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A one-dimensional, unsteady nozzle flow is modelled to identify the sources of
indirect noise in multicomponent gases. First, from non-equilibrium thermodynamics
relations, it is shown that a compositional inhomogeneity advected in an accelerating
flow is a source of sound induced by inhomogeneities in the mixture (i) chemical
potentials and (ii) specific heat capacities. Second, it is shown that the acoustic,
entropy and compositional linear perturbations evolve independently from each other
and they become coupled through mean-flow gradients and/or at the boundaries.
Third, the equations are cast in invariant formulation and a mathematical solution is
found by asymptotic expansion of path-ordered integrals with an infinite radius of
convergence. Finally, the transfer functions are calculated for a supersonic nozzle with
finite spatial extent perturbed by a methane–air compositional inhomogeneity. The
proposed framework will help identify and quantify the sources of sound in nozzles
with relevance, for example, to aeronautical gas turbines.
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1. Introduction

In order to reduce NOx emissions from aeronautical gas turbines, the objective is to
burn in a lean regime. Lean flames burn unsteadily because they are sensitive to the
disturbances in the turbulent environment of the combustion chamber. Such unsteady
fluctuations in the combustion chamber are the cause of two unwanted phenomena
in aero-engines: (i) combustion noise and (ii) thermoacoustic instabilities. On the one
hand, while methods to mitigate fan and jet noise, which are the primary sources
of engine-core noise, have been in place for a decade – such as ultrahigh bypass
ratio turbofan engines, acoustic liners and fan blade geometric design – combustion
noise is bound to increase with the implementation of low-emission combustors,
high-power-density engine cores, and compact burners (e.g. Dowling & Mahmoudi
2015; Ihme 2017). Combustion noise can cause physiological impairment, such as
hearing damage, speech and sleep interference (Dowling & Mahmoudi 2015). On the
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other hand, thermoacoustic instabilities occur when the heat released by the flame is
sufficiently in phase with the acoustic waves, which are reflected at the boundaries
and generated at the nozzle downstream of the combustion chamber. Thermoacoustic
oscillations can cause structural damage and cracking, resulting in the reduction of
the combustor lifetime by a factor of two or more (Dowling & Mahmoudi 2015).
Both combustion noise and thermoacoustic instabilities can be caused by direct and
indirect mechanisms.

Direct noise is caused by the acoustics generated by the unsteady heat released by
the flame, which is a powerful monopole source of sound. These acoustics propagate
in the combustion chamber through the turbine and are refracted by mean-flow
gradients. The sound that is transmitted through the downstream-engine component
causes noise pollution, whereas the sound that is reflected at the nozzle can create
a thermoacoustic feedback. Indirect noise originates from the acceleration of flow
inhomogeneities through the nozzle, or turbine blades, downstream of the combustion
chamber. The two well-known indirect sources of sound are (i) entropy perturbations
(also called ‘entropy spots’) (e.g. Cuadra 1967; Marble & Candel 1977; Bake et al.
2009; Duran & Moreau 2013) and (ii) vorticity perturbations (e.g. Howe & Liu
1977). From a thermoacoustic point of view, the acoustics generated at the nozzle
by entropy perturbations and travelling back to the combustion chamber can become
the key feedback mechanism for a low-frequency combustion instability (e.g. Polifke,
Paschereit & Döbbeling 2001; Goh & Morgans 2013; Motheau, Nicoud & Poinsot
2014; Morgans & Duran 2016). Dissipation and differential convection of entropy
perturbations were analysed by direct numerical simulation (Morgans, Goh & Dahan
2013) and large-eddy simulation and experiments (Giusti et al. 2017). These studies
showed that indirect mechanisms, in particular entropy perturbations, need to be
modelled for an accurate prediction of indirect combustion noise and thermoacoustic
instability in aero-engines. The recent reviews by Dowling & Mahmoudi (2015),
Morgans & Duran (2016) and Ihme (2017) contain an extensive list of references.

