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Genetic manipulation of drug
sensitivity in haematopoietic cells

Thomas Southgate and Leslie J. Fairbairn

The haematopoietic system can be manipulated genetically to increase either
its resistance to drugs or its sensitivity to certain agents. Gene transfer and
expression of specific drug-resistance factors might protect haematopoietic
function during antitumour chemotherapy, or allow enrichment of gene-modified
cells in vivo. By contrast, gene transfer of a prodrug activator, to confer
sensitivity to otherwise nontoxic prodrugs, might allow deletion of engrafted
cells in the event of an adverse effect such as graft-versus-host disease or the
induction of aneoplasm. In addition, expression of a prodrug activator in tumour-
infiltrating haematopoietic cells could provide a means of specifically activating
a cytotoxic agent within a tumour mass.

The genetic manipulation of drug sensitivity in
the haematopoietic system can be carried out in
order to achieve different goals. First, the aim
might be to increase drug resistance to protect
haematopoietic stem cells (HSCs) and progenitor
cells from cytotoxicity during antitumour
chemotherapy. This has now been extended to
encompass efforts to achieve in vivo selection of
gene-modified cells for treatment of other
acquired and inherited diseases. Second, the aim
might be to sensitise HSCs to cytotoxicity in
order to achieve selective killing of gene-modified
cells, through expression of a product that
activates a noncytotoxic prodrug to a toxic

metabolite. This has been investigated as a
means to overcome potential complications of
gene therapy and allogeneic bone marrow
transplantation, and also as a means of using
haematopoietic cells as vectors to deliver cytotoxic
metabolites to tumours.

Engineering drug resistance
Genetic chemoprotection
Cytotoxic chemotherapy is a mainstay of many
anticancer treatments. A wide range of drugs have
been developed that show varying degrees of
efficacy against various tumours following
systemic administration. However, such drugs
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are not tumour specific and also kill normal
cells, leading to unwanted toxicities in normal
tissues. Such toxicities can become dose-limiting,
leading to modifications in treatment and to
insufficient tumour reduction. Thus, changing the
balance between tumour- and normal-cell killing
presents an attractive strategy for improving the
effectiveness of currently used chemotherapeutic
agents.

Normal tissues most at risk from collateral
toxicity are those with a high proliferative index,
such as bone marrow and gut epithelium,
although there are several agent-specific toxicities
in many other organs (Ref. 1). In the haematopoietic
system, chemotherapeutic damage and killing
within the stem and progenitor cell compartments
can lead to profound myelosuppression, with
neutropaenia and thrombocytopaenia, leading
to increased risks of infectious complications
and bleeding, respectively (Refs 2, 3). Supportive
care, using haematopoietic growth factors or
infusions of mobilised peripheral blood stem cells,
can be used to enhance haematopoietic recovery
after chemotherapy. However, the resulting
haematopoietic system is still sensitive to further
administrations of chemotherapeutic agents
(Refs 4, 5).

Thus, several groups have developed vectors
and strategies to confer genetic chemoprotection
upon bone marrow stem and progenitor cells. To
do this, gene transfer is used to achieve high-level
expression of specific drug-resistance factors in
bone marrow. It is hoped that this strategy will
provide a haematopoietic system that is refractory
to the cytotoxic effects (and potentially other
effects) of chemotherapeutics. Various drug-
resistance mechanisms can be employed (Table 1)
and, through these, protection against a wide
range of clinically useful agents might be achieved.
For the purposes of this review, we concentrate
on two drug-resistance factors: MDR-1 (multiple
drug resistance 1; also known as P-glycoprotein
or gp170) and MGMT (O°-methylguanine-DNA-
methyltransferase; variously called ATase or
AGT).

MDR-1

MDR-1 is a member of the ATPase-binding
cassette (ABC) family of proteins, which also
includes multidrug resistance proteins (MRPs)
and ABCG2 (Ref. 6). MDR-1 is an ATP-dependent
membrane protein that acts as an efflux
pump, actively exporting xenobiotics from cells.
Expression of MDR-1 confers resistance to a wide

Table 1. Common genetic chemo- and radioprotection strategies

Resistance mechanism

ABC transporters

MGMT, various
glycosylases

DNA repair functions

Drug detoxification

Redox

Antimetabolite resistance Mutant dihydrofolate

reductase

Cytidine deaminase

MRP-1, multidrug resistance protein 1.

Proteins responsible

MDR-1, MRP-1, ABCG2

Aldehyde dehydrogenase

Glutathione S-transferase

Superoxide dismutase 2

Thymidylate synthase

Abbreviations: ABCG2, ATPase-hinding cassette G2 protein; Ara-C, cytosine arabinoside; BCNU,
carmustine; MDR-1, multiple drug resistance 1; MGMT, O°-methylguanine-DNA-methyltransferase;

Agents against which

resistance conferred Refs
Anthracyclins (e.g. daunorubicin), 6
vinca alkaloids (e.g. vincristine),
epipodophylotoxins

(e.g. etoposide)

Alkylating agents (e.g. BCNU, 97, 162
temozolomide)

Oxazaphosphorines (e.g. 163
cyclophophamide)

Alkylating agents, 164
anthracyclins

Radiation 165
Methotrexate 103
5-Fluorouracil 166
Ara-C, gemcitibine 167
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range of chemotherapeutic agents, including
podophylotoxins, anthracyclins, vinca alkaloids,
actinomycin D and taxol (Ref. 7). Dysregulated
expression of MDR-1 is a major determinant
of tumour-cell resistance to therapy, and MDR-1
expression has been correlated to poor response
and outcome in some studies and some tumours
(Refs 8, 9).

Early indications that MDR-1 expression could
help to overcome collateral haematopoietic
toxicity came from experiments in transgenic mice
in which MDR-1 was ectopically expressed in

bone marrow (Ref. 10). Such animals showed
resistance of haematopoiesis to leukopaenia
following treatment with either of the antitumour
drugs daunomycin or taxol, which was reversed
by the MDR-1 inhibitor verapamil (Ref. 11).
Moreover, transplantation of bone marrow from
MDR-1-transgenic mice to nontransgenic animals
conferred drug-resistant haematopoiesis to these
recipients (Ref. 12). These studies established
the principle that MDR-1 overexpression in
bone marrow could provide a chemoprotective
effect.

