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We investigate the rheology of strain-hardening spherical capsules, from the dilute to
the concentrated regime under a confined shear flow using three-dimensional numerical
simulations. We consider the effect of capillary number, volume fraction and membrane
inextensibility on the particle deformation and on the effective suspension viscosity and
normal stress differences of the suspension. The suspension displays a shear-thinning
behaviour that is a characteristic of soft particles such as emulsion droplets, vesicles,
strain-softening capsules and red blood cells. We find that the membrane inextensibility
plays a significant role on the rheology and can almost suppress the shear-thinning. For
concentrated suspensions a non-monotonic dependence of the normal stress differences
on the membrane inextensibility is observed, reflecting a similar behaviour in the particle
shape. The effective suspension viscosity, instead, grows and eventually saturates, for very
large inextensibilities, approaching the solid particle limit. In essence, our results reveal
that strain-hardening capsules share rheological features with both soft and solid particles
depending on the ratio of the area dilatation to shear elastic modulus. Furthermore, the
suspension viscosity exhibits a universal behaviour for the parameter space defined by
the capillary number and the membrane inextensibility, when introducing the particle
geometrical changes at the steady state in the definition of the volume fraction.
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1. Introduction

Capsules are closed elastic polymeric membranes, formed by cross-linking proteins to
polysaccharides, and encapsulating a liquid droplet core (Lévy & Edwards-Lévy 1996;
Edwards-Lévy & Lévy 1999). Their typical diameter spans from a few nanometres to
a few millimetres. Capsules are primarily used as controlled delivery systems of active
substances with practical applications gearing around pharmaceutical industry (Donbrow
1991; De Cock et al. 2010), food processing (Sagis et al. 2008), cosmetics (Miyazawa
et al. 2000), household products such as paints (Suryanarayana, Rao & Kumar 2008),
while showing promising applications and future perspectives in areas such as thermal
energy storage (Sarı, Alkan & Karaipekli 2010), and injectable scaffolds for soft tissue
regeneration (Munarin et al. 2010). The release mechanisms of the active agents cover
time scales going from a few seconds to days and can occur either via capsule burst or
through slow and prolonged diffusion (Neubauer, Poehlmann & Fery 2014). Capsules with
a membrane made of polysiloxane will burst under continuous elongation (Walter, Rehage
& Leonhard 2001; Koleva & Rehage 2012), similar to droplets, whereas membranes
formed with pure human serum albumin (HSA) or HSA–alginate can sustain very large
deformations without rupture (Carin et al. 2003; de Loubens et al. 2015) making them
a good model for mimicking biological cells. The mechanical properties of the capsules
can be probed by partial aspiration with a micropipette (Hochmuth 2000), atomic force
microscopy (Fery & Weinkamer 2007), compression tests (Chang & Olbricht 1993b;
Rachik et al. 2006) or in flow conditions by measuring the elongation of the particle
and extracting the shear and area dilatation moduli using the appropriate hyperelastic
constitutive law (de Loubens et al. 2015).

When subject to external stresses, capsules can exhibit a strain-softening or a
strain-hardening behaviour depending on the composition and the fabrication protocol of
their membrane. Those behaviours can be well recovered with hyperelastic constitutive
laws such as the generalised Hooke, Mooney–Rivlin, neo-Hookean and Skalak laws
(de Loubens et al. 2015; Barthès-Biesel 2016). The deformation and dynamics of a
single capsule under different flow conditions have been thoroughly investigated by many
authors: (i) numerically (Navot 1998; Ramanujan & Pozrikidis 1998; Lac et al. 2004; Li
& Sarkar 2008; Bagchi & Kalluri 2009; Dodson & Dimitrakopoulos 2009; Farutin, Biben
& Misbah 2014; Dupont et al. 2016; Boedec, Leonetti & Jaeger 2017), (ii) analytically
(Barthès-Biesel 1980; Barthès-Biesel & Rallison 1981; Vlahovska et al. 2011) and (iii)
experimentally (Chang & Olbricht 1993a,b; de Loubens et al. 2015, 2016; Häner, Heil
& Juel 2020). Under a simple shear flow, initially non-spherical capsules can exhibit
several complex dynamics including the steady and oscillating tank-treading, tumbling
and swinging motions (also called vacillating-breathing in the literature). These dynamics
are the result of the interplay between different parameters such as the capillary number,
the confinement, and the viscosity contrast between the inner and the suspending fluids
(Bagchi & Kalluri 2009; Vlahovska et al. 2011; Walter, Salsac & Barthès-Biesel 2011).
Conversely, a spherical capsule exhibits only a steady tank-treading motion characterised
by a fixed orientation angle with respect to the flow and a steady-state deformed shape
while the membrane undergoes a tank-treading motion (Bagchi & Kalluri 2011; de
Loubens et al. 2016).

Most end-use applications of capsules involve many particle interactions, and often
different coupled time scales, with nonlinearity appearing already on the level of the
single-particle mechanics. This level of complexity requires a numerical approach to
understand the behaviour of suspensions of capsules, the correlation between their
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microstructure and rheology, and how it compares with well-studied systems such as solid
particles and emulsions of drops.

The rheology of a dilute suspension of rigid spheres in an unbounded shear flow has
been addressed analytically in the original work of Einstein (1906, 1911) and extended to
the second order by Batchelor & Green (1972) to include pair hydrodynamic interactions.
Empirical, semi-empirical and analytical models were proposed in the literature to predict
the change of the relative viscosity with the volume fraction of rigid sphere suspensions
from the dilute to the concentrated regimes (Eilers 1941; Mooney 1951; Maron & Pierce
1956; Krieger & Dougherty 1959; Frankel & Acrivos 1967). Experiments and numerical
simulations have revealed that a suspension of rigid particles exhibits shear-thinning,
Newtonian and shear-thickening behaviour, respectively, as the shear rate is increased.
Both normal stress differences, N1 and N2, have been reported to bear a negative sign
with a larger magnitude for N2 with respect to N1. The sign of N1 is still subject to
discussions because its magnitude is very small. Numerical simulations performed by
Sierou & Brady (2002) and Gallier et al. (2014, 2016) have pointed toward the possibility of
two distinct physical origins of both normal stress differences. Here N2 is associated with
particle–particle collisions, whereas N1 is mostly of hydrodynamic nature and is affected
significantly by the presence or absence of boundaries. Detailed reviews on the rheology
of solid particle suspensions can be found in Stickel & Powell (2005), Mueller, Llewellin
& Mader (2010) and Guazzelli & Pouliquen (2018).

