free-surface location is extracted from the
converged solution as S(φ)= r(φ, ψS). For some calculations, it is convenient to fix
the amplitude of the wave by prescribing the value of r at φ= 0, ψ =ψS and treating
c as an additional unknown to be found as part of the solution. In this case, we first
rescale ψ→ cψ to ensure a fixed domain size, and then proceed as already described.
Finally, the shape of the free surface is obtained in physical space by integrating
(6.4 b) at ψ =ψS using the trapezium rule.

For the results presented in the next section, we typically use N = 40, M= 20 and
φ∞ = 9, but some adjustment to these values is needed for some of the calculations.
For calculations where intricate details of the profile need to be accurately resolved,
we found it convenient to use a non-uniform grid in φ so as to be able to focus
computational points where needed. In order to latch on to the various solitary wave
solution branches, we found it necessary to employ a method used by a number
of authors. An artificial Gaussian pressure distribution is included in the Bernoulli
condition (2.6) on the free surface to force a solution different from a uniform stream.
Removing the artificial pressure, this solution can then be used as the initial guess
to lock on to the required solitary wave solution branch. Particular details of the
method are described in, for example, Vanden-Broeck & Dias (1992) and Maleewong,
Asavanant & Grimshaw (2005).

7. Nonlinear calculations

We begin with a discussion of the case where B= 1.25 and b= 0.1. According to
the small-amplitude weakly nonlinear theory of RE, at this Bond number we expect
to find elevation solitary waves (with S(0) > 1) for c < c0 = 0.352. This branch of
solutions should bifurcate from zero amplitude at c = c0. In fact, not only have we
computed waves on this bifurcation branch, we have also identified a new branch of
nonlinear solutions corresponding to depression waves (with S(0) < 1). Figure 4(a)
shows both of these solution branches for B= 1.25. The right branch, corresponding
to the elevation waves, should bifurcate from the uniform stream at c= c0, S(0)= 1
according to RE’s weakly nonlinear theory. However, as the bifurcation point is
approached, the wave profile becomes increasingly wide, demanding an increasingly
large computational domain, and ultimately it is impractical to follow the branch
numerically all the way to the point S(0)= 1. Following this solution branch as the
amplitude S(0) increases, the wave speed c approaches zero. The wave profile at
c = 0.03 is shown in figure 4(b) and compared with the static solution at the same
Bond number computed using the method discussed in § 4. The agreement between
the two profiles is excellent, providing strong evidence that a limiting profile with
zero wave speed and finite amplitude is eventually reached along this branch.

The new branch of nonlinear solutions, corresponding to the left curve in figure 4(a),
apparently bifurcates from finite amplitude at c= c0 and at approximately S(0)= 0.48.
It is extremely difficult computationally to follow this branch back to the bifurcation
point for the same reason stated in the previous paragraph. Indeed, it can be seen
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FIGURE 4. (Colour online) (a) Solution branches for B= 1.25 and b= 0.1; the vertical
dashed line indicates a uniform stream, and the horizontal dashed line indicates c0 =
0.352 according to (3.4). (b) Surface profile S(z) for B = 1.25 and b = 0.1, with c =
0.03, corresponding to the solid dot on the curve in (a); the dashed line represents the
corresponding static solution.

from figure 3(a) that the exponential far-field rate for the wave profile tends to vanish
as c→ c0, so that an impractically large computational domain is required in this
limit. Following the nonlinear branch in the other direction toward smaller values
of S(0), we find that the wave profile eventually reaches a limiting configuration
with a trapped bubble (see figure 6 for an example of this sort of profile). Reducing
S(0) further results in a self-intersecting wave profile with no meaningful physical
interpretation. Sample wave profiles at the same wave speed on the elevation and
depression branches are shown in figure 5(a). In figure 5(b) the rate of decay of the
elevation profile in the far field is compared favourably with the theoretical decay rate
computed as described in § 5. The decay rate for the depression profile in figure 5(a)
is the same as for the elevation profile.

