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How to extract energy from turbulence in flight
by fast tracking
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We analyse a way to make flight vehicles harvest energy from homogeneous turbulence by
fast tracking in the way that falling inertial particles do. Mean air speed increases relative
to flight through quiescent fluid when turbulent eddies sweep particles and vehicles along
in a productive way. Once swept, inertia tends to carry a vehicle into tailwinds more often
than headwinds. We introduce a forcing that rescales the effective inertia of rotorcraft in
computer simulations. Given a certain thrust and effective inertia, we find that flight energy
consumption can be calculated from measurements of mean particle settling velocities and
acceleration variances alone, without the need for other information. In calculations using
a turbulence model, we optimize the balance between the work performed to generate the
forcing and the advantages induced by fast tracking. The results show net energy reductions
of up to approximately 10 % relative to flight through quiescent fluid and mean velocities
up to 40 % higher. The forcing expands the range of conditions under which fast tracking
operates by a factor of approximately ten. We discuss how the mechanism can operate
for any vehicle, how it may be even more effective in real turbulence and for fixed-wing
aircraft and how modifications might yield yet greater performance.

Key words: flow-structure interactions, swimming/flying, particle/fluid flow

1. Introduction

A question central to the study of flight is the effect of flow unsteadiness on energy
consumption. Range and endurance limit the utility of flight vehicles, particularly small
ones (Wood 2007; Chabot 2018; Shakhatreh et al. 2019). While it is common to make
predictions of range and endurance under the assumption that the air is quiescent, this
assumption can be inaccurate. Given a specific trajectory, flight through unsteady air
comes at the expense of the work performed to maintain the trajectory. Perhaps the
unsteadiness, or turbulence, can itself be so energetic that it represents an auxiliary energy
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reservoir that can be used to maintain flight. The challenge is to show if and when the
latter case can prevail. Related questions apply to volant lifeforms (Norberg 1996; Bowlin
& Wikelski 2008).

It is well known that energy can be extracted from mean winds and large coherent
structures in the atmosphere in order to extend range or endurance. Examples include
thermal updrafts, mountain waves and shear layers. These structures are approximately
steady and predictable enough to be exploited by glider pilots (de Divitiis 2002; Teets &
Carter 2002; Langelaan 2007; Chudej, Klingler & Britzelmeier 2015), birds (Ákos et al.
2010; Nourani & Yamaguchi 2017) and autonomous flight vehicles (White et al. 2012;
Fisher et al. 2015; Watkins et al. 2015; Reddy et al. 2016).

Energy can also be extracted from the atmosphere when there is no mean wind by
responding in specific ways to random gusts, or turbulent fluctuations. Birds such as
the albatross may do so (Pennycuick 2002, 2008; Mallon, Bildstein & Katzner 2015).
The majority of autonomous methods developed by humans to do so respond to flow
measurements (Patel & Kroo 2006; Lissaman & Patel 2007; Langelaan & Bramesfeld
2008), while birds or glider pilots may instead respond to their own accelerations (Morelli
2003; Laurent et al. 2021). Quinn et al. (2019) show that birds responded effectively
to unsteady flows given even limited sensory information. Katzmayr (1922) shows that
fixed-wing aircraft can extract the energy in random gusts by clever transient rotations of
the net aerodynamic force vector. To understand the effect, which Patel, Lee & Kroo (2009)
verify in flight, consider that fixed-wing aircraft generally have much greater lift than drag
so that their combination, or the net aerodynamic force on the aircraft, is almost normal to
the direction of motion. Consequently, small upward gusts rotate the direction of the mean
flow slightly in the reference frame of the wing and tilt the aerodynamic force forward
transiently, which reduces drag (or increases thrust). Ignoring mean winds, upward and
downward gusts are equally likely, but due to a nonlinearity the upward gusts cause larger
net aerodynamic forces, so that transient drag reductions from upward gusts outweigh the
corresponding increases from downward gusts. While gust velocities are smaller than the
cruise speed of most aircraft, they are often of the same order as the downwash velocity
so that vertical gusts can induce a significant change in the orientation of the lift vector
relative to the aircraft’s direction of flight, enough to cause flight power to drop transiently
and even vanish (Pennycuick 2002; Lissaman & Patel 2007). This makes vertical gust
energy extraction effective for birds and fixed-wing aircraft. For rotorcraft, in contrast, the
downwash velocity is typically large compared with vertical gust velocities so that flight
power is not strongly affected. Neutrally buoyant vehicles do not require energy to maintain
altitude (or depth for submarines) so that they cannot exploit the Katzmayr effect.

The methods developed for fixed-wing aircraft as well as those employed by birds and
glider pilots appear to have in common a tendency to amplify gust disturbances, in specific
and controlled ways, rather than suppress them – the opposite of what is typical in stability
and control problems (Morelli 2003; Patel et al. 2009; Mallon et al. 2015). Gorisch (2011)
notes that reducing glider inertia as well as adding positive feedback flaps to increase
gust-induced accelerations can theoretically improve turbulent energy capture.

Most algorithms for fixed-wing aircraft rely on the Katzmayr effect and the
oversampling of flow in upwards gusts to extract energy from the gusts. Hence, these
methods take a time-based signals approach to turbulence in the sense that the only
necessary information about the flow is the vertical gust velocity as a function of time.
The methods do not incorporate knowledge about the spatial structure of the flow. Rather
than taking this approach, which results in appreciable benefits only for fixed-wing
aircraft utilizing vertical gusts, gust energy capture has also been framed as a global
path optimization problem. Given known wind fields, flight paths are routinely optimized
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to avoid headwinds and seek out tailwinds. With full knowledge of the flow, it is also
possible to avoid downdrafts and seek out updrafts. These ideas apply underwater and
on free surfaces as well, and are similar in spirit to updraft, thermal, and shear-layer
soaring in that they typically only apply when flows are approximately stationary
(Langelaan 2007; Fernández-Perdomo et al. 2010; Yokoyama 2011; Koay & Chitre 2013;
Chudej et al. 2015; Mahmoudzadeh, Powers & Yazdani 2016). The global approach to
path optimization through turbulence is challenging because it requires rapidly updated
flow-field measurements or real-time modelling and prediction of the flow. Furthermore,
methods and algorithms employed at present on autonomous vehicles are often limited by
the measurements the vehicle can itself make about its environment (e.g. Garau, Alvarez
& Oliver 2006).

In this paper we address the global path optimization problem using fluid dynamics
to find efficient yet sub-optimal paths through turbulence without the need for real-time
optimization algorithms. We analyse, theoretically, a way for vehicles to extract energy
from turbulence by mimicking the aerodynamic coupling between inertial particles and
turbulence. Inertial particles falling through turbulence naturally find non-trivial and
energetically favourable paths that vehicles can follow using information only about their
own accelerations, with no real-time modelling, and with only a parametric description of
the flow. To see how this is possible requires an understanding of the way inertial particles
behave in turbulence when gravity biases their direction of motion.

Small particles fall down through turbulent flows faster on average than through a
quiescent fluid; in some cases, nearly three times faster (Maxey 1987a,b; Wang & Maxey
1993; Good et al. 2014; Tom & Bragg 2019). Although completely passive, particles find
these favourable paths when their inertial time scale is resonant with a flow time scale, or
in flows that evolve approximately as quickly as the particles can respond to this evolution.
Under these conditions, particles tend to be swept toward the sides of vortices that push
them down more quickly (Wang & Maxey 1993).

Rotorcraft, or any other vehicle, forced to act like particles of the right inertia can
passively find faster paths, albeit in the direction of their destination rather than toward
the ground. To do so, a vehicle needs to apply forces proportional to its measured
instantaneous accelerations, for instance, and thereby modify its effective mass so that
it reacts to gusts just as fast-tracking particles do, but with a bias toward a destination
provided by a mean thrust rather than by gravity. This results in energy extraction from
turbulence in spite of a lack of knowledge about the instantaneous structure of the
surrounding flow. It is a proof of this principle that we explore in this paper.

We call the forcing cyber-physical since it changes the effective inertia of the rotorcraft.
The concept of using cyber-physical tools to achieve desired interactions between a body
and flow has been explored before. Mackowski & Williamson (2011), for instance, study
fluid–structure interactions and vortex shedding on a cylinder. Previous implementations
rely on tethered force measurements rather than untethered acceleration measurements in
their computations (Hover, Techet & Triantafyllou 1998; Mackowski & Williamson 2011).

We focus in this paper primarily on rotorcraft that are smaller than the size of the
dominant turbulent flow structures through which they fly, and that move in only two
dimensions, one of which is in the direction of a destination. The two dimensions are
perpendicular to gravity, with a mean thrust for rotorcraft playing the role of gravity for
inertial particles.

In § 2, we review a simple model of rotorcraft flight and propose a simple cyber-physical
forcing on the rotorcraft. We find that the form of the dimensionless equations of motion
is the same as the one for settling particles. The forcing allows rotorcraft to mimic a
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particle of any settling parameter and Stokes number. While the forcing allows any place
in parameter space to be reached in principle, there is a cost to doing so determined by
the magnitude of the forces the rotorcraft needs to generate in order to mimic the desired
particle dynamics. We find that these costs are determined in part by the moments of
the probability density function of inertial-particle accelerations. The balance between the
costs and the gains realized by moving into energetically favourable parts of parameter
space lead to the existence of optimal shifts in the parameters, which depend on the
characteristics of the turbulence and of the rotorcraft in ways that we calculate. The
methods section (§ 3) describes how we simulated turbulence, rotorcraft flight, and how
we perform the optimizations.

