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The equations describing the pulsating output of a laser containing a saturable absorber are

investigated numerically and analytically. The laser admits a singular Hopf bifurcation to

a nearly vertical branch of periodic solutions. Using asymptotic methods, we determine a

simplified problem that describes the transition from harmonic to pulsating oscillations as

the bifurcation parameter is changed. This transition occurs in a layer bounded by the Hopf

bifurcation point, and by a critical point near which the branch of solutions becomes vertical.

1 Introduction

Lasers containing a Saturable Absorber (LSA) are known to produce short and intense

pulses of laser light [18, 20, 22, 28]. They are of practical interest for many applications

that request extremely short (<1 ns) high-peak-power (>10 kW) pulses of light. The short

pulse widths are useful for high-precision optical ranging with applications in automated

production. The high peak output intensities are needed for efficient nonlinear frequency

generation or ionization of materials, with applications in microsurgery and ionization

spectroscopy. The laser intensity pulses can be simulated numerically by using the laser

rate equations. They consist of one equation for the laser field in the cavity and two

equations for the gain and nonlinear losses. Comparative experimental and numerical

studies have been first proposed for CO2 LSAs [2, 3, 25, 26]. They showed that the laser

pulsating output corresponds to a limit-cycle solution which emerges from a homoclinic

bifurcation [9, 10]. More recently, the pulsating output of microchip solid state LSAs

as well as semiconductor LSAs have been investigated in the laboratories. Microchip

lasers are small, easy to manipulate and offer high performances for the pulse width

and/or peak-power [23, 30, 31]. Semiconductor lasers exhibit high repetition rates which

ranges from hundred of megahertz to a few gigahertz [1, 16]. They are interesting for tele-

communication and for optical data storage using Compact Disc (CD) or Digital Versatile

Disc (DVD) systems [14, 15, 17, 21, 24, 27, 29]. Previous work has focused on laser systems

such as the CO2 laser, where gain and nonlinear losses are characterized by quite similar

decay rates. A complete codimension-two analysis corresponding to that limiting case was
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carried out in Dubbeldam & Krauskopf [9]. The situation is different, however, with the

solid state microchip laser subject to a semiconductor saturable absorber. While these

laser systems are still described by the same rate equations, they exhibit markedly different

ranges of parameter values [8, 11]. The strongly pulsating oscillations now correspond to

a limit-cycle that emerges from a Hopf bifurcation point rather than from a homoclinic

bifurcation. As the bifurcation parameter is progressively increased, the branch of periodic

solutions is parabolic in the near vicinity of the bifurcation point, then becomes almost

vertical, and finally saturates at a fixed amplitude.

The main objective of this paper is to study this Hopf bifurcation. Of particular physical

interest is the size of the Hopf bifurcation layer, which is proportional to a small parameter

in the laser equations. This parameter is defined as the ratio of two time scales. Because

the size of the Hopf bifurcation layer decreases to zero as this parameter moves to zero,

the Hopf bifurcation problem is a singular perturbation problem.

Singular Hopf bifurcations typically occur in systems of nonlinear ordinary differential

equations exhibiting fast and slow variables i.e. as some of the derivatives are multiplied

by a small parameter. They have been studied for two variable systems of the form

x′ = f(x, y, λ), (1.1)

y′ = εg(x, y, λ) (1.2)

modelling mechanical, electronic, or biochemical oscillators [13]. In (1.1) and (1.2), ε is a

small parameter that measures the slow decay rate of y compared to the decay of x; λ is

defined as the deviation of a bifurcation parameter from its Hopf value at ε = 0. Singular

perturbation methods have been used to derive a normal form for these equations which

are valid close to the zero solution x = y = 0 [4]–[6]. After rescaling time and the

dependent variables, the reduced equations are given by

u̇ = v + u2/2 + O
(
ε1/2

)
, (1.3)

v̇ = −u + O
(
ε1/2

)
. (1.4)

These equations hold provided that the partial derivatives of f and g satisfy fx = 0,

fygx < 0, and fxx � 0 at x = y = λ = 0. The leading problem is conservative and requires

a higher-order analysis in order to determine the amplitude of the periodic solutions [4, 5].

