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Global stability analysis is used to analyse the onset of transonic buffet on infinite
swept and unswept wings. This high-Reynolds-number flow is governed by the
unsteady Reynolds averaged Navier–Stokes equations. The analysis generalizes earlier
studies focused on two-dimensional airfoils. For the unswept wing, results show
spanwise-periodic stationary modes in addition to the earlier-observed oscillatory
mode. The oscillatory mode is nominally two-dimensional with a spanwise wavelength
greater than ten wing chords. The stationary modes of instability exist over two
bands of spanwise wavelengths centred around an intermediate wavelength of one
wing chord, and around a short wavelength of one tenth of a wing chord. The
intermediate-wavelength modes have a flow structure characteristic of airfoil buffeting
modes, concentrated at the shock and in the shear layer downstream of the shock. The
short-wavelength modes are only concentrated in the shear layer downstream of the
shock. These stationary modes can lead to spanwise-periodic flow structures for the
unswept wing. For the swept wing, these stationary modes become unsteady travelling
modes and contribute to the more complex buffeting-flow structures observed on
swept wings as compared with unswept wings. The spanwise-wavelength bands of
the travelling modes translate to different frequencies, resulting in a broad-banded
unsteady response for the swept wing. For a 30◦ swept wing, the frequencies
associated with the intermediate-wavelength modes are approximately 10 times higher
than the swept-wing generalization of the long-wavelength oscillatory mode, and
approximately 6 times higher than the long-wavelength mode for the unswept wing.
These instability characteristics are in good agreement with experimental observations.

Key words: high-speed flow

1. Introduction
Transonic buffet refers to an unsteady-flow condition involving shock oscillations

that can produce large variations in sectional wing lift. These oscillations can be large
enough to drive airplane-level normal accelerations well in excess of 0.1g, where g is
the gravitational acceleration. Predicting the onset of these forced airplane oscillations
is an important part of airplane design, since these oscillations can limit the operating
envelope of an aircraft.

† Email address for correspondence: jeffrey.d.crouch@boeing.com

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

74
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0003-2375-8781
mailto:jeffrey.d.crouch@boeing.com
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2019.748&domain=pdf
https://doi.org/10.1017/jfm.2019.748


4 J. D. Crouch, A. Garbaruk and M. Strelets

Early experiments aimed at understanding buffet onset were focused on two-
dimensional (2-D) airfoils, e.g. McDevitt & Okuno (1985), Benoit & Legrain (1987),
Bartels & Edwards (1997), Jacquin et al. (2009). For a given Mach number, as the
angle of attack is increased the shock intensifies and moves aft over the airfoil. At
large angles of attack, the boundary layer begins to separate at the foot of the shock.
The region of separated flow increases with further increase in the angle of attack
until it extends from the foot of the shock to the trailing edge. At some stage in this
process, the flow begins to show global unsteadiness characterized by an oscillation
of the shock synchronized with an oscillation of the separated shear layer. This
nominally 2-D oscillation is typically dominated by a single frequency, or a narrow
band of frequencies with harmonics. In some cases, the flow downstream of the shock
can also exhibit three-dimensional (3-D) structures.

Airfoil buffet onset has been linked to a global flow instability associated with the
2-D base state (Crouch, Garbaruk & Magidov 2007; Crouch et al. 2009a,b; Iorio,
Gonzalez & Ferrer 2014; Sartor, Mettot & Sipp 2015). The onset of unsteadiness is
characterized by a Hopf bifurcation leading to the development of shock oscillations.
The predicted frequency and unsteady-flow structure appear to be in good agreement
with experiments. As the shock moves fore and aft, the post-shock shear layer moves
away from and toward the surface in a synchronized fashion. Simulations using
unsteady Reynolds averaged Navier–Stokes (URANS) equations (Thiery & Coustols
2006; Crouch et al. 2009a; Iovnovich & Raveh 2014; Plante et al. 2017) or detached
eddy simulations (DES) (Deck 2005) show general agreement with the experimental
observations. Some 3-D simulations of nominally 2-D (‘extruded’) airfoils also
show spanwise-varying spatial structures (or local cells) (Iovnovich & Raveh 2014;
Plante et al. 2017; Plante, Dandois & Laurendeau 2019). These structures are more
pronounced when the shock is near its upstream limit, but their overall impact on the
buffet onset is less clear.

Studies of swept-wing buffet show some distinctly different characteristics when
compared with unswept wings (Benoit & Legrain 1987; Molton et al. 2013; Iovnovich
& Raveh 2014; Dandois 2016; Ohmichi, Ishida & Hashimoto 2017; Sartor & Timme
2017; Sugioka et al. 2018). The frequency content is more broad-banded, and the
characteristic frequency can be 4–7 times larger than observed on an unswept wing.
The shock oscillations also appear to propagate spanwise, which indicates that it is
dominated by a 3-D structure. For a finite-span swept wing, the spanwise variations
in the flow field result in a more localized region of unsteady onset as compared with
the nominally 2-D, or infinite swept, wing. The finite-span swept wing has recently
been analysed using global stability analysis with a fully 3-D eigenmode (Timme
2018, 2019). These results show an unstable mode of limited spanwise extent, which
propagates outboard similar to experimental observations, but at a single frequency
analogous to the airfoil global instability. Some of the characteristics distinguishing
buffet of the unswept and swept wing, of infinite or finite span, are further discussed
in the review of Giannelis, Vio & Levinski (2017).

