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EFFECTIVE CYCLES ON SOME LINEAR BLOWUPS OF
PROJECTIVE SPACES

NORBERT PINTYE and ARTIE PRENDERGAST-SMITH

Abstract. We compute cones of effective cycles on some blowups of projective

spaces in general sets of lines.

§1. Introduction

Cones of curves and divisors have played a central role in birational geometry since the

groundbreaking work of Mori in the early 1980s. There are general results, such as the cone

theorem, describing the structure of these cones, as well as numerous explicit calculations

in cases of geometric interest.

More recently, there has been increased interest in cycles of intermediate dimensions.

Debarre et al. [DELV] showed that, in general, these cycles do not share the good properties

of divisors or curves: in particular, numerical positivity need not imply geometric positivity

for such cycles. Nevertheless, there has been significant progress in extending the theoretical

understanding of such cycles, due to Fulger and Lehmann [FL1, FL2], Ottem [Ott] and

others. By contrast, the number of examples in which cones of effective cycles have been

explicitly computed is relatively small. The most significant results to date were found by

Coskun et al. [CLO], who computed cones of cycles on blowups of projective spaces at sets

of points.

In this paper, we compute cones of effective cycles on some varieties obtained by blowing

up general sets of lines in projective space. Blowups of this kind can be seen as the next

natural examples to consider after those of Coskun–Lesieutre–Ottem; cones of divisors on

these spaces were computed in some cases by Dumitrescu et al. [DPU].

Cones of cycles on these spaces are more complicated to compute than those of point

blowups in two ways: first, a hyperplane in projective space cannot contain many general

lines, and so inductive techniques tend to be less useful; second, the coefficients of the

intersection form on the blowup vary with dimension, making uniform statements more

difficult to find. In spite of these difficulties, we are able to compute cones in some interesting

examples, which we now explain.

Blowing up a small number of lines in projective space gives a toric variety, so the cone

of effective cycles is generated by torus-invariant subvarieties, hence linear subspaces. Our

main results show that linear generation continues to hold when the number of lines is

increased beyond the toric range: for example, the blowup of P4 in more than two lines

is no longer toric, but we show in Theorem 4.2 that its cone of 2-cycles is still linearly

generated when we blow up in three or four lines. Similarly, in Theorem 5.1, we show

that the cones of 2-cycles is linearly generated when we blow up at most five lines in P5,

but the cone of 3-cycles fails to be linearly generated once we blow up four lines. Finally,
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in Section 6, we complement these theorems with some results about linear generation of

cones of curves and divisors.

Our results are summarized in the following tables. In each table, the entry in row k and

column r shows whether the cone of effective k-cycles on the blowup of projective space

of the relevant dimension in r general lines is linearly generated (or if the answer is not

known). Note that once linear generation fails for a blowup, it fails for all further blowups,

so any entry to the right of the symbol x in a given row is also not linearly generated.

The pattern we find agrees with Coskun–Lesieutre–Ottem’s results, namely that as we

blow up more, cones of lower-dimensional cycles remain linearly generated for longer than do

cones of higher-dimensional cycles. It would be interesting to find uniform bounds ensuring

linear generation for blowups of projective space in general sets of linear subspaces of

arbitrary dimension.

§2. Preliminaries

We work throughout over an algebraically closed field of characteristic zero. This

assumption will be used in some computational proofs, where our calculations take place

over Q.

2.1 Intersection theory

Our goal in this paper is to compute cones of cycles. The natural contexts for these cones

are the spaces of numerical classes of cycles, which we now introduce. In the examples

we will consider, these spaces are just Chow groups with real coefficients, but we use the

language of numerical classes for consistency with the general theory.

LetX be a smooth proper variety of dimension n. Let Zk(X) denote the group of algebraic

cycles of dimension k on X. We define the vector space of numerical classes of k-cycles to

be

Nk(X) := (Zk(X)/≡)⊗R,

where ≡ denotes numerical equivalence of cycles. For each k, this is a finite-dimensional

real vector space, and intersection gives a perfect pairing Nk(X)×Nn−k(X)→R. For

convenience, we often write Nk(X) instead of Nn−k(X). For a k-dimensional subvariety

Z in X, we write [Z] to denote its class in Nk(X). A fundamental feature of this product

is positivity of proper intersections: if X is a smooth proper variety of dimension n, and V
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and W are subvarieties of dimension k and n− k, respectively, such that V ∩W is a finite

set, then [V ] · [W ] > 0.