When b = 0.1, we have B2 ≈ 9 and we expect that B1 ≈ 1.5. Note that RE found
B1=1.5 for b=0; for general b, difficulties already noted above in computing solution
branches close to the uniform stream hamper attempts to determine the general
dependence of B1 on b. In the range 1.5< B< 9 we expect to find small-amplitude
depression waves. For 1.5 < B < 2 we find both depression waves and elevation
waves. The depression waves bifurcate from the uniform stream according to RE’s
weakly nonlinear theory. The elevation waves correspond to a solution branch which
bifurcates nonlinearly from finite amplitude. So, effectively, the scenario here is the
same as for the range 1<B<B1≈ 1.5 discussed above but with the roles of the two
solution branches reversed. Figure 6 shows the limiting depression wave profile for
B = 2 and b = 0.1, and, as the inset makes clear, there is a trapped toroidal bubble
in the middle. The solution space for the case where B= 1.75 and b= 0.1 is shown
in figure 7. The limiting depression wave profile has a trapped bubble in the middle
(similar to that seen in figure 6). Following the elevation wave branch, eventually a
static profile is reached as c→ 0. At B= 2, the nonlinear branch of elevation waves
does not end in a static profile since no static profile exists at this Bond number
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FIGURE 5. (Colour online) (a) Surface profile S(z) for B= 1.25 and b= 0.1 corresponding
to the circle on the left curve (depression wave with c= 0.29) and the square on the right
curve (elevation wave with c= 0.29) in figure 4(a); the dashed line shows the location of
the axial rod. (b) Plot of log(S− 1) against z for the elevation wave in (a) of the current
figure; the dashed line has slope −0.284, corresponding to the far-field decay rate, and is
shown for comparison purposes.
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FIGURE 6. A depression wave profile with a trapped bubble for B= 2 and b= 0.1; the
inset shows a close-up of the bubble.
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FIGURE 7. (Colour online) Solution branches for B = 1.75 and b = 0.1; the vertical
dashed line indicates a uniform stream, and the horizontal dashed line indicates c0= 0.609
according to (3.4).

according to § 4; instead it appears that the wave amplitude continues to increase
(we computed waves of amplitude up to 6 in the current dimensionless units). In
the range 2 6 B 6 B2, we have only been able to find depression waves on a branch
which bifurcates from the uniform stream. A sample profile is shown in figure 8 for
the case where B= 4 and b= 0.1.

For B > B2 the decay rates computed in § 5 indicate that the waves travelling at
a speed lower than cM do not return monotonically to the uniform level but have
decaying oscillations in the far field. Specifically, for B= 30 and b= 0.1, the decay
rate is complex in the range 1.1< c< cM = 3.1 (see figure 3b). Non-monotonic decay
is evident in the depression wave profile shown in figure 9(a) for B= 30 and b= 0.1.
Elevation profiles (with S(0) > 1) are also possible for B > B2, and an example is
shown in figure 9(b) for B= 30 and b= 0.1. The profiles in figure 9(a,b) correspond
to points on opposing arms of the same solution branch. This solution branch is shown
in figure 10. Attempts to follow this branch to the point S(0)= 1 (from either the left
or the right) are frustrated by the computational difficulties discussed above. However,
there is very good reason to suppose that the two solid curves in this figure meet
smoothly at the point S(0)= 1, c= cM, where the vertical and horizontal dashed lines
cross. Our reasoning comes from drawing an analogy with two-dimensional gravity–
capillary waves. In this case a nonlinear Schrödinger equation describes the weakly
nonlinear dynamics around the minimum on the dispersion curve (see the discussion in
§ 3), and this equation predicts that both an elevation and a depression branch should
bifurcate from the uniform stream at this minimum point. An analogous equation for
the present problem is not available, but we suspect that the same is true here.

Moving in the opposite direction along the branches in figure 10, we find that
on the left branch a limiting profile is finally attained and it has a trapped bubble,
as in figure 6. Giving an accurate description of what happens along the right
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FIGURE 8. (Colour online) A depression wave profile for B= 4.0 and b= 0.1 with wave
speed c= 1.15.

branch is more delicate. Our most accurate computations predict that this branch
also ends in a wave profile with a trapped bubble. However, experience from
two-dimensional gravity–capillary waves serves as a cautionary warning. For such
waves, Vanden-Broeck & Dias (1992) predicted that a similar solution branch ends
in a limiting profile with a trapped bubble, but more accurate calculations performed
by Dias, Menace & Vanden-Broeck (1996) showed that in fact the branch continues
and executes many loops and turns before it becomes computationally impractical to
continue further. Wang, Vanden-Broeck & Milewski (2013) found similar behaviour
for two-dimensional flexural–gravity waves.

The decay rate graph in figure 3(b) indicates that when c< 1.1, the decay rate is
real and monotonic decay in the far field is expected. We investigated the possibility
that further solitary wave solutions exist in this range with monotonically decaying
tails. In this case, following the solution branch down to the relevant range of c
proved extremely difficult. However, as c is lowered from cM = 3.1, the wave profiles
eventually self-intersect at some value in the range 1.1 < c < 3.1, and although we
were not able to obtain accurate profiles, it seems likely that profiles in the range
0< c< 1.1 also self-intersect.