In this paper, we investigate the buffet onset for swept wings using a global
instability analysis, with specific attention to the potential role of spanwise-varying
flow structures. The underlying flow is uniform in the spanwise direction (i.e. infinite
swept wing), roughly analogous to a streamwise cut through a finite-span wing. The
results are primarily focused on the extruded ONERA OAT15A airfoil section with
blunt trailing edge. This supercritical profile has been used in several previous studies,
including: airfoil experiments (Jacquin et al. 2009), swept-wing experiments (Molton
et al. 2013; Dandois 2016), numerical simulations (Deck 2005; Thiery & Coustols
2006; Plante et al. 2017) and stability analyses (Crouch et al. 2009b; Sartor et al.
2015). Some limited results will be discussed for the RA16SC1 airfoil section in
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FIGURE 1. Schematic of a section of the infinite swept wing.

order to highlight instability characteristics that are more airfoil dependent. Results
from numerical simulations, based on the URANS equations, are also provided to
assess and support the findings from the stability analysis.

2. Formulation and analysis
The analysis considers compressible unsteady flow at relatively high Reynolds

numbers where the boundary layer is turbulent. However, the time scales associated
with buffet are typically much larger than the characteristic eddy time scales of the
boundary layer. This permits the application of the URANS equations to govern
the flow. A detailed discussion about the suitability of the URANS equations for
this flow is given in Crouch et al. (2009a). Closure for the Reynolds stresses is
provided using the Spalart–Allmaras turbulence model (Spalart & Allmaras 1994)
with compressibility corrections (Spalart 2000). This leads to a set of six equations:
continuity, streamwise, spanwise and transverse momentum, energy and eddy viscosity.
These equations can be written in terms of the primitive variables in the following
homogeneous vector form,

∂

∂t
M[q] +Q[q] +N[q, q] = 0, (2.1)

with q = {ρ, u, v,w, T, ν̃}, where M and Q are linear operators, and N contains all
nonlinear terms, ρ is the density, T is the temperature, u, v, w are velocities in the
x, y, z directions, respectively, and ν̃ is the modified eddy viscosity. The coordinate
system is aligned to the wing leading edge, with z pointing outboard, as shown in
figure 1. The boundary conditions on the wing surface are given by

u= v =w= 0,
∂ρ

∂n
=
∂T
∂n
= 0,

ν̃ = 0,

 (2.2)

where ∂/∂n is a derivative normal to the surface.
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6 J. D. Crouch, A. Garbaruk and M. Strelets

The far-field conditions involve the primitive variables and the Riemann invariants,
and are given by

I1 = Vn +
2a

(γ − 1)
= kxu+ kyv +

2
(γ − 1)

√
γRT,

I2 = Vn −
2a

(γ − 1)
= kxu+ kyv −

2
(γ − 1)

√
γRT,

I3 = Vτ = kyu− kxv, I4 =w, I5 =
RT
ργ−1

,


(2.3)

where kx and ky are the local directional cosines in the boundary normal. These
conditions are imposed on the subsonic boundaries. On the inlet boundary, the
invariants I1, I3, I4 and I5 are given and I2 is extrapolated from the interior of
the computational domain, whereas on the outlet boundary, I1, I3, I4 and I5 are
extrapolated and I2 is given.

The state vector describing the total flow field is decomposed into a steady base
flow and a perturbation vector, q = q̄ + q′. The vector q̄ is a solution of the steady
form of (2.1) – that is, with ∂ q̄/∂t≡ 0. For conditions close to the steady base flow
state, the perturbation component q′ can be considered as small relative to the vector q̄.
Substituting q= q̄+ q′ into (2.1), cancelling the terms governing q̄ and linearizing the
equations in terms of q′ yields,

∂

∂t
M[q′] +Nq̄[q′] = 0. (2.4)

The linear operator M contains the terms associated with the time derivatives from
the original equation (2.1). The linear operator Nq̄ consists of linear terms from the
original equations, and the terms generated by nonlinear interactions between q̄ and q′.

For the infinite swept wing the base flow is quasi-3-D, i.e. w̄ 6=0, but ∂ q̄/∂z≡0, and
a general perturbation to the steady-state flow q̄(x, y) can be represented by spanwise
and temporally harmonic normal modes of the form

q′(x, y, z, t)= q̂(x, y) · exp(iβz) · exp(−iωt). (2.5)

The function q̂ describes the mode shape, and ω is the frequency associated with a
prescribed spanwise wavenumber β. In general, both q̂ and ω can be complex, so the
physical solution is taken as the real part of (2.5).

Substituting (2.5) into (2.4) and rescaling the terms yields a system of equations
governing the modal perturbations

−iωq̂+ L(q̄) · q̂= 0, (2.6)

with L being a second-order linear differential operator. The quasi-3-D problem
formulation and the resulting equation (2.6) have forms similar to the 2-D problem,
which is described in detail in Crouch et al. (2007). The inclusion of the spanwise
velocity component w introduces an additional momentum equation, and some
additional terms in (2.4). The z dependence of q′ also results in additional terms
compared with the 2-D formulation. These z-dependent terms appear in the linear
operator L with β multipliers.

