
ABSTRACT
A reduced-order modelling (ROM) approach for predicting steady, turbulent aerodynamic flows

based on computational fluid dynamics (CFD) and proper orthogonal decomposition (POD) is

presented. Model-order reduction is achieved by parameter space sampling, solution space

representation via POD and restriction of a CFD solver to the POD subspace. Solving the

governing equations of fluid dynamics is replaced by solving a non-linear least-squares optimi-

sation problem. The method will be referred to as LSQ-ROM method. Two approaches of

extracting POD basis information from CFD snapshot data are discussed: POD of the full state

vector (global POD) and POD of each of the partial states separately (variable-by-variable POD).

The method at hand is demonstrated for a 2D aerofoil (NACA 64A010) as well as for a complete

industrial aircraft configuration (NASA Common Research Model) in the transonic flow regime

by computing ROMs of the compressible Reynolds-averaged Navier-Stokes equations, pursuing

both the global and the variable-by-variable POD approach. The LSQ-ROM approach is tried for

extrapolatory flow conditions. Results are juxtaposed with those obtained by POD-based extrap-

olation using Kriging and the radial basis functions spline method. As a reference, the full-order

CFD solutions are considered. For the industrial aircraft configuration, the cost of computing the

reduced-order solution is shown to be two orders of magnitude lower than that of computing the

reference CFD solution.
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NOMENCLATURE
a ∈ Rm̃ vector of POD coefficients 

A ∈ Rnt mean flow state vector of the first m̃  POD eigenmodes

CL, CD ∈ R lift and drag coefficients

Cp ∈ R pressure coefficient

d ∈ N number of model parameters

E ∈ R total energy

fi ith flow variable, e.g. f1 = ρ
I ∈ Rn × n identity matrix

Ma ∈ R Mach number

m ∈ N number of flow solution snapshots

m̃ ∈ N dimension of POD subspace (global POD)

M̃∈ N dimension of POD subspace (variable-by-variable POD)

n ∈ N number of grid points

nt = nv ∈ N total dimension of discretised flow problem

p ∈ Rd vector of model parameters

res : Rnt → Rnt discretised flux residual

RIC(m̃) relative information content of the first m̃  POD eigenmodes

rj ∈ R RIC of the jth POD mode

(ux, uy, uz) ∈ R3 flow velocity vector

U j ∈ Rnt jth POD mode

V j ∈ Rm jth eigenvector of YTΩY

v ∈ N number of flow variables

W ∈ Rnt flow solution state vector

Y ∈ Rnt × m snapshot matrix

x, y, z ∈ R cartesian spatial co-ordinates

α[°] angle-of-attack

λj ∈ R jth eigenvalue of YTΩY

μt ∈ R eddy viscosity

ν ∈ R Spallart-Allmaras viscosity

ρ ∈ R density

Ω ∈ Rnt × nt diagonal matrix of grid cell volumes

< , >L2
L2 scalar product

L2 norm

1.0 INTRODUCTION
From an aerodynamic point of view, an aircraft is defined by comprehensive data sets regarding

performance, loads and handling qualities. This data, which needs to be determined at a given

timescale and cost for every possible flight condition and aircraft configuration, is used to design

the structure of the aircraft and the flight control system. Currently, this data is obtained mainly

from costly wind tunnel tests or using hand-book methods. The use of higher-fidelity and thus more

accurate but also more time consuming CFD (computational fluid dynamics) methods has been,

up to now, impossible due to the large number of load cases that need to be evaluated to achieve

aircraft certification. Only a subset of the required data can be computed with high-fidelity CFD

at present. The ‘brute-force’ approach of computing all relevant data with high-fidelity CFD is not

feasible at present and methods for reducing the computational cost are sought after.
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CFD simulations are also of limited use in various multi-disciplinary settings that require the

aerodynamics to be simulated repeatedly, including fluid-structure interaction problems, design

and optimisation, probabilistic applications, and real-time applications such as flow control. This

situation will improve with sustained advances in computing power, but at the same time, it is likely

that even greater fidelity in terms of turbulence modeling or grid size will be desired as more

detailed flow features and geometrical complexities are addressed in CFD simulations. Thus, there

is a fundamental gap between the CFD fidelity used to simulate an aircraft at a single flow condition

and that practical for multi-disciplinary analysis and aircraft design. This suggests that computed

CFD data need to be distilled into lower-order models to replace the CFD code in, for example,

multi-disciplinary simulations. The intent in constructing such reduced-order models (ROMs) is

to provide quantitatively accurate descriptions of the aerodynamics with fewer degrees of freedom

and thus much lower evaluation time than the original CFD model(1-3).

As an initial step towards these long-term goals, the objective of this paper is to demonstrate the

ability of proper orthogonal decomposition (POD), in combination with high-fidelity CFD, to

produce reduced-order models (ROMs) for three-dimensional, turbulent, compressible flows that

can be used to predict the aerodynamic loads acting on full aircraft configurations at reduced

computational cost. The present paper can be considered a follow up to(4,5), where the authors adapted

the reduced-order modelling approach of LeGresley and Alonso(6) for predicting steady aerodynamic

flows and loads data. The method can be summarised as follows: After sampling a model parameter

space of interest by computing so-called ‘snapshot’ flow solutions with a CFD solver at a finite

number of model parameter combinations (e.g. combinations of Mach number and angle-of-

attack), POD is performed to obtain a (possibly reduced) orthogonal representation of the space

spanned by these snapshots. To predict flow solutions at unsampled locations in the model

parameter space, the CFD flow solver is restricted to the POD subspace and a non-linear least-

squares optimisation problem is solved. The method will be referred to as POD-subspace restricted

least-squares method (LSQ-ROM); our CFD solver of choice is the DLR TAU code(7-9). The work

presented herein goes beyond that presented in Ref. 4 in the following way:

● A comparison of global POD and variable-by-variable POD is presented. The first approach
relies on a POD basis for all flow variables simultaneously, while a separate POD basis is

computed for each flow variable in the latter one.

● It is proved that for POD interpolation schemes using radial basis functions (RBFs, see Ref.
10, §2.3 for a short introduction) the global and variable-by-variable POD approaches

coincide.