ATP-dependent efflux
of etoposide, taxol and
deoxorubicin
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Retroviral transfer of MDR-1 confers drug resistance
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Figure 1. Retroviral transfer of MDR-1 confers drug resistance. The retroviral vector encoding MDR-1
(multiple drug resistance 1) binds to its cognhate receptor on the surface of a target cell and undergoes fusion
with the plasma membrane. The RNA genome of the retrovirus is reverse transcribed within the cytoplasm of
the target cell to provide a double-stranded DNA copy, which then forms a pre-integration complex. This interacts
with genomic DNA when the nuclear envelope breaks down at mitosis, and the virally encoded integrase
facilitates integration of the proviral genome into the nuclear DNA. The integrated provirus is transcribed by
nuclear transcription factors and the mRNA exported to the cytoplasm for translation. The mature MDR-1
protein locates to the plasma membrane where it functions to provide ATP-dependent efflux of chemotherapeutic

drugs such as etoposide, taxol and doxorubicin.
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On the basis of these and in vitro gene-transfer
studies (Refs 13, 14, 15, 16), retroviral MDR-1-
gene-transfer experiments in murine bone
marrow were undertaken by several groups
(Fig. 1). Again, clear evidence of a myeloprotective
effect was seen in animals transplanted with
retrovirally transduced bone marrow (Refs 16, 17,
18, 19). Moreover, in mice carrying tumours,
protection of haematopoiesis by MDR-1 gene
transfer facilitated dose escalation and led to
improved survival of animals (Ref. 20). Further
evidence of transduction and protection of human
CD34* cells in vitro was obtained (Refs 19, 21)
prior to initiation of clinical trials of MDR-1-based
genetic chemoprotection.

The trials conducted to date have mainly been
characterised by low frequencies of gene transfer
to repopulating cells and transient levels of
MDR-1*cells (Refs 22, 23, 24, 25, 26, 27). This most
probably reflects poor transduction of cells with
true long-term-repopulating capacity, which in
turn reflects the state of the art in human HSC
transduction at the time these trials were
instigated. Furthermore, it is likely that the
retroviral vectors employed for these studies were
less than optimal for expression in primitive cells.
Not withstanding this, in a few patients, MDR-1*
cells have either appeared or increased in number
post-chemotherapy, although the levels remained
fairly low (Ref. 27). Although the number of
patients showing this effect are too low to
conclude positively that a selective event occurred
(as opposed to clonal fluctuations in stem cell
usage), these data still give a sense that MDR-1-
based chemoprotection might be of value if
attention is given to the technical aspects of gene
transfer, expression and drug selection.

Many of the technical requirements for
improved gene transfer and expression of MDR-1
in bone marrow are generic and will also be
required for other gene therapy applications. The
identification of cytokine conditions that support
repopulating cells during the transduction process
(Refs 28, 29) and the use of a fibronectin fragment
to improve transduction (Refs 30, 31) have been
reported. Such conditions were used in a further
clinical trial of MDR-1-based chemoprotection. In
this case, higher levels of gene marking were seen
in some patients at up to one year post-transplant,
and there was also some evidence for in vivo
selection (Ref. 32). Improved retroviral vectors
based on the spleen focus-forming virus (SFFV)
long-terminal repeat (LTR) promise higher and

more-sustained levels of expression in HSCs
and progenitor cells (Refs 33, 34), whereas
pseudotyping vectors with the envelope of the
gibbon ape leukaemia virus (GALV) can facilitate
improved gene transfer to repopulating stem cells
of humans and other primates (Refs 29, 31, 35,
36, 37).

Following these technical improvements,
transfer and expression of MDR-1 has now
been demonstrated in human cells capable of
engrafting in the immunodeficient nonobese
diabetic (NOD)/severe combined immune
deficiency (SCID) mouse transplantation model
(Refs 38, 39). Moreover, protection and selection
of MDR-1-expressing cells has been demonstrated
in this model. Further improvements have
included modification of cryptic splice acceptor
sites in the MDR-1 cDNA that have previously
led to reduced expression of MDR-1 protein, and
the use of post-transcriptional regulatory
elements (Ref. 40). Such advances, along with the
demonstration of gene transfer, expression and
protection in large-animal models (Ref. 41),
should lead to further clinical assessment of
MDR-1-based chemoprotection once previously
raised concerns over an MDR-1-derived toxicity
(Ref. 42) (see below) have been fully addressed.

MGMT

MGMT specifically repairs O%-alkylguanine
(O%-alkG) adducts in DNA (Ref. 43) .These
adducts have been shown to be cytotoxic,
mutagenic, clastogenic (causing chromosome
breaks) and carcinogenic (Ref. 44). Agents that
induce O%-alkG in cellular DNA include several
clinically useful antitumour agents such as
chloroethylnitrosoureas [e.g. biodegradable
carmustine (BCNU)] and O°-methylating agents
[e.g. dacarbazine (DTIC) and temozolomide]
(Ref. 43). Overexpression of MGMT is associated
with tumour-cell resistance to O®-alkylating
agents, with the levels of MGMT activity inversely
correlated with tumour xenograft responses
(Refs 45, 46).

Early experiments established that ectopic
expression of a bacterial analogue of MGMT in
otherwise sensitive normal cells conferred
resistance to the cytotoxic, clastogenic and
mutagenic effects of a range of O%-alkylating
agents in vitro (Refs 47, 48). Moreover,
overexpression of MGMT in tissues of transgenic
mice led to protection of these animals against
acute cytotoxicity and carcinogenesis following
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their exposure to nitrosoureas (Refs 49, 50). These
studies provided the impetus for gene-transfer
experiments in bone marrow (Refs 51, 52, 53), and
several groups showed that transfer and expression
of wild-type MGMT following transplantation led
to protection of the haematopoietic system of
recipient animals (Refs 54, 55).

