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Abstract

For many practical situations in reliability engineering, components in the system are
usually dependent since they generally work in a collaborative environment. In this
paper we build sufficient conditions for comparing two coherent systems under different
random environments in the sense of the usual stochastic, hazard rate, reversed hazard
rate, and likelihood ratio orders. Applications and numerical examples are provided to
illustrate all the theoretical results established here.
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1. Introduction

A system is said to be coherent if it has no irrelevant component and the structure function of
the system is nondecreasing in each component meaning that an improvement of a component
cannot lead to a deterioration in the performance of the system. In the context of reliability
theory, it is commonly assumed that the components’ lifetimes are independent and identically
distributed (i.i.d). However, the components are usually dependent in many practical situations
since they generally work in a collaborative environment. In this viewpoint, we think of the
components of a coherent system as dependent through an environmental random variable.
For more information on system reliability and replacement policies subjected to random
environments, we refer the interested reader to [16], [24], and [33]–[35].

Let X = (X1, . . . , Xn) be the lifetime vector of the components in a coherent system.
Denote the joint distribution function of X by

F(x1, . . . , xn) := P(X1 ≤ x1, . . . , Xn ≤ xn).

Let� be an environmental random variable with distribution functionW(·) and density function
w(·) with support in χ ⊆ R+ := [0,+∞). Furthermore, let X(θ) := (X1(θ), . . . , Xn(θ))

denote the lifetime vector of the components conditioned on an environment profile � = θ ,
where Xi(θ) has marginal distribution function Fi(· | θ) for i = 1, . . . , n. Then the joint
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reliability function of X(θ) can be represented as

F̄ (x1, . . . , xn | θ) = P(X1(θ) > x1, . . . , Xn(θ) > xn)

= K̂(F̄1(x1 | θ), . . . , F̄n(xn | θ)), (1.1)

where K̂(·), the survival copula, is a multivariate survival function supported on R
n+ and has

uniform marginals on [0, 1]. We refer the interested reader to [32] for an elaborate treatment
on copula functions. Throughout this paper, we consider X(�i) := (X1(�i), . . . , Xn(�i)) as
a random mapping whose distribution function is a mixture of the distribution functions of a
random vector (X1(θi), . . . , Xn(θi)) with environmental distribution Wi(·) for i = 1, 2.

It is well known that the reliability of a coherent system can be represented as a multivariate
dual distortion function of its components’ reliability; see [30]. Let Ti :=τ(X(�i)) be the
lifetime of a coherent system with joint reliability as in (1.1) under the random environment
�i for i = 1, 2. If the dual distortion function of this coherent system is denoted by h then the
reliability of the coherent system under environment �i can be expressed as

F̄τ (X(�i))(x) := P(τ (X(�i)) > x)

=
∫
χ

h(F̄1(x | θ), . . . , F̄n(x | θ)) dWi(θ), i = 1, 2, (1.2)

where h : [0, 1]n �→ [0, 1] depends on the structure function of the system and the survival
copula K̂ . Moreover, h is an increasing continuous function in [0, 1]n such that h(0, . . . , 0) = 0
and h(1, . . . , 1) = 1, and is usually called the dual distortion or domination function; see [12]
and [28]. Moreover, the distribution function of τ(X(�i)) is given by

Fτ(X(�i))(x) := P(τ (X(�i)) ≤ x) =
∫
χ

h̃(F1(x | θ), . . . , Fn(x | θ)) dWi(θ), i = 1, 2,

where h̃(u1, . . . , un) = 1 − h(1 − u1, . . . , 1 − un). For the F̄ (x | θ) = F̄1(x | θ) = · · · =
F̄n(x | θ) case, (1.2) reduces to

F̄τ (X(�i))(x) =
∫
χ

h(F̄ (x | θ)) dWi(θ) for i = 1, 2.