● For the first time, a LSQ-ROM based on the compressible Reynolds-averaged Navier-Stokes
equations (RANS) is applied to a large industrial aircraft configuration at transonic flow

conditions.

Recently, other promising approaches for non-linear model reduction have been suggested,

amongst them the discrete empirical interpolation method (DEIM)(11) and the missing point

estimation (MPE)(12). Both of these approaches are based on a classical Galerkin projection of the

governing equations onto the POD-subspace. In order to achieve effective model order reduction

for non-linear problems, a mask matrix is applied to filter out the most significant residuals from

the projected residual equations. So far, both methods have never been applied in an industrial

context, one reason being, presumably, that they require extensive modifications of the flow solver

source code. The method presented here, however, has the advantage that it is relatively easy to

implement using an existing industrial CFD code, a fact not to be underestimated.
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We start out demonstrating the LSQ-ROM method by computing reduced-order solutions to the

compressible RANS equations for the NACA 64A010 aerofoil based on a set of snapshots in the

transonic flow regime, where shocks, or, mathematically speaking, discontinuities occur. Results

of the global LSQ-ROM and the variable-by-variable LSQ-ROM are compared with those

obtained by POD-based interpolation(13) using Kriging(14,15) as well as the thin plate spline RBF

method(10), and with a reference CFD solution.

Subsequently, we use the method to derive a ROM for the transonic turbulent flow around

the NASA common research model(16), a wide-body commercial passenger aircraft configu-

ration, comparing the results again to those obtained by POD-based extrapolation and

full-order CFD.

In both cases, flow solutions are predicted at extrapolatory flow conditions with respect to

the snapshot data set. Accuracy is quantified by comparing surface pressure distributions and

integrated aerodynamic coefficient values. The order reduction and computational

performance of the reduced-order model is also quantified relative to the full order simulation.

The capability of the method in the (less challenging) case of interpolation was demonstrated

in Ref. 19.

2.0 THEORETICAL BACKGROUND
Considering the Navier-Stokes equations (NSEs), spatially discretised on a grid of size n for some

aerodynamic configuration, let v be the corresponding number of primitive mean flow variables

plus the number of primitive variables associated with the turbulence model. The primitive mean

flow variables are the density, ρ, the velocity components in all spatial directions, ux, uy, uz, and

the total energy, E. The number of primitive turbulence variables depends on the chosen turbulence

model. Let nt = nv denote the total length of the discretised flow solution vectors. The system of

ordinary differential equations in pseudo-time to be solved can be written as

where W ∈ Rnt is the vector of primitive variables, res(W) ∈ Rnt is the vector of flux residuals

corresponding to the state solution W and Ω ∈ Rnt×nt is a diagonal matrix with v blocks, each

containing the volumes (vol1, ..., voln) of the corresponding grid cells on the diagonal. Denoting

by Wk,i the value of flow variable k corresponding to grid cell i and by resk,i(W) the flux residual

of flow variable k in grid cell i, Equation (1) may be written in cell-wise form as 

see §5, Equation (5.3) in Ref. 17 for an equivalent formulation in conservative variables. The steady

state is achieved if the time derivative drops out in Equations (1) and (2), or, equivalently, if the

CFD flux residual vanishes

0 = Ω−1res(W) ∈ Rnt . . . (3)

Remark: All flow solutions employed in this study were computed with the DLR TAU code(7-9).

For the Spalart-Allmaras one-equation turbulence model the TAU residual vector includes the
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density residual, the velocity residuals, the energy residual, and the SA-viscosity residual,

res(W) = (res(ρ), res( ux), res(uy), res(uz), res(E), res(ν))T . . . (4)

while the flow solution vector includes the density, the velocities, the pressure, the SA-viscosity

and the eddy-viscosity, i.e.

W = (ρ, ux, uy, uz, p, ν, μt)
T . . . (5)

The ROM method presented in the following is by no means restricted to flow state vectors given

in primitive variables, but applies also to state vectors in conservative variables or even different

governing PDE problems.

2.1 Reduced-order modelling via proper orthogonal decomposition

A short review of POD-based ROM approaches in finite dimensional vector spaces is given in Refs

4, 18 and 19 for a comprehensive introduction, see Ref. 20 and references therein. For the

reader’s convenience we will briefly review the essentials.

Let p1, ..., pd be the independent flow parameters considered for building the reduced-order

model. Suppose that we are given m steady CFD flow solution snapshots Wi := W(pi) ∈Rnt , where

pi = (pi
1, ..., pi

d) ∈ Rd denotes the ith combination of model parameters, e.g. pi = (pi
1, pi

2) = (Mai,

αi) for a problem with d = 2 parameters. The corresponding centred snapshot matrix is defined

by:

Y = (W̃1 , ... , W̃m) ∈ Rnt×m . . . (6)

where W̃ i = Wi − A are the centred snapshots with    being the average of all

snapshots. With respect to the discrete L2 scalar product <Wa,Wb>L2 = WT
aΩWb associated with the

computational domain, the orthonormal basis {U1, ...,Um−1} of POD eigenmodes satisfying 

span{U1, ...,Um−1} = span{W̃1, ..., W̃m} . . . (7)

is given by

where the vectors Vj ∈ Rm are the normalised eigenvectors of the m×m-dimensional eigenvalue

problem

(YTΩY)Vj = λj Vj , j = 1, ... , m . . . (9)

Since the centred snapshots are linearly dependent, a maximum of m – 1 POD modes is sufficient

for a perfect reconstruction of the snapshots. The ordering of the eigenvectors is with respect to

the size of the corresponding eigenvalues λ1 > λ2 > ... > λm, thus V1 and consequently U1

corresponds to the largest eigenvalue λ1 and so forth.