In § 4 we present the advantages realized by a simple cyber-physical forcing. The
purpose of the calculations is to delineate the boundaries in parameter space within
which potential gains can be realized by the forcing. We find that compared with flight
through quiescent fluid (QF), fast-tracking forcing (FT) reduces both energy consumption
and flight time. The advantages are significant for rotorcraft with natural response times
faster than the characteristic turnover time of the flow, and for vehicles with cruising
speeds within an order of magnitude of the characteristic speed of turbulent fluctuations
in the flow. Relative to doing nothing (DN), in a sense explained below, the advantage of
the forcing is to broaden the range of conditions under which turbulence benefits flight,
particularly if the effective vehicle inertia is anisotropic as explained in the theory section.
DN in turbulence is automatically beneficial relative to flight through QF due to intrinsic
fast-tracking, provided the relevant dynamics applies or can be made to apply to a vehicle.
The cost of gust suppression, or disturbance rejection (DR), is large compared with the
gains realized by any other flight mode.

We expect that further benefits to flight may be realized through increased sophistication
of the forcing model, ideas for which we review in § 5. Furthermore, comparisons with
experiments on particles in turbulence suggest gains up to ten times larger than those
we found in our calculations (Wang & Maxey 1993; Good et al. 2014). The reduced
gains appearing in the calculations are comparable to those achieved in previous studies
using turbulence models that respect turbulence statistics and kinematics but ignore the
dynamics of real turbulence. This may be the result of vorticity in the models not being as
strongly correlated spatially or temporally as in real turbulence. Finally, we believe that the
theory can be generalized to three dimensions and to any properly forced vehicle moving
in a turbulent fluid.

2. Theory

As a foundation for autonomous flight strategies to navigate turbulent flows efficiently,
we use a simple model of flight vehicle dynamics to show how it leads naturally to a
forcing strategy. The flight vehicle is a rotorcraft, meaning that the thrust not only propels
the vehicle but also directly supports its weight. One component of the thrust points in a
fixed direction, meaning that the destination for the flight vehicle is at ∞, or far away. We
consider statistically homogeneous, isotropic turbulence with a zero mean, and for further
simplicity, we consider flows that fluctuate only in the plane perpendicular to gravity.
Fast tracking operates in both two and three dimensions, and we expect the results we
observe in two dimensions to generalize to three (Maxey & Corrsin 1986; Rosa et al. 2016).
The potential advantages are realized statistically, meaning that our results are expectation
values for many flights, or for long flights, through statistically stationary turbulent flows.

We compare the case of flight through turbulence under FT forcing to the cases of
flight through each of quiescent fluid (QF), turbulent fluid while DN, and turbulent fluid

921 A18-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

49
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.499


Fast tracking in flight
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Figure 1. Movement is in the ê1–ê2 plane (red), while gravity (g) points in the −ê3 direction. The constant
component of the thrust, f 0, points opposite to ê2, and additional components defined in the text include the
one given by the forcing, f C. Drag on the vehicle, f d , depends on the relative velocity between the vehicle and
fluid.

while rejecting disturbances. The letters in parentheses appear as subscripts to denote the
conditions under which different quantities were calculated. While the DN case does
not correct deviations from its path caused by turbulence, implicit in all cases is the
assumption that the rotorcraft controls its angular degrees of freedom quickly compared to
the dynamics of interest; this may be a better assumption for rotorcraft than for fixed-wing
aircraft in turbulence (Watkins et al. 2012).

2.1. Particle dynamics and fast tracking
The momentum equation for heavy particles balances the particle’s inertia with drag and
gravity and is

dũ
dt̃

= f̃ d,p + g̃, (2.1)

where ũ is the particle velocity, tildes denote quantities with units and the coordinate
system is in figure 1. Additional terms are needed to capture non-zero Reynolds-number
and fluid-inertia effects, which we neglect since the dynamics produced by (2.1) captures
the inertial-particle phenomena of interest here (Maxey & Riley 1983).

Drag on small particles is linear in the velocity relative to the fluid, and the specific drag
force is

f̃ d,p = (w̃ − ũ)/τp, (2.2)

where τp is the characteristic response time of the particle and is large for massive,
inertial particles. For particles at low Reynolds numbers, τp is given by Stokes’ law,
τp = ρd2/18μ, where ρ and μ are the density and viscosity of the fluid, and d is the
diameter of the particle (e.g. Wang & Maxey 1993). The fluctuating fluid velocity in the
vicinity of the particle is w̃, which is not modified by the presence of the particle in this
model, and is given by measurements or by solutions to the Navier–Stokes equations for
the fluid. We let g̃ = −g̃ê3, as in figure 1, and we do not model the particle orientation
(Maxey & Riley 1983).

We make (2.1) dimensionless with the characteristic velocity and length scales of the
turbulence, U and L, respectively, and incorporate (2.2) so that

du
dt

= 1
Stp

(w − u − Wpê3), (2.3)

where the Stokes number, Stp = τpU/L, compares the characteristic turbulence and
particle time scales and is large for heavy particles, and the settling parameter
Wp = UQF,p/U is the ratio of the particle’s settling velocity through quiescent fluid,
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UQF,p = τpg, to the characteristic velocity of the turbulence. In general, the perturbations
caused by turbulence lead to increased path lengths for particles settling through the fluid.
Intuition may suggest, then, that settling times generally increase through turbulent fluid
relative to quiescent fluid, but this is not the case.

An interesting feature of solutions to (2.3) is that the mean particle velocity (in the
direction of g), is larger in a turbulent flow than in a QF (Maxey 1987a). The surface of
mean settling velocity, which depends on Stp and Wp, has a basin of increased velocity
as its single feature of interest. This basin is centred near normalized particle inertia and
velocity of order one. The phenomenon, called fast tracking (Maxey & Corrsin 1986),
occurs despite path lengths being increased by turbulence. An eddy moving opposite a
particle’s direction of motion tends to push the particle away, causing the particle to move
into a new eddy. On the other hand, eddies with the same direction of motion as the
particle sweep the particle along. In this way, particles tend to be swept into those parts of
a turbulent flow with tailwinds without need for sensors or computation.

In the following sections we define and characterize a cyber-physical forcing designed to
produce FT in flight vehicles even if a vehicle’s inertia and air speed are not appropriately
tuned with the flow in the way that produces fast tracking in particles.

2.2. Flight vehicle dynamics (DN)
In order to generate qualitative insight, we treat flight vehicles theoretically like small
particles characterized only by their mass, by a drag force proportional to their motion
relative to air, and by a body force. For small particles, the body force is gravity, while
for flight vehicles it is the thrust that keeps them aloft and propels them toward a given
destination. While this model ignores many important aspects of flight vehicle dynamics
(e.g. Johnson 1980), it is commonly used for rotorcraft and fixed-wing flight control
problems both with and without turbulence (e.g. Patel et al. 2009; Kushleyev et al. 2013;
Preiss et al. 2017), and explains some observed behaviours of birds flying through the
turbulent atmosphere (e.g. Laurent et al. 2021). Our flight-vehicle momentum equation is
then

dũ
dt̃

= f̃ d + g̃ + f̃ T + f̃ C. (2.4)

We explain the various terms in the following paragraphs. Drag is linear in the relative
velocity for small particles (2.2). Although drag is generically quadratic, and not linear,
for macroscopic flight vehicles at large Reynolds numbers (Johnson 1980), we Taylor
approximate the drag about its mean to first order

f̃ d =
(

w̃ − ũ + 1
2 UQF ê2

)/
τd, (2.5)

which holds for small perturbations around an air speed, UQF, determined by the thrust
defined below, and by the time constant, τd, that characterizes the response of the flight
vehicle to changes in air speed. Note that fully nonlinear drag can cause loitering, the
opposite of fast tracking (Good et al. 2014), but that flight can nonetheless be enhanced
beyond the baseline set by nonlinear drag with the cyber-physical methods introduced
here. The form of the drag does not change our qualitative conclusions, and arbitrary
nonlinearity can be incorporated into the flight vehicle model by modifying (2.5).

We let the specific thrust, f̃ T , have one component that balances gravity so that the
vehicle maintains altitude, and another component that maintains a certain air speed, UQF,
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through quiescent fluid given by f̃0 = 3UQF/2τd, so that

f̃ T = gê3 − f̃0ê2. (2.6)

Physically, f̃0 constantly pushes the flight vehicle toward its destination, which is at infinity
in the −ê2 direction, and which in practice requires that the vehicle knows its orientation
and that it keeps a fixed component of its thrust pointed toward the destination with
an orientation controller that is not part of our analysis. In other words, we assume
that rotational degrees of freedom were controlled quickly enough to produce desired
translations, which is justified by the separation in scales between the integral length scales
of atmospheric turbulence and the size and response time of most rotorcraft. An additional
thrust force, f̃ C, is unconstrained in general except by requirements on the stability and
performance of the flight vehicle, which are beyond the scope of this study. We introduce
a specific form for this forcing in the next section.