A class α ∈Nk(X) is effective if there are subvarieties Z1, . . . , Zm and nonnegative

real numbers r1, . . . , rm such that α=
∑m

i=1 ri[Zi]. A class α ∈Nk(X) is called nef if

α · [Z] > 0 for every k-dimensional subvariety Z in X or, equivalently, if α · β > 0 for every

effective class β ∈Nk(X). We need some basic facts about the behavior of nef cycles under

morphisms.

Proposition 2.1. Let f : Y →X be a morphism of smooth projective varieties.

(a) If α ∈Nk(X) is nef, then f∗α ∈Nk(Y ) is nef.

(b) If f is surjective and α ∈Nk(X) is a cycle such that f∗α is nef, then α is nef.

Proof. (a): If β ∈Nk(Y ) is effective, then f∗β is also effective by definition of

pushforward. So if α ∈Nk(X) is nef, then using the projection formula for cycles, we get

f∗α · β = α · f∗β > 0 for every effective cycle β in Nk(Y ).

(b): Let β ∈Nk(X) be an effective class. Since f is surjective, by a standard hyperplane

section argument, there exists an effective class β̃ ∈Nk(Y ) such that f∗β̃ = β. By the

projection formula and nefness of f∗α, we have α · β = f∗α · β̃ > 0, showing that α is nef

as required.

In general, the intersection of nef cycles need not be nef [DELV, Corollary 2.2], but for

divisors, this is true.

Lemma 2.2. Let X be a smooth projective variety. If D and E are nef divisor classes

on X, then DE is a nef class in N2(X).

The statement is true more generally for the intersection of any number of nef divisor

classes, but we will only prove the case that we need.

Proof. We need to prove that for any effective class α ∈N2(X), we have DE · α> 0.

Since E is nef, we can find a sequence of ample divisor classes {Ei} converging to E in

N1(X). For each Ei, the intersection Eiα is effective, and so D · (Ei α) > 0. Taking the

limit, we get DE · α= limi D · (Ei α) > 0, as required.

2.2 Numerical classes on blowups

In the rest of the paper, we will write Xn
r,s to denote the blowup of Pn in a collection of

r general lines L1, . . . , Lr and s general points p1, . . . , ps. Our main examples have s= 0,

and we denote these simply by Xn
r .

The ring N∗(Xn
r,s) = CH (Xn

r,s)⊗R is generated by classes H, Ei for i= 1, . . . , r and ei
for i= 1, . . . , s, which are, respectively, the pullback of the hyperplane class on Pn, the

exceptional divisors of the blowups of the Li and the exceptional divisors of the blowups of

the pi. We will use the following intersection numbers among these classes [EH, Corollary

9.12]:

Hn = 1, En
i = (−1)n(n− 1), eni = (−1)n−1

H · En−1
i = (−1)n, Hj · En−j

i =Hk · en−ki = 0 for i> 1, k > 0.

We also need to know the numerical classes on Xn
r,s of the proper transforms of certain

subvarieties of Pn. The blowup formula [Fu, Theorem 6.7] allows us to calculate these as

long as we know the Segre classes of the blowup center inside the subvariety: in particular,
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when we blow up lines and points, these are easy to compute. In particular, we note the

following.

Corollary 2.3. Let Xn
r,s be the blowup of Pn in r general lines and s general points.

Let:

• U be a linear space of codimension k intersecting Li transversely;

• V be a linear space of codimension k containing Li and

• Q be a quadric of codimension k containing Li.

The numerical classes of the proper transforms of these spaces have the following coeffi-

cients:

If Z is any subvariety of codimension k containing pi as a smooth point, then the coefficient

of eki in [Z̃] equals (−1)k.