Equation (2.6) with linearized boundary conditions (2.2), (2.3) describes an
eigenvalue problem, which is solved numerically. The results are scaled using the
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Global instability in the onset of transonic-wing buffet 7

free-stream velocity U∞ and the wing chord c measured normal to the leading
edge. This leads to a Reynolds number of Re = U∞c/ν, where ν is the kinematic
viscosity. The angular frequency ωr can be expressed in terms of the Strouhal number
as St = f̃ c/U∞ = ωr/2π. The dimensional frequency and spanwise wavelength are
denoted by f̃ and λ̃, respectively.

The steady RANS equations are solved using the NTS code (Shur, Strelets &
Travin 2004), which is based on an implicit finite-volume formulation on a structured
multi-block overlapping grid. The third-order upwind-biased Roe scheme (Roe 1981)
is used for approximation of inviscid fluxes, while the viscous momentum and
heat fluxes are approximated with the second-order central difference scheme. The
convective terms in the eddy-viscosity transport equation of the Spalart–Allmaras
model are approximated with the first-order upwind scheme. To calculate the
steady base flow, the NTS code uses local time stepping, and is capable of
returning a steady solution for nominally unsteady-flow regimes that are close to the
unsteady-onset conditions. In this case, the local time stepping does not approximate
the unsteady equations, but rather provides an iterative procedure for obtaining a
steady solution if it exists. The equations are integrated using a large time step (large
Courant–Friedrichs–Lewy (CFL) number) to damp unsteadiness, which is enabled by
the use of an implicit scheme. Thus, no artificial dissipation is introduced into the
steady base flow solutions.

The stability equations are derived and discretized independently from the
steady-flow equations. This enables an assessment of the instability that is not overly
sensitive to the level of steady-flow convergence. Thus, in principle, the stability
analysis can be done for extreme flow conditions where the steady-flow convergence
is more challenging. However, in the current study all steady-flow solutions used
in the stability analysis are deeply converged: the maximum residual is less than
10−8. The only modification of the scheme used for the solution of the stability
equation (2.6) is that, unlike the original Roe scheme, the upwind finite-difference
approximations are linearized and are based on the sign of the cell-face normal
component of the steady velocity. In order to reduce the numerical dissipation of the
upwind differencing, we use a ‘hybrid’ scheme which is weighted between upwind
and central differencing,

∆H = αH∆3u + (1− αH)∆4c, 0 6 αH 6 1. (2.7)

The finite difference operators ∆3u and ∆4c correspond to the third-order upwind and
fourth-order centred schemes, respectively, and αH is the weighting constant. The
influence of this parameter on the calculated results is discussed in Crouch et al.
(2007). The current results are all based on a value αH = 0.2.

All computations (steady flow, unsteady flow, instability) make use of the same x–y
grid, as shown in figure 2. This is a 2-block C-type grid with approximately 85 000
cells. The grid is refined in the vicinity of the shock with a chordwise grid spacing
of 0.002c. The wall normal grid spacing ensures that the first grid point is less than
one wall unit from the surface. The grid extends to approximately 30 chord lengths
from the airfoil.

The eigenvalue problem of (2.6) is solved numerically using the implicitly restarted
Arnoldi method (Hernandez et al. 2007), which is a member of the Krylov subspace
projection methods. This yields a large number of eigenvalues, but only a small
number of these are physically meaningful. We focus on the least-stable eigenmodes
as indicators for the onset of instability and unsteadiness. A small number of modes
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FIGURE 2. Multi-block grid showing local refinement in the neighbourhood of the shock
(OAT15A).

are calculated in the neighbourhood of a prescribed frequency ω∗, where Im(ω∗) > 0.
This is done using the shift-invert spectral transformation, as implemented in the
library Petsc/Slepc (Hernandez et al. 2007), with lower–upper factorization. The
number of Arnoldi vectors is set to 128, and the solution is considered to be
converged when the error estimate is below 10−8. For the grid used in this study,
this requires about 50–100 GB memory and approximately 10 min of compute
time on 2 nodes of a cluster (2× Intel Xeon CPU E5-2697v3, 28 cores, 2.60 GHz,
64 GB memory). When necessary, physical modes can be distinguished from spurious
modes by calculating the average eigenfunction amplitude at the far-field boundary
(neglecting the wake region). The physical modes have negligibly small amplitudes
in the far field compared with the peak modal amplitude.

The global instability formulation follows the analysis of Jackson (1987) and Zebib
(1987) with an extension to compressible high-Reynolds-number flows (Crouch et al.
2007). A more general overview of global stability analysis is provided in the review
of Theofilis (2011).

3. Stability results for the unswept wing
Earlier studies show that transonic airfoils become unstable to an oscillatory mode

through a Hopf bifurcation as the angle of attack is increased at fixed Mach number.
The instability is characterized by a shock oscillation synchronized to a downstream
oscillation of the post-shock shear-layer thickness. The predicted onset of buffeting is
in good agreement with experiments based on small-aspect-ratio wings, say b/c≈ 3,
where c is the chord length and b is the span (Crouch et al. 2007, 2009a,b; Iorio
et al. 2014; Sartor et al. 2015). The predicted unsteady-flow structure is also in good
agreement with experiments, including: the spatial distribution, the phasing, and the
frequency of the unsteady fluctuations (Crouch et al. 2009b). Recent modal analysis
of buffeting flows also shows a flow structure consistent with the instability predictions
(Poplingher & Raveh 2018).