MGMT detoxifies O%-alkG by transferring the
lesion to a cysteine in the MGMT active site
(Ref. 56). This is a covalent and irreversible
reaction, and leads to inactivation of MGMT. The
protein is then ubiquinated and degraded
(Ref. 57). This has led to the development of
clinical strategies aimed at ablating tumour-cell
MGMT prior to treatment with antitumour
agents. Early attempts to sensitise tumours in this
way centred on the use of O°-methylating agents
to ablate tumour MGMT prior to treatment with
a chloroethylating agent (Refs 58, 59). However,
it soon became apparent that such an approach
increased collateral toxicity in bone marrow to an
unacceptable level and this was abandoned.
Current strategies use small-molecule mimics of
0¢-alkG in DNA as pseudosubstrates for MGMT.
These agents, of which O°-benzylguanine (O°-beG)
and O°bromothenylguanine (PaTrin2) are in
clinical trial, react with the active site of MGMT
and very effectively ablate tumour resistance
(Refs 60, 61) (Fig. 2). However, none of the
pseudosubstrates acts specifically on tumour
tissue, and collateral toxicity to haematopoietic
cells was demonstrated in human haematopoietic
progenitors in vitro (Refs 62, 63) and mouse bone
marrow in vivo (Ref. 64). This predicted increased
toxicity has now been confirmed in Phase I and II
clinical trials of MGMT inactivators, where
increased myelosuppression was observed that
resulted in a reduction of the maximum tolerated
dose of Of-alkylating agent (Refs 65, 66).

Studies in bacteria have indicated that the two
Escherichia coli analogues of MGMT (Ada and
Ogt) exhibit resistance to inactivation (Ref. 67).

Moreover, transfer and expression of the E. coli
ada gene could confer inactivator-insensitive
protection to bone marrow cells (Ref. 68). On the
basis of such observations, several mutant versions
of the human MGMT have been produced, with
varying degrees of resistance to O%-beG (Refs 69,
70, 71, 72) (Table 2) and PaTrin2 (L. Fairbairn,
unpublished). The use of mutant MGMT in
gene-transfer experiments has quickly established
its ability to protect murine and human
haematopoiesis against the toxicity and
clastogenicity of combinations of O¢f-alkylating
agent and inactivator (Refs 73, 74, 75, 76) (Fig. 2).
Further studies have subsequently demonstrated
that protection of bone marrow in this way led
to increased survival of animals that were
challenged with chemotherapy and to an
increased therapeutic index against tumour
xenografts (Refs 75, 77, 78). Clinical trials of
mutant MGMT-based chemoprotection, in order
to test the potential of this strategy for protection
and selection, are eagerly awaited.

Dual expression

Only a few antitumour regimens make use of a
single cytotoxic agent (or class of agents). Instead,
chemotherapy is often administered in a
multi-agent fashion with a view to potentially
overcoming tumour-cell resistance to individual
drugs (Ref. 79). Thus, the collateral cytotoxicity
seen on treatment represents the combinatorial
toxicity of multiple agents. Although protection
against one component of a multi-agent regimen
might reasonably be expected to reduce cytotoxic
side effects to some extent, protection of sensitive
tissues against all toxicities that result from the
various agents used would clearly be preferable.
To this end, several groups have explored the
potential of vectors that coexpress more than one
drug-resistance function. Thus, MDR-1 has been
combined with MGMT in a retroviral vector, and
data showing in vitro protection of cells against

Figure 2. MGMT activity and cellular sensitivity to Of-alkylating agents. (Legend; see next page for figure.)
(a) Exposure of tumour cells to an Of-alkylating agent such as temozolomide leads to alkylation of DNA
at the Of-position of guanine. If the tumour cell expresses little or no MGMT (Of-methylguanine-DNA-
methyltransferase), drug exposure can lead to cell death; however, if MGMT is expressed to a sufficient level
the alkyl group is transferred to the active site of MGMT, in a stoichiometric and autoinactivating manner,
resulting in DNA repair and tumour-cell resistance. Haematopoietic stem cells (HSCs) express little or no
MGMT and are particularly sensitive to temozolomide. (b) Addition of an MGMT pseudosubstrate, such
as O°-benzylguanine, leads to inactivation of MGMT and sensitisation of tumour cells to the cytotoxicity of
temozolomide. At the same time, retroviral transduction of HSC with a mutant (O°-benzylguanine-insensitive)
MGMT leads to inactivator-insensitive protection against the cytotoxicity of temozolomide.
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Figure 2. MGMT activity and cellular sensitivity to O°-alkylating agents. (See previous page for legend.)
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Table 2. Inactivator-resistant human MGMT mutants2

MGMT mutant IC,, O°-beG (um) Relative resistance (-fold) Refs
Wild type 0.2 1.0 69, 73
P140A 2.5-5.0 12.5-25.0 69, 73
G156A 15-60 75-300 69, 70
P140K >1200 >6000 70, 72
P140A/G156A >500 >2500 73

@ The table shows the effect of specific point mutations on the sensitivity of human MGMT to inactivation by

O°-beG, expressed as the concentration of inactivator required to reduce MGMT activity by 50% (IC,).
Relative resistance (-fold), compared with wild-type MGMT, is also shown.
Abbreviations: MGMT, Of-methylguanine-DNA-methyltransferase; O%-beG, O°-benzylguanine.

combinations of agents have been obtained
(Refs 80, 81, 82). Similar studies have combined
MDR-1 with either a mutant dihydrofolate
reductase (Conferring resistance to methotrexate)
(Ref. 83) or aldehyde dehydrogenase (conferring
resistance to cyclophosphamide) (Ref. 84).
Where dual expression is required, it will
probably be important to achieve high-level
expression of both resistance factors in order to
maximise the protective effect of gene transfer.
Most vectors used to date have utilised an
internal ribosome entry site (IRES) that permits
binding of ribosomes midway through an mRNA
transcript and initiation of translation of a second
cistron independently of cap-driven translation
of the upstream coding sequence (Refs 85, 86).
Since both trangenes are expressed from a single
mRNA molecule, an advantage of using an IRES
is that expression of one gene product is almost
invariably associated with expression of the other,
thus assuring coexpression. One disadvantage,
however, stems from the observation that the level
of translation of the downstream coding sequence
can be as low as 10% of that from the upstream
cistron (Ref. 87). Some groups have overcome
this by producing fusions of two resistance
functions (e.g. a chimaeric gene encoding mutant
dihydrofolate reductase fused to thymidylate
synthase, to confer resistance to both methotrexate
and 5-fluorouracil) (Refs 88, 89). However, this is
a tenable strategy only where both resistance
functions perform their protective role within the
same cellular compartment (e.g. the cytoplasm).
An alternative approach, which might allow
both high-level production of more than one
protein and appropriate cellular localisation,
makes use of the self-processing 2A moiety of
the foot and mouth disease virus (Ref. 90).