2.3. Flight vehicle dynamics (FT)
Here we summarize the selection of a particular forcing and of particular values for its
free parameters. We show under certain conditions that the governing equation for a flight
vehicle is the same as the one for a falling particle, though in a horizontal rather than
vertical plane. This means that the inertial-particle literature can be applied to the analysis
of FT flight vehicles. To change the vehicle’s dynamics under the constraint that it mimics
the particle dynamics, the forcing, f̃ C, could imitate either particle inertia or drag. We
choose to generate an effective inertia different from the vehicle’s real inertia with a force
proportional to acceleration, f̃ C = C dũ/dt̃, where C is a dimensionless constant that we
call the virtual inertia. Real inertia is isotropic and positive definite. Virtual inertia in
contrast can be positive or negative, as well as anisotropic. As a result it can increase or
reduce the effective inertia of a flight vehicle, which is the sum of its real and virtual
inertias. That is, the virtual inertia can be adjusted to make a lightweight vehicle act like
a heavier one, for instance. The only measurements needed to implement the forcing are
given by on-board accelerometers – the flight vehicle itself is the only probe necessary and
no flow measurements are needed.

We introduce anisotropy in the virtual vehicle inertia as an archetypal modification to
particle physics that might extend the advantages of fast tracking to more vehicles and
conditions. To do so, we let

f̃ C = C
dũ
dt̃

, (2.7)

where f̃ C is a vector and C is a 2 × 2 matrix. We consider only diagonal matrices of the
form

C =
[

c1 0
0 c2

]
, (2.8)

where c1 and c2 are dimensionless virtual masses. When they are larger than zero, they
reduce the effective inertia of the flight vehicle in the horizontal plane. When they
approach one, it is as if the vehicle inertia disappears asymptotically and the vehicle
velocity approaches the fluid velocity as explained below.

Finally, we combine (2.4) through (2.8), and make the resulting equation dimensionless
with characteristic velocity and length scales of the turbulence, U and L, respectively.
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In terms of dimensionless variables, which do not have a tilde, the result is

du
dt

= 1
M St

[
1 0
0 1/A

]
(w − u − W ê2). (2.9)

The number M = 1 − c1 is the factor by which the effective inertia of the flight vehicle is
different from its actual inertia, and is larger than one for vehicles that act as if they had
more inertia than they really do in the horizontal direction perpendicular to the average
flight direction. The factor A = (1 − c2)/(1 − c1) is the anisotropy in the effective inertia
and is larger than one for vehicles that have more effective inertia in the direction of flight
than perpendicular to it. Finally, W = UQF/U is the ratio of the flight vehicle’s speed
through quiescent fluid to the characteristic velocity of the turbulence, and gravity does
not contribute to the dynamics since it has been cancelled by one component of the thrust.

The solutions to (2.9) depend on three dimensionless quantities, M St, A and W. Flight
vehicles for which M St is small respond more quickly than w(t) changes in time, in which
case (2.9) can be integrated to show that the vehicle’s velocity, u(t), relaxes exponentially
to w − W ê2 at a rate determined by M St. When M or St approach zero the vehicle loses
its inertia and it moves with the flow; when M is negative the vehicle’s velocity diverges
from the flow velocity exponentially and the flight is unstable.

For isotropic flight vehicles, for which A is equal to one, (2.9) is identical to the one for a
particle settling through turbulence under gravity (2.3) with the parameter M St taking the
place of Stp, and the f̃0 component of the thrust playing the role of gravity in the definition
of W. Up to differences introduced by anisotropy in the virtual inertia, fast-tracking is
therefore a feature of flight vehicle dynamics as it is for particles. The question we next
address is what values of f̃0, c1 and c2 are useful to achieve certain objectives, which we
do in terms of their dimensionless representatives W, M St and A.

2.4. FT flight vehicle power requirements
The dynamic model of an isotropic flight vehicle in (2.9) is identical to the one for
a falling particle, (2.3), but the energetics of each are different. A particle exchanges
potential energy with kinetic energy and drag, while a flight vehicle expends energy to
produce thrust both to stay aloft and to generate other desired motions. We constrain the
coefficients, A and M, of the forcing in (2.9) either by minimizing the energy required
for flight or by maximizing average speed for a given energy. We next estimate the work
performed by the forcing to generate the desired motions and deviations from unforced
flight trajectories.

To derive the energy equation we consider rotorcraft that automatically rotate to point
their propeller axes into the direction of the net thrust, and for which the power required can
be determined from functions of the l2 norm of the net thrust, F T , alone. The approximate
power, P̃, is

P̃ = cP(F̃ 2
T)n, (2.10)

where n = 3/4 in the limit of large induced flow and small propeller advance ratio
according to actuator disk theory (Johnson 1980), but could take other values. The
coefficient, cP, has the dimensions of P̃/F̃2n and depends on the fluid density, propeller
geometry and efficiency. Since we sought scaling laws and cP is a constant, we do not
specify it. Depending on flight speed, the expression for P̃ is more complex than (2.10)
(Johnson 1980). However, only the local curvature of P̃ is important in our analysis since
we considered small changes in thrust, and any local curvature in P̃ can be modelled by
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adjusting n. We found that our results did not change qualitatively when n was varied about
n = 3/4 within physical bounds.

To compute the power, we recombine the components of the thrust, which we until now
had split into parts, so that

F̃ T = m( f̃ T + f̃ C), (2.11)

where m is the mass of the flight vehicle. The dimensionless power, P = P̃/cP(mg)2n,
is then composed of four parts, two resulting from the work performed to accelerate
the vehicle in the plane of motion, one from the constant thrust toward the destination,
−f̃ 0ê2, and one from the work against gravity. We regroup these terms according to
the dimensionless variables identified above and a new one called G = gτd/U, which
normalizes the (inverse) strength of turbulence, so that

P =
[(

St
G

(1 − M)
du1

dt

)2

+
(

St
G

(1 − M A)
du2

dt
− 3

2
W
G

)2

+ 1

]n

. (2.12)

Observe that two dimensionless groups govern the power requirements for isotropic
flight vehicles (when A = 1), one being (1 − M)St/G = (c1/g)(U2/L), which is
the flow-normalized virtual mass-to-weight ratio, or the virtual Stokes number to
turbulence-intensity ratio, and the other being W/G = 2f̃0/3g, which is a thrust-to-weight
ratio. In other words, the dimensionless variables that govern the energetics are different
from those that govern the dynamics, with flow properties providing natural units for the
dynamics and the vehicle’s weight doing so for the energetics. The parameters St and G
form an independent pair that fully characterize the flow and flight vehicle irrespective of
the forcing, and we used this pair, rather than their combinations with W, M and A in the
power equation, to describe the system configuration.

The action of the forcing is embodied in the variables W, M and A. For unmodified
inertia, when the latter two variables are equal to one, the power required for flight
is determined only by the thrust-to-weight ratio, P ∼ 1 + 9W2/4G2, and not by the
accelerations of the vehicle. Note that W/G can be interpreted as the tangent of the
rotorcraft’s equilibrium angle of lean during flight through quiescent fluid, and represents
how hard the rotorcraft works to stay aloft relative to how hard it works to move
forward. For hovering vehicles, W/G = 0, while fast flight on a planet with weak gravity
corresponds to large W/G. Finally, the power required by neutrally buoyant vehicles can be
modelled roughly by (2.12) without the +1, though our dynamical equation, (2.4), would
then also need to incorporate terms that capture the effects of fluid inertia, which we
neglected for simplicity since they do not change our qualitative conclusions.

2.5. FT flight vehicle energy approximation
Our objective is to find sets of parameters for the forcing that cause the flight vehicle
to fast track, or to reach a certain destination with a net benefit either in energy or time
expended. Therefore, we are interested only in low-energy solutions, or only in those sets
of controlled parameters that govern power, W, M St and A, for which the energy needed
to fast track does not exceed the energy gained by doing so. The energy being the time
integral of the power given by (2.12), observe that the only time-dependent terms are the
ones proportional to the accelerations, dui/dt, and that these terms are mixed with others
under exponents. In order to isolate the time dependence and so to facilitate integration,
we expand around small values of the time-dependent terms, recognizing that these small
values correspond to the low-energy solutions of interest. Other choices for expansions
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lead to similar results. We find that not only is the energy easier to calculate, but that
it depends on only one statistic of the vehicle’s trajectory, which is the variance of its
accelerations, and not on any other property of the trajectory.

The efficiency of transportation vehicles can be measured by the cost of transport, E
(Gabrielli & von Kármán 1950). It is the time integral of power per unit weight and unit
distance travelled, E = Ẽ/(mgd̃), where Ẽ is the energy required to travel a given distance
d̃ in the −ê2 direction. Since the cost of transport is proportional to energy, and since
we specify mg and d̃ a priori, we refer to the cost of transport succinctly as ‘energy’ or
‘dimensionless energy’ throughout the paper. The dimensionless energy is then

E = 1

mgd̃

∫ t̃f

0
P̃ dt̃, (2.13)

where t̃f is the time required to travel the distance d̃. Note that only the integrand and limit
of integration are flow dependent, and not the prefactors. We rewrite the right-hand side
of (2.13) in dimensionless variables, so that

E = CP
G
d

∫ tf

0
P dt, (2.14)

where CP = (mg)2n−1/(gτd) is constant, and tf = t̃f U/L and d = d̃/L are the number of
flow time and length scales travelled by the rotorcraft, respectively. In QF, where L is
undefined, L is an arbitrary reference length, and the flow time scale L/U cancels out
upon integration of the (constant) power.