A general 3-D analysis of an infinite-span wing performed in the present study
shows two types of instability: an unsteady oscillatory mode with β ≈ 0, ωr 6= 0 and
a stationary mode with β > 0, ωr= 0. The growth rates ωi for these modes are shown
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FIGURE 3. (Colour online) Instability growth rates at M = 0.73, Re= 3× 106 as a
function of β for (a) oscillatory modes and (b) stationary modes (OAT15A).

as a function of β in figure 3 for different values of the angle of attack α. These
unstable modes are easily discernible from the cloud of non-descript stable modes,
similar to airfoil results in Crouch et al. (2007). The oscillatory mode is unstable for
small values of β, corresponding to a long spanwise wavelength (λ̃= 2πc/β) greater
than 10c. The growth rate is nearly constant for 0 6 β < 0.45, and then drops to
zero around β ≈ 0.5. The critical wavenumber (at the angle of attack for instability
onset) is near β ≈ 0.48. As the angle of attack increases, the 2-D mode with β = 0 is
dominant. The oscillatory-mode frequency at β = 0 is ωr ≈ 0.42 (St ≈ 0.07), slightly
increasing to ωr ≈ 0.46 at β = 0.5. The stationary mode occurs at larger values of β
and is characterized by spanwise wavelengths ranging from approximately 0.05c–1.5c.
This mode is unstable over a wide range of β, and displays two maximums in the
growth rate – one with intermediate wavelengths around β = 6 and another with short
wavelengths around β = 45. These modes have significantly higher growth rates and
become critical at conditions close to the oscillatory-mode critical conditions.

The observation of this spanwise-periodic stationary mode is similar to earlier
findings for separated low-Reynolds-number airfoils (Rodriguez & Theofilis 2011). In
that case, the stationary modes were viewed as a possible mechanism for the origin
of stall cells. The role of these modes was later questioned in the work of Gioria
et al. (2016), which showed them to be stable and showed an unsteady mode to
be less stable (i.e. more dominant). The stall cells were then linked to a secondary
instability associated with the unsteady flow.

In the current analysis, the short-wavelength stationary mode has a wavelength
comparable with the shear-layer thickness. This raises questions regarding a potentially
non-physical origin for this mode. There is uncertainty about the ability to represent
this mode within the RANS framework, since the instability wavelength is comparable
with length scales which are modelled within the RANS approach. However, the
intermediate-wavelength stationary mode concentrated around β = 6 has a predicted
wavelength that is substantially larger than the modelled eddies, and is not suspect
as a potential artefact of the RANS modelling.

The mode shape for the u component of the disturbance is shown in figure 4
for different values of β. For β = 0, the oscillatory mode is concentrated around a
maximum in the region of the shock with a second concentration in the downstream
shear layer that is approximately 20 times weaker than at the shock. The intermediate-
wavelength stationary mode (β = 6) has a similar shape, but the magnitude in the
shear layer is closer to half the magnitude at the shock. At a value of β = 12, the
disturbance magnitude in the shear layer is about the same as in the shock region.
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FIGURE 4. (Colour online) Magnitude of u component of instability for M=0.73, α=3.2◦
and Re = 3 × 106 with different values of β: (a) β = 0 oscillatory, (b) β = 6 stationary,
(c) β = 12 stationary, (d) β = 45 stationary (OAT15A).

Finally, for larger values of β, the disturbance is concentrated in the shear layer,
with minimal impact on the shock. This short-wavelength disturbance corresponds
to a spanwise-periodic thickening and thinning of the shear layer downstream of
the shock. This can be seen in figure 5, which shows the u component of the total
velocity, constructed by superposing the base flow with a linear finite-amplitude
β = 45 disturbance (i.e. neglecting any nonlinear mean-flow modification). The
disturbance amplitude (the maximum u′ value over U∞) is set to an extremely high
value of 30 % to make the spanwise changes to the flow more discernible. The two
images correspond to the extremes in the base flow modification and are spaced a
half-wavelength apart. Even with this large amplitude, the differences in the total flow
field are fairly modest. Table 1 summarizes the key attributes of the different modes
of instability.

The angle of attack corresponding to the onset of the instability for the various
modes as a function of Mach number is given by the stability boundary of figure 6.
This shows that the oscillatory and stationary modes go unstable at roughly the
same conditions. At the lower Mach number, the short-wavelength stationary mode
(β ≈ 45) has a critical angle of attack slightly lower than the oscillatory mode. At
higher Mach numbers, the oscillatory mode is the first to go unstable with increasing
angle of attack. The β ≈ 6 stationary instability occurs at an angle of attack that is
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FIGURE 5. (Colour online) Total u-component of velocity (ū+ u′) for the β = 45 mode
at M = 0.73, α = 3.2◦ and Re= 3× 106. Cuts at spanwise locations of the (a) minimum
shear-layer thickness and (b) maximum shear-layer thickness (OAT15A).
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FIGURE 6. (Colour online) Stability boundaries for different β values corresponding to
local maxima of the growth rate at Re= 3× 106 (OAT15A).