The relative information content of the jth mode is defined as the ratio rj = λj /(∑m
i=1 λi) and the

relative information content (RIC) of the first m̃  ≤ m − 1 basis modes is thus given by:
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The space spanned by the first m̃  ≤ m − 1 POD basis modes is the best order- m̃ -representation

of the initial snapshot space with respect to the underlying scalar product. After the POD, an

approximate flow solution can be constructed based on coefficient vectors a = (a1, ..., am̃) ∈Rm̃ as

follows:

The (possibly) reduced representation of the ith snapshot solution is given by

According to Equation (11), the computation of an approximate flow solution at an untried

parameter condition p* via POD is reduced to computing the POD coefficient vector a(p*) :=  a*

= (a*1 , ..., a*m̃ ). For the results presented in this paper, two approaches for determining POD coeffi-

cients were pursued, the first being the so-called POD-based interpolation method(13). Here, for

each j = 1, ..., m̃ , the scalar-valued coefficient a*j is obtained by interpolating the sample values

a1
j = aj(p1), ..., am

j = aj(pm) given by Equation (12). The choice of an appropriate interpolation

method is problem dependent. In this work, Kriging(15,21) and the thin plate spline method (TPS)(10)

were used for multi-dimensional scattered-data interpolation.

While the POD-based interpolation method outlined above is entirely mathematics-based, the

second approach, proposed in Ref. 6, takes flow physics into account; the coefficients of the reduced

solution are determined by minimising the associated CFD flux residual, which is evaluated using

a full-order CFD solver. Therefore, the order-nt equation system Equation (3) is replaced by the

unconstrained non-linear least squares optimisation problem

Of all flow solution vectors that allow for a representation of the form (Equation (11)) , i.e., all

flow solution vectors contained in the POD subspace, the solution to Equation (13) is closest to

a converged CFD solution for the given parameter combination in a least-squares average sense.

For solving Equation (13), the gradient-based Levenberg-Marquardt algorithm (Ref. 22, Alg 3.34),

a damped Gauß-Newton method, is applied. As an initial step, the Jacobian of the flux residual

with respect to the POD coefficients is computed via finite differences approximations. In order

to keep the computational effort as low as possible, subsequently, Broyden updates(22), of the

Jacobian are used throughout the optimisation process. In order to allow for the same impact of

all residual variables on the optimisation problem (Equation (13)) regardless of their scale, for each

flow variable, the residuals are normalised by the corresponding mean value of the residuals of

the initial solution.

In contrast to POD-based interpolation, the sampled POD-coefficients of the snapshots according

to Equation (12) are not used in determining the optimised coefficients. Thus, the least-squares

ROM approach is per se better suited for extrapolation.
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Mnemonic: All POD-based methods boil down to estimating POD coefficients rather than

solution vector entries. The approximate solution is constructed based entirely on the information

contained in the initial snapshot set.

2.2 Global POD vs variable-by-variable POD

In this work, global POD refers to POD of the full state vector, featuring the complete flow-field

data, e.g. W = (ρ, ux, uy, uz, p, ν, μt )
T . Therefore, the requirements on global POD basis modes

are the following:

● they have to account for variables of different magnitude and units,

● they have to capture the main features of the solution for each flow variable simultaneously,

● any linear combination of modes should result in a physically admissible solution.

In order to obtained a balanced influence of all variables, a non-dimensionalisation of the flow data

was proposed in Refs 4 and 5. However, as recent work(19) suggests that a pressure dominated POD

is beneficial for obtaining good surface pressure approximations, we refrained from using non-

dimensional data in this work.

In the context of reduced-order modelling of flow solutions, both the density and the pressure

occur as primitive variables and both quantities have to be to be strictly positive. Note that in

contrast to the density values themselves, their fluctuations around the mean value may very well

feature negative values. Hence, centering the snapshots by subtracting the snapshot average as

outlined in Section 2.1 can be considered a mandatory step towards mapping the data onto a suitable

vector space, see Ref 19, §2.3 for a detailed discussion.

For the variable-by-variable POD approach, the snapshot vectors {W1, ...,Wm} are considered

as partitioned into sub-blocks, one for each primitive flow variable f1, ..., fv, i.e.

A POD of the data set {W1
fk , ...,Wm

fk } associated to flow variable fk results in a (possibly reduced)

set of POD eigenmodes {U1
fk , ...,Um̃k

fk}, where the reduced-order m̃ k ≤ m –1 is determined based

on the RIC with respect to the flow variable at hand. Note that the reduced dimensions do not have

to coincide, i.e. m̃ k ≠ m̃ l is allowed for fk ≠ fl.

For the variable-by-variable POD approach, the POD coefficient vector is of the form

and the corresponding approximate flow solution is constructed as:

ZIMMERMANN & Görtz IMPROVED EXTRAPOLATION OF STEADY TURBULENT AERODYNAMICS... 1085

. . . (14)

. . . (15)

. . . (16)

3672:New Resized Aero Journal 2012  04/10/2012  14:10  Page 1085

https://doi.org/10.1017/S0001924000007491 Published online by Cambridge University Press

https://doi.org/10.1017/S0001924000007491


compare to Equation 12. Although each subpart of the coefficient vector a affects only the

associated subpart of the flow solution vector W, the residual res(W(a)) and therefore the optimi-

sation problem (Equation 13) depends on all coefficients.

While only one eigenvalue decomposition of a matrix of size m×m is due for the global POD

approach, v matrix decompositions of the same precise order have to be performed for the

variable-by-variable ansatz. The order of the least-squares optimisation problem (Equation 13)

replacing the governing Equation 3 is m̃  ≤ m and      , respectively.

The memory requirements for storing the POD modes are the same for both approaches. The

Jacobian to be constructed as part of the optimisation with respect to global modes reads

D(res°W)(a) ∈ Rnt ×m̃ . With respect to variable-by-variable modes, it reads D(res °W)(a)∈ Rnt ×M̃

and therefore requires, as a rule of thumb, storing about v times more columns.

Although more costly, the variable-by-variable approach allows for a more detailed exploitation

of the information contained in the snapshots, with the space of representable solutions being

enlarged. Thus, fine tuning of the POD coefficients and thus a smaller flux residual of the

corresponding approximate solution is rendered possible. In addition, the problem of data scaling

is avoided. In practical applications, these advantages have to be contrasted with the higher

computational expenses.