In what follows, we call the function h in (1.2) the distortion function for convenience.
Since the lifetime of a coherent system can be obtained from its minimal path sets, it can be
seen that the distortion function h depends on such minimal path sets and the survival copula
function K̂(·) of the components’ joint lifetimes. For instance, the lifetime of a series system
can be written as T = min{X1(θ), . . . , Xn(θ)} and the minimal path set for such system is
P = {1, 2, . . . , n}. Therefore, by using a copula representation, the reliability function of such
a system with dependent components can be written as

F̄T (x) = h(F̄ (x | θ)) = K̂(F̄ (x | θ), . . . , F̄ (x | θ)).
It is worth mentioning that if the component lifetimes are independent then the survival copula
function is of the form of K̂(u1, . . . , un) = ∏n

i=1 ui . In this case, the reliability function in (1.1)
includes many important multivariate mixture models studied in the literature. For example,

• multivariate mixture scale model:

K̂(F̄1(x | θ), . . . , F̄n(x | θ)) =
n∏
i=1

F̄i

(
x

θ

)
;
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• multivariate mixture frailty model:

K̂(F̄1(x | θ), . . . , F̄n(x | θ)) =
n∏
i=1

F̄ θi (x);

• multivariate general mixture model:

K̂(F̄1(x | θ), . . . , F̄n(x | θ)) =
n∏
i=1

F̄i(x | θ).

The above three models are special cases of (1.1) and, thus, (1.2) reduces to the lifetime of a
series system with components working under the random environment �i .

These three mixture models have received considerable attention with regard to studying the
effects of various random environments and/or different baseline random variables with respect
to univariate and multivariate stochastic orders; see, for example, [1]–[3], [6], [10], [15], [17],
[19], [21], and [22].

The last few decades have seen significant developments on stochastic comparisons of
coherent systems. For instance, Kochar et al. [18] showed that the lifetimes of two coherent
systems with i.i.d. components are stochastically ordered when their signatures are stochasti-
cally ordered. Navarro and Rubio [26] compared two coherent systems in terms of stochastic
precedence order. With the help of the survival signature and distortion function, Samaniego and
Navarro [36] compared coherent systems comprising independent heterogeneous components.
Navarro et al. [30] obtained some order preservation properties for general coherent systems
through the definition of generalized distortion distributions. For further discussions on this
topic, we refer the interested readers to [20], [27], and [28] and the references therein.

However, to the best of the authors’ knowledge, there is no result in the literature on
comparisons of coherent systems under random environments. For this reason, in this paper, we
study the effects of random environments on the lifetimes of coherent systems by considering
model (1.2). Sufficient conditions are established for comparing τ(X(�1)) and τ(X(�2))

according to the usual stochastic, hazard rate, reversed hazard rate, and likelihood ratio orders.
The rest of this paper is organized as follows. In Section 2 we present some pertinent defini-

tions and notions used in the rest of the paper. In Section 3, stochastic comparisons are conducted
on two coherent systems under different random environments in the sense of various stochastic
orders. In Section 4 we conclude the paper with applications for scale and frailty models.

2. Preliminaries

Throughout the paper, increasing means nondecreasing and decreasing means nonincreas-
ing. All involved integrals and expectations are assumed to exist whenever they appear. For a
multivariate function h(u), the partial derivative of h(u) with respective its ith coordinate is
denoted by ∂h(u)/∂ui for i = 1, . . . , n.

Definition 2.1. Let X and Y be two nonnegative random variables with density functions f
and g, distribution functions F and G, survival functions F̄ = 1 − F and Ḡ = 1 −G, hazard
rate functions hX = f/F̄ and hY = g/Ḡ, and reversed hazard rate functions rX = f/F and
rY = g/G, respectively. Then X is said to be smaller than Y in

• likelihood ratio order (denoted by X ≤lr Y ) if g(x)/f (x) is increasing in x ∈ R+;

• hazard rate order (denoted by X ≤hr Y ) if Ḡ(x)/F̄ (x) is increasing in x ∈ R+ or,
equivalently, hX(x) ≥ hY (x) for all x ∈ R+;
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• reversed hazard rate order (denoted by X ≤rh Y ) if G(x)/F (x) is increasing in x ∈ R+
or, equivalently, rX(x) ≤ rY (x) for all x ∈ R+;

• usual stochastic order (denoted by X ≤st Y ) if F̄ (x) ≤ Ḡ(x) for all x ∈ R+ or, equiv-
alently, E[φ(X)](≤ [≥])E[φ(Y )] for any increasing (decreasing) function φ : R → R.

