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Abstract : Random Boolean networks (RBM) were introduced about 35 years ago as first crude models
of genetic regulatory networks. RBNs are comprised of N on–off genes, connected by a randomly

assigned regulatory wiring diagram where each gene has K inputs, and each gene is controlled by
a randomly assigned Boolean function. This procedure samples at random from the ensemble of all
possible NK Boolean networks. The central ideas are to study the typical, or generic properties of this
ensemble, and see 1) whether characteristic differences appear as K and biases in Boolean functions are

introducted, and 2) whether a subclass of this ensemble has properties matching real cells.
Such networks behave in an ordered or a chaotic regime, with a phase transition, ‘the edge of chaos’

beween the two regimes. Networks with continuous variables exhibit the same two regimes. Substantial

evidence suggests that real cells are in the ordered regime. A key concept is that of an attractor. This is
a reentrant trajectory of states of the network, called a state cycle. The central biological interpretation
is that cell types are attractors. A number of properties differentiate the ordered and chaotic regimes.

These include the size and number of attractors, the existence in the ordered regime of a percolating
‘sea’ of genes frozen in the on or off state, with a remainder of isolated twinkling islands of genes,
a power law distribution of avalanches of gene activity changes following perturbation to a single gene

in the ordered regime versus a similar power law distribution plus a spike of enormous avalanches of
gene changes in the chaotic regime, and the existence of branching pathway of ‘differentiation’ between
attractors induced by perturbations in the ordered regime.
Noise is serious issue, since noise disrupts attractors. But numerical evidence suggests that attractors

can be made very stable to noise, and meanwhile, metaplasias may be a biological manifestation of
noise. As we learn more about the wiring diagram and constraints on rules controlling real genes, we
can build refined ensembles reflecting these properties, study the generic properties of the refined

ensembles, and hope to gain insight into the dynamics of real cells.
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Introduction

We are just entering the post-genomic era. The genome

project has given us a list of the molecular players at the DNA

level. Now we enter upon the daunting task of understanding

the integrated dynamical behaviour of the network of genes,

transcription factor networks, RNA processing and trans-

lational control, and cell signalling cascades among about

40 000 genes and their products. It is fair to say that science

has never previously undertaken such a complex task. Con-

sider classical statistical mechanics: one has a volume of gas.

All the particles obey the same Newtonian laws. The 19th

century triumph of statistical mechanics deeply involved the

identity of the laws governing all the particles. But in cells,

the dynamical ‘ laws’ or rules, governing the different

components of the integrated system differ. We confront a

dynamical system the intricacies of which have evolved over

more than 3 billion years.

I shall describe and criticize one early approach to under-

standing such systems, random Boolean networks (RBNs),

which I invented almost 35 years ago (Kauffman 1969, 1971,

1974, 1984, 1986, 1993). Such networks were the first to begin

to yield potential insights into just the integrated behaviours

mentioned above. Work on random Boolean networks is now

widespread (Derrida & Pommeau 1986; Derrida & Stauffer

1986; Derrida & Weisbuch 1986; Weisbuch & Stauffer 1987;

De Arcangelis & Coniglio 1988; Bastolla & Parisi 1996;

Battacharjya & Liang 1996a, b; Socolar & Kauffman 2003)

and has been extended to scale-free networks (Serra et al.

2003), networks with more than two states per node (Sole

et al. 2000), networks with piecewise linear dynamical laws

(Glass & Hill 1998; Hill et al. 1999) and networks with noise

(De Arcangelis & Coniglio 1988). See Aldana et al. (2002) for

a broad review. I will discuss primarily the classical results

on random Boolean networks. No one expects real genetic

networks to be random. The issues are whether the major
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insights gained from the study of RBNs carry over to real

genomic systems. It is too early to tell. And it is likely that

some aspects will carry over, while others will not. Meanwhile

the ‘ensemble approach’, which consists in sampling random

networks from an ensemble of networks built according

to whatever constraints we know characterize real genomic

systems then analysing the typical, or generic, properties of

ensemble members, remains one useful approach to making

use of the information we are gathering on real systems to

understand their large-scale dynamical and network connec-

tivity implications.

