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Mixed convection in a horizontal duct with imposed transverse horizontal magnetic
field is studied using direct numerical simulations (DNS) and linear stability analysis.
The duct’s walls are electrically insulated and thermally insulated with the exception
of the bottom wall, at which constant-rate heating is applied. The focus of the study
is on flows at high Hartmann (Ha 6 800) and Grashof (Gr 6 109) numbers. It is
found that, while conventional turbulence is fully suppressed, the natural convection
mechanism leads to the development of large-scale coherent structures. Two types
of flows are found. One is the ‘low-Gr’ regime, in which the structures are rolls
aligned with the magnetic field and velocity and temperature fields are nearly uniform
along the magnetic field lines outside of the boundary layers. Another is the ‘high-Gr’
regime, in which the convection appears as a combination of similar rolls oriented
along the magnetic field lines and streamwise-oriented rolls. In this case, velocity and
temperature distributions are anisotropic, but three-dimensional.

Key words: convection, high-Hartmann-number flows, MHD and electrohydrodynamics

1. Introduction
It is known that a sufficiently strong imposed magnetic field can completely change

the nature of flows of electrically conducting fluids. The effect is due to the Lorentz
force and the conversion of flow’s kinetic energy into heat by the Joule dissipation of
induced electric currents. The main components of the effect are: (i) suppression of
conventional turbulence, (ii) suppression of velocity structures with strong gradients
along the magnetic field lines and (iii) formation of flow states with thin and strongly
sheared magnetohydrodynamic (MHD) boundary layers. An explanation and extensive
discussion of the effect can be found, for example, in Davidson (2001) or Branover
(1978).

In this paper, we consider the influence of very strong (high-Hartmann-number)
magnetic fields on mixed (combined natural and forced) thermal convection in flows
of liquid metals. This combination of physical effects can be found in currently
designed liquid metal (likely, Li or PbLi) blankets for future nuclear fusion reactors
(see, e.g., the chapter by Bühler in Molokov, Moreau & Moffatt 2007). The key
component of a blanket is a network of liquid metal flows in long duct-shaped
conduits arranged into a shield around the reaction zone. The flows are subject to
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FIGURE 1. Flow geometry and coordinate system. The arrows marked by letters g, B and
q denote, respectively, the orientations of the gravity acceleration, magnetic field and wall
heating.

very strong (up to 10–12 T in a full-scale reactor) steady magnetic fields. They also
experience strong heat load concentrated near the wall facing the reactor (see, e.g.,
Smolentsev, Moreau & Abdou 2008; Smolentsev et al. 2010). Since, as shown, e.g.,
by Zikanov & Thess (1998), Lee & Choi (2001) or Krasnov, Zikanov & Boeck
(2012), conventional turbulence is most likely fully suppressed by such a strong
magnetic field, the flow structure and the distribution of temperature are largely
determined by the buoyancy force in its interaction with the Lorentz force, viscous
friction and imposed pressure gradients.

Several attempts of computational analysis of the thermal convection phenomena in
configurations corresponding to specific designs of fusion reactor blankets have been
performed. Some examples are Tagawa, Authié & Moreau (2002), Authié, Tagawa
& Moreau (2003), Mas de les Valls et al. (2011), Mistrangelo & Bühler (2013)
and Vetcha et al. (2013). Such analyses typically face insurmountable obstacles of
extremely high requirements on numerical resolution, which have to be satisfied
in order to accurately compute flow features, most importantly the MHD boundary
layers. The problem is typically resolved in one of the three ways: by running
under-resolved simulations, by considering flows at the Hartmann and Grashof
numbers, which are several orders of magnitude lower than in the reactor conditions,
or, finally, by accepting an approximation, in which the flow is quasi-two-dimensional
or steady-state, or both. The quasi-two-dimensional approximation of Sommeria &
Moreau (1982), according to which the flow structures are uniform along the magnetic
field lines except within the Hartmann boundary layer, is especially relevant in the
blanket case and, therefore, widely used.

This paper takes a different approach. We believe that convection in the presence
of a strong magnetic field needs to be understood in its basic features before specific
blanket designs can be analysed in all their complexity. The approach calls for
studies of well-defined simplified systems. One such system analysed in this paper
is illustrated in figure 1. We consider a fully developed flow in a long horizontal
duct. Constant-rate heating is applied to the bottom wall. A uniform magnetic field
oriented in the transverse horizontal direction is imposed in the entire flow domain.
No assumptions are made concerning the spatial dimensionality and time dependency
of the flow.

The immediate precursor of our work is the paper of Zikanov, Listratov & Sviridov
(2013), where the linear stability and direct numerical simulation (DNS) analyses were
conducted for the flow through a round horizontal pipe with transverse horizontal
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Mixed convection in magnetohydrodynamic duct flow 35

magnetic field and uniform constant-rate heating applied to the bottom half of the
wall. The computational work was performed in an attempt to explain the results of
the experiments of Genin et al. (2011) where temperature fluctuations disappeared
at moderately strong magnetic fields clearly indicating suppression of turbulence, but
reappeared at stronger magnetic field in the form of high-amplitude low-frequency
oscillations. The results of the numerical analysis of Zikanov et al. (2013) were in
remarkably good quantitative agreement with the experimental data. The analysis
confirmed the earlier suggested explanation that the oscillations were caused by the
change of the type of the most unstable convection modes. As the strength of the
magnetic field increased, the preferential suppression of flow structures having large
gradients along the field lines resulted in the most unstable modes taking the form of
convection rolls with axes aligned with the field. Transport of the rolls by the mean
flow resulted in quasi-periodic fluctuations of temperature.

Our analysis of the duct flow is conducted in a manner similar to that of Zikanov
et al. (2013). After presenting the computational model in § 2, we discuss the results
concerning the streamwise-independent base flow (in § 3) and its linear instability
(in § 4). The results of DNS are discussed in § 5. Finally, concluding remarks are
given in § 6.

2. Physical model and numerical method
2.1. Physical model

The liquid metal is modelled as an incompressible, electrically conducting (but
not magnetizable) Newtonian viscous fluid with constant physical properties. The
Boussinesq approximation is applied for the temperature-related buoyancy force.
Following the assumption of small magnetic Reynolds and Prandtl numbers (typically
valid in technological applications including fusion reactor blankets), we use the
quasi-static approximation (see, e.g., Branover 1978; Davidson 2001). The component
of the magnetic field induced by flow velocity is neglected in comparison with the
imposed field in the expressions for the Lorentz force and Ohm’s law.