Common to combustion noise and thermoacoustic instability calculations is the
necessity to capture in mathematical models all the physical phenomena that contribute
to sound generation. In the aforementioned studies, the perturbations advected with
the mean flow were modelled with homogeneous chemical composition. In turbulent
combustors of aero-engines, however, incomplete mixing and air cooling bring about
inhomogeneities in the mixture composition. By modelling a multicomponent mixture,
Sinai (1980) showed that compositional inhomogeneities, named also ‘compositional
blobs’, generate sound when they are advected through steady low-Mach-number
flame fronts using the wave equation of Chiu & Summerfield (1974). Recently,
it was shown that such compositional blobs contribute to indirect noise in nozzle
flows. This was theoretically shown in compact subsonic nozzles (Ihme 2017) and
at higher-Mach-number regimes with/without shock waves (Magri, O’Brien & Ihme
2016). By evaluating the nozzle transfer functions with algebraic expressions (Magri
et al. 2016) and numerical integration of the differential equations (Magri, O’Brien &
Ihme 2017) of a kerosene mixture, it was shown that compositional noise can be a
contributor to indirect noise in lean mixtures and supersonic regimes. Compositional
noise was experimentally shown by Rolland, De Domenico & Hochgreb (2017)
as applied to air–helium compositional blobs accelerated through compact-choked
nozzles. The compositional and indirect noise they found compared favourably with
the noise level predicted by evaluating the transfer functions of Magri et al. (2016).

The objectives of this paper are to (i) propose an acoustic model for unsteady
multicomponent gases with variable composition and specific heat capacities, for
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subsonic and supersonic nozzles with finite spatial extent; (ii) identify the sources
of indirect noise by separating entropic, isentropic and compositional effects; (iii)
mathematically solve the problem; and (iv) numerically quantify the acoustic sources
and transfer functions of a supersonic nozzle perturbed by a methane–air blob.

2. Mathematical model

The mixture exiting a combustion chamber of a gas turbine and being accelerated
through a nozzle is modelled as (i) advection-dominated, where viscosity, heat/species
diffusivity and body forces are negligible; (ii) chemically frozen, i.e. the combustion
process is completed; (iii) quasi-one-dimensional; and (iv) isentropic. The conservation
of mass, momentum, energy and species read, respectively (Chiu & Summerfield
1974),

Dρ
Dt
+ ρ

∂u
∂x
= 0, (2.1)

ρ
Du
Dt
+
∂p
∂x
= 0, (2.2)

T
Ds
Dt
=−

Ns∑
i=1

µi

Wi

DYi

Dt
+ Ṡ, (2.3)

DYi

Dt
= 0, (2.4)

which are closed by Gibbs’ equation for multicomponent gases

T ds= dh−
dp
ρ
−

Ns∑
i=1

µi

Wi
dYi, (2.5)

where ρ is the density; u is the axial velocity; p is the pressure; s=
∑Ns

i=1 siYi is the
specific entropy; T is the temperature; Yi is the mass fraction of the ith species, such
that

∑Ns
i=1 Yi = 1, where Ns is the number of species; h =

∑Ns
i=1 hiYi is the specific

enthalpy; Wi is the molar mass; and Ṡ is the entropy production by other processes,
such as external heat input and enthalpy fluxes, which are assumed negligible in this
paper. µi is the chemical potential, which is defined as µi=Wi(∂h/∂Yi)=Wi(∂g/∂Yi),
where g= h− Ts is the specific Gibbs’ energy. By using the first-order homogeneity
of Gibbs’ energy, which is a thermodynamic potential, it follows that µi =Wigi. For
mixtures of ideal gases, µi(p, T) = µ◦i + RuT log(Xip/p◦), where Xi = (W/Wi)Yi is
the mole fraction, Ru is the universal gas constant and ◦ is the reference condition.
By noting that µ◦i = g◦i = h◦i − Ts◦i , equation (2.5) holds both for the sensible and
sensible-plus-chemical entropy, enthalpy and Gibbs’ energy, in agreement with Brear
et al. (2012). In this paper, the sensible-plus-chemical quantities will be used. The gas
is assumed ideal with state equation

p= ρRT, (2.6)

where R = Ru
∑Ns

i=1 Yi/Wi is the mixture specific gas constant. The gas is assumed
calorically perfect such that h = cp(T − T◦), with cp =