2.3 Some fundamental facts about POD-based interpolation via RBFs

1. Entry-by-entry interpolation of the snapshot vectors and interpolation of the basis coeffi-

cients when considering the snapshot vectors themselves as a basis lead to the same results

when applying radial basis function interpolation. Provided that the maximum number of

POD modes m̃  = m − 1 is retained in the POD basis, then RBF interpolation of POD coeffi-

cients with respect to global POD modes and RBF interpolation of POD coefficients with

respect to variable-by-variable POD modes again lead to the same result. It is understood

that with respect to the numerical effort, interpolating basis coefficients is is much more

efficient than entry-by-entry interpolation of vectors with, say, several million entries.

2. Performing RBF interpolation on vector-valued flow field data and subsequently computing

the corresponding lift, drag and moment coefficients leads to exactly the same result as
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Figure 1. Snapshot sample locations and reduced-order model trial points in the Mach-α space.

3672:New Resized Aero Journal 2012  04/10/2012  14:10  Page 1086

https://doi.org/10.1017/S0001924000007491 Published online by Cambridge University Press

https://doi.org/10.1017/S0001924000007491


performing RBF interpolation on the scalar integrated coefficients only, without knowing

any surface distribution.

These facts are stated precisely and proved in the Appendix.

3.0 RESULTS
First demonstrations of the POD-subspace restricted least-squares (LSQ-ROM) method for

modelling steady flow at transonic flow conditions based on the compressible Euler equations and

steady subsonic flow based on the Navier-Stokes equations were presented in Refs 4 and 5. Here,

we present applications to fully turbulent, transonic flows in both two and three dimensions at

extrapolatory flow conditions.

3.1 Navier-Stokes LSQ-ROM for transonic flow around the NACA 64A010 
aerofoil

In this section, we present a reduced-order model of the compressible Navier-Stokes equations for

the NACA 64A010 aerofoil. The model with two independent parameters, Mach number, Ma, and

angle-of-attack, α, is built based on snapshots in the transonic flow regime. For computing

snapshot flow solutions, the unstructured DLR RANS solver TAU(7-9) is applied using the Spalart-

Allmaras one-equation turbulence model, see §7.2.1 in Ref. 17. The Reynolds number is fixed at

a value of 7,500,000. The POD basis is constructed relying on 22 snapshots at pairs of (α,Ma) ∈
[0°, 10°] × [0.73, 0.805]. The precise snapshot sample locations are plotted in Fig. 1. The

unstructured computational grid used for computing the snapshots with TAU features 10,727 grid

points and is shown in Fig. 2.

A global POD of the snapshot data results in an orthogonal representation, where the global

modes are represented by vectors of dimension nt = vn = 6 · 10,727 = 128,724. To capture the

complete information content, the maximum number of 21 POD modes is kept in the POD basis.

Pursuing the variable-by-variable POD approach, we obtain POD sub-bases for density, x-
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Figure 2. Computational grid for the NACA 64A010 aerofoil with 10,727 grid points. 
Left: farfield grid. Right: detailed view of volume grid around the aerofoil.
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velocity, z-velocity, pressure, the SA-viscosity and the eddy-viscosity, each consisting of 21

POD modes that capture the complete relative information content, leading to a total of 6 · 21 =

126 mode vectors of size n = 10,727. Note that the mean flow vector is the same for both

approaches and is a constant vector that is not subject to any estimation/optimisation procedure.

Hence, according to Equation (13), the initial flow problem of order nt = 10,727 is reduced to

an order-21 optimisation problem for global POD while it is reduced to an order-126 optimisation

problem for variable by-variable POD.

Reduced-order flow predictions were computed at trial conditions of (α, Ma) = (5.9°, 0.815)

and (α, Ma) = (10.5°, 0.79). Note that both points lie outside of the convex hull of the snapshot

data, see Fig. 1. Hence, they define extrapolatory flow conditions with respect to the sample

snapshot set. The TAU reference solution at (α, Ma) = (5.9°, 0.815) converged after 2,137

pseudo-time steps to a normalised (density) residual of 10−7, at (α, Ma) = (10.5°, 0.79) it took 3,927

iterations to converge to the same level.

In the following, results of the global and the variable-by-variable LSQ-ROM are juxtaposed

with those obtained by POD-based extrapolation using Kriging and the RBF approach with thin-

plate spline (TPS) correlation. The TPS-extrapolated solution was used as a starting point for the

LSQ-ROM optimisation in all cases.

In addition to the option of employing global vs variable-by-variable POD bases, the LSQ-ROM

residual optimisation procedure (Equation 13) was conducted either with respect to all flow

variables (AFV-Res) or with respect to the mean flow variables (MFV-Res) only. More precisely,

for the option ’AFV-Res’, all sub-blocks of the residual vector as given in Equation (4) were

considered in Equation (13), while for the option ’MFVRes’, the residuals corresponding to the

turbulent SA-viscosity, res(ν), were excluded. A larger number of options in setting up the LSQ-

ROM process was introduced and discussed in Ref. 19.

3.1.1 Extrapolation at (Ma = 0.815, α = 5.9°)

Figures 3 and 4 display the surface Cp-distributions obtained via the various methods at the trial

condition (Ma = 0.815, α = 5.9°). The results of POD-based extrapolation, shown in Fig. 3, all
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Figure 3. Comparison of the surface Cp-distributions for NACA 64A010 aerofoil approximated via TPS
extrapolation and global and variable-by-variable Kriging extrapolation with the converged reference TAU

CFD solution at Ma = 0.815 and α = 5.9°. Right: detailed view of the shock region.
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feature a strong step at the shock location. The TPS solution has a second step slightly downstream

of the shock. In addition, the Kriging solutions show severe oscillatory behaviour upstream of the

shock. The various LSQ-ROM solutions displayed in Fig. 4 mitigate the step at the shock at the

cost of predicting the shock location slightly further downstream and of a larger difference to the

CFD reference towards the tail of the profile.