The flow configuration is illustrated in figure 1. The fluid moves through a
horizontal duct of square cross-section. Spatially uniform and time-independent
magnetic field B = Bey is imposed in the horizontal transverse direction. The duct
walls are electrically perfectly insulating. The top and side walls are also thermally
perfectly insulating, while the bottom wall is subject to uniform heating with the
heat flux intensity q. We use the wall heating as a model of the volumetric heating
by neutrons in actual blankets. This choice is dictated by our desire to avoid the
uncertainty associated with the selection of volumetric heating parameters and justified
by the fact that the volumetric heating occurs primarily near one wall and subsides
exponentially with the distance to this wall (see, e.g., Smolentsev, Morley & Abdou
2006).

A fully developed portion of the flow occurring in a long duct is considered. This
is an idealization of the situation in a fusion reactor blanket, where the duct is likely
to have the length equal to a few tens of hydraulic diameters. As a justification of
our approach, we mention that the majority of the flows discussed in our paper are
characterized by large values of Hartmann numbers defined later in this section. This
means that the Lorentz force has much larger typical amplitude than the viscous force,
and the flow becomes fully developed at a much shorter distance from the inlet than
in the non-MHD case.

The governing equations are non-dimensionalized using the duct half-width d as the
length scale, mean streamwise velocity U as the velocity scale, wall heating-based
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36 X. Zhang and O. Zikanov

group qd/κ , where κ is the thermal conductivity, as the temperature scale, B as the
scale of the magnetic field strength and dUB as the scale of electric potential. The
non-dimensional governing equations are

∂u
∂t
+ (u · ∇)u=−∇p−∇p̂−∇p̃+ 1

Re
∇2u+ Fb + FL, (2.1)

∇ · u= 0, (2.2)
∂θ

∂t
+ u · ∇θ = 1

Pe
∇2θ − ux

dTm

dx
. (2.3)

Here, u is the velocity field. The composition of pressure term is discussed later in
this section. The temperature field is a sum

T(x, t)= Tm(x)+ θ(x, t) (2.4)

of fluctuations θ and the mean mixed temperature

Tm(x)=

∫
A

uxTdA∫
A

uxdA
= 1

A

∫
A

uxTdA, (2.5)

where A is the cross-section area of the duct. One can also use the decomposition
into fluctuations and simple mean temperature T̄(x)=A−1

∫
A T dA. Applying the energy

balance between the wall heating and the streamwise convection heat transfer, we find
that Tm(x) and T̄(x) are linear functions with the same derivative:

dTm

dx
= dT̄

dx
= P

APe
= 2

Pe
, (2.6)

where P is the perimeter of the heated portion of the wall.
The buoyancy and Lorentz forces are computed as

Fb =Gr Re−2ezT, (2.7)
FL =Ha2Re−1 j × ey, (2.8)

where ez is the unit vector opposite to the direction of gravity and ey is the unit vector
along the imposed magnetic field. The electric current j is determined by the Ohm’s
law

j =−∇φ + u× ey, (2.9)

where the electric potential φ is a solution of the Poisson equation expressing the
instantaneous electric neutrality of the fluid assumed in the quasi-static approximation:

∇2φ =∇ · (u× ey). (2.10)

The boundary conditions at the duct walls are the no-slip conditions for velocity

u= 0 at y=±1, z=±1, (2.11)

perfect electric insulation

∂φ

∂n
= 0 at y=±1, z=±1, (2.12)
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Mixed convection in magnetohydrodynamic duct flow 37

and conditions of constant-rate heating at the lower wall and thermal insulation at the
other walls

∂θ

∂z
=−1 at z=−1, (2.13)

∂θ

∂n
= 0 at y=±1, z= 1. (2.14)

The inlet–exit conditions are, in agreement with our assumption of a fully developed
flow, those of periodicity of the velocity u, temperature fluctuations θ and pressure
fluctuations p.

The non-dimensional parameters are the Reynolds number

Re≡ Ud
ν
, (2.15)

the Péclet number
Pe≡ Ud

χ
= Re Pr, (2.16)

where Pr= ν/χ is the Prandtl number, the Hartmann number

Ha≡ Bd
(
σ

ρν

)1/2

, (2.17)

and the Grashof number

Gr≡ gβqd4

ν2κ
, (2.18)

where χ is the temperature diffusivity, σ is the electric conductivity and ν is the
kinematic viscosity of the liquid.

We now address the pressure decomposition in (2.1), according to which the total
pressure P is

P= p̂(x)+ p̃(x, z)+ p(x, t). (2.19)

Here p̂ is a linear function of x corresponding to a spatially uniform streamwise
gradient dp̂/dx. The gradient is routinely used in simulations of fully developed
duct, pipe and channel flows as a flow-driving mechanism. In our model, dp̂/dx
is adjusted at every time step to maintain constant mean velocity. As discussed by
Alboussière, Garandet & Moreau (1993), Lyubimova et al. (2009) or Zikanov et al.
(2013), the rest of the decomposition becomes necessary in numerical models of
mixed convection in non-vertical channels with periodic inlet–exit conditions. Only
the fluctuations p satisfy these conditions. The additional component

p̃(x, z)= dTm

dx
Gr
Re2

xz= P
APe

Gr
Re2

xz (2.20)

arises due to the buoyancy force

F̃b = Gr
Re2

Tm(x)ez (2.21)

caused by the mean-mixed temperature Tm. The force increases linearly with x. It
has non-zero curl and, thus, cannot be cancelled by a pressure gradient. As one
can read in Alboussière et al. (1993) or Lyubimova et al. (2009) or deduce directly
from (2.21), a pressure distribution, vertical gradient of which balances F̃b, has, up

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

47
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.473


38 X. Zhang and O. Zikanov

to an additive constant, the form (2.20). The distribution has non-zero z-dependent
streamwise gradient, which drives the flow in the positive x direction in the lower part
of the duct and in the negative x direction in its upper part. As already demonstrated
by Zikanov et al. (2013) and confirmed by the results of this paper, at high Gr,
the extra force can lead to a perceptible top–bottom asymmetry of the streamwise
velocity profile.

2.2. Numerical method
The numerical method is a version of the finite difference model first introduced by
Krasnov, Zikanov & Boeck (2011) and later used for various flows at strong magnetic
fields (e.g. by Krasnov et al. 2012; Zhao & Zikanov 2012; Zikanov et al. 2013).
The spatial discretization is of the second order and performed on a non-uniform
collocated grid. The grid is clustered towards the walls according to the coordinate
transformations

y= tanh(Ayη)

tanh(Ay)
, z= tanh(Azξ)

tanh(Az)
, (2.22a,b)

where (η–ξ ) are the transformed coordinates, in which the grid is uniform, and Ay, Az
are the coefficients determining the degrees of clustering.