n haematopoietic cells

Incorporation of this as part of a fusion protein-—
between an upstream and downstream coding >~
sequence results in cotranslational processing.—
of the nascent polypeptide chain, allowing —
release of the upstream protein from the ribosome *—
yet continued synthesis of the downstream )
protein (Refs 89, 91). The use of such self- -
processing peptides has allowed the production

of stoichiometric levels of multiple gene products

along with appropriate compartmentalisation. o
Szymczak and collegues (Ref. 92) made use of E
multiple 2A sequences, derived from different—z
viruses, to derive a retroviral vector coexpressing ,__
the four members of the CD3 complex. When O
introduced into bone marrow of CD3-null mice,

this led to efficient and stochiometric production
of these four membrane proteins and correction* ;=
of the multiple gene deficiency, resulting in (O
restoration of T-cell function.

ipul

In vivo selection :
The recent success in treating patients with X-linked =
SCID (SCID-X1) has given new heart to the gene
therapy community (Refs 93, 94, 95; reviewed in S
this journal in Ref. 96). Much of the success has
depended on improvements in transduction 4=
procedures and vectors, as discussed above. ¥
However, it is likely that at least two other factors
have also contributed. First, in the SCID-X1 studies,
there is a lack of immune response to theo
transgene, since the patients are immunodeficient.
Second, and of importance to this review,
expression of the therapeutic transgene (the
cytokine receptor common Yy-chain) leads to a
profound survival and proliferative advantage in
gene-corrected cells. For several disorders where
HSC gene therapy might be curative (e.g.
thalassaemia, chronic granulomatous disease),
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Figure 3. In vivo selection of drug-resistant haematopoiesis. In many applications of gene therapy to
haematopoietic stem cells, it might be important to confer a selective advantage on transduced cells, and this
might be achieved by the endowment of drug resistance. (a) Bone marrow cells harvested from mice pre-treated
with 5-fluorouracil (to enrich for primitive cells) and pre-incubated in a cytokine cocktail (to induce cell cycling
and facilitate retroviral transduction) are co-cultivated for two days with packaging cells for retroviruses carrying
adrug-resistance gene (e.g. MDR-1) and a reporter gene (e.g. YFP). (b) Haematopoietic cells are then harvested
from the coculture and transplanted into syngeneic recipients that have been myeloablated by total body
irradiation. Following recovery of haematopoiesis in the transfused mice, successive rounds of low-dose
chemotherapy (e.g. etoposide) are delivered. (c) Analysis of peripheral blood for YFP reveals how successive
selective challenges increase the proportion of transduced cells in peripheral blood. Abbreviations: MDR-1,
multiple drug resistance 1; YFP, yellow fluorescent protein.

there is unlikely to be an advantage to gene-
corrected cells. It might therefore be important to
confer an artificial advantage, and the endowment
of drug resistance is one way in which this could
be achieved (Fig. 3).

The selective survival in vivo of cells
transduced by retroviral gene therapy has been
shown in chemoprotection studies in which
multiple rounds of drug administration were
given (Refs 75, 77, 97, 98). It was observed in
these studies that the level of chemoprotection

increased with subsequent rounds of treatment
and that the proportion of gene-modified
cells increased concomitantly. Subsequent in
vivo studies showed that bicistronic vectors
coexpressing a therapeutic transgene in cohort
with a drug-resistance marker facilitated selection
of gene-modified cells expressing high levels of
the therapeutic gene product (Refs 41, 99).

An important consideration in in vivo selection
is the length of time for which selection can be
maintained. Most of the drugs used for in
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vivo selection are not only cytotoxic but also
mutagenic, and prolonged exposure of patients
to such agents is likely to lead to the inadvertent
induction of tumours (often leukaemias or
lymphomas) by the procedure itself (i.e. iatrogenic
tumours) (Ref. 100). Therefore, selection should
ideally be achievable with the minimum
number of exposures of patient to the selective
agent. This requires that selection occurs at the
level of the HSC, and presents problems with
some agents. For example, methotrexate exhibits
toxicity mainly to the committed progenitor
compartments (Ref. 101), and selection with
methotrexate tends to be transient, as non-gene-
modified stem cells continue to contribute to
haematopoiesis. This is at least in part due to the
expression in more-primitive cells of nucleoside
transporters that allow circumvention of de novo
nucleotide synthesis and thus resistance to
methotrexate toxicity. Inclusion of a nucleoside
transport inhibitor in selection protocols leads to
enhanced myelotoxicity with methotrexate and to
improved selection in a mouse model. This
selection included primitive cells, as shown by
improved levels of gene-modified cells in
secondary transplanted animals (Refs 102, 103).
However, selection remained transient, with a
gradual fall in transduced cells post-selection. A
similar finding was made in a primate study
where only transient selection was achieved in
rhesus macqaques, with levels of gene-modified
cells returning to baseline within 3 weeks post-
selection (Ref. 104).