The power required by the flight vehicle is determined by the accelerations it
experiences, which are functions of time, position and the parameters that govern the
dynamics, so that we can rewrite the dimensionless power equation (2.12) in terms of
two functions, f1 and f2, as

P =
(

f 2
1 (t, u, W, M St, A) + ( f2(t, u, W, M St, A) − 3W/2G)2 + 1

)n
, (2.15)

where P = P( f1, f2) is a functional that we expanded in a Maclaurin series for small f1 and
f2. At the second order, we have

P(�f1, �f2) = P(0, 0) + f1
∂P
∂f1

∣∣∣∣
0,0

+ f2
∂P
∂f2

∣∣∣∣
0,0

+ 1
2

(
f 2
1

∂2P

∂f 2
1

∣∣∣∣∣
0,0

+ f 2
2

∂2P

∂f 2
2

∣∣∣∣∣
0,0

+ 2f1f2
∂2P

∂f1∂f2

∣∣∣∣
0,0

)
+ O( f 3

i ), (2.16)

where the mixed partial derivative is zero given the form of (2.15).
We simplify the expression for E (2.14), which is exact, with the expansion in (2.16),

and find that the approximation,

E ≈ CPT ($G + $1 + $2) , (2.17)

holds under certain conditions discussed below, where T ≡ tf G/d = (t̃f /d̃)gτd normalizes
average ground speed (d̃/t̃f ), which is variable, by a gravitational velocity scale for the
rotorcraft (gτd), which is constant. The expansion simplifies the expression for energy
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since the integrals in (2.14) become moments of acceleration statistics. This can be seen in
the energetic costs, which are given by

$G =
(

1 + 9
4

W2

G2

)n

, (2.18)

$1 = n$1−1/n
G

St2

G2 (1 − M)2α1, (2.19)

and

$2 = n$1−2/n
G

(
(2n − 1)

9
4

W2

G2 + 1
)

St2

G2 (1 − MA)2α2, (2.20)

where α1 and α2 are the variances of the accelerations experienced by the flight vehicle,

αi(W, M St, A) = 1
tf

∫ tf

0

(
dui

dt

)2

dt, (2.21)

and where i is either 2 or 1, the direction of flight or orthogonal to it, respectively. The
integrals of the linear terms in (2.14) are approximately zero according to the fundamental
theorem of calculus, since the expectation value for the difference between initial and
final velocities is zero over many independent realizations of turbulence. As a result, those
terms do not appear in (2.18).

We comment briefly on the higher-order terms in the expansion (2.16). Once
integrated to obtain energy, they are proportional to increasing powers, m, of the
acceleration variance multiplied by the moments of the acceleration distribution, Mm ≡
〈(dui/dt)m〉/〈(dui/dt)2〉1/m. The tail of the distribution of inertial particle accelerations is
bounded from above by the distribution of fluid particle accelerations (Ayyalasomayajula,
Warhaft & Collins 2008), which can be described empirically by a stretched exponential
(e.g. Mordant, Crawford & Bodenschatz 2004), and whose corresponding moments
depend on the Reynolds number of the turbulence (e.g. Porta et al. 2000). The expansion
therefore holds to the extent that 〈 f 2

1 〉 < 1 and 〈 f 2
2 〉 < 1, both of which are proportional to

the acceleration variance, and that the moments converge for increasing m and Reynolds
numbers. Note that by controlling the size of 〈 f 2

1 〉 and 〈 f 2
2 〉 (by changing c1 and c2 for

instance), the energy approximation can be made arbitrarily accurate on any time interval
t ∈ (ta, tb) for which |du/dt| < ∞.

The expansion ignores changes in sign of f2 − 3W/2G, which are likely to occur
under intermittent large accelerations. Therefore the expansion underestimates energy
consumption in principle – the energy equation is valid only when the forcing does not
push backward harder than does the specific thrust in the forward direction. By comparing
terms in the following way, we find that this effect is negligible except perhaps for flight
vehicles with a lower G and St than any we investigated. If $G ≈ 3n (see § 2.6), this implies
$1 = 3n−1n〈 f 2

1 〉. If in addition, n > 1/2 then $2 = 3n−2n(4n − 1)〈 f 2
2 〉. We verified the

approximation by comparing the average power components $1, and $2, to the components
$G and 1, a comparison that was favourable. Furthermore, we did not observe in our
calculations any instantaneous extreme accelerations that reversed the sign of the term
in question, but such extreme events may be more likely in real turbulence than in our
model turbulence and the matter is worth future investigation.

For any given set of dimensionless parameters, evaluation of the energy equation (2.17)
requires computer simulations to determine T , α1 and α2. Since each of these variables
is determined by the system’s dynamics, each is then a smooth scalar function of W,
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M St and A. Therefore, T , α1, and α2 are described by three-dimensional manifolds
embedded in four dimensions. When referring to these manifolds, we identify a particular
point on them by W, M St and A such that the unique point on the respective manifold
with those coordinates is T , α1 or α2. For example, when referring to the minimum of
the time manifold, the manifold for T , we are considering the point (W, M St, A) such
that T achieves its minimum value on the manifold. It is not relevant to our problem
to sample from the manifold in other coordinate systems. These manifolds need to be
estimated stochastically for given turbulent velocity fields.

All terms within the parentheses of (2.17) represent costs, with the first, $G, being the
(constant) power required to stay aloft plus the power used to produce thrust toward the
destination. The two terms proportional to accelerations, $1 and $2, are the average power
used to produce the forcing, and are zero either if it is switched off or when flying through
quiescent fluid. The costs diverge toward infinity for small G. Net energetic benefits are
realized by a reduction in flight time, T . Various limiting cases indicate the relative
importance of terms, suggest universal functional dependencies, and point to applications
where the control ideas, if they work, would be useful. One such limit establishes a certain
optimized thrust, discussed in the next section.

2.6. Benchmark thrust
As a reference, we calculate the optimum air speed (or thrust) in the absence of turbulence
for which energy is minimized. In the absence of turbulence, and therefore of accelerations
so that α1 and α2 are zero, the energy required to move according to (2.17) is given by

EQF = CPTQF$G. (2.22)

Since the dimensionless transit time across an arbitrary distance through quiescent fluid,
TQF = (L/UQF)(gτd/L) = G/W, is given by the inverse of the velocity, the energy in
(2.22) can be re-expressed exactly as

EQF = CP
G
W

(
1 + 9

4
W2

G2

)n

. (2.23)

Energy is minimized for a particular value of the thrust-to-weight ratio, namely

W∗

G∗ = 2
3

√
1

2n − 1
, (2.24)

which is equal to (2/3)
√

2 when n = 3/4. In other words, in a quiescent fluid and
given the set of parameters that describe the flight vehicle, the mean thrust to minimize
energy consumption has an optimal value, for which the corresponding air speed is
U∗

0 = f̃ ∗
0 τd = (2/3)(2n − 1)−1/2gτd. If the optimum thrust were maintained in turbulence,

air speed would be perturbed but would continuously relax exponentially to U∗
0 according

to the dynamics in (2.4). We therefore use these optimum values for thrust (and air speed)
to evaluate the DN dynamics determined by (2.4), and as benchmarks against which to
compare improvements made by FT forcing. One main conclusion is that turbulence moves
the optimal W/G away from W∗/G∗ under many conditions.

2.7. Disturbance rejection
One way to respond to disturbances caused by turbulence to a flight trajectory is to reject
them and so to maintain an approximately straight trajectory. Within the context of the
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EDR
EQF

101

100

10–1 100

G
101

Figure 2. The energetic cost of DR (EDR) is always larger than the cost of flight through quiescent fluid
(EQF) under environmental conditions given by G according to (2.25).

models presented above, we evaluate the work required to fly straight as the one developed
by an isotropic forcing with infinite virtual inertia, for which A = 1 and M → ∞. In this
way, we can evaluate the energetic cost of disturbance rejection.

As the mass multiplier, M, diverges to infinity, the accelerations experienced by a
flight vehicle approach zero, so that the costs in (2.18) look at first indeterminate. From
(2.9), observe that the vehicle’s accelerations are inversely proportional to M St, so that
the acceleration statistics scale in the same way. The mean-square accelerations, α1 and
α2, then scale with the inverse of M2St2. The costs, when ignoring the accelerations,
are explicitly proportional to M2St2 for large M, which cancels out the scaling of the
accelerations. For A = 1 and M → ∞, the costs therefore approach constants determined
by W, G and c, where c is a proportionality constant that needs to be determined
empirically. We substitute these constants back into the energy equation, (2.17), and use
the benchmark thrust defined above, W∗/G∗, to find that

EDR

EQF
=
⎛⎝2n − 1

2n

⎛⎝ c2

G2 +
(

c
G

+
√

1
2n − 1

)2

+ 1

⎞⎠⎞⎠−n

. (2.25)

The energetic cost of DR diverges toward infinity for increasing turbulence intensity, and
only approaches one (from above) for vanishing turbulence. As seen in figure 2 for c2 ≈
0.5, which we determined empirically, and n = 3/4, not only is DR never energetically
favourable, but working against turbulence also eliminates fast tracking and its advantages.
Simply relaxing DR would be beneficial if it were possible to do so while maintaining
stability, which is a problem that is beyond the scope of this study.

2.8. Parameter space mapping
We treat the optimization process as a mapping from each set of given parameters, G and
St, to a set of dynamic parameters W, M St and A that minimized energy or flight time. In
this sense, the FT forcing is simply a vector valued function, or mapping, whose inputs
are G and St, and whose outputs are W, M St and A. The purpose of optimization is to
find this function. The DN and DR strategies are also vector valued functions of the input
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variables G and St, however, these functions are not guaranteed to, and indeed rarely did,
output W, M St and A that minimized either energy or flight time for a given energy. This
mapping viewpoint is useful because it yields physical insight.