2.3 Cones of cycles

For a smooth projective variety X, the pseudoeffective cone Effk(X) is the closed convex

cone in Nk(X) generated by numerical classes of k-dimensional subvarieties of X. The nef

cone Nefk(X) is the cone spanned by all nef classes in Nk(X): in other words, it is the dual

cone of Effk(X).

Now we specialize the discussion to our examples Xn
r,s. A subvariety of Xn

r,s is called

linear if it is one of the following:

(a) the proper transform on Xn
r,s of a linear subspace of Pn;

(b) the pullback to Ei
∼= P1 ×Pn−2 of a linear subspace in one of the factors or

(c) a linear subspace in ei ∼= Pn−1.

The linear cone Link(Xn
r,s) is the cone in Nk(Xn

r,s) generated by the finitely many classes

of k-dimensional linear subvarieties. We say that the pseudoeffective cone of k-cycles on

Eff(Xn
r,s) is linearly generated if it equals the linear cone Link(Xn

r,s). Note that any blowup

map Xn
r,s→Xn

r−a,s−b maps the effective cone onto the effective cone and the linear cone

onto the linear cone, so if Eff(Xn
r,s) is linearly generated, then so too is Eff(Xn

r−a,s−b).

2.4 Toric varieties

Cones of cycles on toric varieties are well understood. For later use, let us record the

facts we need.

Proposition 2.4. Let X be a normal proper toric variety. Then, Effk(X) is generated

by the finitely many classes of k-dimensional torus-invariant subvarieties on X. Conse-

quently, if the variety Xn
r,s is toric, then Effk(Xn

r,s) is linearly generated for all k.

Proof. The first statement is well known; a reference is [Li, Proposition 3.1].

For the second statement, note that the torus-invariant subvarieties of Pn are exactly the

coordinate subspaces, so if Xn
r,s is a toric blowup of Pn, any torus-invariant subvariety on

Xn
r,s that comes from Pn is the proper transform of a coordinate subspace and hence is linear.
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On the other hand, every exceptional divisor of X →Pn is of the form Ei
∼= P1 ×Pn−2 or

ei ∼= Pn−1, so the torus-invariant subvarieties of the exceptional divisor are also linear.

2.5 Computations

In this paper, we will use computer algebra in several different contexts. In all cases,

we use the computer algebra system Macaulay2. In particular, for all computations of

dual numerical cones, we use the package Normaliz [Nor] for Macaulay2. Note that for

compactness, we always list the generators of all cones “up to permutation”: that is, a full

list of generators is obtained from our list by permuting indices in the appropriate way.

The full outputs of our computations are available in ancillary files provided with this

paper [M2]. The name of each file in the repository indicates the result in the paper in

which the output of the computation is used.

§3. Codimension-2 linear spaces

In this section, we prove that codimension-2 linear spaces incident to lines give nef classes

in Xn
r for r 6 n6 5. The main idea of the proof is to verify by a dimension count that we

can find such a linear space properly intersecting any given subvariety of complementary

dimension. As mentioned in Section 1, proper intersections are nonnegative, so this is

sufficient to prove our claim.

We begin with some preparatory results about intersections of Schubert cycles.

Lemma 3.1. Let l1, . . . , l4 be a set of four distinct lines in P3 and let Λ⊂G(1, 3) be

the set of lines touching all four. Then, one of the following is true:

(a) the set Λ has dimension 2, in which case one of the following is true:

(i) all four lines are concurrent (that is, they all meet in a single point) or

(ii) all four lines are coplanar;

(b) the set Λ has dimension 1, in which case one of the following is true:

(i) the lines are all pairwise skew and lie on a smooth quadric surface Q ∈P3;

(ii) there are exactly two pairs of intersecting lines, say l1, l2 and l3, l4, and the

intersection point of l1, l2 lies in the plane spanned by l3, l4;

(iii) there are three concurrent lines, say l1, l2, l3, and the line l4 is skew to all others

or

(iv) there are three coplanar lines, say l1, l2, l3, and the line l4 is skew to all the others;

(c) the set Λ has dimension 0.