Similar problems could limit the utility of
MDR-1 for long-term selection. Primitive
haematopoietic cells, including stem cells, express
ABC transport proteins (Refs 105, 106). Thus, very
primitive cells are more resistant to MDR-1
substrate drugs than their differentiated progeny.
This is reflected in the data obtained in in vivo
experiments with MDR-1 gene transfer. It is
clear from preclinical experiments in mice and
dogs that MDR-1-transduced haematopoietic
cells have an in vivo survival and selective
advantage following exposure to appropriate
chemotherapeutic agents (Refs 16, 19, 41). In
clinical trials there are suggestions that MDR-1
might lead to selection in humans (Ref. 32)
However, in animal studies, the selective effect
has been transient, reflecting selection at a more
committed stage of differentiation than the stem
cell (Refs 41, 107). One solution could be to use
a more aggressive regimen, with a view to

overcoming endogenous resistance in stem cells,
yet allowing survival of cells overexpressing
exogenous MDR-1. However, some care will be
needed if such a strategy is to be used. The
selective drugs that can be used in combination
with MDR-1 are nonspecific and can damage a
wide range of cells and tissues. Indeed, in a study
in dogs (Ref. 41), administration of taxol at
moderately high levels resulted in the death of
two out of three experimental animals. The
third, treated at a lower dose of taxol, showed
evidence of gene-modified cells post-selection
despite these cells being undetectable before
selection. However, at later time points, MDR-1
expression decreased and transgene positivity
(by polymerase chain reaction) in peripheral
blood declined markedly, suggesting selection at
best in a long-lived progenitor compartment.

By contrast, mutant MGMT could offer a better
solution. Itis known that primitive haematopoietic
cells express very low levels of MGMT and that
these cells are highly sensitive to O%-alkylating
agents (Ref. 63). Several murine studies have
shown convincing evidence for in vivo selection
of cells expressing mutant MGMT following
treatment of transplanted animals with O°-beG
in combination with either temozolomide or
BCNU (Refs 75, 77, 97, 98, 99, 108, 109). Follow-up
post-selection has been relatively short in most
studies, so it is difficult to determine whether
selection would have resulted in long-term
expression of the transgene. However, high levels
(60-80%) of transgene positivity can be achieved
in secondary recipients of bone marrow from
primary transplant hosts (Refs 77, 98, 108). This
suggests that primitive cells were selected in
those primary animals. Moreover, in a canine
study, a high level of gene-modified cells has
been achieved post-selection, and this has
been maintained for up to one year (Ref. 110).
Thus, mutant MGMT could provide a means of
achieving long-term and stable selection of gene-
modified cells in vivo.

Engineering drug sensitivity
As well as using gene therapy to increase the
resistance of haematopoietic cells to cytotoxic
drugs, it is also possible to engineer drug
sensitivity. This strategy is often referred to as
gene-directed enzyme prodrug therapy (GDEPT)
or ‘suicide gene therapy’ (Ref. 111). Such strategies
provide a means to eliminate a gene-modified
graftin the event of an adverse effect such as graft-
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versus-host disease (GVHD), or provide a “safety’
mechanism to allow elimination of gene-modified
cells in the event of an iatrogenic neoplasma such
as a leukaemogenic event. A further application
of GDEPT might be to use haematopoietic cells
as a means of targeting bioactive proteins into
tumours.

GDEPT: the concept

The underlying concept of GDEPT is that an
otherwise nontoxic prodrug (or a drug with
limited toxicity) becomes activated by an enzyme
encoded by a transgene delivered by gene
therapy, with a resulting cytotoxic effect. This
strategy was originally developed as a means of
specifically activating cytotoxic compounds

within tumour cells. In this context, genetic
transfer of an activating enzyme to tumour cells
prior to delivery of the prodrug might be used to
target cytotoxic effects to a tumour mass, sparing
normal tissue (Fig. 4). Several enzyme—prodrug
GDEPT systems are under study; these are
listed in Table 3 and are discussed in greater
detail in Ref. 112.

In the main, the activating enzyme in GDEPT
systems is encoded by a cDNA or gene that is
nonmammalian in origin — generally bacterial or
viral. The obvious reason for this is that there is
less likelihood of normal human cells expressing
a comparative activity and thus converting the
prodrug to a cytotoxic derivative. However,
such an approach has to take into account the

Nontoxic prodrug

2z

Suicide
enzyme

Y

Active toxic
drug

!

Death of neighbouring cells
through bystander effects

Death of transduced
tumour cell

Principle of gene-directed enzyme prodrug therapy (GDEPT)

Expert Reviews in Molecular Medicine ©2004 Cambridge University Press

Virus encoding
suicide enzyme

Expression of
suicide gene

Transduction

Nucleus
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Figure 4. Principle of gene-directed enzyme prodrug therapy (GDEPT). An appropriate vector (typically
viral) is used to achieve insertion and expression of a prodrug-activating enzyme (see Table 3) and expression
within tumour cells. Following administration of the otherwise nontoxic (or minimally toxic) prodrug, this is
converted to an active, toxic metabolite in transduced cells. These are subsequently killed. Bystander,
untransduced cells might also be killed following prodrug activation, by mechanisms that include direct transfer
of activated drug through gap junctions, ingestion of apoptotic bodies from killed cells, effects on tumour

vasculature, or immunological responses.
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Table 3. Gene-directed enzyme prodrug therapy (GDEPT) systems in current use

Enzyme Prodrug (example)

Carboxylesterase Irinotecan (CPT-11)

amino]benzoyl-L-glutamic
acid (CMDA)

Cytochrome P450 Cyclophosphamide

Cytosine deaminase  5-Fluorocytosine

Herpes simplex virus  Ganciclovir

thymidine kinase

Nitroreductase 1
(CB1954)

Carboxypeptidase G2 4-[(2-Chloroethyl)(2-mesyloxyethyl)

5-Aziridinyl-2,4-dinitrobenzamide

Active metabolite Ref.
7-Ethyl-10-hydroxy-camptothecin 168
4-[(2-Chloroethyl)(2-mesyloxyethyl) 169
amino]benzoic acid (CMBA)
4-Hydroxycyclophosphamide, 170
which degrades into acrolein and
phosphoramide mustard

5-Fluorouracil 171
Ganciclovir triphosphate 116
5-(Aziridin-1-yl)-4-hydroxylamino- 172
2-nitrobenzamide

potential for an immune response to the
exogenous protein, and indeed such responses
to herpes simplex virus thymidine kinase
(HSV-TK) have been reported in a clinical
trial (Ref. 113). In GDEPT strategies aimed at
transducing and sensitising tumour cells, immune
reactions might potentiate the therapeutic
response (Ref. 114). However, immunological
complications might also lead to compromised
therapeutic effectiveness (Ref. 113). One solution
to this might be to express a protein of human
origin. An example would be carboxylesterase,
which can convert the chemotherapeutic drug
irinotecan to its active agent SN38 (Ref. 115).
Such an approach, however, will rely heavily on
achieving a suitably large differential between
levels of expression in normal tissue and those in
gene-modified cells in order to minimise collateral
toxicity.