First we define a mapping from the set of dimensionless parameters that are constrained
by the characteristics of the turbulence and flight vehicle, G = τdg/U and St = τdU/L,
into the set of dimensionless parameters that are freely adjustable during optimization and
that govern the dynamics, W = U0/U, M St = (1 − c1)τdU/L and A = (1 − c2)/(1 − c1).
We start with the mapping for the FT forcing, which can be defined as a vector field in three
dimensions as follows:

G, St ∈ R+

WFT(G, St), MFT(G, St), AFT(G, St) : R
2
+ → R+

hFT : R
2
+ → R

3
+

⎫⎪⎪⎬⎪⎪⎭ , (2.26)

hFT(G, St) =
⎡⎣ WFT(G, St)

StMFT(G, St)
AFT(G, St)

⎤⎦ , (2.27)

where h is the mapping function between the constrained parameters, G and St, and the
free parameters W, M St and A. We construct maps for the other strategies in the same way.
Of particular importance is the DN strategy,

hDN(G, St) =
⎡⎣√

1/(2n − 1)G
St
1

⎤⎦ . (2.28)

Since hDN is both injective and surjective with respect to input and dynamic parameters
when n > 1/2, we can compare FT and DN with a composite function using their
respective mappings, hFT and hDN . The composite mapping represents how much of the
forcing used by an FT strategy is not already activated by the DN strategy, and is

J ≡ hFT

(
h−1

DN

)
. (2.29)

Finally, we construct a vector field that contains a complete set of instructions for how
to perform FT forcing for every set of input parameters, (G, St), in the following way.
In logarithmic space, the composite mapping in (2.29) is the ratio of the FT and DN
controller’s authority,

log J =
⎡⎣ log WFT(WDN/

√
1/(2n − 1), St)

log StMFT(WDN/
√

1/(2n − 1), St)
log AFT(WDN/

√
1/(2n − 1), St)

⎤⎦ . (2.30)

This equation is a mapping from the naïve parameters provided by the DN strategy to
the set of parameters associated with an FT strategy, and is simplified by the fact that
MDN = 1. We then construct a vector whose tail is located at the position given by the
input to J , (log WDN, log StDN, 0), and whose tip points to the FT parameters given by
the output of J . To simplify the presentation, we later show only the two-dimensional
projections of these mappings, and show the optimized values of AFT(G, St) in separate
figures.

If the time manifold, T , were constant everywhere, then the energy function’s
Hessian would be positive definite with a minimum at log J = 0. As a result,
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the DN and FT strategies would be the same. However, if T is not constant at the point
(
√

1/(2n − 1)G, St, 1), DN can no longer be optimal, and as a result J will be non-zero,
at least local to those places where the gradient of T is non-zero. This shows, even
before performing computer simulations, that FT is likely to outperform DN since DN
is contained within the space of possible FT strategies and cannot outperform FT, and the
requirement that they perform equally is strict. These arguments do not indicate the extent
to which FT outperforms DN, but indicate that a non-zero slope in T , rather than an offset
of T , determines whether FT is beneficial. Furthermore, we see that even for the case that
turbulence caused only loitering and not fast tracking, FT would outperform DN.

3. Methods

In this section we explain how we modelled turbulence in computer simulations, how we
synthesized flight vehicle trajectories and how we optimized FT.

3.1. Flow simulation
We use a two-dimensional (2-D) implementation of the incompressible, statistically
stationary, isotropic and homogeneous turbulence model in Kraichnan (1970) and
employed to study fast tracking in Maxey (1987a). The model generates a power-law
spectrum at low wavenumbers with an exponential cutoff at high wavenumbers, producing
a peak in the spectrum and a flow with a single dominant length scale. The model specifies
the flow velocity, w, according to a sum of random modes,

w =
N∑

j=1

bn cos (kn · x + ωnt) + cn cos (kn · x + ωnt), (3.1)

where x is the position in the plane, and we used 64 modes as in Maxey (1987a).
The parameters bn, cn, kn and ωn are drawn from a normal distribution, and bn and
cn are subsequently conditioned to enforce incompressibility and the energy spectrum.
Even though the flow is periodic, the periodicity occurs on an astronomical scale set by
the lowest common multiple of the randomly chosen wavelengths (Bostan, Marynych &
Raschel 2019), which constitutes an advantage of this random flow over direct numerical
simulations of turbulence in periodic domains, since this domain is continually resampled
by particles or flight vehicles in the high-speed limit.

The turbulence model in (3.1) is known to under-predict the strength of fast tracking
for settling particles (Wang & Maxey 1993; Good et al. 2014; Pozorski & Rosa 2019),
but it predicts all the non-trivial qualitative behaviours needed for the investigation of
fast-tracking energetics presented in this paper. For instance, the model incorporates the
spatial and temporal correlations that are responsible for fast tracking – uncorrelated flows
cannot preferentially sweep particles, regardless of inertia. Note that particles can settle
so quickly through turbulence that the flow changes more quickly than the particle can
respond; for these particles the flow is effectively uncorrelated and the particles do not fast
track. Furthermore, 2-D flows must be time dependent in order to capture the behaviour
of particles with vanishing inertia. The path lines of these particles are the streamlines
of an incompressible flow that is non-ergodic and periodic if the fluid flow is periodic.
If w · ê2 > Wd then paths can form closed orbits and mean settling times for uniformly
initialized particle ensembles become undefined. While particles with small but non-zero
inertia follow the trajectories of a compressible flow (Maxey 1987a), their velocities are
still uniquely specified by the flow and paths are periodic and non-ergodic if the underlying
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flow is also periodic (Falkovich, Fouxon & Stepanov 2002; Bewley, Saw & Bodenschatz
2013). Finally, a continuum of scales is required in the flow to prevent strong loitering
along a band of St2W ∼ 1 (Tooby, Wick & Isaacs 1977; Dávila & Hunt 2001), and to
reproduce the fundamentally multi-scaled nature of the fast-tracking problem (Tom &
Bragg 2019). The strong loitering band is unphysical in turbulence and corrupts the time
manifold by becoming a dominant feature in it (Maxey & Corrsin 1986; Maxey 1987b).
Motions on different scales allow flow structures to compete with each other and to disrupt
loitering.

3.2. Flight vehicle simulation
Particle trajectories described by (2.9) were integrated using MATLAB’s ode113
Adams–Bashforth–Moulton method. Each trajectory was integrated for a time of t =
4(AM St + 100(1 + 1/W)), with only the last half being recorded. We found that this
choice gave flight vehicle trajectories sufficient time to forget their initial conditions: the
first term in the sum allowed all flow-independent initial conditions to be forgotten, while
the second term allowed sufficient time for the flow–vehicle interactions to settle into
dynamic equilibrium. A 15 × 15 × 13 grid of parameter values was tested for 10−5/2 �
St � 10, 0.1 � W � 10 and 1 � A � 1010/3. At each grid point, vehicle trajectories were
recorded for at least 20 randomly initialized flows. For each trajectory, settling time
per unit distance was recorded as the inverse of settling speed. If the estimated settling
time reduction was at least 5 %, simulations were run until the variance of estimated
average settling-time reduction was at most 20 % of the time reduction. This was a relative
tolerance. If estimated settling time reduction was less than 5 %, simulations were run until
the variance of estimated average settling time was less than 1 %. This was an absolute
tolerance.

Figure 3 shows the smoothed acceleration variance, αi, for A = 1. It shows good
qualitative agreement with previous studies on particle acceleration variance (e.g.
Ayyalasomayajula et al. 2008). For isotropic virtual inertia, the work required to mimic
particle dynamics is proportional to these accelerations. Note that αi is normalized by the
characteristic flow velocity, and that it is αi/W2 rather than αi that properly reflects the real
accelerations experienced by the flight vehicle. Particles or flight vehicles encounter large
dimensionless accelerations when they are fast and lightweight (and large dimensional
accelerations when they are slow and lightweight). The main effect of anisotropy is to
shift α2 so as to suppress accelerations in the lower right-hand quadrant without significant
modification to the shape of either manifold.

3.3. FT parameter optimization
The two goals we consider are (i) to minimize energy consumption by all means available,
and (ii) to minimize transit time given a fixed energy budget, EDN . The parameters we vary
are the mean thrust toward the destination, captured in W = U0/U, the effective inertia,
captured in M St = (1 − c1)τdU/L and the anisotropy in the virtual inertia, captured in
A = (1 − c2)/(1 − c1). The parameters G = τdg/U and St = τdU/L represent the fixed
environmental factors and were held fixed during optimizations. All case comparisons are
made at a constant G and St except the no turbulence, QF case, for which G is infinite. The
FT optimization problem is therefore three dimensional. There are two cases other than
FT that we considered for comparison: the QF and DN cases. As mentioned above, the QF
case is the same as the DN case with G → ∞. Similarly, the DN case is the FT case with
M = A = 1 and W/G = W∗/G∗.
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Figure 3. Acceleration variances for isotropic (A = 1) particles and flight vehicles traversing a turbulence
model. (a) The dimensionless variance of the accelerations, α1, in the direction transverse to the one of mean
flight. (b) The accelerations, α2, in the direction of the flight’s destination. Similar manifolds describe motions
for anisotropic (A /= 1) settling.