Long wavelength Intermediate wavelength Short wavelength

Wavelength λ̃> 10c λ̃≈ c λ̃≈ 0.1c
Frequency St≈ 0.06 St= 0 St= 0
Description Buffet mode Shock-distortion mode Shear-layer mode

TABLE 1. Summary of instability-mode attributes for the unswept OAT15A wing.

super-critical to the β ≈ 45 mode at lower Mach number, but sub-critical at higher
Mach number. Absent the short-wavelength stationary mode, the oscillatory mode has
the lowest critical angle of attack across the assessed range of Mach numbers. The
experimental values in figure 6 are from the experiment of Jacquin et al. (2009).

The existence of the stationary modes could impact the onset of buffet at some
conditions by altering the unsteady growth characteristics or by superposition of a
3-D flow structure. To fully assess the post-critical effects of the stationary modes,
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FIGURE 7. (Colour online) Variation with angle of attack for (a) growth rates of the
stationary and oscillatory modes, and (b) oscillatory-mode frequencies for the dominant
range of β. Results at M = 0.73 and Re= 3× 106 (RA16SC1).

the oscillatory mode would need to be analysed in conjunction with the stationary
mode using weakly nonlinear analysis (Herbert 1983) (or Floquet theory if one
of the modes has a chance to become dominant). For an ad hoc assessment of
the potential impact of this stationary mode, we consider a sectional analysis that
includes a finite-amplitude disturbance superposed on the base flow. This composite
base flow is taken from a streamwise cut through the total flow field at a z position
corresponding to a minimum or maximum of the stationary disturbance (as given in
figure 5). This stationary-mode alteration to the base flow (neglecting any nonlinear
mean-flow modification) shows a minimal impact on the oscillatory-mode growth rate.
This suggests that for the OAT15A airfoil the likely effect of these stationary modes
is to provide a 3-D structure to the nominally 2-D unsteady flow. This is consistent
with observations in the experiments of Jacquin et al. (2009) for the OAT15A airfoil,
but may not generalize to other airfoil sections.

Results for the RA16SC1 airfoil section also show the short-wavelength mode,
but not the intermediate-wavelength mode, for the unswept wing. Figure 7(a)
shows the growth rate for the stationary and oscillatory modes for this airfoil as
a function of angle of attack for M = 0.73, Re = 4 × 106. The shaded zone in this
figure corresponds to the observed buffet onset from the experiments of Benoit &
Legrain (1987): the flow was steady at 2.5◦ and unsteady at 3.0◦. The buffet-onset
condition is well predicted by the onset of instability for the oscillatory mode. The
oscillatory-mode frequency is shown in figure 7(b) for β = 0 and β = 0.5. The range
between the two curves captures the expected frequency resulting from instability
growth. The symbols show the measured frequencies f̃ (with the conversion from Hz
ωr/f̃ = 2πc/U∞ = 0.0045s), which are in good agreement with the stability analysis.
This agreement between the predicted and measured onset conditions further suggests
that the short-wavelength mode may be non-physical, or not physically significant for
buffet.

4. URANS simulations for the unswept wing

To further evaluate the interplay of the different instability modes, URANS
simulations are conducted at near-onset conditions. The same code that is used
for calculating the steady base flows (Shur et al. 2004) is run in a time-accurate
mode (i.e. with spatially constant time step ensuring a CFL number less than 1.0)
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FIGURE 8. Contour plot of pressure-coefficient perturbation for (a) t · U∞/c= 44.5, and
a half-period later (b) t · U∞/c = 51.5. Results at M = 0.73, α = 3.2◦ and Re = 3 × 106

(OAT15A).

starting with a steady solution. Time derivatives are approximated with second-order
backward differences (three-layer scheme) with sub-iterations. Earlier studies have
shown the unsteady code to provide accurate and reliable solutions for URANS
simulations, large-eddy simulations (LES), and direct numerical simulations (DNS)
(Shur et al. 2000; Spalart, Strelets & Travin 2006; Spalart et al. 2017).

The computational grid uses the identical (x, y) grid used in the stability analysis,
distributed spanwise over the domain Lz with uniform spacing. Two spanwise grids are
employed in the simulations: Lz= 2c with 1z= 0.005c, and Lz= 4c with 1z= 0.01c.
Periodic boundary conditions are applied at the spanwise ends of the domain. The
initial steady-flow field is generated by replicating the deeply converged 2-D RANS
solutions (as used for the base flow in the stability analysis) over the spanwise domain
with zero spanwise velocity. To investigate conditions very close to the instability
onset, the initial steady field is perturbed with an instability mode with a wavelength
observed in neighbouring URANS simulations and an amplitude of 10−5. This is done
to decrease the time needed to observe the onset of unsteadiness, which otherwise can
be extremely long, thus demanding very large time samples.