Random Boolean networks

A random Boolean network is a system of N on–off nodes,

each representing a gene that can be active or inactive. One

global parameter that can be varied is K, the number of

regulatory inputs to each gene. K can be constant across all

genes, or can be distributed, for example to create a scale-free

input distribution. Classically, K is held constant for all N

genes. In the simplest case, each gene is assigned at random

K inputs from among the N genes, and assigned at random

one of the possible Boolean functions of K inputs. These

random assignments are then fixed, so that one has sampled

at random from the ensemble of all NK networks, with the

given values of N and K.

A state of the network is given by the current activities, on

or off (1 or 0) of all the N genes. Hence the state space of the

network is 2N. This means that, for the human genome,

the possible combinations of gene activities is 240 000. This is

about 1012 000, a hyperastronomical number. In comparison,

the known universe has an estimated 1080 particles. The first

implication is that real cells must be confined in their dy-

namical behaviours in this state space to tiny subvolumes.

Then a salient question becomes: are there classes of net-

works that naturally confine dynamical behaviour to such

tiny subvolumes. The answer is ‘yes ’.

Again in the simplest case, time comes in synchronous

discrete moments. At each clocked moment, each gene evalu-

ates the activities of its K inputs, consults its Boolean rule,

and goes to the activity specified by that Boolean function.

Thus, the network, at each clocked moment, passes from

Fig. 1. A graphical depiction of the complete state-space of a sample Boolean net of six genes and K=3, assigned at random. There are three

basins of attraction, with attractor periods of 1 (fixed point), 2 and 5. The 26=64 states of the six genes are shown within 3r2 rectangles,

where active genes are coloured, inactive genes are white. Flows proceed inwards, and then clockwise around attractor cycles. The actual

circuitry (wiring) between the six genes (numbered 0 to 5) is shown on the far right, where self-links are short stubs, and in the table on the

left, which also shows the logic functions (rules) for each gene, according to Wolfram’s convention (Wolfram 1983). The computations and

graphics were made with DDLab.
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a state of the network to a state of the network. Over time,

this typically gives rise to a trajectory in state space. Since

the state space is finite, the system must eventually re-enter a

state previously encountered. Thereafter, since the system is

deterministic, it must persistently traverse a cycle of states,

called a state cycle attractor. The number of states on the

cycle can range from 1 to 2N. If released from a different

initial state, the system may flow to the first state cycle, or to a

distinct state cycle. In general, the state space is partitioned

into distinct subsets of states, each subset consists in the basin

of attraction of states that either lie on trajectories flowing

to a single state cycle or comprise the state cycle itself (see

Fig. 1).

Ordered and chaotic regimes

Almost 35 years of research have confirmed that such net-

works behave in two broad regimes, as a function of K, and

biases in the Boolean functions utilized in the network. First,

and presumably of deep importance biologically, there is an

ordered regime, described shortly. Secondly, there is a chaotic

regime, which seems biologically implausible for a variety

of reasons discussed below. A phase transition, sometimes

dubbed the ‘edge of chaos’ separates the two regimes.

Importantly, the same phase transition between ordered and

chaotic regimes has been verified in piecewise linear models as

well (Glass & Hill 1998; Hill et al. 1999). Thus it seems likely

that a vast class of nonlinear dynamical systems all can exist

in the ordered regime. My contention is that evolution has

made use of this ubiquitous property of integrated dynamical

systems to build cells and organisms that rely deeply on the

properties of the ordered regime.

A variety of features separate and characterize the ordered

and the chaotic regimes. Consider a conceptual movie. Start

a network at a random initial state. Over time, if a gene is

turning on and off, colour it green. If the gene becomes frozen

in the on or in the off state, colour it red. In the ordered

regime, at first all genes are green, then an increasing fraction

of the genes become red, until a percolating connected red

‘sea’ spans the network leaving behind green islands of

twinkling genes. The size of the red frozen component scales

with the size of the network, N.

In the chaotic regime, the same movie reveals a percolating

connected green sea of genes that persistently twinkle on and

off, and leave behind isolated red frozen islands. The phase

transition occurs, as parameters such as K and biases on

Boolean rules are tuned, just as the green sea is breaking up

into green islands. A conjecture is that the most complex

coordinated behaviours can occur just on the ordered side

of this phase transition, hence cells or perhaps tissues evolve

to the ordered side of the edge of chaos.