Non-Newtonian behaviour in the form of shear-thinning has been reported for emulsions
of drops, strain-softening capsules and closed phospholipid bilayer membranes (vesicles).
These three classes of deformable particles are characterised by a thin, continuous and
impermeable interface encapsulating an internal fluid. However, the interface mechanical
properties are different. They all exhibit a negative N2 and a positive N1, and unlike rigid
particles, the magnitude of N1 is larger than N2, which most probably indicates a more
dominant role of hydrodynamic interactions as compared with particle–particle collisions
(Loewenberg & Hinch 1996; Clausen, Reasor & Aidun 2011; Vlahovska & Gracia 2007;
Zhao & Shaqfeh 2013; Matsunaga et al. 2016). In analogy to drops, a capillary number,
quantifying the shear elastic resistance of the membrane to external stresses, has been
widely used in the literature of capsules regardless of the nature of the hyperelastic law and
the number of moduli characterising the membrane mechanics. Bagchi & Kalluri (2010)
have shown that for a single strain-hardening capsule under a simple shear flow, the ratio
of the area dilatation to shear elastic moduli, characterising the local inextensibility of the
membrane, leads to some atypical effects on the intrinsic viscosity and the shear-thinning
behaviour. For a non-dilute suspension of anisotropic strain-hardening capsules, Gross,
Krüger & Varnik (2014) have reported that for small capillary number the effect of the
ratio of the area dilatation to shear elastic moduli on the suspension rheology is negligible.

This paper is devoted to study the dynamics of suspensions of model soft particles with
a strain-hardening character, such as certain types of capsules (Carin et al. 2003), focusing
on the role played by a material property of the membrane, namely its inextensibility,
on the capsule deformation and on the suspension rheology, at varying the concentration
of the dispersed phase and applied shear. To the best of the authors’ knowledge the
contribution of the local inextensibility of the membrane to the rheology of semi-dilute
and concentrated suspensions of initially spherical strain-hardening capsules has so far
not been studied.

The paper is organised as follows. We describe the numerical method in § 2 (benchmarks
are provided in appendix A). We then present and discuss our numerical results for the
dilute, semi-dilute and concentrated regimes as a function of the parameter C quantifying
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the inextensibility of the membrane and the capillary number Ca in § 3. The concluding
remarks and further discussions are given in § 4.

2. Numerical method

2.1. Lattice Boltzmann method
The Navier–Stokes equations are recovered in the limit of small Mach and Knudsen
numbers by the lattice Boltzmann method (LBM), which is based on the discretisation of
the Boltzmann–BGK (Bhatnagar, Gross & Krook 1954) equation in time and phase space
(Benzi, Succi & Vergassola 1992; Succi 2001; Krüger et al. 2017). The LBM describes
the evolution of the single-particle distribution function fi(x, t) at a position x and time
t with a microscopic velocity ci, where i = 1 . . . Q, on a regular D-dimensional lattice
in discrete time steps �t. We consider in this work a D3Q19 model corresponding to a
three-dimensional lattice with Q = 19 velocities. The lattice Boltzmann equation reads

fi(x + ci�t, t + �t) − fi(x, t) = Ωi(x, t) + Fi(x, t)�t, (2.1)

with

Ωi(x, t) = −�t
τ

[ fi(x, t) − f eq
i (x, t)], (2.2)

and

f eq
i (x, t) = ωiρ

[
1 + (ci · u)

c2
s

+ 1
2

(ci · u)2

c4
s

− 1
2

|u|2
c2

s

]
, (2.3)

where τ is a relaxation time related to the fluid dynamic viscosity by μ0 = ρ0c2
s (τ − �t/2)

(ρ0 being the mean fluid density). Here cs = (1/
√

3)(�x/�t) denotes the lattice speed of
sound, �x is the lattice constant, ωi are lattice weights and f eq

i (x, t) is the equilibrium
probability distribution function, depending on the fluid density ρ and velocity u fields
as a truncated expansion of the Maxwell–Boltzmann distribution (valid at small Mach
number, Ma = |u|/cs � 0.1). Here Fi on the right-hand side of (2.1) is a source term
accounting for any external or internal force and will be used here to incorporate the forces
exerted by the membrane on the fluid through the immersed boundary method (IBM). For a
D3Q19 LBM, the lattice weights ωi read as 1/3, 1/18 and 1/36 for i = 1, i = 2, . . . , 7 and
i = 8, . . . , 19, respectively. The macroscopic fluid density ρ and velocity u are deduced
from the moments of the discrete probability distribution functions as

ρ =
19∑

i=1

fi(x, t) and u =
19∑

i=1

fi(x, t)ci/ρ. (2.4a,b)

For convenience, we set the lattice constant, the time step, the mean fluid density and the
relaxation time to unity.

2.2. Membrane model
The capsule is modelled as a two-dimensional hyperelastic thin shell encapsulating an
inner fluid and suspended in an outer fluid. The interior and exterior fluids are Newtonian
with equal densities and viscosities. The surface of the capsule is discretised into a
triangular mesh and endowed with a resistance to in-plane deformations. The membrane
Lagrangian variables are defined on a moving curvilinear mesh with coordinates (ξ1, ξ2),
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freely evolving on the Cartesian mesh on which lies the Eulerian fluid variables. We
consider the case of a strain-hardening membrane using the hyperelastic law introduced
by Skalak (1973), where the in-plane elastic deformations are governed by shear and
area dilatation resistances. In terms of the deformation invariants, I1 = λ2

1 + λ2
2 − 2 and

I2 = λ2
1λ

2
2 − 1, where λ1 and λ2 are the principal stretching ratios on an element of the

membrane surface, the strain energy over the surface of the capsule (ΩS) reads as

Es =
∫

ΩS

Gs

4
[I2

1 + 2I1 − 2I2 + CI2
2] dΩS. (2.5)

Here, Gs is the elastic shear modulus and C is a constant related to the strain-hardening
character of the membrane through the scaled area dilatation modulus Ga such as Ga/Gs =
1 + 2C. In other words, increasing the value of C enhances the local inextensibility
of the membrane (hereafter, we refer to C as membrane inextensibility) and makes the
capsule more strain-hardening. In the small deformation limit, C and the surface Poisson
ratio (νs) are related by C = νs/(1 − νs) (see Barthès-Biesel, Diaz & Dhenin 2002).
The elastic deformations on the surface of the particle are evaluated numerically using
a linear finite element method following the approach described in Krüger, Varnik &
Raabe (2011). In addition to shear elasticity and area dilatation, capsules may also exhibit
a resistance to out-of-plane deformations (bending). The existence of a non-negligible
bending energy depends on the protocol used to fabricate the capsule and the composition
of the encapsulating membrane (de Loubens et al. 2014, 2015; Gubspun et al. 2016).
Although it can be of interest to investigate the interplay between the bending and the shear
elasticity under different flow conditions, we choose to focus, here, on the role of the area
dilatation, which has been somehow overlooked in the existing literature, and we consider,
thus, capsules without bending resistance. The volume of the capsules is prescribed using
a penalty function that reads as