The approximation of the energy equation, (2.17), allows computer optimization of
W/G, M, and A to be performed using only the multivariate statistics T(W, M St, A),
α1(W, M St, A) and α2(W, M St, A), and not the trajectories themselves. The simulations
are capable only of randomly sampling from the distribution of these parameters and
therefore we only estimated the underlying manifolds T(W, M St, A), α1(W, M St, A) and
α2(W, M St, A). This results in some roughness on the discretized grid and interferes with
the optimizations since it generates spurious local minima. Furthermore, optimization
requires that the parameters are defined at all points within the grid, and not just at the
grid points. This was accomplished by first applying a 3-D Gaussian filter to each of the
parameter estimates with a 1.5 grid-point standard deviation and then using a 3-D spline
to construct estimates of the underlying manifold and subsample from it. The functional
in (2.17) was then used as the performance function for goal (i), and as the constraint
for goal (ii). Standard gradient-descent methods were sufficient because the optimization
landscape was convex except at large G and small St for which the performance of
all strategies is nearly identical anyway. We used MATLAB’s fmincon function for the
optimizations. The results presented below are optimal values of W, M St and A for each
G and St.

3.4. Minimum-energy optimization
When range or energy efficiency are important, it is often desirable to minimize the energy,
EFT , required to travel between two points. Since hovering costs energy, the problem is
well posed without the need to add constraints. The energies used in the constraint were
calculated using (2.17), where T , α1 and α2 were computed by using spline interpolation
from the simulated data at the desired W, M St and A.

3.5. Minimum flight time optimization
It is often important to fly between locations as fast as possible with either a maximum
allowable thrust or with a given energy budget. We consider the second class of flight
time minimization problems with the energy budget limited for instance by the size of a
battery. Minimization was performed under the constraint EFT/EDN � 1, or EFT/EQF �
1, depending on which budget was of interest, EDN or EQF. Either of these constraints was
likely to be active when TFT was minimized, but requiring equality in the constraint would
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Figure 4. Either of these surfaces uniquely describe isotropic (A = 1) flight vehicle speedup caused by fast
tracking. For anisotropic forcing (A /= 1) these are the A = 1 slices of the corresponding manifolds. The +
symbols mark the parameter values for the trajectories in figure 5. (a) The particle (or flight vehicle) transit
time, T , over a given distance, L, through a turbulence model relative to the transit time through QF, TQF . The
white line delineates the region within which flight times were reduced by between 5 % and 10 % relative
to flight through QF. (b) The corresponding mean velocity of a particle (or flight vehicle), given as the
difference between the mean velocity through turbulence, UDN , and the one through QF, UQF , normalized
by the characteristic velocity of the turbulence, U. The speedup by turbulence vanishes in every direction away
from a peak near normalized flight speeds, W, and normalized inertias, M St, of order one.

potentially result in missing solutions for which, for instance, TFT was minimized and
EFT < EDN . This could occur only if at some point ∂EFT/∂W � 0, which usually indicates
that reducing thrust would increase average flight speed, an unlikely but theoretically
feasible scenario.

4. Results

In this section we show that relative to flight through quiescent fluid, FT forcing generates
advantages in both energy consumption and transit time, meaning that with appropriate
forcing turbulence can be beneficial to flight, and not detrimental. To show this, we
simulate the settling physics of particles with different properties. These simulations
strengthen the connections between fast tracking and eddy sweeping suggested in Good
et al. (2014) by considering a different limit, which is the limit of strong stiffness in
the direction of flight rather than perpendicular to it. We then interpret the dynamics in
the context of flight by computing and optimizing the power required by a flight vehicle
to enact FT. We concentrate on the finding that relative to DN, FT expands the region
in parameter space within which advantages are realized. We discuss flight optimized to
minimize energy first, and minimum-time optimizations after this.

4.1. Particle settling
We briefly review our findings that concern isotropic particles settling through turbulence,
since the extent to which these agree with the literature benchmarks our methods. We use
the results in figure 4 for optimization and analysis. Along the way we introduce particle
anisotropy, and results that extend our understanding of settling particle physics.

Isotropic particle settling behaviours agree qualitatively with experimental data, in the
sense that there is a basin in the time required to traverse turbulent flow near values of the
normalized flight speed (W) and normalized inertia (St) of order one. The main difference
between our results and the experiments and simulations in Good et al. (2014) is that the
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Figure 5. Examples of computer-simulated fast-tracking flight trajectories travelling from right to left through
a turbulence model. These trajectories are faster and require less energy than straight flights (not shown),
which typically encounter headwinds and tailwinds with equal probability. Top: flight time is 0.3 % shorter
than a straight one. The inertia is isotropic and large, the normalized inertia, St, is 10, and the normalized flight
speed of the vehicle, W, is 0.5. Middle: St is 1000 times smaller and W is the same as for the above. Flight
time is 3 % shorter, despite the increased path length. Bottom: W and St are the same as for the above, but an
anisotropy in the virtual inertia of A = 1000 reduces flight time by 13 % relative to the first example.

basin we calculated is not as deep, as seen in figure 4(a). In our simulations, settling speeds
are up to 5 % higher in turbulence than in a quiescent fluid (figure 4b), whereas Good
et al. (2014) reports substantially larger speedups of up to 300 %, possibly due to weaker
correlations in the model than in real turbulence. As discussed in § 3.1, our turbulence
model is known to under-predict fast-tracking effects, so that this discrepancy is expected
(Wang & Maxey 1993). Our results agree quantitatively with those in Maxey (1987a) for
the 3-D version of the same turbulence model.

Figure 5 shows that inertial anisotropy qualitatively changes settling behaviour and
tends to maintain a susceptibility to turbulent fluctuations in ê1 while reducing the overall
tortuosity of trajectories. One way to understand this effect is that it may allow turbulence
to sweep particles (or flight vehicles) from side to side into favourably moving eddies while
simultaneously preventing the particles from back tracking. As a result, path lengths are
longer, though never longer than approximately twice the length of a straight flight, and
the particles maintain speed toward their destinations. The length scales for the features in
these curved trajectories scale with the correlation length of the turbulence.

The limit of small anisotropy, A → 0, represents trajectories confined to straight paths
aligned with the direction of gravity. Good et al. (2014) show that fast tracking does
not operate in this limit, which indicates that movement perpendicular to gravity is
essential for fast tracking to work. The other limit, A → ∞, where all acceleration is
perpendicular to gravity, has not previously been tested. In our simulations of highly
anisotropic particles (A = 2154), we find maximum settling rate enhancements nearly five
times the isotropic value. Furthermore, this speedup extends to a wider range of M St,
to the extent that we did not observe a maximum in the settling rate enhancement, but
rather a monotonic increase as A → ∞. Together, the results from the limits A → 0 and
A → ∞ show that accelerations perpendicular to gravity is the dominant contributor to
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settling rate enhancement, and that accelerations in the direction of gravity compete with
this enhancement by increasing the path lengths of particle trajectories.

Inertial anisotropy is unphysical in the sense that particle inertia (mass) is scalar, but
is synthesized by the cyber-physical FT. If anisotropy can be realized in flight vehicles
in the ways discussed below, it could result in flight time reductions, which could in turn
translate to energy reductions if the costs of accessing the anisotropic behaviour are not
too great. We explore these costs in the next section.

4.2. FT optimization
We minimize either energy or time. To minimize energy, we find values of W, M St and A
that minimize (2.17) for given values of G and St. Flight trajectories that minimize energy
are characterized by variable flight times, T , so that the energy consumption and flight
time are each outputs of energy minimization. On the other hand, to minimize time we fix
an energy budget, use n = 3/4 in (2.10), and find values of W, M St and A that maximize
average flight speed. We find relative advantages in time that are much larger than those in
energy in ways that we discuss.

For each objective, we test two cases: one in which the inertial anisotropy was optimized,
and on in which inertia was fixed and isotropic. The dominant feature of the optimum
anisotropy that we find is an approximately diagonal line across the parameter space.
Above the diagonal, the optimal virtual inertia is nearly isotropic, so that the flight
vehicle dynamics is nearly identical to that of settling particles. There is a sharp transition
across the diagonal to a regime where strong anisotropy in the virtual inertia became
advantageous as explained below.

The range 0.01 � St � 10 was chosen because all significant features and changes
happened in this range. The range 0.1 � G � 10 was chosen because all significant
features happened for G � 10, and while most significant features happened for 0.1 � G,
simulation time became excessive when G was small.

4.2.1. Energy minimization
Figure 6(a) displays the energy ratio EFT/EQF for each DN strategy (WDN, St) as a colour
map. This energy ratio represents the net energy extracted from the turbulence by the
flight vehicle, in the sense that the flow energy would be smaller at the end of a flight by
the relative amount 1 − EFT/EQF if FT were enacted than if it were not – note, however,
that our model does not incorporate the effect of the flight on the flow, and the flow in
our calculations was unchanged by the vehicle. Figure 6(a) also shows the parameter
mapping, log J defined by (2.29), which specifies parameters for optimized FT forcing,
and represents the forcing unique to FT. DN optimized as in § 2.6 results in an additional
shift WDN = (2/3)

√
2G relative to QF. The isoline at EFT/EQF = 0.99 illustrates that FT

is attracted to the basin of the isotropic slice of the time manifold T normalized by TQF,
(T/TQF)|A=1, centred on (0.3, 0.3) (figure 4a) when the optimal A is small. The mapping
is nearly vertical for small St since the cost of changing W is greater than that of changing
M St there, i.e. the cost of working against drag is higher than the cost of accelerating a
lightweight flight vehicle.