Derrida plots

A second way to visualize this phase transition makes use

of what I call ‘Derrida plots ’, so named after B. Derrida

who introduced them and provided the first theorem showing

the existence of the ordered versus chaotic regimes (Derrida

& Pommeau 1986). In effect, a Derrida plot is a discrete

analogue of a Lyapunov exponent. Consider two initial

states, say (000) and (001) for an N=3 network. The

Hamming distance between the two states is 1, the number of

bits by which the two differ. Dividing by N, the normalized

Hamming distance is 1/3. Let each state evolve, via the

network, into its successor, say (000)p(100), while (001)p
(010). The Hamming distance between the two successor

states is 2, and the normalized distance is 2/3. Call the initial

distance DT, and the distance between the successor states

DT+1. A Derrida plot, Fig. 2, plots DT on the X-axis from

0.0 to 1.0, and DT+1 on the Y-axis. The pair of initial

and successor states given above correspond to a point at

DT=1/3, DT+1=2/3.

The main diagonal, running from the origin to DT=
DT+1=1.0, identifies those pairs of states whose successors

are the same distance apart as the initial pair of states. Along

this line, there is no divergence or convergence of flow in state

space over a single time step.

In the ordered regime, as shown in Fig. 2, if one plots

the mean position of points for each choice of DT from 0.0

to 1.0, one obtains a line that is below the main diagonal

everywhere. At the phase transition, the initial slope of the

line is 1.0, thus it is tangential to the main diagonal and then

curves below it as DT increases. This means that, on average,

states lie on trajectories that are converging in state space. In

the chaotic regime, the Derrida curve passes above the main

diagonal from small DT, implying that nearby initial states

Fig. 2. Recurrence relation showing the expected distance

DT+1 between two states at time T+1 after each is acted upon

by the network at time T, as a function of the distance DT between

the two states at time T. Distance is normalized to the fraction

of elements in different activity values in the two states being

compared. For K=2, the recurrence curve is below the 45x line, and

hence the distance between arbitrary initial states decreases toward

zero over iterations. For K>2, states that are initially very close

diverge to an asymptotic distance given by the crossing of the

corresponding K curve at the 45x line. Thus K>2 networks exhibit

sensitivity to initial conditions and chaos, not order. Based on the

annealed approximation (Kauffman 1993).
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diverge apart in the flow in state space. This is parallels the

sensitivity to initial conditions in low-dimensional chaos in

continuous dynamical systems.

Numerical evidence, but no theorems yet, show that the

two criteria, breakup of the green twinkling sea into islands,

and tangency of the Derrida plot, coincide.

The character of state cycle attractors differ dramatically

in the ordered and chaotic regimes. It has turned out that

K=2 networks with a random choice of the 16 possible

Boolean functions lie exactly on the phase transition, and

have state cycles for which the median length scales as N1/2

(Kauffman 1969, 1971, 1974, 1984, 1986, 1993; Bastolla &

Parisi 1996). Thus a network of 100 000 genes, and 2100 000

power states, or 1030 000 states, would flow to an attractor with

a tiny 318 states. This is an astonishing order. The system,

to misuse an analogy, plunges into a tiny black hole of an

attractor in state space.

Cell types as attractors

This brings me to the central interpretation that I have made

of RBNs, and other nonlinear dynamical models of linked

gene activities in some complex network: I interpret a cell

type as an attractor of the RBN or other dynamical system.

This is an important, and not proven, step. On the one

hand, we believe that real cell types are confined patterns of

gene activity. Hence it is utterly natural to identify cell types

as attractors. On the other hand, real genetic circuits are

subject to molecular noise, hence the precise closure of a

state cycle is problematic (Aldana et al. 2002). I will discuss

the implications of noise below. It leads us to consider

whether cell types can be attractors, how stable they are to

molecular fluctuations, what the biological implications of

noise may be, and if a cell type is not an attractor, what

might it be?

If cell types are attractors, and multicelled organisms

typically have multiple cell types, then RBNs and their

cousins better have more than one attractor. For a long

time it was thought, based on my own initial results, that

the number of attractors in K=2 networks scaled as N1/2.