Simulations are conducted at several angles of attack for M = 0.72, 0.73, 0.74. At
M= 0.73, α= 3.2◦ the flow goes unsteady with an oscillation frequency of ωr = 0.46
and is uniform in the spanwise direction. Figure 8 shows the coefficient of pressure on
the wing upper surface for the unsteady perturbation. The two snapshots correspond
to extrema in the unsteady oscillation, separated by one half of the oscillation period.
At this low amplitude, the shock movement is very small, so the primary difference
observed is in the sign of the perturbation.
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FIGURE 9. Contour plot of pressure-coefficient perturbation for (a) t ·U∞/c= 85, (b) t ·
U∞/c = 125 and (c) t · U∞/c = 165. Results at M = 0.73, α = 3.3◦ and Re = 3 × 106

(OAT15A).

A sequence of surface-perturbation snapshots for M = 0.73, α = 3.3◦ is shown
in figure 9. The flow initially (not shown) goes unsteady with a spanwise-uniform
perturbation at ωr = 0.41, similar to figure 8. As the unsteadiness increases, a
spanwise-varying disturbance begins to grow as shown in figure 9(a). This perturbation
amplifies a few orders of magnitude, resulting in a disturbance field corresponding
to the stationary mode at the intermediate wavelength λ̃ = c. At larger times,
the flow becomes essentially unsteady – ultimately resulting in a large-amplitude
spanwise-uniform perturbation with a frequency matching the initial oscillatory mode.
Simulations with a larger spanwise domain (Lz = 4c) show essentially the same
spanwise wavelength.

Simulations conducted at M = 0.72 result in steady spanwise-uniform flow for
α < 3.5◦. At α = 3.6◦ the simulations show the development of an oscillatory mode
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FIGURE 10. Neutral stability curves for (a) oscillatory modes, and (b) stationary modes,
with S and U showing stable and unstable regions, respectively. Solid symbols are results
from URANS, and open symbols are extrapolated URANS results at instability onset.
Results at M = 0.72, 0.73, 0.74 and Re= 3× 106 (OAT15A).

of instability with a frequency of ωr = 0.43. This mode is uniform in the spanwise
direction. At α= 3.7◦ the flow shows an initial onset of unsteadiness with a frequency
of ωr = 0.44 and no significant spanwise variation. At α = 3.8◦, the flow initially
displays a spanwise-uniform oscillatory mode with a frequency of ωr= 0.41. However,
after only a few cycles of oscillation a spanwise-varying stationary disturbance rapidly
grows: thus suppressing the oscillatory mode. The stationary disturbance grows three
orders of magnitude, resulting in a spanwise-periodic flow structure downstream
of the shock, with β = 28. This is followed by a nonlinear stage, where the flow
becomes unsteady.

Figure 10 shows the different URANS simulation results overlayed on neutral
stability curves, for oscillatory (α, ωr) and stationary results (α, β) from the linear
stability analysis. Each solid symbol corresponds to a URANS simulation. The open
symbols are derived from extrapolating simulation growth rates to zero to infer the
α for instability onset; corresponding frequency and wavenumber are taken from the
nearest observed simulation value. The results show the simulation-based instability
onset is shifted approximately 0.1 higher in α compared with stability theory. This
is similar to the 2-D airfoil results presented in (Crouch et al. 2009a), where the
delayed onset was attributed to numerical dissipation, needed for accommodating
shocks, in the URANS solutions.

As shown in figure 10(a), the simulation oscillation frequencies are in good
agreement with the stability analysis. The lower branch of the neutral stability curve
(i.e. smaller ωr) corresponds to β = 0, and the upper branch corresponds to β ≈ 0.5.
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FIGURE 11. (Colour online) Oscillatory-mode (a) growth rates and (b) frequencies for
different sweep angles Λ= 0◦, 10◦, 20◦, 30◦ at Mn = 0.73, αn = 3.2◦ and Ren = 3× 106

(OAT15A).

Due to the limited spanwise extent of the URANS-simulation domain, the oscillatory
results are essentially uniform in the spanwise direction: corresponding to the lower
branch. Figure 10(b) shows that the observed spanwise wavenumber for stationary
disturbances is also in general agreement with the stability analysis. For M= 0.73 and
0.74, the intermediate wavelength is observed in the simulations, with characteristics
in good agreement with the stability results. For M = 0.72, the short-wavelength
mode is observed. The onset of the short wavelength is shifted by approximately
0.3 in α relative to the stability theory; a larger offset than observed for the other
modes. A comparison of growth rates at α = 3.3◦ for M = 0.73 shows ωi = 0.064
from stability analysis and ωi= 0.051 from URANS for the oscillatory mode. For the
same conditions, the intermediate-wavelength (β ≈ 6) stationary-mode growth rates
are ωi = 0.28 and ωi = 0.16 for the stability analysis and the URANS simulations,
respectively.

The overall agreement between the simulations and the global stability results
is very good for the long-wavelength oscillatory mode and for the intermediate-
wavelength stationary mode. The simulations show the short-wavelength mode to be
less prominent than would be expected from the stability theory. The simulation onset
for this mode occurs at higher α, and the growth rates are significantly smaller, than
predicted by the stability theory.

5. Stability results for the swept wing
The infinite-span swept-wing flow is characterized by a quasi-3-D steady state, with

the spanwise velocity component U∞ sinΛ and a normal to the leading edge velocity
and Mach number given by Un=U∞ cosΛ and Mn=M cosΛ, respectively, where Λ is
the sweep angle. This leads to a normal to the leading edge Reynolds number of Ren=

Unc/ν. To allow direct comparisons between different sweep conditions, we introduce
an angle of attack normal to the leading edge defined by αn= tan−1(tanα/ cosΛ); for
zero sweep αn ≡ α.