Figure 6(b) shows the extent to which FT performed better than DN shown specifically
as the ratio EFT/EDN for each set of the environmental conditions (G, St). The benefits
resulting from the attraction to the time manifold’s basin were strongly impacted by inertia
and by the behaviour of the turbulence-induced accelerations (figure 3), to the extent that
benefits were mostly confined to St < 1 as shown by the isoline at EFT/EDN = 0.99.
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Figure 6. (a) Minimum-energy FT forcing in turbulence consumes less energy than flying through quiescent
fluid (QF), and by between 1 % and 10 % less within the region delineated with the white line. The data are
in the DN strategy space (WDN , St) rather than in (G, St) as in other plots, in order to show the vector field
that represents the mapping (WDN , St) → (WFT , MFT St), where the tail of each vector is in (WDN , St) (the DN
strategy space), and the tip is in (WFT , MFT St) (the FT strategy space). Arrows that point down correspond
to FT that decreases vehicle effective masses. (b) FT forcing extends the advantages enabled by fast tracking
beyond what DN automatically realizes by between 1 % and 5 % within the region delineated by the white
line. We expect both this region and the gains within it to be larger in real turbulence as discussed in the text.
Isotropic flight vehicles performed well in the region marked ‘A’, while anisotropy enabled efficient flight in
the region marked ‘B’.

When restricted to isotropic inertia, the benefits were further restricted to G < 1, a
region denoted ‘A’ in figure 6(b). Anisotropy did not appreciably change the maximum
performance of FT. However, the introduction of anisotropy extended advantages to both
larger St and into a region of larger G, marked ‘B’ in the figure, that includes values of G
approximately three times larger than for isotropic forcing. It is crucial for any strategy to
perform well at higher G because this is where the majority of atmospheric applications
lie.

Anisotropic inertia may permit fast-moving flight vehicles to move side-to-side and so to
hop from one vortex to the next without expending energy and time moving fore-and-aft.
For slower flight vehicles, trajectories are increasingly tortuous, and accelerations in both
directions may be needed to find paths through favourable winds. The forces required to
produce anisotropy become prohibitively costly to produce at low flight speeds. We expect
realistic settling-time basins to extend the advantages to yet larger St and G and to a certain
extent to close the annulus around the basin.

The energetic costs of FT forcing, $G, $1 and $2 in (2.18), can be seen in figure 7.
For these solutions the anisotropy was free to take whichever value resulted in the lowest
energy. Figure 7(a) shows that the combined cost of staying aloft and producing the
destination-seeking thrust, f̃0, was often significantly different from its dimensionless
DN value of $G = 33/4 (included as an isoline). In other words, turbulence leads to a
different optimal thrust in a non-trivial way. The cost of modifying M to produce desired
accelerations in ê1, $1, and in ê2, $2, are both generally small and restricted to small G and
small St (figures 7(b) and 7(c), respectively). The fact that these costs are small justifies the
use of the energy approximation, (2.17), as discussed in the theory section. The costs $1
and $2 for a given M and A both scale with St2/G2, while $G > 1 regardless of G, so that
modifying the dimensionless inertia components through MA and M become prohibitively
costly for large St/G. For small St/G, the costs of changing M and MA, $1 and $2, are
smaller so that more energy is allocated to the forcing than to the thrust. As a result,
changes to M and MA dominate the behaviour there as discussed below.
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Figure 7. Costs associated with minimum-energy FT. (a) The dimensionless energy spent to keep the vehicle
aloft (working against g) and to push it toward its destination (with thrust f0) is larger for slow-moving flight
vehicles in part because they spend more time aloft. The white line separates larger (red) and smaller (blue)
thrust than is optimal in quiescent fluid. (b) Dimensionless power expended to accelerate transverse to the mean
flight direction, which tends to shift vehicles between vortices. (c) Dimensionless power expended to accelerate
toward the destination.
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Figure 8. (a) To minimize energy under FT forcing it can be beneficial to take a longer time to fly through
turbulence, TFT , than through quiescent fluid, TQF . The white line separates extended flights (red) from shorter
ones (blue). (b) In contrast, it is always favourable under FT forcing to reject disturbances in the direction of
flight by increasing effective inertia in that direction (MA), especially for fast, lightweight vehicles. (c) The
effective mass in the direction transverse to mean flight (M), is reduced under FT forcing for all but slow,
lightweight vehicles.

A main feature of the flight time shown in figure 8(a) is a reduction in mean speed for
G greater than the value that minimizes TFT/TQF. Restricting the forcing to be isotropic
did not affect speedup but did increase the extent of the region of reduced speed. The
source of these changes in speed come from WFT /=(2/3)

√
2G, which corresponds to FT

allowing the flow to advance the vehicle toward the destination in exchange for a change in
flight speed. In the upper-left quadrant of figure 6(b) where energetic benefits are relatively
small the time of flight seen in figure 8(a) is nonetheless substantially reduced, meaning
that even when energy cannot be much reduced, a flight vehicle can nonetheless reach its
destination more quickly. This speedup occurs for G less than the value that minimizes
TFT/TQF. We explore this finding further in the next section.

The combination of the vector field in figure 6(a) and the surface in figure 8(b) forms a
complete set of instructions for an FT controller. Note that the information in figure 8(c)
is already contained in the vector field in figure 6(a), and we include it here simply for
comparison. For those vehicles in the lower right quadrant the inertial anisotropy, A, which
is the ratio of the surfaces in figures 8(c) and 8(b), was large. For those vehicles with
reduced effective mass, blue in figure 8(c), energetically favourable trajectories are more
tortuous than they otherwise would have been because FT amplified disturbances in order
to hop from one vortex to another.
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Figure 9. Same as figure 6, but for minimum-time FT forcing. (a) FT in turbulence reduces flight times relative
to flight through quiescent fluid (QF) by up to 40 % with energy budgets given by EDN . (b) FT expands the
basin of reduced flight time beyond what DN realizes automatically by fast tracking (see figure 4b). ‘A’ and
‘B’ are as in figure 6. The isolines at 0.95 delineate regions where FT reduces relative flight times by more than
5 %. The dotted lines are the corresponding isolines without FT from figure 4(b) for comparison.

4.2.2. Time minimization
The energy budget was chosen to be the constant EDN in this section. The choice of energy
budget did not alter the results qualitatively, but is nonetheless worth consideration. An
energy budget of EDN generally reveals the particular effectiveness of FT forcing relative
to DN, which appears as regions where TFT < TDN . As a result, time improvements can be
realized with this energy budget even when drag nonlinearity causes particle settling rate
reductions rather than enhancement. An energy budget of EQF instead reveals the extent to
which FT allows the vehicle to benefit from gusts, and is relevant when the energy budget
represents a vehicle’s battery capacity, for instance, or where the goal is to determine how
much more quickly the vehicle can make a route as a result of the gusts.

FT achieved much greater advantages in flight time than in energy in a given flow. As
seen in figure 9(a), the time ratio TFT/TQF was as low as 0.6, whereas the corresponding
energy ratios were only as small as 0.95. As discussed below, this is partly a consequence
of the quadratic dependence of the energy, E, on flight speed, W, near W∗/G∗ independent
of n (as can be seen in (2.23)). As a result, small changes in E can be converted into larger
changes in flight speed, W, which in turn leads to shorter flight times. In figure 9(a), the
net rightward mapping compared with figure 6(a) is due to this conversion from energy
saved and increased flight speed. The isoline at TFT/TQF = 0.95 extends beyond WDN =
10, indicating higher performance even at flight speeds large relative to the speed of the
turbulent fluctuations. Since the time advantages are so large, the comparison with QF
and DN (figure 9b) flight times are similar. It is also the case that the MA and M surfaces
under time minimization are similar to those for energy minimization (figures 8(b) and
8(c), respectively).

The energetic costs under anisotropic FT forcing are qualitative similar for time
(figure 10) and energy (figure 7) minimization, except that the forcing is more active while
minimizing time since there is more energy available to the forcing – the energy budget is
expended entirely during flight and there is no advantage to reducing energy consumption.
This can be seen as longer vectors in figure 9(a) and stronger peaks in figures 10(a), 10(b)
and 10(c). Furthermore, since the budget is EDN , FT does not perform much better than
does DN at the point where DN performs at its best, that is, near the basin in the time
manifold.
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Figure 10. Same as figure 7, but for minimum-time FT using a fixed energy budget, EDN . (a) The combined
dimensionless energy spent to keep the vehicle aloft and push it toward its destination is qualitatively different
than for minimum-energy flight (figure 7a) as discussed in the text. The white line separates larger (red) and
smaller (dark blue) thrust than is optimal for QF. The dimensionless power expended on accelerations transverse
to the mean flight direction (b), and in the mean flight direction (c), were both similar to the minimum-energy
solutions.

Anisotropic FT improves performance relative to isotropic FT in a way that is practically
important, since atmospheric applications often lie in the regime of large WDN (and G)
where variable anisotropy is most beneficial. Anisotropic FT extends not only extends the
region of significant benefits in WDN (by factor of about three), but also toward larger St.
As noted above, real turbulence likely further expands the region compared with the one
produced by the turbulence model we studied.

4.3. Comparison between energy and time minimization
Time minimization at constant energy generally resulted in greater benefits than energy
minimization since the landscape of energetic costs is relatively flat with respect to changes
in flight speed. This can be seen from a generalization of drag, (2.5), to a nonlinear
one given by f̃ d = k(w̃ − ũ)||w̃ − ũ||p−1/τd for drag constant k, and W/G redefined as
Wp/Gp = f̃0/g, so that (2.23) now reads

EQF ∼ (G/W)
(

1 + W2p/G2p
)n

. (4.1)

The problem we considered heretofore was a linear approximation to the quadratic case for
which p = 2. For any n, the minimum energy occurs at W∗/G∗ = 2p

√
1/(2np − 1). At this

point the slope dEQF/d(W/G) is zero so energy is quadratic with W/G to leading order
for any n. For nonlinear drag (p = 2) and n = 3/4, for example, flying 10 % faster requires
only 1.3 % more energy. For linear drag (p = 1), a 5 % energy reduction can be converted
into an approximately 50 % flight time reduction by applying the energy to thrust. It holds
generally that small energetic benefits can be converted into significant time savings.