In § 4 we noted that when B > 2 there are no smooth static profiles, but static
profiles which meet the axial rod in a cusp are possible. We investigated whether
such a static profile may be approached dynamically as the wave speed tends to zero.
Figure 11 shows the limiting profile which is reached for the case where B= 2.5 and
b=0.45. The dashed curve in the figure represents the static profile which corresponds
to the heteroclinic orbit connecting two neighbouring equilibrium points in the static
phase space. In figure 2(b) it was shown how part of this profile may be interpreted
as a wave profile with a cusp. The convincing overlap of the two curves in figure 11
is strong evidence that a cusped static profile is indeed approached in the limit as
the wave amplitude S(0) approaches 0.45 from above and the wave speed approaches
zero. Note that although the profiles agree over most of the range, near the point of
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FIGURE 9. (Colour online) For B = 30 and b = 0.1: (a) depression wave profile with
wave speed c = 2.92 corresponding to the circle on the depression branch in figure 10;
(b) elevation wave profile with wave speed c= 2.98 corresponding to the square on the
depression branch in figure 10.

contact with the wall the two solutions necessarily deviate from one another because
of the symmetry condition (6.10) imposed in the dynamic calculation, which prevents
the profile from approaching a true cusp.

8. Discussion

We have investigated the propagation of axisymmetric solitary waves on a ferrofluid
jet in the presence of a magnetic field generated by a current-carrying metallic rod
mounted along the jet axis. In particular, we have used a numerical method to solve
the full problem and to extend the weakly nonlinear results of RE into the fully
nonlinear regime. We have confirmed that, depending on the size of the magnetic
Bond number, elevation and depression solitary waves exist and appear as bifurcations
from the cylindrical uniform stream solution. Moreover, we have identified a number
of new solution branches which do not bifurcate from the uniform stream but appear
at finite amplitude. Such branches have previously been identified for two-dimensional
interfacial gravity–capillary waves by Laget & Dias (1997). A summary of the wave
characteristics for different values of the Bond number is presented in table 1. We
have also demonstrated that along a given solution branch, a limiting profile may
be reached, either with a trapped toroidal bubble or with a cusp if the wave makes
contact with the solid rod. Alternatively, the limiting profile may correspond to a
smooth solution of the static problem.

Bourdin et al. (2010), henceforth referred to as BBF, reported experimental
observations of axisymmetric solitary waves on a ferrofluid. The experimental set-up
is essentially identical to the theoretical scenario studied by RE and in the present
work. One important difference is that, in order to mitigate the effect of gravity,
in the experiments the ferrofluid jet was surrounded by an immiscible outer fluid
of almost the same density. In the present notation, BBF’s experimental parameters
correspond to b∗ = 1.5 mm and a∗ = 3.3 mm (for their solitary wave experiments) or
a∗ = 3.8 mm (for their linear wave experiments), so that b= 0.45 for solitary waves
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FIGURE 10. (Colour online) Solution branch for B= 30 and b= 0.1; the vertical dashed
line indicates a uniform stream, and the horizontal dashed line indicates cM = 3.10
according to (3.4). The wave profiles corresponding to the circle and square are shown in
figure 9(a) and 9(b), respectively.
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FIGURE 11. (Colour online) Near-limiting profile (solid curve) for B= 2.5 and b= 0.45;
the profile shown has S(0) = 0.453 and wave speed c = 0.07. The dashed curve is the
static solution (see § 4), and the horizontal dashed line shows the location of the axial
rod.
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Bond number, B Wave type

1< B< B1 Elevation waves/depression waves (nonlinear)
B1 < B 6 2 Elevation waves (nonlinear)/depression waves
2< B< B2 Depression waves

B> B2 Elevation waves/depression waves

TABLE 1. Summary of the wave types found across various ranges of the Bond number
B. Depression waves have S(0) < 1 and elevation waves have S(0) > 1. The qualifier
‘nonlinear’ means that these solutions bifurcate from finite amplitude and not from the
uniform stream. The threshold value B2 (and presumably also B1) depends on the rod
radius b. For b→ 0, B1 = 1.5 and B2 = 9 (Rannacher & Engel 2006).

and b = 0.39 for linear waves. In either case, b is not particularly small. This is
important since BBF relate their observations to theoretical results based on the limit
b→ 0. In their figure 3, they report experimentally determined values of the linear
wave speed c0 for small-amplitude waves over a range of Bond numbers. With one
exception, all of their data points for c0 lie below the expected theoretical prediction
based on taking b= 0. We suggest that an explanation for this discrepancy is provided
by (3.4), which shows that the actual linear wave speed is lower than this value by
a factor of (1 − b2)1/2 = 0.92 for b = 0.39. Upon making this correction, we find
that the theoretical prediction in BBF’s figure 2 passes very convincingly through the
experimental data points.