In the haematopoietic system, the GDEPT
strategy that has been most extensively tested
has been the use of HSV-TK in combination with
ganciclovir (GCV) (Ref. 112). GCV is widely used
as an agent for the treatment of cytomegalovirus
and herpes simplex infections. It is a poor
substrate for mammalian nucleoside kinases,
but it is efficiently phosphorylated to the
monophosphate form by HSV-TK (Ref. 116).
Subsequently, cellular kinases mediate its further
metabolism to a toxic triphosphate derivative that
is incorporated into the host-cell DNA, leading
to killing of actively dividing cells.

GDEPT targeted at alloreactive T cells

The cell-cycle dependence of the killing action of
HSV-TK-GCV led to the hypothesis that this
system might facilitate deletion of alloreactive
T cells in an allogeneic transplant setting. GVHD
is a serious and potentially lethal consequence of
allogeneic transplantation (Ref. 117). Strategies
such as T-cell depletion of grafts or intensive
immunosuppressive chemotherapy post-transplant
can prevent or ameliorate GVHD (Refs 117, 118).
However, this can lead to poor engraftment of
donor haematopoiesis, and to prolonged immune
deficiency and thus susceptibility of patients to
infection [either exogenous or endogenous, such
as reactivation of Epstein-Barr virus (EBV) and
subsequent development of EBV-induced
lymphoma] (Ref. 118). Moreover, where a patient
is being transplanted in order to treat neoplastic
haematopoietic disease (i.e. leukaemia), lack of
an alloreactive graft-versus-leukaemia (GVL)
effectleads to higher incidences of disease relapse
(Ref. 119). For these reasons, several studies have
examined whether a GDEPT approach might
allow infusion of donor T cells in a situation that
confers the capacity to delete such cells in the
event of GVHD.

Early studies provided promising evidence
of the utility of HSV-TK to rescue mice from
GVHD post-transplantation (Refs 120, 121, 122).
On the basis of these studies, clinical trials were
undertaken in patients receiving allogeneic
transplantation as an integral part of treatment
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for leukaemia. In the first report of such a
study, eight patients were infused with donor
lymphocytes in an attempt to control either
disease relapse or EBV-induced lymphoma
(Ref. 123). These lymphocytes were transduced
with a retrovirus expressing HSV-TK. In five of
the patients, a GVL effect was seen, with either
complete or partial responses to treatment. Of
these five patients, three also developed GVHD
and were treated with GCV, resulting in complete
deletion of gene-modified T cells and remission
from disease in two patients, and a partial
response in the third. In a related trial, patients
received HSV-TK-modified T cells concurrently
with a T-cell-depleted allogeneic bone marrow
(Ref. 124). Three patients developed acute GVHD,
of which two were successfully treated with GCV
and the third required a combination of GCV and
further immunosuppressive treatment; a fourth
developed chronic GVHD that was also resolved
with GCV.

Although these trials provided proof-of-
principle of the potential of GDEPT to allow
manipulation of GVL and GVHD in transplant
patients, it became clear that several factors
needed to be optimised. One of these stems
from the observation that resistance to GCV is
associated with cryptic splicing and subsequent
deletion of sequences from wild-type HSV-TK
(Ref. 125). Cells harbouring such a deletion
exhibited a selective advantage in patients treated
with GCV. Introduction of conservative point
mutations into HSV-TK eliminates the splicing
and could overcome this limitation of the wild-
type gene (Ref. 126). Moreover, the introduction
of multiple amino acid changes has resulted in
the development of an enhanced version of the
enzyme that confers elevated sensitivity to GCV
(Refs 127, 128).

Akin to what has been previously described
in studies of HSC gene therapy, it seems that
the gene-transfer process might compromise
T-cell function (Refs 129, 130, 131). Changes to in
vitro culture conditions, including alternative
cytokines, shorter-term culture and perhaps the
use of lentiviral vectors [which require reduced
culture times and less cytokine stimulation of
target cells in order to efficiently transduce T cells
(Ref. 132)] are being investigated as a means to
achieve optimal transduction with minimal
disruption to the target cells (Refs 130, 133).
Similarly, the scheduling of GCV administration
to patients merits close attention: early

administration post-transplant might selectively
delete alloreactive cells, leading to prophylactic
treatment of GVHD (Refs 134, 135). Balanced
against this is the need to maintain the alloreactive
GVL effect, and murine studies suggest that a
compromise in scheduling of GCV might achieve
this (Ref. 136).

GDEPT targeted at macrophages
Macrophages constitute another potential target
for GDEPT. The direct role of macrophages in
tumourigenesis remains controversial as they
display both a growth-promoting phenotype and
tumouricidal activity (Ref. 137). Furthermore,
despite forming a significant proportion of the
solid tumour mass, it is unclear whether
activated macrophages per se are potent enough
to mediate a significant therapeutic effect. One
approach to augment the antitumour potential of
macrophages might be to endow them with a
GDEPT capability with a view to harnessing a
bystander effect, whereby cells surrounding
gene-modified macrophages are exposed to a
cytotoxic agent following macrophage-dependent
activation of a prodrug.

One major caveat to this approach surrounds
the behaviour of systemically infused
macrophages in animal models and patients.
Although such cells might locate to tumour
sites, the efficiency with which they do so can vary
greatly, with a majority of macrophages locating
to other sites, notably the lungs, liver and spleen
(Ref. 137). Uncontrolled expression of a prodrug
activator in such tissues would thus lead to a risk
of extensive collateral damage on administration
of the prodrug. The local administration of
macrophages within tumours could overcome this
limitation, but such an approach would not be
applicable to disseminated disease. An alternative
approach has used bispecific antibodies that bind
both macrophage and a “tumour-specific’ antigen
(Refs 138, 139). This has been shown in murine
models to enhance tumouricidal activity and
might have a role in enhancing homing to disease
sites.