An important feature of the spatial discretization is its conservative character.
Spatial derivatives are evaluated using the velocity and current fluxes as proposed
by Morinishi et al. (1998) and Ni et al. (2007). The fluxes are obtained by
special interpolations to half-integer grid points. This renders the scheme perfectly
conservative in the non-viscous non-conductive limit in regards of mass, momentum,
electric charge and thermal energy. The conservation of kinetic energy is satisfied
with a dissipative error of the third order.

The time discretization uses the standard projection algorithm (see, e.g., Zikanov
2010). The body forces and nonlinear convection terms are treated explicitly using
the backward difference Adams–Bashforth scheme as described by Krasnov et al.
(2011). The conduction and viscosity terms are treated implicitly in order to avoid
the stringent stability limitations on the time step that arise at strong near-wall
clustering.

The time step from tn to tn+1 = tn +1t consists of the following substeps.
(i) Solving the Poisson equation for electric potential and computing the body

forces:

∇2φn =∇ · (un × ey), (2.23)
jn =−∇φn + un × ey, (2.24)

Fn
b =Gr Re−2ezTn, (2.25)

Fn
L =Ha2Re−1 jn × ey. (2.26)

The additional pressure components p̂n and p̃n are also computed at this stage.
(ii) Finding the intermediate velocity field u∗ from

3u∗ − 4un + un−1

21t
= 2Fn − Fn−1 + 1

Re
∇2u∗, (2.27)

u∗ = 0 at y=±1, z=±1, (2.28)
Fn =−M(un, un)−∇p̂n −∇p̃n + Fn

b + Fn
L, (2.29)

where M(un, un) is the nonlinear term in divergence form. This substep involves
solution of three elliptic equations, one for each component of u∗.
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Mixed convection in magnetohydrodynamic duct flow 39

(iii) Solving the Poisson equation for pressure fluctuations and updating the
velocity:

∇2pn+1 = 3
21t
∇ · u∗, (2.30)

∂pn+1

∂n
= 0 at y=±1, z=±1, (2.31)

un+1 = u∗ − 2
31t∇pn+1. (2.32)

(iv) Solving the implicit equation for temperature:

3θ n+1 − 4θ n + θ n−1

21t
= 2Gn −Gn−1 + 1

Pe
∇2θ n+1, (2.33)

where Gn =−∇ · (θ nun)− un
x dTm/dx, with the boundary conditions (2.13) and (2.14).

The elliptic equations for potential, pressure, velocity components and temperature
are solved using the Fourier decomposition in the streamwise coordinate and the direct
reduction solution of the two-dimensional equations for Fourier components conducted
on the transformed grid (η–ξ ) (see Krasnov et al. 2011).

The algorithm is parallelized using the hybrid MPI–OpenMP approach. The MPI
memory distribution is along the y-coordinate in the physical space and along the
streamwise wavenumber in the Fourier space.

2.3. Ranges of parameters covered in the numerical analysis
Single values Pr= 0.0321 and Re= 5000 are used in the analysis. The first of them
corresponds to the LiPb eutectic alloy at temperature around 570 K (Mas de les
Valls et al. 2008), while the second is selected arbitrarily. In actual liquid metal
blankets, the value of Re varies strongly depending on the design. Studying its effect
on convection is left for future studies. The Grashof number Gr varies in the range
between 105 and 109. For the Hartmann number we select the range 50 6 Ha 6 800.
As will be seen from our discussion, the upper limit of this range is probably high
enough to qualitatively represent the asymptotic flow behaviour at Ha ∼ 104 typical
for the liquid metal blankets of fusion reactors.

2.4. Computational grid
Accurate numerical simulations of MHD duct flow require sufficient resolution of the
Hartmann and Shercliff boundary layers. As demonstrated in the pipe flow analysis
of Zikanov et al. (2013), good resolution of these layers is necessary for accurate
representation of convection structures in the mixed convection case. Considering that
the non-dimensional thicknesses of the boundary layers scale, respectively, as Ha−1

and Ha−1/2, resolving them becomes a challenging task in flows with high Ha. In
order to assure that the accuracy is achieved in our computations, a grid sensitivity
study has been conducted using the base flow with imposed streamwise uniformity
(see § 3). As an illustration, the results obtained at Ha= 300, Gr= 109 are presented
in table 1. We compare the computed values of the integrated friction forces at the
Hartmann and Shercliff walls of the duct:

τHa = τy = 1
Re

∑
y±1

∫ 1

−1

∂ux

∂y
dz, (2.34)

τSh = τz = 1
Re

∑
z±1

∫ 1

−1

∂ux

∂z
dy. (2.35)
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40 X. Zhang and O. Zikanov

Ny Nz Ay Az −τHa −τSh ε NHa NSh

64 64 3.0 2.0 0.0582 0.0075 0.0013 3 8
96 96 2.0 2.0 0.0515 0.0076 0.0139 2 12
96 96 3.0 2.0 0.0585 0.0075 0.0006 5 12
96 96 3.5 2.0 0.0587 0.0075 0.0001 8 12

128 96 3.0 2.0 0.0585 0.0075 0.0004 6 12
128 128 3.0 2.0 0.0586 0.0075 0.0003 6 16

TABLE 1. An example of grid sensitivity study conducted, here, for Ha= 300 and Gr=
109. Here τHa and τHa are the wall friction forces (2.34) and (2.35),ε is the absolute error
of the balance (2.36) and NHa and NSh are the numbers of grid points within, accordingly,
Hartmann and sidewall (Shercliff) boundary layers.

Ha Gr Ny Nz Ay Az Nx (stability analysis) Lx (DNS) Nx (DNS)

50 All 64 64 2.5 2.0 32 4π 128
100 All 96 96 3.0 2.0 32 4π 128
200 106, 107, 108 96 96 3.5 2.0 32 4π 128
200 109 96 96 3.5 2.0 32 or 64 2π 128
300 106, 107 96 96 3.5 2.0 32 4π 128
300 108 128 96 3.0 2.0 32 or 64 4π 256
300 109 128 96 3.0 2.0 32 or 64 2π 256
400 106, 107 96 96 3.5 2.0 32 4π 128
400 108 128 96 3.0 2.0 32 or 64 4π 256
400 109 128 96 3.0 2.0 32 or 64 2π 256
800 106 128 96 4.0 3.0 32 4π 128
800 107 128 96 4.0 3.0 32 4π 256
800 108 128 96 4.0 3.5 32 or 64 4π 256
800 109 128 96 4.0 3.5 32 or 64 4π 256

TABLE 2. Parameters of the computational grids used in simulations.