It is well known that

X ≤lr Y 
⇒ X ≤hr[rh] Y 
⇒ X ≤st Y,

but neither reversed hazard rate order nor hazard rate order implies the other. For comprehensive
discussions on stochastic orders, we refer the reader to [23] and [37].

Next we present several definitions of ageing properties that are useful in establishing
characterization properties of components or systems in reliability theory.

Definition 2.2. A random variable X is said to have

• increasing (decreasing) failure rate (IFR (DFR)) if F̄ (x + t)/F̄ (x) is decreasing (increas-
ing) in x ∈ R+ for each t ∈ R+ or, equivalently, hX(x) is increasing (decreasing) in
x ∈ R+;

• increasing (decreasing) reversed failure rate (IRFR (DRFR)) if F(x + t)/F (x) is inc-
reasing (decreasing) in x ∈ R+ for each t ∈ R+ or, equivalently, rX(x) is increasing
(decreasing) in x ∈ R+;

• increasing (decreasing) likelihood ratio (ILR (DLR)) if f (x + t)/f (x) is decreasing
(increasing) in x ∈ R+ for each t ∈ R+ or, equivalently, f is log-concave (log-convex).

According to [4, Theorem 5.2], it is known that a mixture of DFR distributions is also DFR.
The following implications are well known:

DLR 
⇒ DFR, ILR 
⇒ IFR.

For more discussions on ageing concepts, we refer the reader to [4], [8], [9], and [25].
In the following definition, we introduce the notion of totally positive of order 2 (TP2) and

the reverse regular of order 2 (RR2).

Definition 2.3. A function ψ(x, θ) is said to be TP2 (RR2) in (x, θ) if ψ(x, θ) ≥ 0 and

ψ(x1, θ1)ψ(x2, θ2)(≥ [≤])ψ(x1, θ2)ψ(x2, θ1)

whenever x2 ≥ x1 and θ2 ≥ θ1.

We point out that the TP2 (RR2) property of ψ(x, θ) is equivalent to ψ(x, θ2)/ψ(x, θ1) is
increasing (decreasing) in x whenever θ1 ≤ θ2. The following lemma is useful for proving our
main results in the next section.

Lemma 2.1. (Karlin [13, p. 99].) Let ψ(x, θ) be a TP2 (RR2) function in (θ, x) ∈ R × R,
and wi(θ) be TP2 in (i, θ) ∈ {1, 2} × R, where wi(θ) is a probability density function in θ for
each i. Then the function

φi(x) =
∫

R

ψ(θ, x)wi(θ) dθ

is TP2 (RR2) in (i, x) ∈ {1, 2} × R.

We refer the interested reader to [13] and [14] for more details on various dependence notions
and their properties.

https://doi.org/10.1017/jpr.2018.30 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2018.30


Coherent systems under random environments 463

3. Main results

In this section we obtain various ordering results for the lifetimes of coherent systems under
different random environments. Hereafter, it is assumed that the survival functions of the life-
times of coherent systems with components having lifetimes X under random environments�i
are in the form of (1.2), where h is the distortion function associated with the system’s structure
and joint lifetimes among components.

First, we establish some sufficient conditions for the usual stochastic order in order to
compare two coherent systems having different environments.

Theorem 3.1. Suppose that

(i) Xi(θ1) ≤st Xi(θ2) for θ1 ≤ θ2, i = 1, . . . , n;

(ii) �1 ≤st �2.

Then we have τ(X(�1)) ≤st τ(X(�2)).