Ev = κv

2
[V − V0]2

V0
, (2.6)

where κv is a modulus that controls the deviation from the reference volume V0
corresponding to the stress-free shape. The membrane force is calculated on each
membrane node (X m) using the principle of virtual work, such that

F m = −∂E(X m)

∂X m , (2.7)

where E = Es + Ev is the membrane total energy.
To avoid overlap between capsules in relatively dense systems, we introduce a

short-range repulsive force intended to mimic the normal component of the lubrication
force. The repulsive force acts when the distance between two nodes from different
capsules is below the cut-off distance δ0, which is set here to the minimum value of 1�x
corresponding to the fluid resolution limit of the LBM, and vanishes at a node-to-node
distance dij � δ0. Its expression is given by

F rep =

⎧⎪⎨
⎪⎩

ε̄

[(
�x
dij

)2

−
(

�x
δ0

)2
]

dij

dij
if dij < δ0

0 if dij � δ0

, (2.8)

where ε̄ is the interaction strength with the dimension of a force. Equation (2.8) was
suggested by Glowinski et al. (2001) for suspension of rigid particles, and used by
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Gross et al. (2014) to study the rheology of very dense suspensions of red blood cells
in a shear flow. Other contact models based for example on an exponential repulsive force
or a Lennard–Jones potential can also be used (Buxton et al. 2005; MacMeccan III 2007;
Guckenberger & Gekle 2016). The effect of the short-range repulsive force on the rheology
of strain-hardening capsules is discussed in appendix A.4.

2.3. Membrane dynamics
For the fluid–membrane coupling, we use the IBM (Peskin 2002). In the IBM the
Lagrangian massless nodes are interacting with the Eulerian fluid nodes using an
interpolation function in a two-way coupling scheme: the Lagrangian membrane forces
calculated on the curvilinear mesh are distributed to the surrounding Eulerian fluid nodes
on the fixed Cartesian mesh by a smoothed approximation of the delta function, where
they enter the discretised lattice Boltzmann equation (2.1) as an external force term. The
new fluid velocities are obtained after solving the LBM equation (2.1). The capsules
are advected with the fluid velocity, where the velocity of each Lagrangian node on the
membrane is interpolated from the surrounding Eulerian fluid node velocity using the
same scheme as for the spreading of the forces. The distribution of the membrane forces
F m located at position X m(ξ1, ξ2, t) to the adjacent fluid nodes is given by

f (x, t) =
∫

ΩS

F m(ξ1, ξ2, t)δ(x − X m(ξ1, ξ2, t)) dΩS, (2.9)

where δ is a three-dimensional approximation of the Dirac delta function, and f (x, t)
is the force density acting on the fluid at the Eulerian node x(x1, x2, x3). Equation (2.9)
is incorporated into (2.1) in a similar manner to an external body force (e.g. gravity) as
follows

Fi(x, t) =
(

1 − 1
2τ

)
ωi

(
ci − u

c2
s

+ ci · u
c4

s
ci

)
· f (x, t). (2.10)

The velocity of the membrane is obtained from the local Eulerian fluid velocity as

∂X m

∂t
= u(X m, t + �t) =

∫
ΩD

u(x, t + �t)δ(x − X m(ξ1, ξ2, t)) dx3, (2.11)

where ΩD represents the whole fluid domain. Equation (2.11) enforces a no-slip boundary
condition on the membrane, although in practice a volume drift is observed with time,
and thus the need to use a penalty function on the volume (see (2.6)) or improved IBM
schemes (Wu & Shu 2012; Casquero et al. 2020). Note the new fluid velocity u(x, t + �t)
is obtained after solving the discretised lattice Boltzmann equation (2.1), which requires
a priori knowledge of the membrane forces. The membrane forces F m

k (t) are computed
before solving (2.1), so to say, with respect to the old position of the membrane nodes
X m(t). Thus, the following notation u(t + �t) is used in (2.11) instead of u(t). In discrete
forms, (2.9) and (2.11) can be rewritten such that

f (x, t) =
∑

k

F m
k (t)δ(x − X m

k (t))�ΩS,k (2.12)

u(X m, t + �t) =
∑

x

u(x, t + �t)δ(x − X m(t))�x3, (2.13)

where
∑

k runs over the membrane nodes located within the interpolation range of a given
fluid node x, and

∑
x over a cuboidal region centred around a given membrane node X m.

911 A11-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
40

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1040


Rheology of strain-hardening capsules

The advection equation of a Lagrangian node on the capsule follows an explicit forward
Euler scheme, such that

X m(ξ1, ξ2, t + �t) = X m(ξ1, ξ2, t) + u(X m, t + �t)�t. (2.14)

Let us remark that, in principle, depending on the specific problem, one may need to tune
the time step of the numerical integration of the Lagrangian dynamics independently from
the lattice Boltzmann time step. For instance, for vanishing values of C, mesh instabilities
can arise (owing to the formation of large wrinkles on the capsule surface). We have,
therefore, decided to keep C � 10−3 such that choosing the time step equal to the lattice
Boltzmann �t proved sufficient to prevent such instabilities.

The Dirac delta function in (2.9) and (2.11) is usually replaced with a smoother
interpolation function (ϕ) of some shape such as δ(x) = ϕ(x1)ϕ(x2)ϕ(x3) to avoid jumps
in velocities or in the applied forces occurring when the Lagrangian nodes do not coincide
with the nodes of the Eulerian grid. Several distribution functions have been used in the
IBM literature for a wide range of applications. For detailed reviews on the IBM and its
accuracy, we refer the reader to Mittal & Iaccarino (2005) and Krüger et al. (2017) among
other existing works on this topic. In what follows, we use a two-point linear interpolation
function as discussed in Krüger (2012), which is given by

ϕ(x̂) =
{

1 − |x̂| for 0 � |x̂| � 1
0 for |x̂| � 1

, (2.15)

where x̂ can denote x1, x2 or x3.