The effect of sweep on the oscillatory-mode growth rate and frequency is shown
in figure 11 for fixed values of Ren, Mn and αn. For zero sweep, the growth rate is
positive for β less than approximately 0.6 with a maximum at β = 0. The variation
of the frequency is symmetric about the β axis, so the spanwise-varying modes show
no preferred propagation direction. With the addition of sweep, the symmetry is
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FIGURE 12. (Colour online) Travelling-mode growth rate and frequency as a function of
β for infinite swept wing with: (a,b) Λ= 10◦, (c,d) Λ= 20◦, (e, f ) Λ= 30◦, at Mn= 0.73
and Ren = 3× 106 (OAT15A).

broken resulting in two distinct branches – one with higher growth rates, and one
with lower growth rates for β > 0. The higher growth-rate branch corresponds to
negative frequencies, which suggests a bias toward inboard-propagating waves on
a swept wing. As the sweep is increased, the magnitude of the frequency for the
inboard-propagating modes becomes lower than for the nominal unswept β = 0 value.

The effect of sweep on the stationary modes is shown in figure 12. For the
swept wing, these modes become travelling modes with a positive characteristic
frequency that increases with β. These modes propagate spanwise in the outboard
direction, consistent with observations of buffeting flow in swept-wing experiments.
The frequency plots show two characteristic phase speeds Uc =ωr/β, one for β < 10
and another for β > 10. The frequency associated with the short-wavelength mode
is roughly an order of magnitude larger than for the intermediate-wavelength mode.
As the sweep angle is increased, the intermediate-wavelength mode (β ≈ 6) becomes
more dominant at near-critical conditions. For a sweep angle of 30◦, the wavelengths
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FIGURE 13. (Colour online) Travelling-mode (a) growth rate and (b) frequency as a
function of β for Λ= 30◦. Results for different values of αn with Mn= 0.73, Ren= 3× 106

(OAT15A).
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FIGURE 14. (Colour online) Stability boundaries as a function of sweep for different β
values corresponding to local maxima of the growth rate. Results in terms of (a) αn and
(b) α for Mn = 0.73 and Ren = 3× 106 (OAT15A).

around β = 6 (λ̃ ≈ c) are the first to become unstable with increasing angle of
attack. These modes link continuously to the short-wavelength travelling modes with
increasing angle of attack. This is seen more clearly in figure 13, which provides a
zoomed-in view of the growth rate and frequency at smaller values of β for Λ= 30◦.

The critical angles of attack αn and α for the onset of instability for the various
modes as functions of the sweep angle Λ are shown by the stability boundaries of
figure 14. The critical αn for onset of instability is nearly constant with sweep angle,
while the critical α shows a slight reduction with increasing sweep. The relative
ordering of the modes does not change significantly with sweep, except that the
β ≈ 6 modes become subcritical to the short-wavelength travelling modes for Λ> 25◦.
Similar to the unswept wing, both the oscillatory and the travelling modes can be
expected to play some role in the buffet onset. However, in this case both modes are
propagating modes with non-zero frequency.

Focusing on the 30◦-sweep condition, there are two groups of modes that are
expected to contribute to the unsteady-flow structure. First, the generalization of
the airfoil oscillatory mode exists within a frequency range of 0.15 < ωr < 0.35
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Long wavelength Intermediate wavelength Short wavelength

Wavelength λ̃> 10c λ̃≈ c λ̃≈ 0.1c
Frequency St≈ 0.04 St≈ 0.4 St≈ 1.6
Phase speed Uc<−0.2 Uc≈ 0.4 Uc≈ 0.3
Description Airfoil buffet mode Swept buffet mode Shear-layer mode

TABLE 2. Summary of instability-mode attributes for the swept OAT15A wing, with
Λ= 30◦.

(0.024< St < 0.056), which propagates inboard with a phase speed Uc <−0.2. This
mode also exists within a frequency range of 0.35 < ωr < 0.6 (0.056 < St < 0.095),
which propagates outboard with a phase speed Uc> 1.2. These oscillatory modes have
spanwise wavelengths of λ̃> 10c. Based on the growth rates, the inboard-propagating
mode is expected to be more dominant. Second, the intermediate-wavelength mode
exists in a frequency band centred around ωr ≈ 2.4 (St ≈ 0.38). This mode has
spanwise wavelengths around λ̃ ≈ c and an outboard-propagating phase speed of
Uc ≈ 0.4.

The experiments of Dandois (2016) on the 30◦ finite-span swept OAT15A also
showed two distinct oscillation frequencies. In the mid span, an inboard-propagating
disturbance was observed, with a frequency around St= 0.04 and a wavelength longer
than the model span (λ̃ > 5c, b = 3.4c). The phase speed for this disturbance was
Uc=−0.21. The other oscillation frequency was more dominant farther outboard, and
was banded around St = 0.26. These were outboard propagating disturbances with
wavelengths around λ̃= c and a phase speed of Uc≈ 0.4. The characteristics of these
experimentally observed disturbances are in very good agreement with the dominant
modes predicted by the global instability analysis. In particular, the travelling modes
on a swept wing (that can co-exist with the low-frequency oscillatory mode) result
in a more broad-banded frequency response with a characteristic frequency that is
roughly 10 times greater than the swept long-wavelength oscillatory mode, or about
6 times greater than the unswept oscillatory mode for the same airfoil section.