Proof. As a distortion function, h(u1, . . . , un) is clearly increasing in ui for i = 1, . . . , n.
From the assumption that Xi(θ1) ≤st Xi(θ2), we know that F̄i(x | θ) is increasing in θ for
i = 1, . . . , n. Then we obtain

h(F̄i(x | θ1), . . . , F̄i(x | θ1)) ≤ h(F̄i(x | θ2), . . . , F̄i(x | θ2)),

which implies that τ(X(θ1)) ≤st τ(X(θ2)). The desired result then follows by applying [37,
Theorem 1.A.6]. �

Define a class of distortion functions as

D = {	 : α	i (u1, . . . , un) is decreasing in u ∈ (0, 1)n, i = 1, . . . , n},
where

α	i (u1, . . . , un) = ui

	(u1, . . . , un)

∂

∂ui
	(u1, . . . , un)

for any differentiable function 	 : [0, 1]n �→ [0, 1]. In the next result we use the hazard rate
order to compare the lifetimes of coherent systems under different random environments.

Theorem 3.2. Suppose that

(i) h ∈ D;

(ii) Xi(θ1) ≤hr Xi(θ2) for θ1 ≤ θ2, i = 1, . . . , n;

(iii) �1 ≤hr �2.

Then we have τ(X(�1)) ≤hr τ(X(�2)).

Proof. Assume that θ1 ≤ θ2. The survival function of τ(X(θi)) is given by

F̄τ (X(θi ))(x) = h(F̄1(x1 | θi), . . . , F̄n(x1 | θi)).
Let ui = F̄i(x | θ1), u∗

i = F̄i(x | θ2), u = (u1, . . . , un), and u∗ = (u∗
1, . . . , u

∗
n). Since

Xi(θ1) ≤hr Xi(θ2), it follows that ui ≤ u∗
i for all i = 1, . . . , n. The assumption that h ∈ D is
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equivalent to that of αhi (u) is decreasing in u ∈ [0, 1]n. Thus, applying the result of Navarro et
al. [30, Proposition 2.3(ii)], it follows that

τ(X(θ1)) ≤hr τ(X(θ2)). (3.1)

Then, from (3.1) and the assumption that �1 ≤hr �2, and using [37, Theorem 1.B.14], it
follows that τ(X(�1)) ≤hr τ(X(�2)), yielding the desired result. �

We point out that the assumption of Theorem 3.2(i) has also been used by Navarro et al. [29,
Proposition 2.5] to present sufficient conditions for the preservation of IFR and DFR reliability
classes under the formation of general coherent systems. In the following example we provide
an illustration for the assumption of Theorem 3.2(i).

Example 3.1. The function K̂(u1, . . . , un) that corresponds to the well-known Gumbel–Barn-
ett copula has the following analytic expression:

K̂(u1, . . . , un) = u1 · · · une−α log u1··· log un, α > 0, 0 < ui < 1.

Let τ(X) be the lifetime of a series system with two heterogeneous dependent components
having lifetimes X1 and X2. Then, the distortion function of τ(X) is given by

h(u) = K̂(u1, u2) = u1u2e−α log u1 log u2 , 0 < ui < 1, i = 1, 2.

It is clear that h(u) is exchangeable. Furthermore, it can be shown that, for all α > 0, the
function

u1

h(u)

∂h(u)

∂u1
= 1 − α log u2

is clearly decreasing in u1 and u2.

For coherent systems with homogeneous components, the assumption of Theorem 3.2(i) is
equivalent to the function uh′(u)/h(u) being decreasing in u ∈ (0, 1). Thus, we obtain the
following corollary.

Corollary 3.1. Suppose that X
st= Xi for i = 1, . . . , n, where ‘

st=’ denotes equal in the usual
stochastic order, and

(i) uh′(u)/h(u) is decreasing in u ∈ (0, 1);

(ii) X(θ1) ≤hr X(θ2) for θ1 ≤ θ2;

(iii) �1 ≤hr �2.

Then we have τ(X(�1)) ≤hr τ(X(�2)).