∑Ns
i=1 cp,iYi being the mixture

specific heat capacity at constant pressure, where cp,i is constant. Although not
necessary, for brevity, the gas composition is parameterized in the mixture-fraction
space, Yi= Yi(Z), hence dYi= (dYi/dZ) dZ (e.g. Williams 1985). By considering (2.6),
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Gibbs’ equation for calorically perfect multicomponent gas becomes

ds
cp
=

dp
γ p
−

dρ
ρ
− (ℵ+Ψ )dZ, (2.7)

where γ = cp/cv is the heat-capacity ratio, cv is the mixture specific heat capacity
at constant volume, and the relation for ideal gases R= cp(γ − 1)/γ was used. The
non-dimensional terms

Ψ =
1

cpT

Ns∑
i=1

(
µi

Wi
−1h◦f ,i

)
dYi

dZ
,

ℵ=

Ns∑
i=1

(
1

(γ − 1)
d log(γ )

dYi
+

T◦

T
d log(cp)

dYi

)
dYi

dZ
,

 (2.8)

are named chemical-potential function and heat-capacity factor, respectively. If the
sensible quantities were used in (2.5), the term 1h◦f ,i in (2.8) would not appear.

2.1. Linearization

A generic variable is split as (·) = ¯(·) + (·)′, where ¯(·) is the steady mean-flow
component, and (·)′ ∼ O(ε) is the unsteady fluctuation with ε→ 0. By grouping the
steady terms, the equations for the mean flow read

d(ρ̄ū)= 0, d(p̄+ ρ̄ū2)= 0, ds̄= d log(p̄1/γ̄ /ρ̄)= 0, dZ̄ = 0. (2.9a−d)

The third relation shows that the mean flow has constant and uniform entropy, i.e. it is
homentropic. The mean-flow specific-heat-capacity ratio, γ̄ , and specific heat capacity,
c̄p, are constant because they depend only on Z̄, i.e. dγ̄ = 0 and dc̄p= 0. The variables
are non-dimensionalized as η= x/L, where L is the nozzle axial length; τ = tf , where
f is the frequency at which the advected perturbations enter the nozzle; M̄ = ū/c̄ is
the mean-flow Mach number; and ũ= ū/c̄ref , where c̄ref is a reference speed of sound.
On linearization of (2.7) and taking the material derivative, Gibbs’ equation reads

D̄
Dτ

(
p′

γ̄ p̄
−
ρ ′

ρ̄
−

s′

c̄p

)
− (Ψ̄ + ℵ̄)

D̄Z′

Dτ
−

D̄Φ̄
Dτ

Z′ = 0, (2.10)

where

Φ̄ =
d log(γ̄ )

dZ
log(p̄1/γ̄ ) (2.11)

is the γ -source of noise, named by Strahle (1976). The linearized material derivative
is defined as D̄(·)/Dτ = He ∂(·)/∂τ + ũ∂(·)/∂η, where He= fL/c̄ref is the Helmholtz
number, which is the ratio between the advected-perturbation and acoustic wavelengths.
Equation (2.10) can be integrated from an unperturbed condition along the characteristic
line He τ =

∫ η dη̃/ũ(η̃), to yield the density fluctuation

ρ ′

ρ̄
=

p′

γ̄ p̄
−

s′

c̄p
− (Ψ̄ + ℵ̄+ Φ̄)Z′, (2.12)

where Ψ̄ and ℵ̄ are evaluated where the compositional inhomogeneity is generated,
while Φ̄ is a spatial function. In (2.12), the fact that Z′ = Z′{He τ −

∫ η
(dη̃/ũ(η̃))}

and s′ = s′{He τ −
∫ η
(dη̃/ũ(η̃))} are Riemann invariants was exploited, as shown
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later in (2.15)–(2.16). Equation (2.12) physically signifies that the excess density,
ρ ′/ρ̄ − p′/(γ̄ p̄) (Morfey 1973), varies because of (i) entropic perturbations, s′/c̄p and
(ii) compositional perturbations, whose strength is related to the chemical-potential
function, Ψ̄ ; (iii) and isentropic perturbations due to gas heat-capacity variations
through ℵ̄ and Φ̄. When species are generated/added upstream of the inlet, they
also bring in an entropic contribution through the chemical potential, which can be
calculated from the energy equation (2.3). Finally, by grouping the terms of order
∼O(ε), the linearized multicomponent gas equations read