This allowed a prediction of the number of cell types in an

organism as a function of the number of genes it had. And

in fact, the number of cell types does appear to scale as

a square root function of the total DNA per cell (Fig. 3).

This happy result now appears to be incorrect. Recent work

has shown that random sampling of initial states under-

samples small basins of attraction, and hence undercounts

the total number of attractors in K=2 RBN. It now ap-

pears that the number of attractors in such networks in-

creases somewhat faster than linearly (Socolar & Kauffman

2003). Meanwhile, the number of genes in cells is not

known to be linearly proportional to the DNA per cell due

to ‘ junk’ DNA.

By tuning the number of inputs, K, and biases on Boolean

functions, as described below, it is possible to tune net-

works to lie at different positions in the ordered or chaotic

regimes. Thus, tuning K higher than 2 moves networks into

the chaotic regime (Fig. 2). Networks with K=1 lie deeper

in the ordered regime than K=2 nets. Biasing Boolean

functions can drive networks with K>2 inputs into the

ordered regime. Deeper in the ordered regime, the number

of attractors increases more slowly, although good scaling

laws are not yet available. This means that the RBN model

probably can be tuned to curve fit the observed distribution

of cell types as a function of the number of genes. Such

curve fitting would not be entirely pointless, for the resulting

networks would make a number of further testable predic-

tions concerning network structure and behaviour described

shortly.

One of the class of predictions that can be made using

RBN, or any other dynamical model of the integrated

genome, is the size distribution of avalanches of gene ac-

tivity changes following perturbation to the activity of

randomly chosen genes. We define a gene as ‘damaged’ if

its behaviour, following a perturbation to the activity of

some gene, is ever different from what it would have been

without the perturbation. This allows a definition of the

size of a damage avalanche, following such a perturbation.

In turn this allows a study of the size distribution of ava-

lanches, which turns out to be a power-law distribution

with many small avalanches and few large ones in the or-

dered regime. It appears that there is a finite size effect

such that the largest avalanche scales as something like the

square root of the number of genes (Harris et al. 2003).

Thus, for a system with a human-size genome of about

40 000 genes, the largest avalanches should be of the order

of several hundred to a thousand or so. This is biologically

plausible. In contrast, in the chaotic regime, the distri-

bution of avalanches shows both a power-law distribution

Fig. 3. Logarithm of the number of cell types in organisms across

many phyla plotted against the logarithm of the DNA content per

cell. The plot is linear with a slope of 0.5, indicating a power-law

relation in which the number of cell types increases as the square

root of the amount of DNA per cell. If the total number of

structural and regulatory genes is assumed to be proportional to

the DNA content, then the number of cell types increases as a

square-root function of the number of genes. The number of

attractors refers to predictions of numbers of model cell types in

model genomic regulatory systems having K=2 inputs per gene.
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of modest size avalanches, and a vast spike of huge ava-

lanches were up to 40–50% of the genes change activities.

This would imply that modifying the activity of a single

gene transiently could trigger alterations in the activities of

about 15 000–20 000 other genes. This seems biologically

implausible. Meanwhile, such huge avalanches are another

signature of sensitivity to initial conditions in the chaotic

regime.

Cell differentiation, in any dynamical model that treats

attractors as cell types, can consist in at least two kinds of

perturbations. In the first, a perturbation moves the system

from one attractor to a new basin of attraction from which

the system flows to a new attractor. In the second, a pertur-

bation, perhaps arriving from a neighbouring cell, transiently

changes the basin of attraction portrait such that the state

that the system is on in one cell type in the absence of the

Fig. 4. (a) A matrix listing the 30 state cycles of one network and the total number of times one unit of perturbation, transient reversal of the

current activity of a single gene at a single state of state cycle, shifted the network for each cycle to each cycle. The system generally returns

to the cycle perturbed and hence exhibits homeostasis. Division of the value in each cell of the matrix by the total of its row yields the matrix

of transition probabilities between state cycle modes of behaviour under the drive of occasional random perturbations and constitutes a

Markov chain. The transition probabilities between two cycles are often asymmetric. (b) Transitions between cycles shown in (a). The solid

arrows are the most probable transition to a cycle other than that perturbed; the dashed arrows are the second most probable. The

remaining transitions are not shown. Cycles 2, 7, 5 and 15 form an ergodic set into which the remaining cycles flow. If all transitions between

cycles are included, the ergodic set becomes 1, 2, 3, 5, 6, 12, 13, 15. The remainder are transient cycles leading into this single ergodic set.