Define

D∗ = {	 : β	i (u1, . . . , un) is increasing in u ∈ (0, 1)n, i = 1, . . . , n},
where

β	i (u1, . . . , un) = (1 − ui)

1 −	(u1, . . . , un)

∂

∂ui
	(u1, . . . , un).

We use the following lemma to connect the classes D and D∗.

Lemma 3.1. We say that h̃ ∈ D is equivalent to h ∈ D∗.
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Proof. Note that h̃ ∈ D is equivalent to

αh̃i (u1, . . . , un) = ui

h̃(u1, . . . , un)

∂

∂ui
h̃(u1, . . . , un)

being decreasing in u ∈ (0, 1)n. We can then write

αh̃i (u1, . . . , un) = ui

h̃(u1, . . . , un)

∂

∂ui
h̃(u1, . . . , un)

= ui

1 − h(1 − u1, . . . , 1 − un)

∂

∂ui
[1 − h(1 − u1, . . . , 1 − un)]

= − ui

1 − h(1 − u1, . . . , 1 − un)

∂

∂ui
h(1 − u1, . . . , 1 − un)

= − 1 − vi

1 − h(v1, . . . , vn)

∂

∂(1 − vi)
h(v1, . . . , vn)

= 1 − vi

1 − h(v1, . . . , vn)

∂

∂vi
h(v1, . . . , vn)

= βhi (v1, . . . , vn), (3.2)

where vi = 1−ui, i = 1, . . . , n. Then, from (3.2), it follows that αh̃i (u1, . . . , un) is decreasing
in u ∈ (0, 1)n, which is equivalent to βhi (v1, . . . , vn) being increasing in v ∈ (0, 1)n. Thus, we
have h ∈ D∗. �

Next we compare the reversed hazard rate functions of two coherent systems having different
random environments, which describes the translation of the reversed hazard rate order between
the random environments into stochastic comparisons on τ(X(�1)) and τ(X(�2)).

Theorem 3.3. Suppose that

(i) h ∈ D∗;

(ii) Xi(θ1) ≤rh Xi(θ2) for θ1 ≤ θ2, i = 1, . . . , n;

(iii) �1 ≤rh �2.

Then we have τ(X(�1)) ≤rh τ(X(�2)).

Proof. Assume that θ1 ≤ θ2. The distribution function of τ(X(θi)) is given by

Fτ(X(θi ))(x) = 1 − h(F̄1(x1 | θi), . . . , F̄n(x1 | θi)).
Let ui = F̄i(x | θ1), u∗

i = F̄i(x | θ2), u = (u1, . . . , un), and u∗ = (u∗
1, . . . , u

∗
n). From the

assumption thatXi(θ1) ≤rh Xi(θ2), it follows thatui ≤ u∗
i for all i = 1, . . . , n. The assumption

that h ∈ D∗ is equivalent to βhi (u) being increasing in u ∈ (0, 1)n or, equivalently, h̃ ∈ D
based on Lemma 3.1. Thus, from [30, Proposition 2.3(iii)], it follows that

τ(X(θ1)) ≤rh τ(X(θ2)). (3.3)

By (3.3), the assumption that �1 ≤hr �2 and [37, Theorem 1.B.52], it follows that
τ(X(�1)) ≤rh τ(X(�2)), as required. �
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It is important to note that the assumption of Theorem 3.3(i) has been exploited by Navarro et
al. [29, Proposition 2.6] to study preservation of the DRFR class for coherent systems consisting
of homogeneous dependent components.

Note that Theorem 3.3(i) is equivalent to the function (1 − u)h′(u)/(1 − h(u)) increasing
in u ∈ (0, 1) when the components are homogeneous. Therefore, the following result can be
obtained for two coherent systems with different environments compared in the sense of the
reversed hazard rate order.

Corollary 3.2. Suppose that X
st= Xi for i = 1, . . . , n, and

(i) (1 − u)h′(u)/(1 − h(u)) is increasing in u ∈ (0, 1);

(ii) X(θ1) ≤rh X(θ2) for θ1 ≤ θ2;

(iii) �1 ≤rh �2.