In a fully developed steady-state flow, the integrated Lorentz and buoyancy forces are
zero. The wall frictions should be balanced by the driving pressure gradient according
to

dp̂
dx
= A−1 (τHa + τSh) . (2.36)

The error ε, with which the computed values satisfy this relation is also used as a
measure of the accuracy of the computational model.

In the result of the analysis, the grid with Ny × Nz = 128× 96, Ay = 3.0 and Az =
2.0 is selected as the one to be used in further computations at Ha= 300 and Gr=
109. This grid has 6 points within each Hartmann layer and 12 points within each
Shercliff layer. The maximum and minimum grid steps are 1ymin ≈ 0.0005, 1ymax ≈
0.047, 1zmin ≈ 0.0032, 1zmax ≈ 0.043.

In the just described way, the parameters of the crudest grids providing accurate
results have been determined for all of the explored combinations of Ha and Gr. It
has been found that the value of Gr does not affect the selection at Ha 6 200. At
higher Ha, the highest values of Gr require finer resolution. The summary of the grids
used in the simulations is presented in table 2.

For the linear stability analysis (§ 4) and three-dimensional DNS (§ 5), we also need
to determine the length of computational domain Lx and the number of grid points Nx
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Mixed convection in magnetohydrodynamic duct flow 41

in the streamwise direction. The values used in the computations are listed in table 2.
For the stability analysis, the domain length is equal to the streamwise wavelength of
the tested Fourier mode (see § 4), while Nx is determined in the grid sensitivity study,
where we compare the instability growth rates. It has been found that Nx sufficient
for accurate computations is independent of the value of Ha. Here Nx = 32 is always
sufficient at Gr 6 107. At higher Gr, Nx = 32 can be used for modes with short
wavelength, approximately smaller than 1.0. Increase to Nx = 64 has been found to
be necessary for larger wavelengths.

In DNS, computational domains of length Lx = 4π or 2π are used. As we will
see from the following discussion, the length is more than ten times larger than the
streamwise wavelength of the fastest growing instability mode in the interesting cases
of large Ha and Gr. The grid step 1x is approximately 0.1 at small Ha or Gr. We
have found that at large values of any of these parameters, accurate resolution of
velocity and temperature structures near the bottom requires a decrease of 1x to 0.05
or even 0.025.

The maximum time step providing a numerically stable solution is used in the
simulations. Its value varies with Ha and Gr, but never exceeds 10−2.

3. Base flow
The base flow, linear stability of which we will study in the next section, is

a steady streamwise-uniform flow u( y, z), θ( y, z), p( y, z). Such two-dimensional
solutions always exist and can be computed by artificially imposing uniformity along
x, more specifically by applying x-averaging after every time step. To justify our
approach, we note that a superposition of the streamwise flow ux(y, z) and one or
several streamwise-uniform convection rolls (uy(y, z), uz(y, z)) is a natural structure
of a laminar flow in our geometry. The analysis of mixed convection in horizontal
pipe flow by Zikanov et al. (2013) indicates that, even at high Gr, this structure can
be stabilized by a moderately strong magnetic field, while a stronger magnetic field
can lead to three-dimensional instability and the emergence of another laminar flow
regime.

Each solution is computed for sufficiently long time until a fully developed state is
reached. Long evolution, sometimes longer than 1000 time units, is typically needed to
arrive to this state. The state is unsteady with chaotic behaviour at Ha= 50, Gr > 107

and at Ha= 100, Gr> 108. In the more interesting cases of high Ha, the final state of
the flow is always steady. The unsteady solutions are ignored in the rest of the paper.
The discussion is focused on the steady states and their stability.

The results are presented in figures 2 and 3 and table 3. In addition to visualizations
of flow fields in the transverse plane, we use integral quantities, such as the total
wall friction force dp̂/dx, the kinetic energies of streamwise and transverse velocity
components

Ex = A−1
∫ 1

−1

∫ 1

−1
u2

x dydz (3.1)

Et = A−1
∫ 1

−1

∫ 1

−1
(u2

y + u2
z ) dydz, (3.2)

and the mean square of temperature perturbations

Eθ = A−1
∫ 1

−1

∫ 1

−1
θ 2 dydz. (3.3)

Table 3 also shows the maximum and minimum values of ux.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

47
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.473


42 X. Zhang and O. Zikanov
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FIGURE 2. (Colour online) Base flow at Ha = 400, Gr = 107 (a), Ha = 400, Gr = 108

(b), Ha = 400, Gr = 109 (c), Ha = 800, Gr = 108 (d) and Ha = 800, Gr = 109 (e).
Vector fields and streamlines of transverse circulation (uy, uz) are shown in the left column
(not in (a) and (d), since in these cases the velocity’s amplitude is virtually zero). The
middle and right columns show distributions of, respectively, temperature fluctuations θ
and streamwise velocity ux. Solid and dashed isolines in the middle column indicate,
respectively, positive and negative values. The wall heating is at z=−1, and the magnetic
field is in the y direction (see the arrows in the right column).
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FIGURE 3. (Colour online) Transverse plane circulation patterns found in computed base
flows. Blank squares indicate flow regimes, in which the kinetic energy of transverse
velocity components Et (see (3.2)) is less than 10−6.

Ha Gr Gr/Ha2 −dp̂/dx Et Eθ Ex ux,min ux,max

50 105 4.00× 101 0.0117 4.00× 10−10 9.07× 10−3 1.07 0.0 1.161
50 106 4.00× 102 0.0118 2.49× 10−4 4.10× 10−2 1.06 0.0 1.155
50 107 4.00× 103 0.0126 4.58× 10−3 9.77× 10−3 1.05 0.0 1.146