The mode shapes associated with the different values of β (as shown in figure 4)
remain essentially the same with increasing sweep. Thus, the unsteady modes at β≈ 0
and β = 6 have similar spatial distributions: concentrated at the shock and the shear
layer, consistent with buffeting flow. The β = 45 mode is concentrated in the shear
layer and corresponds to a band of higher-frequency undulations of the shear-layer
thickness, with ω≈ 12 (St≈ 2). The experiments of Dandois (2016) also showed shear-
layer fluctuations around this frequency, but in the experiments they were linked to the
Kelvin–Helmholtz instability. Thus, the experiments do not provide any clear evidence
for the predicted short-wavelength modes.

Table 2 summarizes the key attributes of the different modes of instability for the
infinite swept wing. These are all unsteady modes, but the intermediate- and long-
wavelength modes are most clearly linked to swept-wing buffet. The short-wavelength
modes do not produce a buffet-type flow oscillation. The long-wavelength modes
have lower growth rates compared with the intermediate-wavelength modes, but for
a given amplitude they would result in a larger wing-lift fluctuation. For the more
general finite swept wing, the taper and twist would result in a spanwise localization
of the instability. In this case, the instabilities are expected to originate in a spanwise
region that carries the highest sectional lift. This is analogous to vortex shedding
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originating at the location of maximum diameter for a wavy cylinder (Garbaruk &
Crouch 2011). The finite wing 3-D eigenmodes calculated by Timme (2019), while
based on a different wing geometry, all display the expected spanwise localization of
the instability.

Note finally that the introduction of sweep for the RA16SC1 airfoil section has
a minimal effect on the long-wavelength oscillatory-mode characteristics, but a
more significant impact on the intermediate- and short-wavelength travelling modes.
For sweep angles up to 20◦, this airfoil shows only one local maximum in the
travelling-mode growth rate corresponding to the short-wavelength mode around
β ≈ 50. At a sweep angle of 30◦, there are two local maximums corresponding to
the short-wavelength mode and the intermediate-wavelength mode around β ≈ 5.

6. Summary and conclusions
Earlier studies on airfoils linked the transonic buffet onset to a nominally 2-D

global flow instability. Stability analysis predicts the buffet boundary, the buffet
frequencies and the post-buffet unsteady-flow characteristics for airfoils. Observations
of swept-wing buffet showed distinct characteristics that suggested the global
instability approach may not be appropriate for this more complex flow. Experiments
at ONERA (Benoit & Legrain 1987; Molton et al. 2013; Dandois 2016) show a
broad-band of frequencies associated with swept-wing buffet, in contrast to a single
dominant frequency for an unswept airfoil. The swept-wing frequencies are also 4–7
times higher than for the unswept airfoil. The experiments, and numerical simulations
of Iovnovich & Raveh (2014) and Ohmichi et al. (2017), also show the swept-wing
buffet has a spanwise dependence that is consistent with a spanwise-propagating
disturbance.

This paper extends the global instability analysis to more broadly consider spanwise
variations of the buffeting flow and effects of sweep.

For the unswept wing, the analysis reveals stationary modes in addition to the
oscillatory mode observed on 2-D airfoils. The stationary modes include a band
of short-wavelength modes around λ̃ ≈ 0.1c and a band of intermediate-wavelength
modes around λ̃ ≈ c. The short-wavelength modes are concentrated in the shear
layer downstream of the shock with wavelengths comparable with the shear-layer
thickness. The intermediate-wavelength modes have wavelengths much greater than
the shear-layer thickness, and are concentrated both in the shock and the shear layer
– similar to the long-wavelength oscillatory mode linked to buffet. These findings
from the stability analysis are supported by results from numerical simulations based
on the URANS equations.

With the introduction of sweep, the stationary modes become traveling modes
and propagate outboard along the wing. The continuous band of wavelengths
results in a broad-banded frequency content. For a wing sweep of 30◦, the
intermediate-wavelength modes are centred on a frequency that is roughly 6
times greater than the nominal oscillatory-mode frequency predicted for the 2-D
airfoil. The overall characteristics (frequency, phase speed and flow structure)
of the intermediate-wavelength travelling modes are in good agreement with
experimental observations on swept wings. The validity and physical significance
of the short-wavelength shear-layer modes is unclear since their wavelengths overlap
the scales normally averaged as part of the URANS turbulence modelling, and the
experimental evidence for these short-wavelength modes is less definitive. Predicted
changes to the long-wavelength oscillatory mode as a result of sweep are also in
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general agreement with experiments. While these long-wavelength modes have smaller
growth rates compared with the intermediate-wavelength modes, their spanwise
structure is more conducive to driving significant wing-lift fluctuations.

The overall findings of the analysis suggest that the buffet onset on swept wings
also stems from a global flow instability, although with a primary instability mode
that differs from the mode responsible for unswept airfoil buffet.
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