The derivation of (1.3) and (1.4) has been reviewed and extended to higher-dimensional

systems by Braaksma [7].

More recently, we have examined a laser Hopf bifurcation problem exhibiting slow-fast

limit-cycle dynamics and formulated by the following two-variable equations [12]:

x′ = f(x, y, λ, ε), (1.5)

y′ = εg(x, y, λ, ε). (1.6)

Here the small parameter ε multiplies g, but also appears in the nonlinear functions f

and g, causing the presence of a saddle-point in a close vicinity of the unstable focus. A

normal form can be obtained but is different from (1.3) and (1.4). It is given by

u̇ = (1 + u) v + O(ε), (1.7)

v̇ = −u (κ − v) + O(ε), (1.8)
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where κ > 0. The leading problem is conservative and a higher order analysis is again

needed in order to find the periodic solutions. Both for (1.1)–(1.2) and (1.5)–(1.6), the

bifurcation diagram of the reduced problems shows the gradual change of the periodic

solution from harmonic to pulsating oscillations. The amplitude of the oscillations becomes

unbounded at a critical value λ = λc. The point |λc| = O(ε) can be determined analytically

and defines the size of the Hopf bifurcation layer.

Three variable systems exhibiting one fast and two slow variables of the form

x′ = f(x, y, z, λ), (1.9)

y′ = εg(x, y, z, λ), (1.10)

z′ = εh(x, y, z, λ) (1.11)

describe the pulsating oscillations of lasers containing a saturable absorber but are harder

to analyze. As we shall demonstrate for our specific problem, the local analysis of the Hopf

transition leads to a simpler three-variable problem. The reduced problem is no more

conservative and the periodic solutions cannot be constructed analytically. Nevertheless,

the simplicity of the reduced three-variable equations allows us to determine analytically

the size of the Hopf layer.

The paper is organized as follows. In § 2, we formulate the laser equations, introduce the

Hopf bifurcation point and show a typical bifurcation diagram of the periodic solutions.

The Hopf nearly vertical branch of solutions is investigated in § 3 by deriving simplified

equations. In § 4, the bifurcation diagram is further studied analytically by examining

another limit of the parameters. Finally, we discuss in § 5 the physical and mathematical

significance of our results.

2 Formulation and Hopf bifurcation

In a Laser with a Saturable Absorber (LSA), two spatially separated cells are placed in

the laser cavity. The role of the two cells is quite different. One of them is an active or

amplifying medium. It consists of atoms with a positive population inversion, achieved

by means of an external pump. The second cell is a passive, or absorbing medium.

It is left with a negative population inversion. Since the atomic systems are separated,

they will interact only via the field in the cavity. The simplest semiclassical model of a

LSA considers two homogeneously broadened (two levels) atomic systems. These atoms

are assumed to interact only with one cavity mode. Furthermore, the radiation is tuned

with the transition frequencies of both systems which are assumed equals. This leads to

the following three equations for the intensity of the laser field I , and the population

inversions N and N for the active and passive media [18, 20, 22, 28]:

I ′ = I(−1 + N + N), (2.1)

N ′ = γ(A − N − NI), (2.2)

N
′
= γ(−A − N(1 + αI)). (2.3)

In these equations, A and A are the pump parameters of the amplifying and absorbing

media, respectively. The parameter α represents the relative saturability of the absorber
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Figure 1. Bifurcation diagram of the laser equations (2.1)–(2.3). The maximum intensity is repres-

ented as a function of A. The values of the fixed parameters are γ = 10−2, γ = 10−1, A = 4 and