2.4. Simulations details, key parameters and observables
We simulate shear flows, with constant shear rate γ̇ , in cubic boxes, seeded with Np
capsules of radius r. The computational domain has a side length L = 128�x = 16r and it
is biperiodic along the flow and vorticity directions (x1 and x2 directions, respectively). It is
bounded, in the x3 direction, by two planar walls at which we impose a velocity boundary
condition such to generate the driving shear flow as described in Hecht & Harting (2010).

The main control parameters of the problem are the volume fraction of capsules,
φ = 4πr3/3L3, the capillary number, Ca, and the membrane inextensibility, C (the
particle scale Reynolds number being always so small, Re = (ρ0γ̇ r2)/μ0 < 10−1, that the
dynamics can be considered effectively inertia-less). The capillary number, quantifying
the relative intensity of viscous and elastic forces, is defined as

Ca = γ̇ τel, (2.16)

where τel = (μ0r)/Gs is a time scale associated with the elasticity of the capsule. The
value of C depends on the composition of the membrane. For example albumin–alginate
capsules have a C of the order of unity (Carin et al. 2003), whereas for red blood cells
C � 1.

Following Batchelor (1970), we evaluate the average particle stress tensor as

Σ
p
ij = 1

N

N∑
α=1

nSα
ij = − 1

VD

N∑
α=1

∫
ΩS

1
2
{Fm,α

i Xm,α
j + Fm,α

j Xm,α
i } dΩα

S , (2.17)

where i and j are indices referring to Cartesian directions,
∑Np

α=1 is a sum over the number
of particles in the averaging volume VD, n the number density and S the particle stresslet.
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Here dΩα
S is the area element centred at X m, and F m is the surface force density exerted

by the membrane on the fluid. The rheology of the system is then assessed in terms of the
suspension relative viscosity and normal stress differences. The relative viscosity of the
suspension μr is defined as

μr = μ

μ0
= 1 + Σ

p
13

μ0γ̇
, (2.18)

where μ is the effective viscosity of the system. The first and second normal stress
differences can be deduced from the average particle stress tensor as

N1 = Σ
p
11 − Σ

p
33, N2 = Σ

p
33 − Σ

p
22. (2.19a,b)

The deformation of a capsule in the shear plane can be characterised in terms of the Taylor
deformation parameter (Taylor 1934)

D = r1 − r3

r1 + r3
, (2.20)

where r1 and r3 are the major and minor principal semi-axes (in the shear plane) of an
ellipsoid having the same tensor of inertia as the deformed capsule, and the inclination
angle θ , which is the angle the major axis forms with the positive direction of the
x1-coordinate (see figure 1). The ellipsoid principal semi-axes are defined as (Ramanujan
& Pozrikidis 1998; Li & Sarkar 2008; Frijters, Günther & Harting 2012; Farutin et al.
2014):

r1 =
√

5
2ρ0V

(I2 + I3 − I1), r2 =
√

5
2ρ0V

(I1 + I3 − I2), r3 =
√

5
2ρ0V

(I1 + I2 − I3),

(2.21a–c)

where I1, I2 and I3 are the eigenvalues of the tensor of inertia.
The rheology and microstructure of suspensions of strain-hardening capsules up to a

volume fraction of 0.5 are studied for capillary numbers ranging from Ca = 0.1 to 1.
The number of particles is varied from 1 to 500, corresponding to φ ≈ 0.001 and φ ≈
0.5, respectively. Each particle is discretised with 1280 triangles and 642 nodes, and
initialised as a sphere with a radius r = 8�x. When the distance between two neighbouring
particles is below 1�x, a repulsive force acts on the surface of the two particles with
an interaction strength chosen as ε̄ ≈ 102Gsr. The simulations are initialised with the
capsules distributed randomly in the domain with an initial radius r0 < r. The radius of
each capsule is then increased in time with a fixed growth rate until reaching the desired
size. The relative error on the capsule’s volume defined as εV = |V − V0|/V0 is below
0.03 % in all simulations. For suspensions, the measured quantities are obtained from
an average over the number of particles and over time. In terms of strain units (γ̇ t), our
simulations reach convergence after the first 5–7γ̇ t. The time average is performed after the
initial transient state defined here as the first 10γ̇ t. Time histories of the mean deformation
and relative viscosity in the dilute and semi-dilute limits, together with the effect of mesh
discretisation and finite size effects, are shown in appendix A. Details on the performance
of our code can be found in Aouane et al. (2018).

3. Results

3.1. Behaviour of a single capsule in a shear flow
In order to validate our approach, we first limit our simulations to the case of single initially
spherical Skalak capsules. Our simulation domain is bounded by two parallel walls and
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θ

Figure 1. (a) Schematic of a single capsule in a shear flow showing the initial (dashed lines) and the typical
ellipsoidal steady-state shapes; r is the radius of the unstressed sphere, r1 and r3 are the major and minor
semi-axes in the shear plane (r2 is that in the vorticity direction, not shown) and θ is the inclination angle.
(b,c) Numerically computed steady-state shapes for different values of C and Ca namely in the x3x1-plane
(defined between the shear gradient and flow directions) and x2x1-plane (defined between the vorticity and the
flow directions).

the confinement is set to χ = 2r/L = 0.125, so that the effect of the boundaries can be
neglected. A schematic representation of the simulation setup, together with examples of
steady state shapes for different Ca and C, are depicted in figure 1. The steady Taylor
deformation parameter, the inclination angle, the normal stress difference and the intrinsic
viscosity, defined as

[μ] = lim
φ→0

μr − 1
φ

, (3.1)

as functions of Ca (for different values of C) are plotted in figure 2. We compare with
numerical results obtained using the boundary element method (Lac et al. 2004) and the
front-tracking method (Bagchi & Kalluri 2010), showing good agreement.