D̄
Dτ

(
p′

γ̄ p̄

)
+ ũ

∂

∂η

(
u′

ū

)
−

D̄Φ̄
Dτ

Z′ = 0, (2.13)

D̄
Dτ

(
u′

ū

)
+

ũ
M̄2

∂

∂η

(
p′

γ̄ p̄

)
+

[
2

u′

ū
+ (1− γ̄ )

p′

γ̄ p̄
−

s′

c̄p
− (Ψ̄ + ℵ̄+ Φ̄)Z′

]
dũ
dη
= 0,

(2.14)
D̄

Dτ

(
s′

c̄p

)
= 0, (2.15)

D̄Z′

Dτ
= 0. (2.16)

Equation (2.14) shows the sources of indirect noise. The unsteady interaction between
the specific entropy perturbation, s′, the compositional perturbation Z′ and the mean-
flow gradient, dũ/dη, is the source of indirect noise. Physically, not only do density
variations create noise through entropy mechanisms, but also differences in species
generate noise through the chemical potential (Magri et al. 2016) and heat-capacity
variation. Such a sound generation is caused by the tendency of the compositional blob
to contract/expand with a different rate than the surrounding fluid. Equation (2.15)
shows that the linearized flow has constant entropy along a pathline, i.e. it is isentropic
but not necessarily homentropic.

2.2. Riemann invariants and flow modes
Equations (2.13)–(2.16) can be recast in matrix form as He ∂q/∂τ = −ũH1∂q/∂η +
H2q, where q= [p′/(γ p̄), u′/ū, s′/c̄p, Z′]T. Matrix H1 is eigendecomposed as

H1 =QSQ−1
=


1 1 0 0
1
M̄
−

1
M̄

0 0

0 0 1 0
0 0 0 1





(M̄ + 1)
M̄

0 0 0

0
(M̄ − 1)

M̄
0 0

0 0 1 0
0 0 0 1



×



1
2

M̄
2

0 0

1̄
2
−

M̄
2

0 0

0 0 1 0
0 0 0 1


. (2.17)
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(a) (b)

FIGURE 1. Pictorial decomposition of acoustic wave, π, specific entropy inhomogeneity,
σ , and compositional blob, ξ , in a (a) subsonic nozzle and (b) supersonic nozzle. M̄th is
the Mach number at the throat.

There are four Riemann invariants: (i) upstream and downstream propagating acoustic
modes (first two rows of Q−1, π± = (p′/(γ̄ p̄)± M̄(u′/ū))/2), (ii) an advected entropy
mode (third row of Q−1, σ = s′/c̄p), and (iii) an advected compositional mode
(fourth row of Q−1, ξ = Z′). By assuming a homogeneous medium, i.e. H2 = 0,
and a Fourier transform in space, i.e. q(τ , η) = q̂(τ )exp(−iκη), it can be seen
that these modes evolve independently of each other and they become coupled at
the boundaries and through mean flow gradients. (The entropic and compositional
modes would be coupled through diffusion and reaction effects, which are neglected
under the assumptions made.) The eigendecomposition (2.17) justifies a characteristic
decomposition of the governing equations, in which four invariants are defined at
each side of the nozzle, as shown in figure 1.

3. Invariant formulation

The variables are expressed as functions of the invariants of the compact-nozzle
solution (He = 0). When He = 0, the normalized mass flow rate, Iṁ, total specific
enthalpy, IhT , specific entropy, Is, and mixture fraction, IZ , are conserved. The total
specific enthalpy is the sum of the specific enthalpy and the specific kinetic energy,
i.e. hT =h+1/2u2. The specific entropy and compositional invariants, Is and IZ , do not
depend on mean-flow gradients, therefore they are conserved also in the non-compact
nozzle. The flow invariants I = [Iṁ, IhT , Is, Iz]

T are related to the Riemann invariants,
r= (π+,π−, σ , ξ) as I = Dr, where

D =



M̄ + 1
M̄

M̄ − 1
M̄

−1 −(Ψ̄ + ℵ̄)