α = 0.5. The branch of steady state solutions emerges at A = Ath = 5 and its intensity changes

linearly with A as given by (2.5). Full and broken lines correspond to stable and unstable steady

states, respectively. The branch of periodic solutions connects the two Hopf bifurcation points AH1

and AH2. AH1 is slightly larger than A = Ath. The inset in the figure details the Hopf bifurcation

layer and shows that the branch becomes vertical near A = 5.02. We note that this value matches

the value predicted by the asymptotic analysis, i.e. A∗ � Ath + γa∗ where a∗ is defined by (3.11).

with respect to the amplifying medium. Estimation of the dimensionless parameters [8, 11]

indicates that γ and γ are small parameters for all type of lasers (γ = O(10−3 − 10−7)) and

that α and A are generally larger than one (except for microchip lasers [11]). The control

parameter A is assumed larger than the laser first threshold A = Ath defined by

Ath ≡ 1 + A. (2.4)

A typical bifurcation diagram of the steady and periodic solutions is shown in Figure 1.

As A is increased, the zero intensity solutions looses its stability at A = Ath. A non zero

intensity steady state emerges from this point and is given by

I � A − Ath

Ath − αA
. (2.5)

for A close to Ath. If α is sufficiently small, Ath − αA is positive and the bifurcation is

supercritical and stable. We concentrate on this case.
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As A is further increased, the stable steady state solution (2.5) undergoes a Hopf

bifurcation at a critical intensity I = IH . From the linear stability analysis, we determine

conditions for I = IH and the frequency of the oscillations ω = ωH at the Hopf bifurcation

point. Assuming IH = O(γ) and

b = γ/γ = O(1), (2.6)

we find the approximations

IH � γ
b(1 + b)

b2Aα − Ath

(2.7)

and

ωH � γ

√
b2(Ath − Aα)

b2Aα − Ath

, (2.8)

provided that

b2Aα − Ath > 0 and Ath − Aα > 0. (2.9)

The first condition guarantees a positive intensity at the Hopf bifurcation point. The

second condition implies that the steady state bifurcation is supercritical. Equivalently,

(2.9) imply conditions on the values of α and b given by

Ath

Ab2
< α <

Ath

A
and b > 1. (2.10)

Knowing IH , we may determine A = AH using (2.5) and NH , NH from the steady state

equations. We obtain

AH � Ath + (Ath − αA )IH , (2.11)

NH � Ath − αAIH and NH � −A + AαIH. (2.12)

These expressions will become useful as we investigate the Hopf bifurcation problem in

the next section.

As soon as A surpasses AH (AH1 in Figure 1), a nearly vertical branch appears. As

the branch starts to fold, the oscillations are already strongly pulsating. The branch then

progressively saturates and terminates at a higher intensity Hopf bifurcation point (AH2

in Figure 1). In Figure 2, we show the pulsating intensities as well as the limit-cycle in the

phase plane (N, I). The limit-cycle consists of a long interpulse period where I is almost

zero and N is gradually increasing. This evolution is followed by a quick orbit in the

phase plane which is characterized by a large intensity. Matched asymptotic methods can

be used to construct the solution [10]. However, they fail to describe the Hopf bifurcation

layer near the Hopf point.

3 The solution near the Hopf bifurcation point

Our objective is to determine the change from harmonic to pulsating oscillations which

appears near the Hopf bifurcation point.The coordinates of the Hopf bifurcation point
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Figure 2. Strongly pulsating limit-cycle solution. The values of the parameters are the same as in

Figure 1 and A = 6. (a) The intensity exhibits short and intense pulses separated by long intervals

where it is nearly zero. (b) The limit-cycle orbit in the phase plane (N, I) consists of a slow regime

where I � 0 and N is gradually increasing followed by high intensity orbit where N is quickly

decreasing.