100 106 1.00× 102 0.0222 1.42× 10−9 8.98× 10−2 1.05 0.0 1.107
100 107 1.00× 103 0.0225 1.04× 10−3 1.56× 10−2 1.04 0.0 1.119
100 108 1.00× 104 0.0236 1.40× 10−2 4.12× 10−3 1.06 0.0 1.294
200 106 2.50× 101 0.0434 3.80× 10−11 8.95× 10−2 1.03 0.0 1.070
200 107 2.50× 102 0.0430 1.90× 10−4 5.70× 10−2 1.03 0.0 1.095
200 108 2.50× 103 0.0433 3.12× 10−3 5.82× 10−3 1.05 0.0 1.248
200 109 2.50× 104 0.0466 9.05× 10−3 1.51× 10−2 3.02 −1.388 3.083
300 107 1.11× 102 0.0635 6.90× 10−10 8.83× 10−2 1.03 0.0 1.070
300 108 1.11× 103 0.0638 1.63× 10−3 1.25× 10−2 1.04 0.0 1.179
300 109 1.11× 104 0.0664 6.19× 10−3 1.18× 10−3 2.00 −0.670 2.463
400 107 6.25× 101 0.0841 1.54× 10−10 8.85× 10−2 1.02 0.0 1.059
400 108 6.25× 102 0.0845 9.60× 10−4 2.23× 10−2 1.03 0.0 1.157
400 109 6.25× 103 0.0863 4.18× 10−3 1.59× 10−3 1.61 −0.291 2.109
800 106 1.56× 100 0.1656 2.98× 10−11 8.91× 10−2 1.02 0.0 1.033
800 107 1.56× 101 0.1656 2.92× 10−9 8.70× 10−2 1.02 0.0 1.039
800 108 1.56× 102 0.1657 4.95× 10−8 8.06× 10−2 1.02 0.0 1.099
800 109 1.56× 103 0.1661 2.81× 10−3 6.90× 10−3 1.19 0.0 1.651

TABLE 3. Integral characteristics of the computed base flow states.
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The expected structure of the flow is a combination of streamwise motion and the
circulation in the transverse (y–z) plane caused by the convection effect. Figure 2
illustrates the typical laminar flow states on the example of the flows obtained at
Ha= 400 and Ha= 800. At Ha= 400, Gr= 107 and Ha= 800, Gr= 108, the strong
magnetic field entirely suppresses transverse circulation. According to table 3, the
kinetic energy of this circulation is of the order of 10−10 and 10−8, respectively. The
profiles of the streamwise velocity are similar to the profiles an isothermal MHD
flow would have in the same duct. We see Hartmann and Shercliff boundary layers
and nearly flat profiles of core flow. The only visible effect of convection is the
slight asymmetry with ux larger in the bottom (near z = −1) than in the top half.
This asymmetry is produced by the pressure force ∇p̃ (see (2.20)) arising in response
to the streamwise-non-uniform buoyancy force F̃ associated with the mean-mixed
temperature Tm (see Alboussière et al. 1993; Lyubimova et al. 2009; Zikanov et al.
2013). The distribution of temperature fluctuations is nearly one-dimensional θ ≈ θ(z).
In the absence of transverse circulation, the distribution is determined by the balance
between conduction and convection by ux.

When Gr is increased to 108 at Ha= 400 or to 109 at Ha= 800, the strength of the
magnetic field becomes insufficient to suppress convection circulation. As illustrated in
figure 2(b,e) the circulation takes the form of a single roll. The roll has no preferred
circulation direction and may appear in the solution either as shown in the figures
or as a symmetric reflection with respect to the vertical midplane. Its kinetic energy
is of the order of 10−3 in both cases. The circulation affects temperature distribution,
which becomes fully two-dimensional and, as a result of mixing, decreases in variation
(see values of Eθ in table 3). The shape of streamwise velocity profile does not show
a visible effect of the circulation. At the same time, the effect of ∇p̃ is significant.
In both cases, we see strong top–bottom asymmetries. A rudimentary overspeed jet
appears near the bottom wall.

Increase of Gr to 109 at Ha = 400 (see figure 2c) changes the structure of the
transverse circulation, which takes the form of two symmetric rolls. The kinetic energy
of the circulation increases to approximately 4×10−3. Corresponding change of spatial
structure and further reduction of variation are observed for the temperature fluctuation
field (see figure 2c and table 3). The profile of ux becomes strongly affected by ∇p̃.
We see in figure 2(c) and table 3 (note the minimum and maximum values of ux) that
the top–bottom asymmetry evolves to the degree of formation of reverse flow near the
top wall.

The summary of the transverse circulation structures of all computed base flows is
given in figure 3. Together with the information in table 3, it allows us to see how
the tendencies we have just discussed on the example of flow at Ha = 400 change
with the strength of the magnetic field. At each value of Ha, the Grashof number has
to increase above a certain limit to overcome the suppression by the magnetic field
and to cause development of convection rolls with non-negligible kinetic energy. The
limit increases rapidly with growth of Ha.

As quantified in table 3, growth of Gr at a given Ha leads to a stronger top–bottom
asymmetry of the ux profile and to the appearance of reverse flow near the top wall.
Considering the values of Ex, ux,min and ux,max, one sees that the effect is weaker at
higher Ha.

An important feature to consider is the effect of Gr and Ha on distribution of
temperature, in particular, on strength and localization of unstable stratification. One
aspect is the influence of transverse circulation that becomes stronger at higher Gr or
lower Ha. The circulation leads to stronger mixing, reduction in the overall strength of
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unstable stratification, and localization of the strong stratification zone near the heated
bottom wall. The top–bottom asymmetry of the streamwise velocity profile, which
also grows with Gr and decreases with Ha, has a similar effect. When combined
with the linear downstream growth of the mean-mixed temperature (see (2.6)), the
streamwise velocity provides asymmetric transport of internal energy, which enhances
the unstable stratification in the lower part of the duct, between the wall z=−1 and
the point where ux= ux,max. Above this point, the stratification is reduced and can even
be inverted into a stable one in flows with strong asymmetry and reversed flows (this
is registered in our computations at Ha = 200 and Gr = 109). An illustration of the
unstable stratification strongly limited to the lower part of the duct is provided by the
plot of θ(y, z) at Ha= 400 and Gr= 109 in figure 2.

4. Linear stability analysis
The linear stability analysis is conducted using a modified version of the numerical

model described in § 2.1. We compute the evolution of a solution consisting of the
base flow ub, θb and the small-amplitude perturbations u′, θ ′. The perturbations are
initially random fields of the average amplitude ∼10−6. During the evolution, the
perturbations are constrained to a single Fourier mode of streamwise wavelength λ.
This is achieved by applying, after every time step, the filtering operation consisting
of fast Fourier transform in x, zeroing out all of the coefficients but the coefficients
of the streamwise-uniform (zero) mode and the mode of the wavelength λ, and
transforming back into the physical space. The procedure is legitimate as far as the
amplitude of the perturbations remains small enough for the quadratic terms in u′ and
θ ′ to be negligibly small. The computations are conducted in the domain of length λ
with the grid equivalent to the grid used for the base flow in the y and z directions
and consisting of 32 or 64 uniformly positioned points in the x direction (see § 2.4
for a discussion of accuracy).