Table 1 compares the required number of full-order CFD residual evaluations, the CPU time

as well as the lift and drag coefficients, CL and CD, for the various methods. Surprisingly, despite

the rather poor predicted surface pressure distribution, the TPS solution features the lowest

approximation error with respect to the integral values when compared to the TAU reference
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Figure 4. Comparison of the Cp-distributions for NACA 64A010 aerofoil approximated via global and
variable-by-variable LSQ-ROM with the converged reference TAU CFD solution at the extrapolatory

condition Ma = 0.815 and α = 5.9°. The abbreviation ’MVF-Res’ indicates a solution obtained by considering
only the mean flow variables when solving Equation (13). ‘AVF-Res’ indicates considering all flow variables,

turbulence residuals included, when solving Equation (13). Right: detailed view of the shock region.

Table 1
Results for NACA 64A010 aerofoil at extrapolatory flow conditions .

(Ma = 0.815, α = 5.9°).

Procedure CFD residual  CPU time CL CD
evaluations

TPS — 3s 0.6088 (0.14%) 0.0758 (–1.65%)

Global Kriging — 3s 0.5972 (–1.77%) 0.0744 (–1.77%)

Var-by-var Kriging — 3s 0.5856 (–3.65%) 0.0727 (–5.67%)

LSQ-ROM, MFV-Res, global 41 6.5s 0.6130 (0.84%) 0.0732 (–4.96%)

LSQ-ROM, MFV-Res, vbv 187 101s 0.6133 (0.88%) 0.0752 (–2.38%)

LSQ-ROM, AFV-Res, global 38 6.5s 0.6094 (0.25%) 0.0724 (–6.01%)

LSQ-ROM, AFV-Res, vbv 138 32s 0.6109 (0.48%) 0.0740 (–3.93%)

TAU CFD reference 2,137 400s 0.6079 0.0770

The abbreviation ’MVF-Res’ indicates a solution obtained by considering only the mean flow variables, see
Equation (4), when solving Equation (13). ’AVF-Res’ indicates considering all flow variables, turbulence
residuals included, when solving Equation (13).
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solution. This is partly explained by Corollary A.3, because TPS extrapolation combined with POD

leads to the same result as scalar TPS extrapolation of the global coefficients without knowing the

underlying pressure distributions.

The norms of the residuals of the various solutions are given in Table 2 for different flow

variables. The norms are computed with respect to the discrete L2 norm as stated in Equation (13).

As expected from theory, all LSQ-ROM solutions feature significantly lower residuals than their

extrapolation counterparts, with the variable-by-variable LSQ-ROM solutions showing the lowest

objective function value in the L2 -sense. The variable-by-variable approach, however, comes at

a significantly higher computational cost.
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Table 2
Residual norms of the approximate solutions at extrapolatory flow conditions

(Ma = 0.815, α = 5.9°) as listed in Table 1

Procedure ⏐⏐Ω
−1

res(E)⏐⏐ ⏐⏐Ω
−1

res(ux)⏐⏐ ⏐⏐Ω
−1

res(uz)⏐⏐ ⏐⏐Ω
−1

res(ρ)⏐⏐ ⏐⏐Ω
−1

res(ν)⏐⏐ ∑

TPS 0.2872 0.1436 0.0333 0.0630 1.9716e–04 0.5273

Kriging, gl 0.5757 0.2841 0.0568 0.1170 1.9051e–04 1.0338

Kriging, vbv 1.7232 0.5200 0.0927 0.4064 2.0305e–04 2.7424

LSQ-ROM, MFV-Res, gl. 0.1469 0.0845 0.0248 0.0339 1.7783e–04 0.2903

LSQ-ROM, MFV-Res, vbv 0.0994 0.0574 0.0166 0.0190 4.3481e–04 0.1929

LSQ-ROM, AFV-Res, gl. 0.1559 0.0874 0.0279 0.0365 1.6253e–04 0.3078

LSQ-ROM, AFV-Res, vbv 0.1334 0.0776 0.0223 0.0247 1.3946e–04 0.2582

TAU CFD reference 7.6458e–05 8.1404e–05 1.9738e–05 3.9626e–05 1.3957e–04 3.6e–04

The abbreviation ’MVF-Res’ indicates a solution obtained by considering only the mean flow variables, see Equation (4),

when solving Equation (13). ’AVF-Res’ indicates considering all flow vars, turbulence residuals included, when solving

Equation (13).
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Figure 5. Comparison of the Cp-distributions for NACA 64A010 aerofoil approximated via TPS extrapolation
and global and variable-by-variable Kriging extrapolation with the converged reference TAU CFD solution at

Ma = 0.79, α = 10.5°. Right: detailed view of the shock region.
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3.1.2 Extrapolation at (Ma = 0.79, α = 10.5°)

Similar behaviour can be observed at the second trial point (Ma = 0.79, α = 10.5°). As displayed

in Fig. 5, the POD-based extrapolation results again show a step near the shock and severe

oscillatory behaviour while the corresponding LSQ-ROM results displayed in Fig. 6 match

almost perfectly the CFD reference.

The corresponding aerodynamic coefficients, the required number of full-order CFD residual

evaluations and the CPU time investments are shown in Table 4, while the residual norms are given

in Table 3. Again, it is the TPS solution, which matches best the global aerodynamic coefficients,

while the LSQ-ROM solutions feature by far the smallest residuals. From the aerodynamic point
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Figure 6. Comparison of the Cp-distributions for NACA 64A010 aerofoil approximated via global and
variable-by-variable LSQ-ROM with the converged reference TAU CFD solution at the extrapolatory

condition Ma = 0.79, α = 10.5°. The abbreviation ’MVF-Res’ indicates a solution obtained by considering
only the mean flow variables, see Equation (4), when solving Equation (13). ’AVF-Res’ indicates considering

all flow vars, turbulence residuals included, when solving Equation (13). Right: detailed view of the shock
region.