(2.7), (2.8), (2.11) and (2.12) exhibit scalings with respect to γ and motivates new variables

and a new bifurcation parameter. Specifically, we introduce the variables s, i, n and n

defined by

s ≡ γt, i ≡ γ−1I, n ≡ γ−1(N − Ath), n ≡ γ−1(N + A) (3.1)

and the parameter a given by

a ≡ γ−1(A − Ath) (3.2)

and rewrite (2.1)–(2.3) in terms of i, n, n. Taking then the limit γ → 0, we obtain the

following equations for i, n and n:

i′ = i(n + n), (3.3)

n′ = a − n − Athi, (3.4)

n′ = b(−n + Aαi). (3.5)
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Figure 3. Bifurcation diagram of the reduced problem (3.3)–(3.5). The values of the parameters are

b = 10, A = 5 and α = 0.5. The figure represents the maximum and the minimum of i as a function of

a = γ−1(A − Ath). The critical value a = a∗ � 1.8421053 where the limit-cycle orbit approaches the

separatrices of the saddle is determined from (3.11). The point with the largest maximum intensity

corresponds to a = 1.8421. If a > a∗, the solution of (3.3)–(3.5) is unbounded in time. The small

amplitude straight line is the steady state (2.5) with A − Ath = γa.

These equations are simpler than (2.1)–(2.3) because the two last equations are linear.

We first verify that (3.3)–(3.5) admits the same Hopf bifurcation point as the original

equations. From (3.3)–(3.5), we find that the coordinates of the Hopf bifurcation point

are given by

iH =
b(1 + b)

b2Aα − Ath

, nH = −αAiH ,

(3.6)
nH = AαIH, aH = (Ath − αA )iH .

The expressions (3.7) match our earlier expressions (2.7), (2.11) and (2.12). The numerical

branch of periodic solutions is shown in Figure 3. We note that the branch is parabolic near

the bifurcation point and then becomes vertical at a particular value of a = a∗. Equations

(3.3)–(3.5) cannot be solved analytically. Nevertheless, as we shall now demonstrate, the

point where the amplitude of the oscillations becomes unbounded can be determined

analytically.
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Figure 4. Limit-cycle solution of (3.3)–(3.5). The values of the parameters are the same as in

Figure 3 and a = 1.8421. The dotted line is the separatrix or unstable manifold emerging from the

saddle point (i, n) = (0, a). The inset in the figure shows the saddle point as well as the unstable

focus.

As a − a∗ → 0−, we note in the phase plane (n, i) and (n, i) that part of the limit-cycle

orbit is spending more and more time near the unstable separatrix that emerges from

the saddle point (i, n, n) = (0, a, 0) (see Figure 4). Moreover, the trajectories n = n(i) and

n = n(i) are nearly straight lines as the orbit is close to the separatrix. This suggest that

at a = a∗, the limit-cycle degenerates into the line i = 0 and the line n = n(i) and n = n(i)

that varies linearly with i. We verify this hypothesis by writing equations for dn/di and

dn/di. From (3.3)–(3.5), we obtain

dn

di
=

a − n − Athi

i(n + n)
, (3.7)

dn

di
=

b(−n + Aαi)

i(n + n)
. (3.8)

We then seek a solution of the form

n = a + βi and n = δi (3.9)

where β and δ are unknown coefficients to be determined. Substituting (3.9) into (3.7)
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and (3.8) gives the following conditions for β, δ and a:

β = −δ =
−Ath

1 + a
(3.10)

and

a = a∗ =
b(Ath − Aα)

bAα − Ath

. (3.11)

Using (3.11), the numerical value of a∗ is shown in Figure 3. The size of the Hopf

bifurcation layer is given by a∗ − aH. Using (3.7) and (3.11), we find that

a∗ − aH =
b2(Ath − Aα)2

(bAα − Ath)(b2Aα − Ath)
. (3.12)

We briefly discuss the expression (3.12). First, we note that a∗ − aH is proportional to b−1

for large b. This means that the Hopf bifurcation branch becomes more and more vertical

as we increase b. We comment on the large-b limit in the next section. Secondly, a∗ − aH
may become large if the denominator is sufficiently small. Decreasing α progressively from

α = 1 and remembering that b > 1, we see that a∗ approaches infinity as α → αc, where

αc = Ath/(bA). (3.13)

Equations (3.3)–(3.5) then admit a limit-cycle solution for all a > aH . However, a cannot

be too large, since our analysis based on the small-γ limit also assumed a = O(1).