Under the drive of occasional reversal of the activity of any single gene, cell types within the ergodic set can reach one another but cannot

reach cell types not in the set (Kauffman 1993).
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perturbation becomes a member of a new basin of attraction

and flows to the new attractor.

Considerable numerical evidence has been studied for the

first kind of perturbation in the ordered regime. The typical

results are as follows: for most transient reversals of activity

of single genes on a state cycle attractor, the system returns

to the same state cycle. Thus, cell types show homeostasis

to most perturbations as a prediction of the model. For

a relatively few perturbations, each state cycle can flow to a

few other state cycles. Thus one can achieve differentiation by

appropriate perturbations. An important feature of RBNs

is that each state cycle can flow to only a few ‘neighbouring’

state cycles, and from them to some other state cycles (Fig. 4).

A directed graph can be drawn showing such flow. It implies

something deep: an initial cell type must flow down branch-

ing pathways of differentiation to reach a large number of

ultimate cell types. But embryogenesis of all metazoans and

metaphytons shows exactly such branching pathways of

differentiation from the zygote. This raises a deep issue: do

organisms follow branching pathways of differentiation be-

cause of natural selection, or is this feature of ontogeny so

deeply embedded in the self-organized properties of complex

gene networks in the ordered regime that evolution is con-

strained to show this feature? In turn this raises the deep

question of whether all the order in organisms is due to

natural selection alone, or is it some mixture of natural

selection and self-organization. I believe the latter is true, and

this requires a revamping of evolutionary theory to include

two source of order in organisms, self-organization and

selection.

An interesting developmental abnormality, called meta-

plasia, exhibits the same restricted pathways of aberrant

differentiation. Metaplasias are cases where one normal cell

type appears in an abnormal location. For example, stomach

cells may appear in the esophagus. Fig. 5 summarizes in

a directed graph the transformations that occur in humans.

An arrow from tissue A to B means that tissue B can meta-

statically appear in tissue A. Note that each tissue type can

transform to only a few other tissue types. Note also that

these transformations are not the normal ones of ontogeny.

This suggests that the property of having only a few neigh-

bouring tissue types accessible from any one tissue is a deep

property of genetic regulatory networks. It seems highly

unlikely that natural selection has directly selected for these

restricted pathways of metaplasia. Thus either this feature

reflects a deep self-organized property of genetic networks,

as I hope, or is a side product of selection for some other

features of ontogeny.

One plausible picture of ontogeny views different cell types

as being characterized by alternative choices of combinations

of master genes, in a kind of combinatorial epigenetic

code. It is not clear that this hypothesis is correct. Neverthe-

less, it is interesting that RBN and their continuous cousins,

have just the necessary feature to support such combinatorial

codes. As noted above, in the ordered regime, a red frozen

sea leaves behind isolated green twinkling islands. These are

functionally cut off from one another by the red frozen

component. Each island is a sub-circuit of the genomic system

that has its own alternative attractors. Thus, any state cycle

of the entire network is a combinatorial choice of that for

one of the attractors of each green island. Thus, the ordered

regime predicts that cell types, if they are attractors, are

characterized by a combinatorial code of some kind.

Eukaryotic genes appear to be governed
by a biased Boolean rule

I mentioned above biases on Boolean functions that can drive

the system into the ordered regime in K>2 networks. In

particular, consider the Boolean OR function of two inputs,

A and B, regulating C. The OR functions says C will be active

the next moment if A is active now, if B is active now, or if

both are active now. Note that if A is active, then C is active

at the next moment regardless of the activity of B. I call a

Boolean function where at least one input has at least one

value which alone can determine the next activity of the

regulated locus a ‘canalysing’ Boolean function. OR is a

canalysing Boolean function and both A and B are canalysing

inputs, since either alone, by being active, can assure that

C is active at the next moment. Good numerical evidence

demonstrates that, for K>2, networks can be driven from

the chaotic to the ordered regime by increasing the fraction

of genes that are regulated by canalysing functions with

enough canalysing inputs.