Then we have τ(X(�1)) ≤rh τ(X(�2)).

Let τk | n be the lifetime of a k-out-of-n system comprising homogeneous dependent comp-
onents, and let F̄k | n be the survival function of τk | n. Then we have

F̄k | n(t) =
n−k∑
j=0

(−1)n−k−j
(
n

j

)(
n− j − 1

k − 1

)
F̄1 : n−j (t)

=
n−k∑
j=0

(−1)n−k−j
(
n

j

)(
n− j − 1

k − 1

)
K̂(1, . . . , 1︸ ︷︷ ︸

j

, F̄ (t), . . . , F̄ (t)︸ ︷︷ ︸
n−j

), (3.4)

where K̂ is an exchangeable survival copula. By setting u := F̄ (t), the distortion function
of τk | n (denoted by hk | n) can be obtained from (3.4) as

hk | n(u) =
n−k∑
j=0

(−1)n−k−j
(
n

j

)(
n− j − 1

k − 1

)
K̂(1, . . . , 1︸ ︷︷ ︸

j

, u, . . . , u︸ ︷︷ ︸
n−j

). (3.5)

In the following example we illustrate Corollary 3.2(i).

Example 3.2. The function K̂(u1, . . . , un) corresponding to the Farlie–Gumbel–Morgenstern
(FGM) copula is expressed as

K̂(u1, . . . , un) =
n∏
i=1

ui + α

n∏
i=1

ui(1 − ui),

where α ∈ [−1, 1]. Consider a 2-out-of-3 system with three homogeneous dependent compo-
nents. Based on (3.5), the distortion function of this system is given by

h2 | 3(u) = 3u2 − 2u3(1 + α(1 − u)3).

Zhang et al. [39, Example 3.7] showed that, for all α ∈ [−1, 1], (1 − u)h′
2 | 3(u)/(1 −h2 | 3(u))

is an increasing function in u ∈ (0, 1) no matter whether these three components are positively
upper orthant dependent for α ∈ (0, 1] (see [31]) or negatively upper orthant dependent for
α ∈ [−1, 0).

Now we establish some sufficient conditions for comparing the lifetimes of two coherent
systems with homogeneous components in the sense of the likelihood ratio order.
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Theorem 3.4. Suppose that there exists some point v ∈ (0, 1) such that

(i) uh′′(u)/h′(u) is decreasing and nonnegative for all u ∈ (0, v], and

(ii) (1 − u)h′′(u)/h′(u) is decreasing and nonpositive for all u ∈ (v, 1).

Assume further that

(iii) X(θ1) ≤lr X(θ2) for θ1 ≤ θ2;

(iv) �1 ≤lr �2.

Then we have τ(X(�1)) ≤lr τ(X(�2)).

Proof. The density function of τ(X(�i)) is given by

fτ(X(�i))(x) =
∫
χ

f (x | θ)h′(F̄ (x | θ))wi(θ) dθ, i = 1, 2.

To prove the desired result, it suffices to show that fτ(X(�2))(x)/fτ(X(�1))(x) is increasing in
x ∈ R+ or, equivalently, fτ(X(�i))(x) is TP2 in (i, x) ∈ {1, 2} × R+.

From the assumption that �1 ≤lr �2, it follows that wi(θ) is TP2 in (i, θ) ∈ {1, 2} × R+.
Let

ψ(x, θ) = f (x | θ)h′(F̄ (x | θ)).
Applying Lemma 2.1, it is enough to show thatψ(x, θ) is a TP2 function in (x, θ) ∈ R+ ×R+,
and this amounts to showing that

ψ(x, θ2)

ψ(x, θ1)
= f (x | θ2)

f (x | θ1)

h′(F̄ (x | θ2))

h′(F̄ (x | θ1))
is increasing in x ∈ R+.