The procedure allows us to determine whether the base flow is linearly unstable
to perturbations of the wavelength λ. In the case of instability, the growth rate of
perturbations can be determined as

γ = 1
2E′

dE′

dt
, (4.1)

where E′ = 〈f ′2〉, 〈· · ·〉 stands for volume averaging and f stands for perturbations
of a velocity component or temperature. As illustrated in figure 4, in the case of
instability, we find a sufficiently long stage of exponential growth, during which all
four coefficients γ are nearly constant and equal to each other. The resulting value
can be accurately computed to its second digit and is taken as the rate of exponential
growth of the instability. We note that in all of the cases, the instability has oscillating
nature. The point signals of velocity and temperature oscillate with a nearly constant
period and amplitude growing exponentially with time (see the inset of figure 4a).

The results are summarized in table 4 and figure 5. The computed values of the
exponential growth rate γ and the wavelength λ of the most dangerous mode are
shown for the combinations of Ha and Gr, for which the base states are laminar
and the stability analysis is conducted. We see in table 4 that the base state is stable
at Ha = 100 and Gr = 107, but unstable in all of the other cases. This is consistent
with the experimental and computational results obtained by Genin et al. (2011) and
Zikanov et al. (2013) for pipe flows, where at Gr= 8.5× 107 the base flow is stable
at Ha= 100 and unstable at Ha= 300 and 500.

The nature of the instability is illustrated in figure 6. The exponentially growing
perturbations have the spatial structure of convection rolls with axes along the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

47
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.473


46 X. Zhang and O. Zikanov

10–14

10–12

10–10

10–8

10–6

10–4

10–2(a)

t
0 5 10 15 20 25 30 35

t
0 5 10 15 20 25 30 35

–0.5

0

0.5

1.0
(b)

t
20 25 30 35

–0.2

0

0.2

FIGURE 4. (Colour online) Example of linear instability. Perturbation energy E′ (a) and
coefficient γ (4.1) (b) are shown for Ha = 400 and Gr = 108. Point signals of vertical
velocity and temperature perturbations are shown in the inset of (a).
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FIGURE 5. (Colour online) Rates of exponential growth shown as functions of axial
wavelength λ for Ha = 200, Ha = 400 and Ha = 800 (solid, long-dashed, dash-dot-dot
curves) and for Gr = 107 (squares, green online), Gr = 108 (circles, blue online), and
Gr= 109 (triangles, red online).

magnetic field lines. The alignment is caused by the selective suppression of the
velocity gradients in the field direction by the Joule dissipation. Transport of the
rolls by mean flow causes the oscillations of velocity and temperature illustrated in
the inset of figure 4(a). To further illustrate the effect we have computed the phase
velocity

c≡ λ/Π, (4.2)
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FIGURE 6. (Colour online) Spatial structure of instability modes recorded during the stage
of exponential growth at Ha = 400, Gr = 108 (a)–(c), Ha = 800, Gr = 108 (d)–( f ) and
Ha = 800, Gr = 109 (g)–(i). Perturbations of vertical velocity and temperature at the
horizontal midplane section of the duct are shown, respectively, in (a), (d), (g) and (b),
(e), (h). Solid and dashed isolines in the left and middle columns indicate, respectively,
positive and negative values. Perturbations of temperature and vector fields of velocity
perturbations (u′,w′) are shown in (c), ( f ), (i).

Ha 100 100 200 200 200 200 300 300 300 400 400 400 800 800 800
Gr 106 107 106 107 108 109 107 108 109 107 108 109 107 108 109

λ 2.0 Stable 2.0 2.0 0.85 0.5 2.0 1.0 0.4 1.5 1.1 0.4 1.5 1.0 0.4
γ 0.056 0.057 0.23 0.28 0.92 0.32 0.69 1.0 0.32 0.49 1.1 0.29 1.3 1.9

TABLE 4. Results of linear stability analysis. Wavelengths λ and exponential growth
rates γ of the fastest growing modes are shown as functions of Ha and Gr.

where Π is the period of oscillations of a signal at a given point, and found that it
varies little with Ha, Gr and λ and has the value close to the mean velocity value 1.0.

At the Hartmann numbers as high as 400 or 800, one usually expects near
two-dimensionality of the flow, i.e. flow structures which are nearly uniform along
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the magnetic field lines. As illustrated in figure 6(d–f ), this is definitely true for
our instability modes when the Hartmann number is high but the Grashof number is
not very high so the transverse circulation in the base flow is either zero or weak.
At lower Ha or higher Gr (see figure 6a–c and g–i), the instability modes are still
strongly anisotropic with weak gradients along the magnetic field lines, but one can
see significant deviation from two-dimensionality, which is apparently caused by the
base flow circulation.

The values of Gr and Ha also affect the growth rate and streamwise wavelength of
the most unstable mode. From table 4 and figure 5 we see two trends. One of them
is that the increase of Gr leads to higher growth rate and shorter wavelength. The
reason for the first part of this trend is evident. The second part can be explained
by the transformation of the base flow. At higher Gr, the base flow has stronger
transverse circulation and top–bottom asymmetry of streamwise velocity, both leading
to a temperature distribution with unstable stratification more limited near the duct’s
bottom. This limits the vertical size of the most unstable modes and, since the rolls
tend to have approximately equal streamwise and wall-normal dimensions, forces them
to have a shorter wavelength.

The second trend that can be observed in table 4 and figure 5 is that increase of
Ha causes higher growth rate γ . This is observed consistently with the only exception
of the case Gr= 107 and Ha changing from 400 to 800. The trend is, at first glance,
counterintuitive, since higher Ha generally means stronger suppression of flow by the
Joule dissipation. In our case, however, the instability modes are either nearly uniform
or vary weakly along the magnetic field lines. The Joule dissipation experienced by
them is, therefore, weak and largely limited to the Hartmann boundary layers. At the
same time, higher Ha means stronger suppression of the transverse circulation of the
base flow, which, unlike the instability modes, has substantial velocity gradients along
the magnetic field lines. As we have discussed in § 3, this leads to weaker mixing and
more pronounced unstable stratification in the base flow. Our computations show that
the resulting enhancement of instability potential is stronger than the reduction of this
potential by the Hartmann friction of instability modes.