We next move to explore systematically the parameter space spanned by (Ca, C),
with Ca ∈ [0.1; 1] and C ∈ [1; 7500]. The corresponding data on steady-state elongation,
inclination angle, intrinsic viscosity and first normal stress difference are reported in
figure 3. We see, from the symbols in figure 3(c), at fixed C, that [μ] decreases with Ca,
denoting a shear-thinning character. The latter, in turn, appears to be directly correlated to
an increase of the elongation of the capsule (figure 3a) and a decrease of its orientation
with respect to the flow direction (figure 3b), similarly to what has been reported for
drops, vesicles and strain-softening capsules. Moreover, a clear effect of C on the various
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Figure 2. Steady Taylor deformation parameter (a), inclination angle (b), intrinsic viscosity (c), and first
normal stress difference (d) of a single capsule under a shear flow. The open and full symbols in (a,b) are
for C = 1 and C = 10, respectively, and for C = 1 and C = 50 in (c,d). BEM denotes the boundary element
simulations of Lac et al. (2004), and FTM the front-tracking method of Bagchi & Kalluri (2010). LBM-IBM
are the numerical results obtained using our lattice Boltzmann code. The dashed line in (c) indicates the value
of the intrinsic viscosity of a dilute suspension of rigid spheres. The legends for (b,d) are indicated in (a,c),
respectively.

observables can be detected: as C grows, their dependence on Ca gets weaker. In particular,
the steady Taylor parameter D suggests that the particle is less and less deformed, i.e. it
approaches the limit of a rigid sphere. Correspondingly, [μ] varies less and less with Ca
and eventually the shear-thinning is suppressed. For sufficiently large C, then, a very dilute
suspension of strain-hardening capsules tends to behave rheologically as a suspension of
rigid spheres (note also that N1 tends to zero, figure 3d), albeit with an intrinsic viscosity
surprisingly slightly larger than the Einstein coefficient [μ] = 5/2 (for C � 1, [μ] seems
to approach the limiting value ≈2.84; see also Bagchi & Kalluri (2010) for comparison).

3.2. Suspensions: structure
We investigate the multiparticle case and the dependence of particle shape and suspension
rheological properties on the parameters describing the system, namely Ca, C and φ.
Examples of steady-state configurations of the suspension are shown in figure 4, for fixed
Ca = 1, φ = 0.5 and for four different values of C = 0.1, 10, 150 and 7500.

In this subsection we focus on particle morphologies, characterised in terms of the
Taylor deformation parameter and the semi-axes of the equivalent ellipsoid, whereas in
the next we study the rheological properties of the suspensions, highlighting their relations
with the structure. Analogously to the single-particle case, the mean Taylor parameter 〈D〉
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Figure 3. Effect of the membrane area incompressibility on the steady-state Taylor deformation parameter (a),
inclination angle (b), intrinsic viscosity (c) and first normal stress difference (d) of a single Skalak capsule
under a shear flow for different capillary numbers. The legend is given in (a).

of the suspension decreases with increasing C (figure 5a), with a steepest descent for
1 < C < 103, which confirms that capsules become less deformable and tend to resemble
rigid particles. We recall, though, that such a parameter contains information only on two
of the three semi-axes of the equivalent ellipsoid. To get a deeper insight, then, we present
all three of them separately in figure 5(b–d). Interestingly, a non-monotonic behaviour is
found for 〈r1〉 and 〈r2〉 (the semi-axes in the flow and vorticity directions, respectively) for
0.1 < C < 10. In particular, for decreasing C < 10, 〈r2〉, whose direction is orthogonal to
the elongational one, grows. Moreover, 〈r2〉 always remains larger than 〈r3〉, indicating that
particles, on average, are not spheroids (eventually, for very large C particles approach the
undeformable limit and the quasi-spherical shape, 〈ri〉 → r for i = 1, 2, 3, is recovered).
In this sense, capsules display a lower level of symmetry than droplets, which is to be
attributed to the nonlinear elastic characteristics of the membrane. The behaviour, in fact,
persists across the various volume fractions explored, even for the lowest φ (corresponding
to the single-particle case), suggesting that the effect originates from the properties of the
single-particle stress tensor. The spread of the mean principal semi-axes, mostly of 〈r1〉,
is such that the product

∏3
i=1〈ri〉 varies with the volume fraction. Such dependence is

related to the variances of the distributions of the principal semi-axes (given that the mean
volume of capsules, 〈∏3

i=1 ri〉 is conserved) and reflects, therefore, the spread in sizes,
which decreases as C increases, because the capsules become more and more rigid (in
other words, the distribution tends to become sharply peaked around r1 ∼ r2 ∼ r3 ∼ r).

Next, we consider how the particle deformation depends on the applied load, for given
material properties. It is tempting, first, to investigate how the peculiar behaviour for
small/moderate C shows up across different shear values. In figure 6(a–c) we report the
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(b)(a)

(c) (d )

Figure 4. Steady-state configurations for φ = 0.5, Ca = 1 and (a) C = 0.1, (b) C = 10, (c) C = 1.5 × 102

and (d) C = 7.5 × 103.

variation of ri for single capsules with C = 0.1, 1 and 10, respectively, as a function of
Ca. As Ca increases, the capsules become, obviously, more elongated in the extensional
flow direction (r1 grows), but the two minor semi-axes display opposite trends, depending
on the value of C: whereas r3, as expected, decreases (for all C), r2 (that aligned with
the vorticity direction) grows for C < 1. For the smallest C considered, C = 0.1, we
need, therefore, to find an equivalent breadth, r(eq)

⊥ quantifying the degree of shrinkage
or expansion of the capsule in the equatorial plane. We define this r(eq)

⊥ as the ratio of the
length of the membrane cross-section (an ellipse) over 2π (such that it would be precisely
the minor axis, if the capsule were a prolate spheroid), i.e. r(eq)

⊥ = 4r2E(ε(r2, r3))/2π,
where E(x) is the complete elliptic integral of the second kind (Abramowitz & Stegun
2012) and ε(r2, r3) =

√
1 − (r3/r2)2 is the eccentricity of the ellipse. In figure 6(d), we

plot the transversal deformation, represented by r(eq)
⊥ versus the elongation, r|| ≡ r1, both

normalised by the rest radius r, for the capsule with C = 0.1. It can be seen that, although
r(eq)
⊥ /r never exceeds 1, i.e. overall the membrane cross-section shrinks with respect to the

equilibrium shape, there is a range of Ca for which it expands as the capsule is elongated.
This is an intriguing behaviour, in fact the opposite of the slope of the curve in figure 6(d),
ν̃s = −dr(eq)

⊥ /dr||, can be interpreted as a local Poisson’s ratio, which is negative for
1.3r � r|| � 1.7r. This observation hints at a sort of local (in shear) ‘auxeticity’ (Evans
et al. 1991) of membranes obeying a Skalak-type constitutive law with low values of the
membrane inextensibility parameter.
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Figure 5. (a) Steady-state Taylor deformation parameter. (b)–(d) Steady-state mean semi-axes of the capsules
normalised by the reference radius as function of C for different values of φ. The legend is indicated in (a).
Here Ca = 1.