(γ̄ − 1)(M̄ + 1)
β

(γ̄ − 1)(1− M̄)
β

1
β

Ψ̄

β

0 0 1 0
0 0 0 1


, (3.1)

where β = 1+ ((γ̄ − 1)/2)M̄2. By considering that dũ/dη= c̃(1+ ((γ̄ − 1)/2)M̄2)−1
×

dM̄/dη, and when Fourier-transformed as I(τ , η)= Î(η) exp(2πiτ), the equations can
be cast in matrix form as

2πi He Î = E(η)
dÎ
dη
+F(η)ÎZ, (3.2)
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where

E(η)=−ũ


1

β

(γ̄ − 1)M̄2

−1
(γ̄ − 1)M̄2

−Ψ̄

(γ̄ − 1)M̄2

γ̄ − 1
β

1
γ̄ − 1
β

γ̄ − 1
β

(Ψ̄ + ℵ̄)

0 0 1 0
0 0 0 1


, (3.3)

F=
[

ũ
dΦ̄
dη
+ Λ̄,

γ̄ − 1
β

(
ũ

dΦ̄
dη
+ M̄2Λ̄

)
, 0, 0

]T

, (3.4)

Λ̄=
ũ(ℵ̄+ Φ̄)
M̄2(γ̄ − 1)

d log
(

1+
γ̄ − 1

2
M̄2

)
dη

. (3.5)

This set of equations tends to the single-component gas equations of Duran & Moreau
(2013) as ÎZ → 0. The boundary conditions may be prescribed using the procedure
proposed in § 5 of Duran & Moreau (2013), which is extended to include the
additional invariant, ÎZ . Physically, the perturbations prescribed at the nozzle’s inlet
are generated in the combustion chamber due to the unsteady and inhomogeneous
combustion process.

4. Solution

A solution of the multicomponent acoustic problem (3.2) is proposed when F= 0.
(In § 5.2, it is shown that this term is negligible as compared to the other acoustic
sources.) The solution holds for all nozzle locations except where the flow becomes
sonic, η = η∗. The treatment of the sonic condition is explained in § 4.1. First,
equation (3.2) is recast as

2πi He A(η)Î =
dÎ
dη
, (4.1)

where M̄ 6= 1, and A= E−1 reads

A(η)=−
1
ũ



M̄2

M̄2 − 1
−

β

(γ̄ − 1)(M̄2 − 1)
γ̄

(γ̄−1)(M̄2−1)
(Ψ̄ + ℵ̄)γ̄ − ℵ̄

(γ̄ − 1)(M̄2 − 1)

−
(γ̄ − 1)M̄2

(M̄2 − 1)β
M̄2

M̄2 − 1
−

1+(γ̄−1)M̄2

(M̄2−1)β
−
(Ψ̄ + ℵ̄)M̄2(γ̄ − 1)+ Ψ̄

(M̄2 − 1)β

0 0 −1 0
0 0 0 −1


.

(4.2)

Equation (4.1) is a set of four linear ordinary differential equations with spatially
dependent coefficients. (Note that the system can be reduced to a 2 × 2 system by
using the analytical expressions for the advected entropy spot and compositional blob
Is,Z{He τ −

∫ η
(dη̃/ũ(η̃))} = Îs,Z exp(−2πi He

∫ η
(dη̃/ũ(η̃))).) If the acoustic commutator

of A is nil, i.e. [A(η1),A(η2)] =A(η1)A(η2)−A(η2)A(η1)= 0, for example, when A is
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a scalar or a constant matrix, the solution of (4.1) is Î = exp(2πi He
∫ η
ηa

A(η′) dη′)Îa,
where exp(·) is the matrix exponential. However, if the commutator is not zero, for
example, in the acoustic flow of this paper, the matrix-exponential solution no longer
holds, because exp(A(η1)) exp(A(η2)) 6= exp(A(η1)+A(η2)). A solution for this case is
derived by asymptotic expansion. The differential equation (4.1) is recast in integral
form as

Î(η)= Îa + 2πi He
∫ η

ηa

A(η′)Î(η′) dη′, (4.3)

which enables an explicit expression for the solution by recursion. First, the case
He = 0 is solved, which is a compact nozzle denoted by the subscript a. From
(4.1), the solution Îa is constant and is equal to its value at the inlet a. Second,
by recognizing the Helmholtz number as the perturbation parameter, the solution is
expanded as