Table 3
Results for NACA 64A010 aerofoil at extrapolatory flow conditions; 

Ma = 0.79, α = 10.5°

Procedure  CFD residual  CPU time CL CD
evaluations

TPS - 3s 0.7158 (1.97%) 0.15340 (1.02%)

Kriging global - 3s  0.7205 (2.64%) 0.15950 (5.04%)

Kriging vbv - 3s  0.7268 (3.53%) 0.16008 (5.42%)

LSQ-ROM, MFV-Res, global 49 7.7s  0.6870 (–2.14%) 0.14920 (–1.74%)

LSQ-ROM, MFV-Res, vbv 150 47s  0.6877 (–2.04%) 0.14766 (–2.76%)

LSQ-ROM, AFV-Res, global 48 7.9s  0.6841 (–2.55%) 0.14819 (–2.41%)

LSQ-ROM, AFV-Res, vbv 154 67s  0.6893 (–1.81%) 0.14733 (–2.97%)

TAU CFD ref. 3,927 703s 0.7020 0.15185

The abbreviation ’MVF-Res’ indicates a solution obtained by considering only the mean flow variables, see Equation (4),

when solving Equation (13). ’AVF-Res’ indicates considering all flow vars, turbulence  residuals included, when solving

Equation (13).
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of view, in both of the cases above, the LSQ-ROM approximations feature a much more physical

surface pressure distribution than the approximations obtained via POD-based extrapolation.

Considering the results in Tables 1, 2, 3 and 4 it can be deduced that the norm of the residuals is

a more appropriate measure for judging the quality of the flow approximations than comparing

global coefficients.

For such a small test case, it is understood that the computational time of the ROM methods is

dominated by computational overhead, rendering a comparison of the actual ROM benefits

questionable. Yet, it is important to note that the number of residual evaluations, which accrue for

the LSQ-ROM results only, depends on the number of modes m̃ ! For cases with very large

computational grids, the number of residual evaluations required to obtain a converged CFD

solution may increase dramatically, while the number of residual evaluations that are due in the

least-squares optimisation will essentially stay the same if the number of modes remains the same.

This hypothesis is supported by the example presented in the following section, which will also

be more telling in regard of computational savings.

3.2 Navier-Stokes LSQ-ROM for transonic flow around the NASA Common 
Research Model (NASA CRM)

In this section, we present a reduced-order model of the compressible Reynolds-averaged Navier-

Stokes equations for the turbulent flow around the NASA common research model (NASA

CRM(16)), which is representative of a wide-body commercial transport aircraft configuration. The

six CFD snapshots used to construct the ROM were computed with the DLR RANS flow solver

TAU(7-9) at a constant cruise Mach number of 0.85 and at angles-of-attack of α = 0.0°, 2.0°, 4.0°,

6.0°, 8.0°, 10.0°. The Reynolds number is fixed throughout at a value of 5 million. The unstructured

computational grid used to compute the snapshots consists of 4,074,967 million grid points and

is shown in part in Fig. 7. As explained in Remark 2.1, when using the Spalart-Allmaras one-

equation turbulence model(17), the TAU solutions feature 7 flow variables resulting in a total

dimension of the solution state vectors (and the global POD modes) of nt = vn = 7 · 4,074,967 =

28,524,769. Converged CFD snapshots and a reference CFD solution were computed on an HPC

cluster in parallel, distributed on 24 domains (two nodes, 12 cores each). The LSQ-ROM optimi-

sation procedure has been fully parallelised and was conducted on the same HPC cluster distributed

to the same number of domains.

A global POD of the snapshot data gives an orthogonal representation, where the first five modes

capture the complete information contained in the snapshots. Pursuing the variable-by-variable

Table 4
Residual norms of the approximate solutions at extrapolatory flow conditions

(Ma = 0.79, α = 10.5°) as listed in Table 3

Procedure ⏐ ⏐Ω
−1

res(E)⏐⏐ ⏐⏐Ω
−1

res(ux)⏐⏐ ⏐⏐Ω
−1

res(uz)⏐⏐ ⏐⏐Ω
−1

res(ρ)⏐⏐ ⏐⏐Ω
−1

res(ν)⏐⏐ ∑

TPS 0.4752 0.1874 0.0677 0.1126 5.6289e–04 0.8434

Kriging, gl 0.4352 0.1977 0.0876 0.1010 4.8847e–04 0.8221

Kriging, vbv 2.3316 0.6029 0.2623 0.6430 6.9841e–04 3.8406

LSQ-ROM, MFV-Res, gl. 0.0733 0.0374 0.0180 0.0170 4.3250e–04 0.1462

LSQ-ROM, MFV-Res, vbv 0.0560 0.0303 0.0134 0.0107 3.9965e–04 0.1108

LSQ-ROM, AFV-Res, gl. 0.0728 0.0338 0.0206 0.0164 3.8978e–04 0.1440

LSQ-ROM, AFV-Res, vbv 0.0613 0.0388 0.0173 0.0114 2.7121e–04 0.1291

TAU CFD reference 1.4419e–04 1.4487e–04 4.2095e–05 3.7710e–05 4.7118e–04 0.0008
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POD approach, we obtain POD sub-bases for density, x-velocity, y-velocity, pressure, the SA-

viscosity and the eddy viscosity, each consisting of 5 POD modes that capture the complete relative

information content, leading to a total of 7 · 5 = 35 mode vectors of size n = 4,074,967. Note that,

as before, the mean flow vector is a constant vector that is not subject to any estimation/optimi-

sation procedure.

Therefore, using global POD the initial flow problem of order nt = 28,524,769 is reduced, in

this case, to an order-5 optimisation problem (Equation (13)). When pursuing the variable-by-

variable POD approach, the optimisation problem (Equation (13)) is of order 35.

As a trial point for the reduced-order methods, (Ma = 0.85, α = 12.0°) was chosen, i.e. a flow

condition beyond the range of angles-of-attack of the snapshots set. The remaining free-stream

conditions were kept constant throughout. Such kind of extrapolatory predictions are required for

efficiently computing aerodynamic polars, see Ref. 23. Notice that a step of two degrees beyond

the range covered by the snapshots is comparably large and is chosen here only to show the

capability of the method. In general one cannot expect the ROM to behave well at conditions for

which no comparable snapshot information has been provided and therefore, in realistic

applications, such extreme cases of extrapolation should be avoided. Moreover, with separated flow

present, this is a very challenging test case for any reduced-order approach.