In figure 7(a) we show the average Taylor deformation parameter as function of Ca,
for various φ. Two sets of data corresponding to C = 50 (closed symbols) and C = 150
(open symbols) are reported. The deformation grows as 〈D〉 ∼ Ca for small capillary
numbers, as expected, and then sublinearly as the Ca increases (eventually we observe a
logarithmic dependence 〈D〉 ∼ log(Ca), in agreement with previous numerical Dodson III
& Dimitrakopoulos (2010) and experimental Hardeman et al. (1994) findings), reflecting
the strain-hardening character of the capsules. It can be asked whether one may find a
functional form that allows to recast the variability among curves into a single curve-shape
parameter, Ca∗(φ, C), that is

〈D〉 ≡ D(Ca, φ, C) = Ag
(

Ca
Ca∗(φ, C)

)
, (3.2)

where A is a constant prefactor and the function g(x) has to be chosen such that it
reproduces and connects both behaviours at small and large Ca, that is g(x) ∼ x as x → 0
and g(x) ∼ log(x) for x � 1. This is indeed possible and we show it in figure 7(a).
There, the fits, indicated by the dashed lines, are obtained from (3.2), choosing for the
function g the expression g(x) = log(1 + x), with the same A = 0.1 and, from bottom to
top, Ca∗ = 0.13, Ca∗ = 0.07 and Ca∗ = 0.037, respectively. For a fixed capillary number,
〈D〉 increases linearly with the volume fraction φ, similarly to suspensions of drops and
neo-Hookean capsules (Loewenberg & Hinch 1996; Matsunaga et al. 2016). Conversely,
the larger is the membrane inextensibility C, the less deformed are the capsules.

Given the self-similar form of (3.2), we would like to find a universal curve for 〈D〉,
through a proper definition of an effective capillary number Caeff . The enhancement of
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Figure 6. (a)–(c) Steady-state semi-axes (normalised by the reference radius of the initially spherical
stress-free capsule) as a function of Ca for capsules with C = 0.1, 1 and 10, respectively (the legend is indicated
in (a)). (d) Transversal deformation versus elongation (normalised by the reference radius) for capsules with
C = 0.1, and Ca ∈ [0.1; 7.5]. Open symbols refer to φ = 0.1 (semi-dilute suspension), whereas full symbols
to φ = 0.001 (dilute suspension).

deformation with φ can be interpreted as an effect of larger viscous stresses around the
particle, owing to the fact that the effective viscosity of the suspension increases with the
volume fraction (this aspect will be discussed in more detail in the next subsection). This
suggests that we should replace, in Caeff , the ‘bare’ dynamic viscosity with the effective
one, μ0 → μeff = μ0(1 + [μ]φ). Here we assume, for simplicity, linearity in φ and a
constant (with Ca and C) intrinsic viscosity, equal to its large C limit, [μ] ≈ 2.8 (see
§ 3.1).

Furthermore, we note that for a non-zero membrane inextensibility, it is more
appropriate to base the capillary number on the Young’s modulus instead of the
shear modulus (Barthès-Biesel & Rallison 1981). We propose to replace Gs with Es =
((2 + 4C)/(1 + C))Gs. However, this might not be sufficient. In fact, the imposed
constraint of volume conservation, for a spherical equilibrium shape, effectively entails an
extra tension on the surface, because the capsules tend to become essentially undeformable
as the area dilatation modulus is increased. This can be accounted for by the substitution

Es → E(eff )
s = (2 + 4C)

(1 + C)
G(eff )

s = (2 + 4C)

(1 + C)
(1 + βC)Gs (3.3)
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Figure 7. (a) Mean Taylor deformation parameter for a suspension of strain-hardening capsules as a function
of Ca, for two values of membrane inextensibility, C = 50 (filled symbols) and C = 150 (open symbols). The
dashed lines are fits of the numerical data using (3.2) with A = 0.1 and (from bottom to top) Ca∗ = 0.13,
Ca∗ = 0.07 and Ca∗ = 0.037, respectively. The arrow indicates a growing volume fraction φ. (b) Mean Taylor
deformation parameter as a function of the effective capillary number (3.4). The dashed line corresponds to the
fitting function (3.2) (Aeff = 0.1 and Ca∗

eff = 4 × 10−3). Inset: Lin-Log plot of 〈D〉 vs Caeff , highlighting the
logarithmic behaviour for Caeff > Ca∗

eff . The legend is indicated in (b).

(β being a free parameter, which we set hereafter to α = 0.07) in the effective capillary
number, which then finally reads

Caeff (φ, C) = μeff γ̇ r

E(eff )
s

= (1 + [μ]φ)(1 + C)

(2 + 4C)(1 + βC)

(
μ0γ̇ r

Gs

)
≡ (1 + [μ]φ)(1 + C)

(2 + 4C)(1 + βC)
Ca. (3.4)

When plotted as a function of Caeff , the values of 〈D〉 for different φ and C collapse onto
a single master curve, as shown in figure 7(b). Such a curve can also be fitted using (3.2),
with A = 0.1 and Ca∗

eff = 4 × 10−3. Note that the existence of a single Ca∗
eff capable to
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Figure 8. Normal stress differences (normalised by the dynamics viscosity of the fluid times the applied
shear) as a function of C for Ca = 1 (a,b) and as function of Ca for C = 1 (c,d). The legend is shown in (a).

fit all data sets upon the rescaling (3.4) is equivalent to saying that the dependence of the
curve-shape parameter Ca∗ on Ca and C is such that Ca∗ ∝ G(eff )

s (C)/μeff (φ).

3.3. Suspensions: rheology
We now consider the rheological response of the system by looking at the suspension
relative viscosity and normal stress differences. In figure 8, we plot N1 and N2
(normalised by μ0γ̇ ), for various volume fractions, for Ca = 1 as a function of the
membrane inextensibility (figure 8a,b) and for C = 1 as a function of the capillary
number (figure 8c,d). We see that both (though N2 only weakly) show a non-monotonic
dependence on C, a behaviour that is enhanced as φ is increased. In particular, N1 initially
grows with C, reaches a peak at C ≈ 10, and then starts to decrease. For emulsions and
strain-softening capsules, the magnitude of N1 is significantly larger than the magnitude
of N2, whereas the opposite is true for suspensions of rigid particles. Here N1 and N2
are known to be correlated to hydrodynamic interaction, and particle–particle collisions,
respectively (Guazzelli & Pouliquen 2018). We find that for strain-hardening capsules N1 is
positive and grows monotonically with Ca, whereas N2 has a negative sign and decreases
with Ca (in qualitative agreement with what found for suspensions of strain-softening
capsules Matsunaga et al. 2016). The magnitude of N1 is always larger than N2, but
the ratio |N1|/|N2| diminishes with the increase of C. It seems, therefore, in principle
possible, by tuning their deformability through C, to make collections of such soft particles
behave rheologically more as solid suspensions or as emulsions and suspensions of
strain-softening capsules.
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Figure 9. Relative viscosity as function of the volume fraction for several values of C and Ca = 0.5. The
curves correspond to (3.5) with [μ] = 1.63, K = 0.64 (dotted line) and [μ] = 2.84, K = 13.5 (dashed line),
respectively.