Î = Îa +

∞∑
n=1

Hen În. (4.4)

The asymptotic decomposition (4.4) is substituted into (4.1) and, using (4.3) by
recursion, a solution is derived as follows

Î(η)=[
1+ 2πi He

∫ η

ηa

dη(1)A(η(1))+ · · · + (2πi He)n
∫ η

ηa

dη(1) · · ·
∫ η(n−1)

ηa

dη(n)A(η(1)) . . . A(η(n))

]
︸ ︷︷ ︸

Acoustic propagator, U=1+
∑
∞

n=1(2πi He)nPn

Îa,

(4.5)

where ηa <η
(n) < · · ·<η(1) <η, and 1 is the identity operator. The integral operators

in (4.5) are path-ordered, which means that the operator closer to the nozzle inlet,
η=ηa, is always on the right of the operator acting at a farther location. Equation (4.5)
contains the Neumann series of the acoustic propagator U = 1 +

∑
∞

n=1(2πi He)nPn,
defined as the map such that Î(η)= U(η)Îa. Although asymptotic, solution (4.5) is
absolutely convergent in a finite spatial domain and when A is bounded, which is the
case here. This can be shown by defining the path-ordering operator P(P(η1),P(η2))=

P(η1)P(η2) if η1>η2 and P(P(η1),P(η2))=P(η2)P(η1), if η2>η1. After some algebra,
it can be shown that (Lam 1998)

Î =P
(

2πi He
∫ η

ηa

exp(A(η′))dη′
)
Îa, (4.6)

which means that

‖Î‖< exp
(∫ η

ηa

dη′‖A(η′)‖
)
‖Îa‖<∞ (4.7)

is absolutely convergent. Once the acoustic propagator, U, is calculated, (i) the
solution can be calculated without iterative shooting methods for any boundary
conditions; and (ii) the effect of the Helmholtz number can be directly isolated at
each order. In time-dependent perturbations of quantum systems, the acoustic solution
(4.5) has an analogy to the Dyson series, while the integrands have analogies to
the Feynman path integrals (Dyson 1949). With solution (4.5), the nozzle transfer
functions can be calculated (§ 5.2).
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4.1. Sonic conditions

When the flow is choked, the subsonic-flow perturbations calculated at M̄ = 1 − ε
provide the input to the supersonic flow at M̄ = 1 + ε, where ε � 1, as proposed
by Duran & Moreau (2013) in single-component nozzle flows. In this small range,
the local Helmholtz number is negligible and the compact-nozzle solution holds. The
upstream propagating acoustic wave is given by the reflection at the throat of the
incoming perturbations, as π−th = Rπ,thπ

+

th + Rs,thσ + Rξ,thξ . Taking the limit M̄→ 1 of
the compact-nozzle transfer functions, derived by setting He= 0 and F= 0 in (3.2),
provides the reflection coefficients at the choked throat

Rπ,th =
3− γ̄
1+ γ̄

, Rs,th =
−1

1+ γ̄
, Rξ,th =−

Ψ̄ + ℵ̄

1+ γ̄
. (4.8a−c)

The first two reflection coefficients were derived by Marble & Candel (1977), and
Rξ,th appears in multicomponent gases. Rξ,th can be used to assess the effect that the
compositional blob has on thermoacoustic instability. The choking condition at the
throat, M′/M̄= 0, provides the input perturbations to the supersonic part of the nozzle.
In terms of Riemann invariants, this condition reads

1
2
σ +

(
Ψ̄ + ℵ̄

2

)
ξ +

γ̄ − 1
2

(π+ +π−)−
1
M̄
(π+ −π−)= 0, (4.9)

which generalizes the compact-nozzle choking condition of Magri et al. (2016)
including changes in the specific heat capacities.

5. Results

The sound generated by the passage of a methane–air inhomogeneity through a
supersonic nozzle with linear-velocity profile is investigated. First, the thermodynamic
properties are evaluated from a one-dimensional counterflow-diffusion-flame calculation,
which is the basis of flamelet models in turbulent combustion (e.g. Williams 1985).
This is to characterize the compositional inhomogeneity exiting the combustion
chamber upstream of the nozzle (Magri et al. 2016). Second, the strengths of the
acoustic sources Ψ̄ , ℵ̄ (2.8) and Φ̄ (2.11) are evaluated. Third, the transfer functions
of the supersonic nozzle are calculated up to He= 0.5 to quantify the indirect noise
generated by the compositional blob.