On the one hand, from assumption (iii), it follows that f (x | θ) is TP2 in (x, θ). Thus, we need
only prove that

�(x) := h′(F̄ (x | θ2))

h′(F̄ (x | θ1))
is increasing in x ∈ R+.

Let xv(θ) be the solution of v = F̄ (x | θ) for some specified � = θ .
We consider two cases.
Case 1: x ≥ xv(θ). In this case, we have F̄ (x | θ) ∈ (0, v). Let u1 = F̄ (x | θ1) and

u2 = F̄ (x | θ2), hX(x | θ) be the hazard rate function of X(θ), and r̃X(x | θ) be the reversed
hazard rate function of X(θ). Then, assumption (iii) implies that u1 ≤ u2. In light of
assumption (i), by taking the derivative of �(x) with respect to x, we obtain

� ′(x) sgn= f (x | θ1)h
′′(F̄ (x | θ1))

h′(F̄ (x | θ1))
− f (x | θ2)h

′′(F̄ (x | θ2))

h′(F̄ (x | θ2))

= hX(x | θ1)
F̄ (x | θ1)h

′′(F̄ (x | θ1))

h′(F̄ (x | θ1))
− hX(x | θ2)

F̄ (x | θ2)h
′′(F̄ (x | θ2))

h′(F̄ (x | θ2))

≥ hX(x | θ2)

[
u1h

′′(u1)

h′(u1)
− u2h

′′(u2)

h′(u2)

]
≥ 0,

where ‘
sgn= ’ denotes equality of sign, which implies the desired result.
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Case 2: 0 < x < xv . Note that F̄ (x | θ) ∈ (v, 1). By using assumption (ii), it is easy to
see that

� ′(x) sgn= f (x | θ1)h
′′(F̄ (x | θ1))

h′(F̄ (x | θ1))
− f (x | θ2)h

′′(F̄ (x | θ2))

h′(F̄ (x | θ2))

= r̃X(x | θ1)
(1 − F̄ (x | θ1))h

′′(F̄ (x | θ1))

h′(F̄ (x | θ1))
− r̃X(x | θ2)

(1 − F̄ (x | θ2))h
′′(F̄ (x | θ2))

h′(F̄ (x | θ2))

≥ r̃X(x | θ2)

[
(1 − u1)h

′′(u1)

h′(u1)
− (1 − u2)h

′′(u2)

h′(u2)

]
≥ 0.

Thus, the desired result follows. �
Franco et al. [11, Corollary 2] showed that conditions (i) and (ii) of Theorem 3.4 always

hold for the case of a k-out-of-n system with i.i.d. components.
Next we present a numerical example to illustrate conditions (i) and (ii) of Theorem 3.4 for

a k-out-of-n system with homogeneous and dependent components.

Example 3.3. Let τ(X) = min{max{X1, X2},max{X1, X3},max{X2, X3, X4}} be the life-
time of a coherent system with five dependent and homogeneous components whose lifetimes
have an FGM survival copula. Thus, the distortion function of τ(X) is given by

h(u) = 4u2 − 4u3 + u4 + αu4(1 − u)4, α ∈ [−1, 1].
We calculate that

1(u) := uh′′(u)
h′(u)

= u(8 − 24u+ 12u2 + 12α(1 − u)4u2 − 32α(1 − u)3u3 + 12α(1 − u)2u4)

8u− 12u2 + 4u3 + 4α(1 − u)4u3 − 4α(1 − u)3u4

and

2(u) := (1 − u)h′′(u)
h′(u)

= (1 − u)(8 − 24u+ 12u2 + 12α(1 − u)4u2 − 32α(1 − u)3u3 + 12α(1 − u)2u4)

8u− 12u2 + 4u3 + 4α(1 − u)4u3 − 4α(1 − u)3u4 .

With α = 0.2, in Figure 1 we present plots of the functions1(u) and2(u) for u ∈ (0, 0.421)
and u ∈ (0.421, 1), respectively. We see that 1(u) is decreasing and nonnegative on u ∈
(0, 0.421), while 2(u) is decreasing and nonpositive on u ∈ (0.421, 1), which agrees with
conditions (i) and (ii) of Theorem 3.4.