To delve deeper into this aspect, we study how the dependence of the relative viscosity
of the suspension on the capsule volume fraction changes with C. We report in figure 9
the behaviour of μr versus φ for Ca = 0.5 and various C. The relative viscosity of a
suspension can be expressed as a polynomial function of the volume fraction as

μr = 1 + [μ]φ + Kφ2 + O(φ3), (3.5)

where [μ] is the intrinsic viscosity and the second-order term accounts for pair
hydrodynamic interactions and allows to expand the validity of (3.5) to semi-dilute cases
(Batchelor & Green 1972). All data sets in figure 9 can be reasonably well fitted by a
quadratic relation of the type (3.5). As C increases, the data tend to approach a limiting
curve with [μ] = 2.84 and K = 13.5 (dashed line), whereas for low C they tend to agree
well with the curve (dotted line) for strain-softening particles reported in Matsunaga et al.
(2016).

In figure 10(a) we extend the study of the relative viscosity to a range of capillary
numbers, Ca ∈ [0.1, 0.5], in order to analyse the response of the system to changes in
the applied shear. The shear-thinning character of the suspension of capsules can be
appreciated: for a given volume fraction, in fact, μr tends to decrease with Ca (the larger
φ the more evident is the shear-thinning), but the spread is reduced for larger C, i.e. the
shear-thinning tends to be suppressed, confirming that also for semi-dilute and moderately
concentrated regimes, the rheology of suspensions of strain-hardening capsules resemble
that of solid suspensions. In order to find a universal behaviour of the relative viscosity
across the various shear rates, recently Rosti, Brandt & Mitra (2018) introduced, for
suspensions of deformable viscoelastic spheres (and Takeishi et al. (2019) extended to the
case of red blood cells), the notion of a reduced effective volume fraction, calculated using
for the particle volume (when they are in the deformed state), that of a sphere with a radius
equal to the smallest particle semi-axis r3, i.e. Φeff = 4

3πr3
3. The rationale behind this

approach is that the dynamically ‘active’ direction is the velocity gradient (wall-normal
direction) and, because the deformed particles do not tumble and tend to align with the
flow direction, then the relevant length is the minor axis. For r3, the average value as
measured in the simulations was taken. Here, we propose to relate r3 to the radius at rest
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Figure 10. (a) Relative viscosity as a function of the volume fraction for different Ca and C. The inset shows
μr plotted as function of the effective volume fraction as defined in (3.8). The legend of (a) is shown in (b).
(b) Relative viscosity as a function of the effective volume fraction (see (3.9)). The dashed line corresponds to
a fit of the numerical data using (3.10), with B = 1.4 and Φm = 0.7. Same for the dotted line but with B = 1.7
and Φm = 1.2

r through the Taylor deformation parameter D. To this aim, let us assume the particles to
be prolate ellipsoids with r1 > r2 = r3 (this is an approximation that allows to close the
problem, although we know that the specific relation among the three axes depends on the
value of membrane inextensibility C). Here r1 and r3 enter into the expression of D (2.20),
that can be inverted as

r1 = 1 + D
1 − D

r3. (3.6)
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Owing to volume conservation we have r3 = r1r2
3 and therefore r3 = ((1 + D)/(1 − D))r3

3,
which implies

r3 =
(

1 − D
1 + D

)1/3

r. (3.7)

If we now define, as in Rosti et al. (2018), the effective volume fraction as Φeff ≡ 4
3π〈r3〉3n

and assume (3.7) to be valid also for average quantities in the suspension, we obtain

Φeff = 1 − 〈D〉
1 + 〈D〉φ. (3.8)

As we learned from the previous section, 〈D〉, in turn, depends on φ, on the capillary
number and on C. If we plug (3.2) inside (3.8), with the rescaled effective capillary
number, (3.4), and we plot μr as a function of the obtained Φeff , we observe a reasonable
overlap of the data, although with some deviations, especially for the largest values of C
(see inset of figure 10a). We ascribe this partial failure to the fact that our strain-hardening
capsules are not precisely aligned with the flow direction (see figure 2b). Consequently,
the relevant, flow-orthogonal, length is not exactly r3, but the vertical semi-axis of the
ellipse, resulting as the section of the particle ellipsoid on a plane perpendicular to the flow
direction (and crossing its centre). It is easy to show, by geometrical arguments, that such
length is � = r3

√
((1 + b2)/(1 + (r3/r1)2b2)), where b = tan(θ), and θ is the inclination

angle. If we define the effective volume fraction in terms of this length (and recalling that
r3/r1 = (1 − D)/(1 + D)), equation (3.8) becomes

Φeff = 1 − 〈D〉
1 + 〈D〉

⎛
⎜⎜⎜⎝ 1 + b2

1 +
(

1 − 〈D〉
1 + 〈D〉

)2

b2

⎞
⎟⎟⎟⎠

3/2

φ. (3.9)

The parameter b itself depends, through θ , on Ca and C. However, for simplicity, we
consider it here as a fit constant, taking for θ values restricted to the range in figure 2(b).
In particular, for θ = π/5 (b ≈ 0.726), we get a nice collapse of all data sets onto a single
master curve which can be well fitted, among others, with an Eilers function (Eilers 1941)

μr(Φeff ) =

⎡
⎢⎢⎣1 + BΦeff

1 − Φeff

Φm

⎤
⎥⎥⎦

2

, (3.10)

with parameters B = 1.4 and Φm = 0.7 (figure 10b). Choosing B = 1.7 and Φm = 1.2
also the branch at large Φeff can be fitted, but these are somehow not sound values. We
argue, instead, that the deviations from the Eilers fit (which occur for the set of data
corresponding to the largest C = 150 and φ = 0.4, 0.5) are due to the fact that under these
conditions important hydrodynamic correlations emerge which cannot be simply adhered
to a reduced volume effect. Let us stress that the relation (3.8), as much as in the approach
of Rosti et al. (2018), needs an empirical input (the function g(x) in (3.2)). However, for
small effective capillary number, it is possible to approximate g with its linear part, thus
providing a closed and explicit expression for Φeff (Ca, C, φ) and, consequently, an explicit
dependence of the relative viscosity μr on Ca, C and φ.
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4. Conclusions