5.1. Methane–air counterflow diffusion flame
The calculation is performed in the physical space with the Cantera library (Goodwin,
Moffat & Speth 2017). The reaction mechanism is GRI-Mech 3.0 (available at
http://www.me.berkeley.edu/gri_mech/) which consists of 53 species and 325 reactions,
and it is suitable for ideal-gas mixtures in natural-gas combustion. The fuel and
oxidizer streams have a temperature of 300 K and a pressure of 105 Pa. The strain
rate at stoichiometric condition is 18.7 s−1, which corresponds to a moderately
strained condition.

The temperature and methane/oxygen/water mass fractions are shown in figure 2.
The thermodynamic properties of the mixture, which are needed to evaluate the
acoustic sources, Ψ̄ , ℵ̄ and Φ̄, are shown in figure 3. As for the heat-capacity
factor, ℵ̄, figures 3(a,b) show that the contributions of variations in cp and γ are
comparable. As for the chemical-potential function, Ψ̄ , figure 3(c) shows that the
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FIGURE 2. One-dimensional pure-methane–air counterflow diffusion flame. The mixture
fraction, Z, is normalized such that the stoichiometric condition, st, occurs at 0.5 (thin
dotted line).

largest contribution comes from the Gibbs’ energy term,
∑Ns

i=1(µi/Wi) dYi/dZ =∑Ns
i=1 gi dYi/dZ. The contribution from the formation-enthalpy term,

∑Ns
i=1 1h◦i dYi/dZ,

is smaller, yet comparable (figure 3d).
At the mixture condition examined, Ψ̄ and ℵ̄ depend weakly on the strain rate.

They vary by ∼8 % and ∼1 %, respectively, from near-equilibrium to near-quenching
conditions (result not shown).

5.1.1. A note of caution
In the counterflow-diffusion-flame calculation, cp,i is a function of the temperature,

which, in turn, is a function of the mixture fraction, i.e. cp,i = cp,i(T(Z)). The
multicomponent acoustic model for the nozzle assumes, however, that cp,i is constant
(§ 2). Therefore, for the correct calculation of ℵ and Φ: dlog(cp)/dZ in (2.8)
corresponds to ∂log(cp)/∂Z =

∑Ns
i=1(cp,i/cp) dYi/dZ in the flamelet calculation, and

dlog(γ )/dZ in (2.8), equation (2.11) corresponds to ∂log(γ )/∂Z =
∑Ns

i=1(cp,i/cp) ×
(1 − γ /γi)dYi/dZ. These relations ensure consistency with the calorically perfect
acoustic model.

5.2. Strength of acoustic sources and transfer functions

The strengths of the acoustic sources, Ψ̄ and ℵ̄, are depicted in figure 4(a)
as functions of the mixture fraction. At lean conditions close to Z = 0, the
chemical-potential function, Ψ̄ , is the dominant source of indirect noise. For other
conditions, however, the heat-capacity factor, ℵ̄, has the same order of magnitude
as Ψ̄ .

The condition considered at the nozzle’s inlet is that of a mean-flow composition of
Z̄ = 0.02, which corresponds to a lean equivalence ratio of 0.358 and Z̄/(Z̄ + Zst)=
0.27. At this condition, T̄ = 1306.4 K, γ̄ = 1.3 and c̄p = 1288.8 J (kg−1 K−1). The
nozzle is supersonic and shock-free, with linear-velocity profile (Marble & Candel
1977). The Mach numbers are M̄a = 0.29, at the inlet, and M̄b = 1.5, at the outlet.
The flow becomes sonic at η = 0.64. The stagnation pressure is p̄0 = 1.06 × 105 Pa.
The strengths of the acoustic sources are Ψ̄ = −8.4 and ℵ̄ = −1.1. The ratio at
the inlet between the strength of entropy and compositional fluctuations in (2.14) is
c̄−1

p /(Ψ̄ + ℵ̄+ Φ̄a)=−8.1× 10−5 kg K J−1. Interestingly, Ψ̄ + ℵ̄ has opposite sign of
an entropy fluctuation, s′/c̄p, generated by a hot spot of fluid.
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FIGURE 3. Thermodynamic properties necessary to characterize the acoustic sources Ψ̄
and ℵ̄ in (2.8), and Φ̄ in (2.11).
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FIGURE 4. Strength of the acoustic source, (a, left axis) Ψ̄ ; (a, right axis) ℵ̄; (b, left
axis) Φ̄. The first component of F in (3.4) is shown on the right axis of (b). The flow
becomes sonic at η= 0.64.