At the flow condition of (Ma = 0.85, α = 12.0°), the approximate solutions obtained by TPS

extrapolation and global Kriging feature non-physical values. Thus, they are not even fit for use

as initial solutions to the LSQ-ROM procedure! Therefore, the LSQ-ROM approach was initialised

with the POD coefficients corresponding to the CFD snapshot at α = 10.0°. Knowing the index

of this snapshot, its POD coefficients can be read from Equation (12). Kriging based on variable-

by-variable POD, on the other hand, leads to an admissible result. However, in the case of the
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Figure 7. Computational grid for the NASA Common Research 
Model featuring ~ 4.1 mio. points in complete volume grid

(24)
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variable-by-variable LSQ-ROM the optimiser got stuck in the initial solution when initialised with

both the POD coefficient of the CFD snapshot at α = 10.0° and those predicted by Kriging extrap-

olation at α = 12.0°, thus detecting a local minimum. This was the case when optimising Equation

(13) with respect to the mean flow variables only, as well as when optimising Equation (13) with

respect to the complete set of residual variables. As a consequence, no variable by- variable LSQ-

ROM results are included in Tables 5 and 6. Table 5 compares the number of full-order CFD

residual evaluations that were required to solve Equation (13), the computational time and the

integrated lift and drag coefficients, CL and CD, including relative errors with respect to the CFD

reference solution for the various methods.

The LSQ-ROM solution obtained via global POD when minimising Equation (13) with respect

to the mean flow variables only features the smallest relative errors as well as the smallest

residual. In regard of the absolute computational time, an acceleration by a factor of 144 is obtained

when compared to a full-order CFD simulation. The associated surface Cp-distribution is displayed

in Fig. 8. Figures 9, 10 compare the associated Cp-distributions at various wing section cuts.

Although exhibiting differences to the reference solution downstream of the leading-edge

suction peak, it is remarkable that the LSQ-ROM solution resolves the downstream pressure distri-

bution with considerable accuracy, while the extrapolated solution again features a step-like

behavior. This is in line with the observations obtained for the aerofoil in Section 3.1.
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Table 5
Results for the NASA CRM at extrapolatory flow conditions (Ma = 0.85, α = 12±)

Procedure CFD res. evals. CPU time CL CD
TPS — 20s NaN NaN

Kriging gl. — 20s NaN NaN

Kriging vbv — 20s 0.9040 (2.61%) 0.2128 (2.47%)

LSQ-ROM (1) 18 59s 0.8932 (1.39%) 0.2190 (0.36%)

LSQ-ROM (2) 31 72s 0.8702 (–1.22%) 0.2114 (–3.13%)

TAU CFD ref. 10,000 8,500s 0.8809 0.2182

Legend: LSQ-ROM (1): solution obtained via global POD when minimising Equation (13) with respect to the mean flow
variables only started from the coefficients of the CFD snapshot at α = 10°; LSQ-ROM (2): solution obtained via global
POD when minimising Equation (13) including the turbulence residuals, started from the coefficients of the CFD
snapshot at α = 10°. Global Kriging and thin-plate-spline extrapolation result in non-physical solutions.

Table 6
Residual norms of the approximate solutions at extrapolatory flow conditions

(Ma = 0.85, α = 12°) as listed in Table 5

Procedure ⏐⏐Ω
−1

res(E)⏐⏐⏐⏐Ω
−1

res(ux)⏐⏐ ⏐⏐Ω
−1

res(uy)⏐⏐⏐⏐Ω
−1

res(uz)⏐⏐ ⏐⏐Ω
−1

res(ρ)⏐⏐ ⏐⏐Ω
−1

res(ν)⏐⏐ ∑

TPS NaN NaN NaN NaN NaN NaN NaN

Kriging, gl NaN NaN NaN NaN NaN NaN NaN

Kriging, vbv 2.14e–03 4.15e–04 1.79e–04 1.62e–04 5.03e–04  7.86e–07 3.22e–03

LSQ-ROM (1) 2.57e–04 1.16e–04 3.74e–05 7.79e–05 5.42e–05 5.45e–07 5.06e–04

LSQ-ROM (2) 4.44e–04 1.52e–04 4.09e–05 2.13e–04 1.03e–04 3.10e–07 9.12e–04

TAU CFD reference 1.77e–08 7.41e–09 5.79e–09 1.90e–09 4.51e–08 3.17e–07 3.89e–07

TAU CFD at α = 10° 6.95e–04 2.20e–04 5.78e–05 3.62e–04 1.63e–04 2.14e–07 1.44e–03

Since the LSQ-ROM solutions (1) and (2) were obtained by starting the optimisation procedure Equation (13) from the
POD coefficients associated to the TAU snapshot at α = 10°, the residual norms of this precise solution w.r.t. the
boundary condition α = 12° are also given. Note that the Kriging solution features a residual even larger than the solution
at α = 10°.
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4.0 CONCLUSIONS
A POD-based ROM of the governing equations of fluid dynamics was presented and applied to

steady aerodynamics problems. Using this approach, the problem of solving the governing

equations was replaced by a low-order optimisation problem. Global POD as opposed to variable-

by-variable POD was discussed.

As test cases, a two-parameter ROM for the NACA 64A010 aerofoil as well as a one-parameter

ROM for the NASA Common Research Model (CRM) were presented, the latter one being

representative of a commercial wide-body passenger aircraft. In both cases, fully turbulent

compressible transonic flows were considered at challenging extrapolatory conditions. For the

NASA CRM example even flow separation occurred.
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Figure 8. Comparison of the Cp-distributions approximated via the global POD-based least-squares ROM
with the converged reference TAU CFD solution in the transonic flow regime at α = 12.0°.
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Figure 9. Comparison of the Cp-distributions for the NASA CRM approximated via the global PODbased
least-squares ROM and variable-by-variable Kriging extrapolation with the converged reference TAU CFD

solution in the transonic flow regime at extrapolatory conditions Ma = 0.85, α = 12.0°. Wing section cuts at a
wing span of 30% (left) and 40% (right).
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Based on the examples investigated in this work, we conclude that the variable-by-variable POD

approach suffers from a lack of robustness and a significantly higher computational costs, while

the theoretical benefits do not pay off considerably when comparing the global and the variable-

by-variable solutions. Moreover, it has been proved that when following the POD-based

interpolation approach applying radial basis functions, global and variable-by-variable interpolation

of POD coefficients lead to the same result.