5. Discussion

We discuss extensions to FT that incorporate time dependence and correlations between
responses in different directions. We note that it is possible to employ FT on vehicles
besides rotorcraft, and we explore an analogy between anisotropy in inertia and in
aerodynamic drag that may facilitate the use of FT on fixed-wing aircraft and neutrally
buoyant vehicles such as submarines or blimps, and contribute to a better understanding
of the gliding behaviour of volant lifeforms.

We briefly address here the implementation of FT, which in practice requires not only
an understanding of sensor noise and various forms of delay that may limit the realizable
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values of C for which the vehicle is stable (Mackowski & Williamson 2011), but also
an understanding of control methods such as implicit model following that may in turn
expand the range of C within which stability prevails (Yang, Bewley & Ferrari, personal
communication 2021). Furthermore, the parameters G and St must be known in order
to implement FT. While the characteristics of the flight vehicle, embodied in τd, may
be known a priori, both the characteristic flow time scale L/U and speed U need to be
estimated (Morelli & Smith 2009; Al-Ghussain & Bailey 2020; González-Rocha et al.
2020; Yang et al. 2021). This may be accomplished using local weather information or
on-board accelerometers and by measuring the characteristics of correlation functions.
When M St > 1 the flight vehicle’s inertia attenuates its response to flow structures
(Ayyalasomayajula et al. 2008), so that an understanding of the vehicle’s dynamics is
needed in practice to infer G and St from accelerometry alone.

Concerning anisotropy, FT always finds nearly isotropic inertia, A ≈ 1, to be optimal
unless G > 1 and St < 1. For G > 1, the behaviour changes abruptly because it becomes
energetically favourable to mimic anisotropic behaviour. To see why the change is abrupt,
consider that when A = 1, the optimal M and W are values for which the flight time
is reduced and the forcing is small. This is achieved by travelling in parameter space
towards the time minimum, (seen in figure 4a). When St is small enough that the vehicle
is below the basin in parameter space, minimizing flight time means making M > 1
in order to push the virtual inertia upward toward the basin, which corresponds to a
nearly vertical vector field, as seen in figure 6(a). However, once anisotropic strategies
become energetically favourable, the better strategy is to make M < 1 so as to reduce
MA. This permits A to be made larger, allowing access to more favourable slices of
the time manifold without incurring an excessive increase in the cost component $2 (since
$2 ∝ (1 − MA)2). Because the isotropic locally optimal behaviour requires M > 1 while
the anisotropic locally optimal behaviour requires M < 1, and M ∼ 1 is not optimal, the
transition between these two local optima is necessarily abrupt.

5.1. Extensions and modifications to FT forcing
Changes to FT forcing, beyond the introduction of inertial anisotropy, have the potential
to further improve performance by exploiting anticipated regularities in the structures of
the flows a vehicle traverses. Some of these modifications can be implemented without
the need for flow measurements, as is the case for the FT forcing analysed in this paper.
There is useful information contained in the history of a particle’s trajectory, including its
angular accelerations (e.g. Voth & Soldati 2017), which is ignored by our model but offers
potential for further development. In the example below, we allowed the effective mass to
be variable in flight, and to be coupled in different directions.

To avoid loitering near stagnation points, inertia transverse to the direction motion can
be assigned a linear function of the acceleration in the direction of motion. Deceleration
in the direction of mean motion would then tend to push the vehicle off track temporarily,
by reducing the effective mass, in order to avoid the potential loiter-inducing structure.
Conversely, in vortices that push the vehicle toward the destination, the vehicle would
accelerate in the direction of motion. As a result, the particle inertia transverse to the
direction of motion would increase, possibly causing the vehicle to loiter beneficially in
these parts of the flow. The intended effect of the coupling is to cause vehicles to seek
out areas of high tailwind velocity and avoid stagnation points, in contrast to particle-like
behaviour that tends to concentrate particles and vehicles in areas of high strain rate and
low vorticity.
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5.2. Generalization and application of FT to other vehicles
FT forcing for rotorcraft manoeuvring in two dimensions, which is what we analysed,
generalizes to three dimensions and to other vehicles. These include fixed-wing aircraft
and neutrally buoyant vehicles like blimps, unmanned submersibles and ships (ships being
neutrally buoyant but constrained to two dimensions). The point-mass assumption is useful
and usually applicable (e.g. Patel & Kroo 2006; Preiss et al. 2017), however, the forces
are different from those considered in this paper, and often more complex. For example,
fixed-wing aircraft experience a lift and drag force dependent on their air speed and angle
of attack. This introduces additional nonlinearities in the dynamics.

Of note is the fact that aerodynamic anisotropy associated with an asymmetry in the
vehicle geometry or aerodynamics appears in our model in the same way as inertial
anisotropy. That is, fixed-wing aircraft, for which the lift-to-drag ratio is usually high,
behave anisotropically, in the sense that A > 1, without the need for forced adjustment of
A. As a result of their natural anisotropies, FT may be more effective when employed on
these vehicles, and we formalize this in what follows.

For birds or fixed-wing aircraft in level flight at speed UQF with constant lift and drag
coefficients and with lift-to-drag ratio L/D, a small horizontal gust of speed δ̃2 causes
accelerations of the form

1
g

dũ
dt̃

= 2
δ̃2

UQF

[
1

(L/D)−1

]
. (5.1)

The appearance of g comes from the fact that level flight requires a bird or aircraft to
generate enough lift to support its weight. If instead the small gust were vertical, and the
coefficient of lift is determined by a linear function of angle of attack, then the lift slope,
Sl, which is 2π for an infinite wing, and the lift-induced drag would change with the gust.
For spanwise efficiency e and aspect ratio AR, the resulting acceleration is approximately

1
g

dũ
dt̃

= δ̃1

UQF

[
Sl/CL + (L/D)−1

2Sl/(πeAR) − 1

]
. (5.2)

The response is a sum of two terms for vertical gusts because the lift and drag vectors
are both rotated by the change in apparent wind angle. Together, these gust-acceleration
relations mean that for small gusts perturbing steady flight at UQF, the dimensionless
equation of motion for a bird or fixed-wing aircraft is,

du
dt

= G
WQFSt

[
Sl/CL + (L/D)−1 2
2Sl/(πeAR) − 1 2(L/D)−1

]
(w − u + ê2). (5.3)

This equation of motion is similar to the one for a point particle (2.9), except that U/g
rather than τd characterizes gust response time, and the off-diagonal terms are non-zero
and not equal – the matrix is not symmetric. The effects, possibly detrimental, of the
off-diagonal terms could be managed with additional cyber-physical forces. The intrinsic
anisotropy in the effective mass, AFW ≈ 2CL(L/D)/Sl, is large since L/D is typically large.
This was the condition we found to be favourable for fast tracking of G > 1 rotorcraft.

While (5.3) is useful to understand the possible fast tracking of fixed-wing aircraft
subjected to small wind gusts, it is a linear model and therefore cannot simultaneously
model the Katzmayr effect, which is nonlinear. Optimized FT with a virtual mass smaller
than real mass may result in similar or greater performance for fixed-wing aircraft than for
rotorcraft since both the Katzmayr effect and fast tracking are enhanced by increasing gust
responsiveness in some cases.

921 A18-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

49
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.499


Fast tracking in flight

For neutrally buoyant submarines, blimps or ships, an equation of a similar form to (5.3)
applies, but the off-diagonal terms are smaller or zero since these vehicles do not generate
lift. Only birds and fixed-wing aircraft have the ability to simultaneously take advantage
of the Katzmayr and fast-tracking mechanisms, so it is plausible that they will outperform
other vehicle types.

6. Conclusions

We analyse a model of rotorcraft flight that is identical to the one for particles settling
through turbulence. Particles with a Stokes number and a settling parameter of order one
settle more quickly through turbulence than through quiescent fluid, which is called fast
tracking. With cyber-physical forcing proportional to acceleration as well as a flight speed
adjustment, rotorcraft can mimic any particle settling behaviour including fast tracking,
and so can extract energy from turbulence to fly with less energy or more quickly. By
simulating mass anisotropy, the forcing can match not only any particle settling behaviour,
but also behaviours even more favourable than those produced by particles. Incidentally,
we found that the limiting behaviour for large mass anisotropy strengthens previous
conclusions made about the importance of the sweeping mechanism to particle settling.

We show that energy consumed by a rotorcraft in turbulence can be estimated, given
a certain thrust and inertia, from empirical observations of a vehicle’s mean velocity and
acceleration variance, and without need for any other information. We use this relationship
to optimize the parameters of a cyber-physical forcing. The optimized forcing reduces
energy consumption and flight time in ways that we quantify in a turbulence model.

We find that energy can be harvested from turbulence by amplifying disturbances to a
straight trajectory, and so by increasing flight path length. In contrast to existing methods,
the principle works for any vehicle traversing turbulence, including fixed-wing aircraft and
volant lifeforms, and works without knowledge of the flow field. In a turbulence model, the
advantages in energy consumption and flight time are up to 10 % and 40 %, respectively.
The results suggest increased performance in real turbulence beyond those we calculated
in a turbulence model, and especially for faster and heavier vehicles.
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