Considering that BBF’s experiments were performed not in a vacuum but with a
second, outer fluid, we are motivated to see if this makes a significant difference to the
theoretical predictions. Repeating the linearised analysis in § 3 for the case where the
ferrofluid jet is surrounded by a second inviscid fluid of equal density and of infinite
extent with zero magnetic susceptibility (χ = 0) so that it feels no magnetic body
force, we derive the following dispersion relation to replace (3.3):

c2 = 1
k

(
m1K1(k)

m1K0(k)+m2K1(k)

)
(k2 − 1+ B) (8.1)

(see Arkhipenko et al. 1980), where m1 = I1(k)K1(kb) − I1(kb)K1(k) and m2 =
I1(kb)K0(k)+ I0(k)K1(kb). Carrying out a small-k expansion of (8.1), we find that

c2 = 1
2(1− b2)(B− 1)+ 1

4(1− b2)2(B− 1)k2 log k+O(k2). (8.2)

From this we can see that the slope dc/dk < 0 if B > 1. Since c2→∞ as k→∞,
we deduce that the c–k dispersion curve has a minimum if B> 1, i.e. over the whole
range of interest of the Bond number. We recall that for a jet in a vacuum, a minimum
in the dispersion curve appears only when B> B2(b). Figure 12 shows a comparison
of dispersion curves for a jet in a vacuum (with b= 0 and with b 6= 0) according to
(3.3), and for a jet in a surrounding fluid according to (8.1). Figure 12(a) is plotted
at B = 10.5, which is one of the values looked at by BBF. The uppermost curve
meets the vertical axis at a different point than the two lower curves because of the
different values of c0 according to (3.4). Notice that the single-fluid curve for b= 0
has a minimum but the single-fluid curve for b= 0.45 does not have a minimum (the
minimum appears at a higher Bond number). The axes in figure 12(b) have the same
ordinate as in figure 2 of BBF, which has been scaled to remove the effect of the
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FIGURE 12. (Colour online) Comparison of dispersion curves for the single-fluid and two-
fluid models: (a) c versus k for B= 10.5 and for a single fluid (with b= 0 or b= 0.45)
and two fluids (with b= 0.45); (b) ω̂ = ω2/(k2 − 1+ B) versus k, where ω = kc, for the
single-fluid model (with b= 0 or b= 0.39) and for the two-fluid model (with b= 0.39).
The symbols in (b) correspond to experimental data points taken from figure 2 of BBF
(we have used the same symbols as them).

Bond number. Also included in figure 12 are some of BBF’s experimental data points,
which we have taken from their figure 2. It does appear that the solid curve for the
two-fluid model provides the more convincing fit with the experimental results. We
may conclude that the effect of the outer fluid in the experiments is significant and
should not be overlooked when drawing a comparison with theory.

BBF carried out solitary wave experiments for B= 8.3 and B= 10.5, with apparatus
for which b= 0.45 (see above). It appears that these Bond numbers were chosen to
lie on either side of the critical value B= 9, which was identified by RE as the point
at which the wave characteristics are expected to change (see § 5 of RE and table 1
of BBF). We find that the appropriate critical value is in fact B2(0.45)= 15.4, so that
the Bond numbers used in BBF’s solitary wave experiments actually lie in the range
26B6B2. What is particularly interesting is that BBF report finding depression waves
for B = 8.3 and elevation waves for B = 10.5. The latter is puzzling as it does not
accord with our predictions: we expect only KdV-type depression waves in the range
26B6B2 (see table 1). However, given the remarks made in the previous paragraph,
it seems plausible that the discrepancy between BBF’s experimental solitary wave
observations and our nonlinear results can be explained by the fact that the outer fluid
is absent in our calculations. We are led to conjecture that the elevation/depression
waves seen in BBF’s experiments correspond to solitary waves on the solution branch
which bifurcates from the minimum of the dispersion curve (for the two-fluid model,
this is the lowermost curve in figure 12a). Such waves travel at a speed c < cM,
where cM is the minimum value on this curve. An alternative explanation is that BBF
observed generalised solitary waves with non-decaying oscillations in the far field;
such waves travel with speed c > c0 (see, for example, Hunter & Vanden-Broeck
(1983), Beale (1991) and Vanden-Broeck (1991) for discussions of generalised solitary
waves in two-dimensional flow). It would be very interesting to extend the present
computations to allow for generalised solitary wave solutions, and to include the effect
of an outer fluid of equal density. These are the subjects of current investigation.
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