Alternatively, it might be feasible to restrict
expression of prodrug activators to macrophages
that are located within the tumour environment.
The best characterised of these approaches seeks
to exploit the observation that macrophages
tend to home to areas of hypoxia in tumours,
and express several hypoxia-related genes,
including some involved in glucose metabolism
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and angiogenesis (Ref. 140). In these regions, the
activity of the transcription factor hypoxia-
inducible factor (HIF) is upregulated in
macrophages. HIF in turn binds to hypoxia-
responsive elements, leading to upregulation of
transcription of hypoxia-responsive genes. Thus,
expression of a GDEPT enzyme by a hypoxia-
responsive promoter might restrict prodrug
activation to within a tumour mass and thus
avoid systemic toxicity. One early study has
shown hypoxia-dependent expression of human
cytochrome P4502B6 in an in vitro tumour
spheroid model (Ref. 140), suggesting this
approach might have utility. However, this has
not yet been tested in an in vivo model, and
concerns remain over whether basal levels of
expression in normal tissues might be high
enough to lead to significant levels of activated
drug outside the tumour mass and to subsequent
toxicity. Moreover, other physiological stimuli,
such as insulin or cytokines, might also upregulate
HIF activity and thus lead to increased collateral
toxicity (Refs 141, 142, 143, 144). One potential
solution to this problem might be to use a
bioreductive prodrug. Such drugs, when activated
by an appropriate reductase, can cause DNA
damage to cells under hypoxic conditions (Ref.
145). However, under normoxic conditions, they
are rapidly re-oxidised to a nontoxic form. For
example, hypoxia-dependent expression of the
cytochrome ¢ P450 reductase can be combined
with activation of the bioreductive nitroimidazole
RSU1069 to achieve efficient killing of target cells
under hypoxic conditions in vitro (Ref. 146).
However, as with any genetic approach, careful
in vivo modelling will be essential to evaluating
the potential of this strategy.

GDEPT targeted at bone marrow
progenitors

Finally, one further means of targeting GDEPT to
tumours via the haematopoietic system has
emerged from a study where bone marrow
progenitors were transduced with a lentiviral
vector containing regulatory elements from the
Tie2/Tek gene, which is preferentially expressed
in endothelial cells (Ref. 147). In tumour-
bearing mice, this vector marked a distinct set of
haematopoietic cells that homed to the tumour
and interacted with vascular endothelial cells. In
combination with HSV-TK expression in these
cells, GCV administration led to significant
reductions in tumour growth and inhibition of

tumour angiogenesis. This haematopoietic
approach to targeting cytotoxic therapy to the
tumour vasculature holds promise and merits
further and careful analysis.

Safety
When proposing the genetic modification of HSCs,
and particularly when considering enhancing
resistance to antitumour agents, some thought
should be given to the prospects for induction of
iatrogenic tumours (Ref. 148). Retroviral vectors
contain powerful transcriptional enhancers and
these can influence the activity of promoters in
the region of the insertion site. Recently, two
patients treated by retroviral gene therapy for
SCID-X1 developed a proliferative disorder that
has been attributed, at least in part, to insertional
activation of an oncogene by the retroviral vector
(Refs 149, 150). In addition, in two mouse models,
iatrogenic leukaemia has been described as a
result of retroviral transfer of a therapeutic or
marker gene to HSCs (Refs 42, 151). In the first
of these, transfer of the gene encoding MDR-1 to
murine bone marrow cells was associated with
the development of neoplastic disease in recipient
animals (Ref. 42). No previous experiments using
MDR-1 gene transfer had indicated any such
problem and indeed subsequent experiments
in a primate model, using the same vector as
the murine study, revealed no evidence of
myeloproliferative disease in those recipients
(Ref. 152). Moreover, overexpression of MDR-1
in a murine cell line conferred drug resistance but
did not affect other parameters such as growth
factor response, differentiation or growth rates
(Ref. 153). It seems likely that the oncogenic
effects seen were related to the high multiplicity
of infection (MOI) and the subsequent large
number of retroviral insertions that resulted in
gene-modified cells. In the other murine study,
oncogenic insertion of what was presumed to be
an innocuous marker gene — the truncated nerve
growth factor receptor — was directly implicated
in the development of a leukaemic clone (Ref. 151).
In this study, the authors clearly showed that
an oncogene (evi-1) was upregulated as a
consequence of insertional activation by the
retroviral vector. The previous observation that
evi-1 is not acutely leukaemogenic also led to the
authors suggesting that an interaction between
the transgene and the activated oncogene might
be an important parameter in the neoplastic
development. Furthermore, the observation that
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deletion of MDR-1 activity results in reduced
levels of polyposis in APC™~/~ mice [which
carry a nonsense mutation in the adenomatous
polyposis coli (APC) gene and have a consequent
increased susceptibility to tumourigenesis in the
colon and small intestine] suggests that an as-yet-
occult activity of MDR-1 might exist that
could contribute to transformation under some
circumstances (Ref. 154). Clearly, for any
putative therapeutic transgene to be used, careful
preclinical assessment of potential adverse effects
will be required.

The extent of vector integration into
haematopoietic and other target cells is dependent
on the MOI of the vector. Clearly, the more vector
a target cell is exposed to the greater the risk of
multiple integration events, and thus of any one
cell receiving a proleukaemic or other potentially
pathogenic integration. An emphasis on achieving
high levels of transduction has contributed to the
phenomenon of multiple integrations, since high
levels of transduction occur with high MOIs
(Ref. 148). Indeed, a recent study using a retroviral
vector demonstrated the relationship between
transduction frequency and proviral copy number
(Ref. 155). A transduction frequency of 30% or less
led to one proviral copy per transduced cell;
higher transduction frequencies resulted in
greater numbers of integrations, with some
clones assessed having more than ten proviral
copies. Such high numbers of proviral copies per
cell should be considered undesirable and it
seems likely that moderate, rather than high,
transduction frequencies might be preferable.
Under such circumstances, the in vivo selection
of gene-modified cells might prove important in
order to attain a therapeutic response.