In the next example we illustrate the result of Theorem 3.4.

Example 3.4. Suppose that �1 and �2 have density functions

f�1(θ) =
(

1√
θ

+ 1

)
e−2

√
θ−θ and f�2(θ) = θe−θ , θ ∈ R+.

It is easy to see that �1 ≤lr �2. Under the setup of Example 3.3, let τ(X(θ)) be the lifetime
of the coherent system with dependent component lifetimes having exponential lifetimes with
common hazard rate 1/θ . In Figure 2 we present the plots of the ratio of the density functions
of τ(X(�2)) and τ(X(�1)), from which we see that τ(X(�1)) ≤lr τ(X(�2)).
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Figure 1: Plots of (a) 1(u) and (b) 2(u) for u ∈ (0, 1).

Figure 2: Plot of the ratio of the density functions of τ(X(�2)) and τ(X(�1)).

4. Concluding remarks

In this paper we have established some sufficient conditions for comparing two coherent
systems with different random environments by means of the usual stochastic, hazard rate,
reversed hazard rate, and likelihood ratio orders. We provided two important statistical models
in order to illustrate the results of Theorems 3.2–3.4.

Let X(θ) = (θX1, . . . , θXn) be the lifetimes of a set of heterogeneous dependent random
variables given � = θ . Then we have τ(X(�i)) = τ(�iX), i = 1, 2. The survival function
of the lifetime of the coherent system is given by

F̄τ (�iX)(x) =
∫
χ

h

(
F̄1

(
x

θ

)
, . . . , F̄n

(
x

θ

))
dWi(θ), i = 1, 2.

Then the following result can be derived from the main results established in the last section.

Proposition 4.1. (i) Under the assumptions of (i) and (iii) of Theorem 3.2 (Theorem 3.3), ifXi
is DFR (DRFR) for i = 1, . . . , n, we have τ(�1X) ≤hr[rh] τ(�2X).
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(ii) Under the assumptions of (i), (ii), and (iv) of Theorem 3.4, if Xi is ILR then we have
τ(�1X) ≤lr τ(�2X).

For given � = θ , we assume that F̄i(x | θ) = F̄
1/θ
i (x), i = 1, 2, . . . , n. Then the survival

function of the lifetime of the coherent system is given by

F̄τ (X(�i))(x) =
∫
χ

h(F̄
1/θ
1 (x), . . . , F̄

1/θ
n (x)) dWi(θ), i = 1, 2.

For further discussions on frailty models, we refer the reader to [22] and [38]. In the case of the
frailty model, we clearly have Xi(θ1) ≤lr Xi(θ2) for i = 1, 2, . . . , n. So the following result
can be obtained from Section 3.

Proposition 4.2. (i) Under the assumptions of (i) and (ii) of Theorem 3.2 (Theorem 3.3), it
follows that τ(X(�1)) ≤hr[rh] τ(X(�2)).

(ii) Under the assumptions of (i), (ii), and (iv) of Theorem 3.4, we have τ(X(�1)) ≤lr
τ(X(�2)).

Boland and Samaniego [7] defined a mixed coherent system as a mixture of systems with
different structures but the same components. It should be noted that (1.2) can be regarded as
the survival function of another type of mixed coherent system if the distribution of the random
environment is treated as the distribution of the weights of some coherent subsystems having
a common distortion function but different components. Therefore, the results established in
Theorems 3.1–3.4 can be utilized in order to compare new kinds of mixed systems having
different weights.

Further work is needed to obtain sufficient conditions on the distortion function in order
to extend Theorem 3.4 to the case of coherent systems having heterogeneous components
under different random environments. Motivated by Belzunce et al. [5], in which the authors
studied the preservation of orderings between the components under the formation of coherent
systems with different structures, it will be of natural interest to establish sufficient conditions
for comparing two coherent systems with different structures under different environments.
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