Figure 4(b) shows the strength of the acoustic source, Φ̄, against the nozzle
coordinate, and the first component of F in (3.4), which has been neglected in § 4.
Such a term can be ignored because its contribution averages out to a small number
across the nozzle. The second component of F is ∼O(10−2), hence, it is neglected.

In figure 5, the transfer functions of compositional perturbations in a supersonic
nozzle are shown. These are obtained with a second-order expansion of the propagator,
which is performed at each point of a uniform spatial grid. The asymptotic solution
matches the finite-difference solution of the boundary-value problem to a relative
tolerance ∼O(10−5) (result not shown). Gain/phase are depicted on the left/right
axes. Panels (a,b) show the outgoing acoustics waves, π±b , which contribute to noise
pollution. The finite spatial extent of the nozzle appreciably affects the transfer
functions, whose gain monotonically and nonlinearly decreases with the Helmholtz
number. The order of magnitude of the gain, however, remains unaltered. The phase
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FIGURE 5. Transfer functions of compositional perturbations in a supersonic nozzle with
linear-velocity profile. M̄a = 0.29 and M̄b = 1.5. Gain/phase on the left/right axes.

has an almost-linear behaviour, as expected in a linear-velocity nozzle. Panel (c)
shows the upstream-travelling acoustic wave, π−a , which is a quantity useful for
thermoacoustic stability analysis. Physically, the nozzle behaves similarly to a low-pass
filter: higher Helmholtz numbers damp out the upstream-travelling acoustic wave.

5.3. Discussion
First, the theoretical analysis, mathematical solutions and results presented may be
useful to guide more experimental investigation and high-fidelity simulations to
quantify compositional indirect noise. Second, the turbulent dissipation and dispersion
of compositional blobs versus temperature inhomogeneities need to be quantified, for
example, by estimating the effective diffusivity coefficient (e.g. Wassmer et al. 2017).
Third, an aspect to consider in experiments and real gas turbines is that compositional
blobs cannot permeate non-porous walls, whereas temperature inhomogeneities can
dissipate through non-adiabatic boundaries.

6. Conclusions

By observing that the gas exiting a combustion chamber of an aero-engine
does not have homogeneous composition and specific heat capacities, an unsteady
multicomponent gas acoustic model is proposed. It is shown that compositional
inhomogeneities, named also ‘compositional blobs’, may generate noise through
entropic and isentropic excess-density mechanisms. By showing that the acoustic,
entropic and compositional linear modes evolve independently in homogeneous
media, the hyperbolic partial differential equations are cast in invariant form. The
multicomponent acoustic problem is mathematically solved by an asymptotic series
with an infinite radius of convergence. The proposed acoustic model and solution
are able to predict the indirect noise generated by entropy spots and compositional
blobs accelerated through subsonic and supersonic nozzles with a 4 × 4 (or 2 × 2)
physics-based low-order model. This is applied to an inhomogeneous methane–air
mixture entering a supersonic nozzle with linear-velocity profile. It is found that (i)
at lean conditions, the chemical-potential function is the dominant acoustic source,
of order ∼O(10); (ii) at lean-to-rich conditions, the chemical-potential function and
the heat-capacity factor have the same order of magnitude, being ∼O(1); (iii) the
compositional noise emitted by the nozzle contributes to indirect noise, whose order
of magnitude is not sensitive to the Helmholtz number; and (iv) the acceleration of
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a compositional blob generates an upstream-travelling wave, which is sensitive to the
Helmholtz number and appreciable in compact nozzles.

The proposed analysis opens up new possibilities for separating and quantifying the
sources of indirect combustion noise in aeronautical gas turbines.
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