Research in progress and outstanding
research questions
The principle of chemoprotection/ chemoselection
needs to be rigorously tested in clinical trials.
Previous trials using MDR-1 suffered from
poor transduction conditions and suboptimal
vectors. With the improvements in gene-transfer
technologies over recent years, the time is right
to re-examine this area. The best candidate for
clinical investigation of chemoprotection is
MGMT, and several trials are planned. These will
be initially undertaken in patients undergoing
chemotherapy for the treatment of solid
malignancies — primarily glioma and melanoma.
Important parameters to be measured will include

levels of transduction and engraftment of gene-
modified cells, as well as the effects of subsequent
chemotherapy on overall haematopoiesis and, in
particular, on transduced cell numbers (i.e. is there
evidence for in vivo selection?). If evidence of
substantial protection of haematopoiesis is
obtained, then it might be appropriate to extend
these studies to examine the potential for
chemotherapeutic dose intensification or
escalation. In vivo selection with MGMT or any
drug-resistance gene is unlikely to be tested
clinically outside of the context of cancer for some
time. Prior to this, clear indications will be
required that the gene-transfer process and the
drugs used for in vivo selection show an
acceptable safety profile (see below).

Many of the shortfalls in the maintenance of
the T-cell repertoire that characterised early trials
of HSV-TK for the control of GVHD have been
successfully addressed in mouse studies, as have
important issues surrounding scheduling of GCV
administration. It would seem appropriate to
begin further trials in this area; again, these are
planned. Important parameters to be assessed will
include the maintenance of the T-cell repertoire
in transplanted patients and, importantly, of the
graft-versus-infection and GVL capacity of the
gene-modified T cells.

The use of haematopoietic cells as vectors for
the delivery of prodrug-activating enzymes to
tumours is in a much earlier stage of development.
The major obstacle to this approach is the design
of vectors and strategies that will lead to tumour-
specific activation of the prodrugs. The use of
hypoxia as a means of controlling transgene
expression might facilitate this, but it must be
extensively tested in in vivo models, with
considerable emphasis on the specificity of
transgene expression and prodrug activation.
Some studies using bispecific antibodies suggest
that it might be possible to target cells more
effectively into tumour masses. However, these
data are preliminary and careful analysis of cell
trafficking and transgene expression will be
required in vivo.

Safety is of paramount concern in all gene
therapy applications. Where a therapeutic
application involves the induction of resistance
to chemotherapeutic agents, this concern is
understandably amplified. For this and other
reasons, clinical trials of drug-resistance gene
therapy will be conducted in patients already
being treated for malignant disease. However,
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there is much room for improvement of the safety
of current vectors and transduction protocols
(Refs 156, 157). The reported adverse effects in
patients have occurred following retroviral
gene transfer, and it has been documented
that such vectors preferentially integrate near
transcriptionally active genes (Refs 158, 159).
However, lentiviral and adeno-associated
virus vectors also preferentially integrate in
transcriptionally active regions (Refs 160, 161),
and there is no guarantee that these will prove
to be any less prone to causing insertional
activation of host genes. The development of
vectors carrying isolator regions, which could
facilitate efficient expression of a transgene while
minimising effects on the surrounding genome,
is an attractive proposition; so also is the
possibility of screening stem cells for potentially
dangerous insertions prior to transplantation.
However, neither of these is currently technically
feasible, and each approach will require a
considerable effort in order to come to fruition.
Meanwhile, the risk of adverse effects in patients
could be minimised by careful modelling in
murine systems, leading to a better understanding
of the interactions between transgenes and
insertion sites. This should be coupled with
transduction protocols that lead to integration
of a single copy of vector per repopulating cell
and with administration of a minimal number of
transduced stem cells compatible with long-term
effectiveness of treatment. These measures will
not eliminate the risk of insertional mutagenesis
but should substantially reduce it. Finally, in
determining whether it is appropriate to test any
given genetic therapy in patients, serious thought
should be given to the risk—benefit analysis. For
some patients, the consequences of not treating
their condition by genetic means might be worse
than the risk associated with gene therapy.
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PubMed: 14576852
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Cancer 2, 431-441, PubMed: 12189385
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Qasim, W., Gaspar, H.B. and Thrasher, A.J. (2004) Gene therapy for severe combined immune deficiency.
Expert Rev Mol Med 6, 13, 1-15, PubMed: 15236670

Cassidy, J. and Schatzlein, A.G. Tumour-targeted drug and gene delivery: principles and concepts. Expert
Rev Mol Med (in press)

Blechacz, B. and Stephen J. Russell, S.J. (2004) Parvovirus vectors: use and optimisation in cancer gene
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Kesmodel, S.B. and Spitz, F.R. (2003) Gene therapy for cancer and metastatic disease. Expert Rev Mol
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Useful sources of information on cancer and clinical trials include:

http://www.cancer.gov/ (The National Cancer Institute)

http://www.cancer.org/ (The American Cancer Society)

http://www.clinicaltrials.gov/ (The National Institutes of Health clinical trials register)
http://www.cancerresearchuk.org/ (Cancer Research UK)

http://www.Irf.org.uk/ (The Leukaemia Research Fund)

http://www.ntrac.org.uk/ (The National Translational Cancer Research Network)

For gene therapy information and links, useful sites are:

http://www.asgt.org/ (The American Society for Gene Therapy)
http://www.esgt.org/ (The European Society for Gene Therapy)
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Features associated with this article

Figures

Figure 1. Retroviral transfer of MDR-1 confers drug resistance.

Figure 2. MGMT activity and cellular sensitivity to O8-alkylating agents.
Figure 3. In vivo selection of drug-resistant haematopoiesis.

Figure 4. Principle of gene-directed enzyme prodrug therapy (GDEPT).

Table

Table 1. Common genetic chemo- and radioprotection strategies.

Table 2. Inactivator-resistant human MGMT mutants.

Table 3. Gene-directed enzyme prodrug therapy (GDEPT) systems in current use.
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