Fig. 5. Graph of homeotic transformations in humans in the

epithelial lining of the digestive, urinary and female reproductive

systems. An arrow from tissue A to tissue B means that patches of

B epithelium can be found in the epithelium of A. Thick arrows

denote relatively common events, and thin arrows denote very rare

ones. Only the epithelial component of each organ is transformed

(Kauffman 1993).
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A second bias is called P or lambda (Weisbuch & Stauffer

1987). Consider again the OR function of two inputs. Three

of the four input combinations are associated with C being

active. P is the fraction of the 2K combinations of input

values, for which the dominant output occurs. Thus, 1 is

dominant in the OR function, as three of the four cases yield

activation of C. P is thus 0.75 for the OR function. For the

AND function, P is also 0.75 because three of the four input

combinations have 0 as the output. P varies between 0.5 and

1.0. Analytic results show that as K increases above 2, raising

P to a critical level leaves the network at the order–chaos

phase transition. Further increases leave the network in the

ordered regime.

It now appears that real eukaryotic genes are governed

far more than at chance levels by canalysing functions

(Harris et al. 2003). This analysis was carried out for over

150 regulated genes in eukaryotes with K=3, 4, 5, and higher

numbers of known regulatory inputs. The bias towards

canalysing functions is striking, Figs 6(a)–(c), and strongly

statistically significant. Genes also show a bias towards high

P values. However, an analysis of residual bias towards

high canalization after accounting for P, and vice versa,

shows that real genes are regulated by canalysing functions

tables 1–3. Caveats to this work concern the binarization

of continuous data in the papers examined, and that genes

regulated by canalysing functions may have phenotypic ef-

fects more commonly than genes regulated by non-canalysing

functions.

RBN with K=3, 4, 5 inputs and random choices of

Boolean functions would be in the chaotic regime. In con-

trast, when we made RBN with the observed distribution

of canalysing inputs for K=3, 4 and 5 inputs, we found, by

a Derrida curve analysis, that the networks were modestly

in the ordered regime (see Figs 7a–c). This is evidence that

cells are in the ordered regime.

Critique

More can be said about RBN but it is now time to sum-

marize, criticize and try to imagine how to make further

progress. The approach I have taken over the years is an

ensemble approach. It is a common approach in statistical

physics, for example with spin glasses (Anderson 1985). One

constructs members at random from an ensemble of systems

and characterizes the generic, typical properties of the sys-

tems. The strengths of the ensemble approach are clear.

One can derive general features of the integrated behaviour

of members of the ensemble that are otherwise not attain-

able. On the other hand, the approach is statistical. No one

can get from an ensemble approach to the statement that

gene A regulates gene C in the frog. Thus, an ensemble

approach cannot characterize the actual network in real

cells. At issue is whether one can refine the ensemble by

finding out more about real genetic networks, to the point

where some or many of the generic properties of ensemble

members characterize real cells. My own biased answer is a

reserved ‘yes’. There appear to be enough parallels between

RBN and their continuous variable homologues to suggest

that the ordered regime is readily attainable and exhibits

properties likely to have been utilized by natural selection in

crafting evolved genetic regulatory systems. On the other

hand, my enthusiasm is muted by the realization that 3.8

billion years of crafting can have made networks that are

highly atypical of the ensembles one would generate given

a set of descriptors of such networks. Only time and further

research will tell.

And what of noise? Real genetic systems have relatively

few copies of each kind of regulatory molecule per cell

(McAdams & Arkin 1999). Hence fluctuations are funda-

mental to the behaviour of real genetic circuits. For example.