The rheology of a suspension of strain-hardening capsules is investigated numerically
from the dilute to the concentrated regimes in a simple shear flow. We have addressed
the role of the membrane inextensibility, C, on the capsule shape and on the suspension
rheology, at varying the volume fraction, φ, and the capillary number, Ca (based on the
applied shear). Our results indicate that increasing the membrane inextensibility makes
the capsules less deformable, and as a consequence the shear-thinning character of the
suspension is hindered. We show that, upon a proper definition of an effective C- and
φ-dependent capillary number, the mean Taylor deformation parameters relative to various
data sets collapse onto a single master curve. However, it proved necessary to go beyond
the deformation parameter, in order to get a deeper insight on the complex impact the
membrane inextensibility has on the full three-dimensional capsule shape. The three
principal semi-axes displayed, in fact, a non-monotonic dependence on C, and for small C
(C = 0.1) and a certain range of Ca, an auxetic behaviour of the capsules was observed.
The characteristic shape behaviour was reflected in a non-monotonic dependence of the
first normal stress difference with the membrane inextensibility. Finally, the rheological
response of the suspension has been analysed also in terms of its relative viscosity.
The latter showed a universal behaviour across the various concentrations, shear rates
and membrane inextensibilities explored, once an effective volume fraction, taking into
account the capsules elongation and orientation, was introduced.
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Appendix A

A.1. Particle discretisation and mesh quality
Our membrane is discretised using triangular elements. The spherical capsule results from
refining an icosahedron recursively Nr times. The total number of faces denoted Nf is
defined from the total number of vertices Nv and the number of recursive refinement such
as Nf = 2Nv − 4 and Nv = 2 + 10 · 4Nr . In this work, we used Nr = 3 leading to Nv = 642
and Nf = 1280. To study the effect of the mesh discretisation on the shape and rheology,
we varied Nr from 2 to 4, which corresponds namely to Nf = 320 and Nf = 5120. We set
C to unity to test situations with large deformations.
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Nf 320 1280 5120

r1/r 1.429 ± 0.027 1.445 ± 0.028 1.442 ± 0.027
r2/r 1.095 ± 0.012 1.117 ± 0.0145 1.116 ± 0.0138
r3/r 0.61 ± 0.023 0.612 ± 0.024 0.619 ± 0.024
D 0.401 ± 0.024 0.404 ± 0.025 0.398 ± 0.024
θ/π 0.138 ± 0.007 0.139 ± 0.007 0.139 ± 0.007
[μ] 2.109 ± 0.124 2.226 ± 0.129 2.25 ± 0.133

Table 1. Steady-state shape and rheology quantities (time averaged) for Ca = 0.5 and C = 1.

0.5
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Figure 11. (a) History of the mean deformation and (b) the relative viscosity of the capsules for a semi-dilute
suspension (φ = 0.3) and two different membrane inextensibilities (C = 1, 150).

We report in table 1 some of the relevant quantities measured for different number
of faces (Nf = 320, 1280, 5120), C = 1 and Ca = 0.5. The standard deviations of the
different shape and rheology parameters are negligible for the three meshes, whereas the
errors stemming from decreasing the number of faces of the mesh are significantly small.

A.2. Statistically stationary state and time averages
Figure 11 depicts the time evolution of the mean deformation and relative viscosity of a
suspension of capsules in the semi-dilute limit with φ = 0.3 for two different values of
the membrane inextensibility (C = 1, 150) and a fixed capillary number (Ca = 0.5). The
time average is performed on the interval where the Taylor deformation index averaged
over the number of particles reaches a steady-state value with fluctuations less than 1 %.
In term of strain units, we have observed that the transient time spans over the first 5 to
7γ̇ t.

A.3. Grid independency
In order to check that the system size in the periodic directions is large enough to ensure
grid independency of the results, we test here the behaviour of two relevant observables,
namely the mean Taylor deformation parameter, 〈D〉, and the relative viscosity, μr.
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Box size Np εD εμr

8r × 8r × 16r 73 0.47 % 3 %
32r × 32r × 16r 1174 0.62 % 2.3 %
64r × 64r × 16r 4696 0.38 % 2 %

Table 2. Relative errors on 〈D〉 and μr for different system sizes.
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Figure 12. Effect of the short-range repulsive force on the relative viscosity of a suspension of capsules.

We performed simulations at changing the box size from 8r × 8r × 16r to 64r × 64r ×
16r, for fixed C = 150, Ca = 0.5, φ = 0.3 and wall-to-wall distance L = 16r. We have
varied the number of particles (Np) to keep a fixed volume fraction. For the sake of
comparison, we look at the relative (percentage) errors for the mean Taylor deformation
parameter and the relative viscosity, defined as

εD = 〈D〉 − 〈D〉(0)

〈D〉(0)
, (A1)

and

εμr = μr − μ
(0)
r

μ
(0)
r

, (A2)

respectively (〈D〉(0) and μ
(0)
r being the values corresponding to the cubic reference case,

used throughout the paper). The results are reported in table 2. All relative errors are small
and decrease from 0.47 % to 0.38 % (for the deformation parameter) and from 3 % to 2 %
(for the relative viscosity), denoting a satisfactory degree of convergence for the resolution
employed.

A.4. Effect of the short-range repulsive force
A well-known limitation of the LB-IBM scheme is the interpolation of the membrane
velocity from the surrounding fluid when the distance between two boundary nodes
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is below the lattice resolution limit that can result in a permanent overlap between
neighbouring nodes (Krüger 2012). The probability of such event to occur increases
with the volume fraction of the suspension. To prevent such situation a short-range
repulsive force must be applied on neighbouring nodes from different membranes when
the node-to-node distance (dij) is below one lattice spacing (�x), whereas it vanishes for
dij > �x (see (2.8)). Without any short-range repulsion, we do indeed observe crossing
particles for φ > 0.3. Such force is, therefore, needed, however its details do not affect the
macroscopic behaviour of the suspension, within the range of volume fractions explored
in this study. To show this, we report in figure 12 results on the relative viscosity from
simulations with C = 150, Ca = 0.5 and φ ∈ [10−3, 0.5], for three different values of
the force amplitude: ε̄/(Gsr) = 0 (absence of force), ε̄/(Gsr) = 1 and ε̄/(Gsr) = 102 (the
value used in all simulations throughout the paper). Only a slight deviation (of less than
10 %) can be detected for ε̄/(Gsr) = 0 at φ = 0.3 (for larger φ data are not available
because of the occurrence of crossings), otherwise all sets of data basically overlap, within
error bars.
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