In terms of computation time, a substantial speed-up (two orders of magnitude for the NASA

CRM) was observed when compared to the CFD reference computation.

In regard of the approximation accuracy, we observed the following: Without any exception,

the flow approximations obtained via the POD-based extrapolation methods all showed a step

function-like behavior in the surface pressure distribution at the corresponding shock location. In

contrast, the LSQROM approximations showed a sharp shock or at least mitigated the step at the

shock and thus featured a much more physical overall pressure distribution. This corresponds to

a significantly lower CFD residual in the L2 -norm when comparing the LSQ-ROM solutions to

the POD-extrapolated solutions.

We conclude that considering CFD residuals is a much more appropriate way of judging

distributed data than relying on errors in global coefficients.

When it comes to global integral coefficients, however, no superiority of the LSQ-ROM

methods to its competitors could be observed. In this regard, the RBF interpolation using TPS

correlation matches best the CFD reference, despite its unphysical pressure distribution. It was

proposed that the RBF approach leads to consistent results when the dependence between

distributed data and global coefficients is linear. In other words, the approximation quality of the

RBF solutions in terms of the aerodynamic coefficients is the same as when the global coefficients

themselves are considered as sample values, without even knowing the corresponding pressure

distribution.

When extrapolating the aerodynamics of the NASA CRM, global POD combined with Kriging

and TPS interpolation of the POD coefficients actually failed in providing a physically admissible

solution, rendering the LSQ-ROM method the only viable approach next to variable-by-variable

POD combined with Kriging.
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Figure 10. Comparison of the Cp-distributions approximated via the global POD-based least-squares ROM
and variable-by-variable Kriging extrapolation with the converged reference TAU CFD solution in the

transonic flow regime at extrapolatory conditions Ma = 0.85, α = 12.0°. Wing section cuts at a wing span of
50% (left) and 80% (right).
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While not demonstrated in this work, it is understood that the LSQ-ROM approach is also

applicable for the (less challenging) task of interpolation. In this regard, the reader is referred to

e.g. Ref. 19. 

A word of caution: The LSQ-ROM approach is limited to the computational space spanned by

the input snapshot solutions (this being the whole idea about reduced order modeling). In other

words, flow phenomena not contained in this space cannot be predicted by no matter what

sophisticated method. As a consequence, the snapshot sampling is a crucial step in constructing

the ROM.
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APPENDIX

A1 PROOFS OF THE STATEMENTS FROM SECTION 2.3

A1.1 Theorem A.1 (a fundamental remark on POD-based interpolation via 
RBFs)

Entry-by-entry interpolation of the snapshot vectors and interpolation of the basis coefficients when

considering the snapshot vectors themselves as a basis lead to the same results when applying radial

basis function interpolation. Provided that the maximum number of POD modes m̃  = m –1 is

retained in the POD basis, then interpolation of POD coefficients with respect to global POD modes

and interpolation of POD coefficients with respect to variable-by-variable POD modes again lead

to the same result. Moreover, the RBF interpolation result is invariant under changes of co-

ordinates.

A1.1.1 Proof

Let {p1, ..., pm} ⊂ Rd be a set of sample locations with fT = (f1, .., fm)T = (f(p1), ..., f(pm))T ∈ Rm being

the corresponding vector of sample values. At an untried location p*, the radial basis function

interpolant takes the value

f̂ (p*) = fTΨ−1ψ(p*), . . . (A.1)
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where ψ(p*) = ψ(⏐⏐p* − p1⏐⏐), ..., ψ(⏐⏐p*− p1⏐⏐) is the vector of radial distances of the test location

to the sample locations, Ψ = ψ(⏐⏐pi − pj⏐⏐)i,j ∈ Rm×m is the so-called Gram matrix and ψ : r 1→ ψ(r)

is the radial basis function of choice.

Given a set of data vectors

and let Y = (W(p1), ...,W(pm) ∈ Rn×m. 

Entry-by-entry interpolation via RBFs leads to

for i = 1, ..., n. It follows that

Notice that the co-ordinate vector of W(p j) with respect to the basis {W(p1), ...,W(pm)} is given

by ej = (0, ..., 1, ...0)T. Therefore, the coefficient xj = (eT
j Ψ−1ψ(p*) in Equation (A5) is exactly the

result of the RBF interpolant at p* for the vector of sample values ej !

The remaining claims come as a straight forward consequence, when replacing Y by its global

or var-by-var POD representation in Equation (A4).

A1.2 Theorem A.2 

Let W1, ...,Wm ∈ Rn be vectors and let L : Rn → R be linear, i.e. L(Wi + λWj) = L(Wi) + λL(Wj)

for any number λ ∈ R. Let W* be the resulting vector when performing RBF interpolation for the

set of sample vectors W1, ...,Wm ∈ Rn at a location p* and let l* be the result when performing

RBF interpolation on the set of scalar sample values L(W1),..., L(Wm). Then l* = L(W *).

A1.2.2 Proof

Keeping the notations for the RBF correlation vector and matrix as introduced above, let Rm q*

:= Ψ−1ψ(p*). RBF interpolation of the vector data at an untried condition p* leads to W* = (W1,

...,Wm)q*                , see Equation (A4). RBF interpolation of the scalar values gives l* =

(L(W1), ..., L(Wm)) q*, see Equation (A1). On the other hand we have;
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A1.3 Corollary A.3 (consistency of distributed and integrated RBF 
interpolation of aerodynamics)

Performing RBF interpolation on field data and subsequently computing the corresponding lift,

drag and moment coefficients leads to exactly the same result as performing scalar RBF interpo-

lation on the integrated coefficients only without knowing any surface distribution.

A1.3.1 Proof

Via integration, the global aerodynamic lift, drag and moment coefficients CL, CD, CMx, CMy, CMz
depend linear on the surface pressure, so that Equation (A4) applies.
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