5. Direct numerical simulations

The computational domains and grids used for DNS are discussed in § 2.4
and summarized in table 2. The computational model is free from symmetry and
periodicity constraints (except the inlet–exit periodicity on the scale of the flow
domain), so three-dimensional nonlinear evolution of the flow is computed. Each
simulation starts with the streamwise-independent base flow (see § 3) computed at
the same Ha and Gr, to which random three-dimensional small-amplitude (∼10−3)
perturbations of velocity are added. The importance of consistent use of such initial
conditions rather than the conditions in the form of a DNS flow obtained at another
set of parameters stems from the fact that, as discussed later in this section, the
base flow circulation remains a part of the DNS solution. Since the evolution of
the circulation to its final state may take several thousands of time units (see § 3),
and the DNS runs are, by necessity, shorter, the approach is needed to assure that a
circulation of correct form is present in the flow. There remains a possibility that a
different initial state would result in a different DNS solution (for example, with a
different type of transverse circulation) at t→∞. A general analysis of this effect
for our idealized system requires an unfeasibly large number of long DNS runs. In
our view, such an analysis is also unnecessary. The uncertainty should be addressed
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FIGURE 7. Time signals of the driving pressure gradient dp̂/dx (a) and the total kinetic
energy of the flow (b) obtained in the DNS of flows at Ha = 800 and Gr = 108 (left
column) and Gr= 109 (right column).

in future studies of more realistic systems, in particular, in studies of axially evolving
flows with non-periodic inlet–exit conditions.

An illustration of the typical flow evolution during a DNS run is given in figure 7.
We see that, after the instability and initial development, the flow reaches a fully
developed state, in which the integral parameters fluctuate around steady means. The
amplitudes of the fluctuations are small. The evolution of the fully developed flow is
computed for at least 100 time units.

In all of our simulations, the velocity structure in fully developed flow has been
found to include finite-amplitude roll-like structures (rolls in the following discussion)
resulting from the instability, which are superimposed on a streamwise-independent
mean flow. The convection rolls have irregular shapes and generate irregular time
signals illustrated in figure 7. The flow fields have variations on the length scales in a
wide range rather than just on the scale of the most dangerous instability mode. The
absence of regularity is more pronounced at low Ha, although it is still the case at
Ha as high as 800.

The flow is always anisotropic with the convection structures elongated in the
direction of the magnetic field thus justifying their identification as rolls. The
anisotropy becomes stronger at higher Ha. At the same time, as we illustrate below,
realization of a quasi-two-dimensional form, with velocity and temperature being
y-independent outside the Hartmann layers, is determined by both Ha and Gr.
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The DNS solutions obtained in our computations can be classified into two general
types. We will call them low-Gr and high-Gr flows with understanding that the
boundary between ‘low’ and ‘high’ shifts with Ha. The criterion is the presence
of significant streamwise-independent transverse circulation. In the low-Gr flows, the
circulation is either absent in the base state (see figure 2a,d) or weak, so no noticeable
traces of it remains in the DNS solution. This is observed at Gr= 107 when Ha= 300
and at Gr = 107 and 108 when Ha = 400 and 800. In the high-Gr flows, stronger
convection effects result in base flows with strong transverse circulation, which
persists in the DNS solutions. Such flows are found at Gr = 107, 108 and 109 when
Ha= 200, Gr= 108 and 109 when Ha= 300, and Gr= 109 when Ha= 400 and 800.

The flow structures obtained in the DNS for low-Gr and high-Gr flows are
illustrated on the example of two cases: Ha= 800, Gr= 108 and Ha= 800, Gr= 109.
We start the discussion with the low-Gr case illustrated in figure 8. Distributions of
vertical velocity uz and temperature θ in the horizontal midplane z=0 (see figure 8a,b)
are nearly y-independent outside the Hartmann layers. Similar y-independency is
found in other horizontal cross-sections, including those near the top and bottom
walls, and in the two transverse cross-sections shown in figure 8(c). We conclude that
quasi-two-dimensionality in the sense of Sommeria & Moreau (1982) is observed.

Figure 8(a–c) present a pattern of alternating upward and downward motions
superimposed on the mean flow. The pattern is a manifestation of convection rolls,
which are further illustrated by the streamwise vertical cross-sections y = 0 in
figure 8(d–f ). Distributions of vertical and streamwise velocity components uz, ux and
temperature θ are shown. The spanwise velocity uy is nearly zero in the flow. We see
that the structure is quite irregular in this plane. The rolls have large amplitude, with
uz exceeding 0.5 of the mean streamwise velocity. This results in strong and irregular
modulations of the streamwise velocity and temperature (see figure 8d,e). The flow
completely loses its streamwise uniformity.

The typical structure of the high-Gr flow is illustrated by the case Ha = 800,
Gr = 109 presented in figure 9. We first observe that quasi-two-dimensionality is
incomplete in this case. The field of vertical velocity uz is nearly two-dimensional
outside the Hartmann layers (see figure 9a,c). At the same time, the temperature field
in figure 9(b,c) shows strong variations in the y direction. An explanation is provided
by the views of the flow structure in the transverse cross-sections given in figure 9(c).
We see that the base flow circulation shown in figure 2(e) is retained by the DNS
solution. The circulation’s velocity is obscured by the strong convection roll-related
motions in the core of the duct but can be clearly seen in the boundary layers near
the top and bottom walls. The jet-like flow in these layers has the spanwise velocity
uy reaching the amplitude of approximately 0.25 of the mean streamwise velocity.
This can be compared with the maximum uy = 0.126 in the base flow itself.

The pattern of convection rolls (see figure 9d–f ) is qualitatively similar to the
pattern observed in the low-Gr case. The rolls are irregular. They are not located
near the bottom wall, as one could expect on the basis of the linear stability analysis.
Instead, the zones of strongest vertical velocity are distributed around the middle
of the duct (see figure 9d). The amplitude of velocity in the rolls is high, with the
maximum |uz| being nearly twice the mean streamwise velocity. This results in strong
modulation of the distributions of the streamwise velocity ux and temperature θ .

We note the similarity between the high-Gr regime illustrated in figure 9 and the
regime found in the DNS of pipe flow at Ha = 306, Gr = 8.298 × 107, Re = 9046
(all based on the pipe diameter) and Pr = 0.022 (see figure 14 of Zikanov et al.
2013). Specifically, in both the cases, the temperature and velocity fields are three-
dimensional and dominated by convection rolls aligned with the magnetic field, but
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FIGURE 8. (Colour online) Flow structure at Ha = 800, Gr = 108 shown using
instantaneous distributions of uz (a) and θ (b) in the cross-section z= 0, of θ and velocity
vectors in the cross-sections x = 2π and x = 4.0 (c), and of uz (d), ux (e) and θ ( f ) in
the cross-section y= 0.

retain features of the base flow circulation. It is possible that the low-Gr regime would
be found in the pipe flow if DNS at higher Ha or lower Gr were conducted.