S. Leibler (2003) has published results on an experimental

‘repressilator ’, in which three genes repress one another

around a cycle of connections. The oscillations of this system

are noisy. Noise strikes at the core of the concept that cell

types are attractors. In the absence of noise, RBN and

deterministic nonlinear dynamical systems typically have

attractors and basins of attraction. As noted above, the

hypothesis that cell types are attractors is very natural and

plausible. But in the presence of noise this pristine picture

becomes clouded. For example, for RBN, if one introduced

Fig. 6. The upward trending lines are the data, the downward lines

represent the distributions of canalysing function from random

Boolean functions of K variables.
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a noise term in which each gene disobeys its Boolean rule

with probability P, and obeys it with probability 1xP, then

for very small P, one will obtain a Markov chain in which

the system jumps occasionally between attractors (De

Arcangelis & Coniglio 1988). In this picture, a possible gen-

eralization of the concept of an attractor is a set of attractors

that can be entered in the Markov process, but cannot be

exited (I. Shmulevitch, personal communication). The ease of

selecting for such ergodic sets is unclear at this point.

But even granted that, if the noise level is high enough, the

concept of an attractor stops having much meaning. At low

and intermediate levels of noise the system fluctuates in

the vicinity of one attractor, and then undergoes transitions

to other attractors. At P=0.5 the system wanders randomly

in its vast state space.

The existence of noise may not be fatal to the concept that

cell types are attractors or noisy attractors with fluctuations.

Zhu and colleagues (Zhu et al. 2003) have recently analysed

the noisy C1–Cro circuit in bacteriophage lambda where

each gene represses the other, and shown that that the two

steady states, C1 on Cro off, and C1 off Cro on, can be made

very stable. For example, they found that with plausible

parameter conditions, each state could be stable for a million

cell divisions, and have informed me that it is easy to make

them stable for a billion cell divisions. Nevertheless, once in

a million or billion cell divisions, the cell jumps to the other

attractor. Is this biologically reasonable? The answer is cur-

rently unclear. Metaplasias, described above, certainly occur.

They may be examples of just such noisy transitions. And if

one in a million liver cells is a spleen cell, we would have a

very hard time finding it. But one is uncomfortable with such

a hard to test hypothesis.

On the other hand, it is hard to visualize what besides a

noisy attractor a cell type might be. We know that cell types

are confined patterns of gene expression. What else might cell

types be? At this point the answer is not clear, but warrants

serious thought.

With respect to the noise issue, it has been argued that

the existence of specific regulatory motifs now being found

may function to reduce sensitivity to noise. This raises the

terribly difficult issue that real genetic networks are almost

certainly non-random in connectivity. For example, in the

yeast transcription network, 10 of 106 transcription factors

regulate themselves (Lee et al. 2002). The mean connectivity

among the 106 transcription factors, forming a transcription

factor network that drives the system is K=1. There appear

to be about 103 connections among the 106 transcription

factors. Thus, one would not expect 10 self-inputs by chance

in a random network. The problem is difficult because, at

present, we have only three classes of ‘wiring diagrams’ well

enough defined to study, and none is likely to characterize

real genetic nets. We have random nets, scale-free nets and

lattices.

It may be that the way forward is to construct networks

rich in the kinds of motifs being discovered (Lee et al. 2002),

tune their relative abundances, fitting overall gene input and

output distributions, and study the behaviour of the resulting

networks with Boolean, continuous deterministic differential

equation, stochastic differential equation andmaster equation

approaches to try to uncover what general wiring diagram

rules, such as redundancy, reduce noise and preserve dy-

namics in the ordered regime.

Summary

Random Boolean networks are of interest as models of dis-

ordered dynamical systems and as first crude models of real

genomic networks. The existence of the ordered and chaotic

regimes appears to be a robust property of RBN and their

continuous cousins. Convergent flow in the ordered regime,

like error-correcting codes, is a way to cope with the inherent

noise in cellular molecular networks. The extent to which

this can be successful, and whether occasional metaplastic

transformations are inherent in multicelled organisms re-

main to be seen. The hypothesis that cell types are attractors

is natural and plausible, but not free from difficulties nor

demonstrated experimentally. Finally, I would note that the

predictions of the RBN models, the scale-free cousins and

the continuous variable cousins, are now largely testable

using gene chip arrays to establish whether cell types are

Fig. 7. Comparison Derrida plots using random rules versus rules based on the fraction canalysing rules (f.c.) that were derived from the

data for K=3, 4 and 5 networks (A, B, C).
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attractors homeotstatically stable to most perturbations, the

size distribution of avalanches, the constrained transitions

between constrained patterns of gene activity called cell types

and the other predictions discussed above.
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