The point where the Hopf bifurcation branch becomes vertical is estimated at A∗ � 5.02

(see the inset of Figure 1), meaning a value of a∗ � 2. From (3.11) with b = 10, A = 4

and α = 0.5, we determines a∗ = 2. Thus, (3.11) gives a good analytical estimate of the

Hopf bifurcation layer.

4 From harmonic to strongly pulsating oscillations

We may further progress in the analytic description of the bifurcation layer if we assume

the asymptotic limit b = γ̄/γ � 1. This limit applies to the Nd:YAG/Cr:YAG microchip

lasers, for which γ = 1.7 10−6, γ̄ = 6.3 10−5 [30, 31] and the Nd:YVO4 microchip laser with

semiconductor saturable absorber mirror (SESAM) for which γ = 3.7 10−7, γ̄ = 9.3 10−2

[23]. To exploit this particular feature of the laser equations, we rewrite (3.5) as

n̄ − αĀi = −b−1n̄′. (4.1)

Because b−1 is small, n̄ = αĀi + O(b−1), and substituting this answer into the right hand

side of (4.1), we obtain the two-term approximation

n̄ � αĀi − b−1αĀi′. (4.2)

With (4.2), (3.3)–(3.5) reduce to the following equations for i and n only:

i′ = i(n + αĀi) − b−1αĀii′, (4.3)

n′ = a − n − Athi. (4.4)
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The steady state solution of (4.3)–(4.4) is given by iS = a/(Ath − αĀ), nS = −a(αĀ)/

(Ath − αĀ) and the Hopf bifurcation is now located at aH = (Ath − αĀ)/
(
αĀ

)
. This

expression agrees with the limit b−1 → 0 of (3.7). We next introduce a new bifurcation

parameter a1 defined by

a1 ≡ b
a − aH

aH
, (4.5)

as well as the new variables u and v given by

u ≡ i

iS
− 1, v ≡ n − nS + u. (4.6)

The variable u and v represent deviations of the intensity i and population inversion n

from their steady-state values. In terms of (4.5) and (4.6), (4.3) and (4.4) become

u′ = (1 + u)v + b−1fu,

v′ = −u(aH − v) + b−1fv, (4.7)

where

fu = (1 + u)(a1u − u′), fv = fu − (aH + 1)u. (4.8)

Setting b−1 = 0 in (4.7), we obtain a conservative system which turns out to be equivalent

to the Lotka-Volterra equations. It admits a one-parameter family of periodic solutions

(u0, v0) that satisfies the first integral

E = u0 − ln(1 + u0) − v0 − aH ln(aH − v0) (4.9)

where E is the constant of integration. Close to the centre (u0, v0) = (0, 0), these periodic

solutions are nearly harmonic while they become strongly pulsating for larger peak values

of u0. This reduced system is therefore able to reproduce the bifurcation layer in Figure 3.

Our goal is now to determine which periodic solution (u0, v0) is also periodic solution of

the full system (4.7) for a given value of a1. To this end, we introduce the functional

Ẽ(u(s), v(s)) = u − ln(1 + u) − v − aH ln(aH − v). (4.10)

This functional, computed with the true periodic solution of (4.7) should satisfy the

condition ∫
P

Ẽ ′ ds = 0, (4.11)

where P is the period of the solution. Using (4.7), we can rewrite this condition as

b−1

∫
P

{
u(a1u − u′) + v

[
(1 + u)

a1u − u′

aH − v
− aH + 1

aH − v
u

]}
ds = 0. (4.12)

We now evaluate this expression with (u, v) = (u0, v0). To this end, we note that∫
P

u0u
′
0 ds =

1

2

[
u2

0(s)
]P
0

= 0. (4.13)
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Figure 5. Enlargement of the bifurcation diagram in Figure 1 near the low-intensity Hopf point.