The perhaps most significant negative effect of the convection instability in the
fusion reactor blankets is the resulting fluctuations of temperature at the walls.
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FIGURE 9. (Colour online) Flow structure at Ha = 800, Gr = 109 shown using
instantaneous distributions of uz (a) and θ (b) in the cross-section z= 0, of θ and velocity
vectors in the cross-sections x = 2π and x = 8.0 (c), and of uz (d), ux (e) and θ ( f ) in
the cross-section y= 0.

If strong, the fluctuations would result in strong unsteady thermal stresses leading to
rapid deterioration of wall material. In order to analyse this effect in our configuration,
we have used the DNS solutions to record the temperature signals at several wall
points during the stage of fully developed flow. The results are illustrated in figure 10.
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FIGURE 10. (Colour online) Time signals of temperature measured at the wall in fully
developed flows at Ha= 800, Gr = 108 (a) and Ha= 800, Gr = 109 (b). The signals at
z=−1, y= 0 (black, solid line), z=−1, y=−0.95 (red online, long-dash line), and z= 1,
y= 0 (green online, dash-dot line) are shown.

We have found that the largest variations of temperature are observed at the heated
bottom of the duct. The amplitude of the variations is quite high. In particular, at
Ha = 800 and Gr = 108 and Gr = 109, it varies between 0.15 and 0.2 in terms of
non-dimensional units. We can recalculate it into dimensional units by assuming
the duct half-width d = 5 cm and using the physical properties of LiPb at 570 K
(Mas de les Valls et al. 2008). This gives wall heat rate q= 87 W m−2 at Gr = 108

and q = 870 W m−2 at Gr = 109 (see (2.18)). Applying the temperature scale qd/κ ,
we find that the largest amplitude of fluctuations of wall temperature is in the
range 5–6.6 K at Gr = 108 and in the range 50–66 K at Gr = 109. We can also
estimate from figure 10 the typical time scale of the fluctuations as approximately 4
non-dimensional time units. At our parameters and for the hypothetical system just
described, this gives approximately 10 s.

6. Concluding remarks
We have analysed mixed convection in a liquid metal flow in a duct with bottom

heating and transverse magnetic field. The analysis extends much farther than previous
analysis of the similar effects in the pipe flow by Zikanov et al. (2013). Most
importantly, we consider a much broader range of Gr and Ha. The main conclusion
is that the instability leading to the formation of convection rolls aligned with the
magnetic field is a common feature of the flow invariably observed at Ha > 200 and
sufficiently high Gr. The most dangerous modes of the instability have the form of
rolls localized in the lower half of the duct and having the streamwise wavelength
between, approximately, 1/4 and 1.0 of the duct width. The secondary flow regimes
appearing as the result of the instability are irregular in space and time and involve
a range of length scales, but retain the rolls aligned with the magnetic field as the
most prominent feature of the velocity fields. The flows produce high-amplitude
low-frequency temperature fluctuations.

It has been found in the DNS that the secondary flow regimes can be of one
of the two types depending on whether Gr is smaller or larger than a certain
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FIGURE 11. (Colour online) Kinetic energy of transverse circulation in the base flow Et

as a function of Gr/Ha2. Circles and crosses indicate, respectively, the flows in which
low-Gr and high-Gr regimes are observed in the DNS. Values of the parameter Gr/Ha2

for each computed flow can be found in table 3.

threshold Gr∗(Ha). The low-Gr type observed at Gr < Gr∗ is characterized by
complete domination of the instability-generated spanwise rolls and by quasi-two-
dimensional distributions of velocity and temperature. In the high-Gr flows at
Gr > Gr∗, the spanwise rolls are combined with a streamwise roll similar to the
circulation roll in the streamwise-uniform base flow. Significant flow and variations
of temperature along the magnetic field lines are present.

The importance of the classification becomes clear when we consider that three-
dimensional computations are unfeasible at the parameter values typical for a fusion
reactor (Ha∼ 104 and Gr varying between 109 and 1012 depending on the location of
the duct within the blanket and the type of the blanket). It is commonly assumed that
the quasi-two-dimensional modelling in the spirit of Sommeria & Moreau (1982) can
be utilized at high Ha (see the analysis of convection instabilities in vertical duct by
Vetcha et al. (2013) as an example). Our results, however, demonstrate that even at
high Ha the applicability of the model is not a priori certain. The model is applicable
to the low-Gr regimes, but would be based on incorrect assumptions and produce
erroneous results at the values of Gr, at which high-Gr regimes are realized.

We have no information about the structure of the flow at Ha∼ 104, Gr∼ 109–1012.
An attempt of extrapolation can be made, though. While analysing the results of our
computations, we have noticed that the kinetic energy Et of the transverse motion
in the base flow (see table 3) can be accurately approximated as a function of the
single parameter Gr/Ha2, which represents the typical ratio between the buoyancy and
Lorentz forces (see (2.7) and (2.8)). This can be seen in figure 11 and is confirmed by
the regression analysis, which produces the coefficient of determination approximately
0.93. Assuming that the selection between low-Gr and high-Gr regimes is related to
the strength of the circulation in the base flow and analysing the DNS data, we find
that the threshold Gr∗(Ha)/Ha2 is of the order of several hundreds. In the blanket

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

47
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.473


Mixed convection in magnetohydrodynamic duct flow 55

conditions, Gr/Ha2 is between 10 and 104. We can, therefore, conclude that, for the
specific system considered in our paper and as far as the suggested extrapolation to
high Ha is correct (for which we have no proof at the moment), the flow at blanket
conditions is likely to be of the low-Gr type at Gr 6 1010 and of the high-Gr type at
higher Gr. Accordingly, the use of the quasi-two-dimensional model would be justified
at Gr 6 1010 but not if the Grashof number is higher.

The results of our study are directly applicable only to the idealized system we have
considered. Even if the idealized character is retained, the conclusions may change
with the change of geometry. For example, no streamwise-oriented circulation rolls
are expected in vertical ducts, so no analogies to our separation into low-Gr and
high-Gr regimes is expected and the quasi-two-dimensional model may universally
provide accurate results. In general, in order to fully understand the implications of
our results for fusion reactor blankets, one has to consider specific designs with their
complex geometry, inlet and exit effects, finite thermal and electrical conductivities
of the walls, volumetric heating and the possibility of electromagnetic and thermal
coupling between neighbouring ducts. Still, our study can be considered as a clear
indication of the critically important role of convection in blanket’s operation. As an
example of a more direct relation, we may suggest the long poloidal ducts of the
DCLL (dual coolant lithium-lead) blanket (Smolentsev et al. 2008). Some of the ducts
are inclined at a significant (up to 30◦) angle to the vertical. It is quite possible that
convection-generated patterns similar to those found in our analysis would appear in
these ducts.
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