The dotted line represent the analytical approximation, obtained with (4.15). The start of the

analytical curve is shifted by 0.0005 on the right for a better fit with the numerical branch, which

is in full line.

Moreover, using (4.7) with b−1 = 0, we find that

∫
P

u0v0

aH − v0
ds =

∫
P

−v0v
′
0

(aH − v0)2
ds =

[
− ln(aH − v0(s)) − aH

aH − v0(s)

]P

0

= 0. (4.14)

In the same way, one can show that
∫
P
un0v0/(aH − v0) ds = 0 for all positive integer n.

Consequently, (4.12) reduces to the following condition

a1 =

(∫
P

v2
0(1 + u0)

2

aH − v0
ds

) / (∫
P

u2
0 ds

)
. (4.15)

We may now assign a value of a1 for each solution of the family (4.9) by computing

the integrals in the right-hand side of (4.15). The resulting Hopf bifurcation branch is

shown in Figure 5 and is compared, after rescaling, with the inset of Figure 1. Despite

the moderately large value b = 10, the two branches agree quantitatively in the vicinity

of the Hopf bifurcation. They only start to deviate as the amplitude of the solution starts

to increase dramatically.

Although the integrals in the right-hand side of (4.15) need to be evaluated numerically,

one can analytically estimate the value of a∗
1 corresponding to the divergence of the bifur-

cation branch. Indeed, as E → ∞ in (4.9), the periodic solution spend most of the time
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near the separatrix v0 = aH . This allow to simplify considerably the integrals in (4.15)

leading to [19]

a∗
1 = lim

E→∞
a1 =

Ath

Āα
. (4.16)

Using then a∗ = aH (1 + b−1a∗
1), we find that it matches the two terms limit of (3.11) for b

large.

5 Discussion

Singular Hopf bifurcation problems are problems where the Hopf bifurcation branch is

forced to change from harmonic to strongly pulsating oscillations in the vicinity of the

bifurcation point. The phenomenon occurs because of the presence of a small parameter

in the evolution equations that controls the time scales of the solution. This is the case for

problems exhibiting relaxation oscillations [4]. For two variable problems, the bifurcation

problem generally reduces to the perturbation of a double zero eigenvalue and a con-

servative system of equations appears in the first approximation. But for three variable

problems, a general asymptotic theory remains difficult because of the large variety of

cases. In this paper, we concentrate on a laser that exhibits pulsating limit-cycle oscilla-

tions. Specifically, we examine the equations for a laser with a saturable absorber and

investigate its nearly vertical Hopf bifurcation problem. From the original three vari-

ables equations, we determined a simplified problem given by (3.3)–(3.5). The bifurcation

diagram of these equations needs to be studied numerically but the point where the

limit-cycle solution becomes unbounded can be identified analytically. To further progress

analytically, we studied the large-b limit of (3.3)–(3.5). In this limit, our equations reduce

to the two variable Lotka-Volterra conservative equations [12]. A higher order analysis in

b−1 then lead to the bifurcation equation (4.15) for the amplitude of the oscillations. We

have investigated this bifurcation equation and found good agreement with the original

laser equations.

As the maximum intensity of the limit-cycle solution becomes large (i.e. as a → a∗),

our local Hopf bifurcation theory becomes invalid and motivates a new analysis of the

laser equations near a = a∗. This analysis is difficult because the periodic solution changes

dramatically along the nearly vertical branch. Because the branch remains almost vertical

as the amplitude increases, the point A∗ = Ath + γa∗ gives a good estimate of the point

where the strongly pulsating oscillations of a LSA appears. Because these oscillations

occur near the laser threshold A = Ath, experimental observations of the Hopf bifurcation

branch will be possible only if the Hopf bifurcation layer is sufficiently large implying

that α needs to be sufficiently small.
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