Proof. For each case listed in (a) and (b) above, the given dimension count is

straightforward to verify. It remains to check that in all other cases, the set Λ has dimension

0. In the case that all lines are pairwise skew, this is well known, so we must consider the

cases in which some of the lines intersect. There are two possibilities not covered by the list

above:

• two lines, say l1 and l2, intersect, and all other pairs are skew;

• there are exactly two pairs l1, l2 and l3, l4 of intersecting lines, and neither of the

intersection points of the two pairs lies in the plane spanned by the other pair.
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In the first case, any line intersecting all four lines must either lie in the plane spanned by

l1 and l2 or pass through the intersection point of l1 and l2. In each case, however, there is

such a unique line which also intersects l3 and l4.

In the second case, no line contained in either of the planes spanned by two intersecting

lines can intersect the other two lines. So the only line intersecting all four lines is the line

joining the two intersection points of the pairs l1, l2 and l3, l4.

Lemma 3.2. Let l1, . . . , ln be a set of n general lines in Pn for n= 4 or 5. Let Λ⊂
G(n− 2, n) be the subset of the Grassmannian parametrizing codimension-2 linear spaces

intersecting all the lines. Then:

(a) Λ is irreducible of dimension n− 2;

(b) the intersection of all the linear spaces parametrized by points of Λ is empty.

The restriction on n can be removed at the cost of a more complicated proof, but the

statement above is sufficient for our applications in later sections. The word “general” in

the statement of the lemma means that the proof works for a Zariski-open subset of points

in the space of sets of n lines; however, the proof does not produce such an open subset

explicitly.

Proof. (a) Let Un ⊂G(1, n)n be the open subset parametrizing sets of n distinct

lines. Let I ⊂ Un ×G(n− 2, n) be the incidence correspondence consisting of pairs

((L1, . . . , Ln), L), where L is a codimension-2 linear space intersecting all of the Li. Let

f : I → Un be the projection. We want to prove that a general fiber of f is irreducible of

dimension n− 2.

Each fiber over a point u ∈ Un is cut out from G(n− 2, n) by n hyperplane sections, and

hence has dimension at least

dim G(n− 2, n)− n= n− 2.

If we can find a single fiber f−1(u) of dimension n− 2, then by semicontinuity, there is an

open set V ⊂ Un containing u over which all fibers have dimension n− 2. Moreover, the

open set f−1(V ) is local complete intersection, hence Cohen–Macaulay, so the morphism f

is flat over V . By [EGA, Theorem 12.2.1(x)], the set of points u ∈ V over which fibers of f

are integral is an open set W ⊂ V . If we can further show that the fiber f−1(u) is integral,

then W is nonempty, and so a general fiber of f is integral, in particular irreducible, as

required. So it remains to find u ∈ Un over which the fiber of f is of dimension n− 2 and

integral.

We do this using Macaulay 2. For the case n= 4, Outputs 1 and 2 from lemma 2.2-P4.m2

show that for a certain point u4 ∈ U4, the fiber f−1(u4) is integral of dimension 2. Similarly,

for the case n= 5, Outputs 1 and 2 from lemma 2.2-P5.m2 show that for a certain point

u5 ∈ U5, the fiber f−1(u5) is integral of dimension 3.

(b) Suppose there is a point p ∈Pn such that every linear space parametrized by Λ passes

through p. Let Σp ⊂G(n− 2, n) be the Schubert cycle parametrizing linear spaces passing

through p. In particular, we should have Λ⊂ Σp. Let us show that this containment is

impossible.

First, note that Λ has codimension n in G(n− 2, n), while for any p, the Schubert

variety Σp has codimension 2. Considering the Plücker embedding of the Grassmannian

G(n− 2, n) in projective space, we can view Λ as G(n− 2, n) ∩H1 ∩ · · · ∩Hn for certain
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hyperplanes Hi. Therefore, if Λ⊂ Σp, we must have Λ⊂ Σp ∩H1 ∩ · · · ∩Hn−2. Let us

analyze the two possibilities for this intersection and show that both lead to a contradiction.

The first possibility is that the intersection Σp ∩H1 ∩ · · · ∩Hn−2 is of the maximal

codimension n. In this case, Λ must be an irreducible component of Σp ∩H1 ∩ · · · ∩Hn−2.

However, the degree of Σp ∩H1 ∩ · · · ∩Hn−2 is the same as the degree of Σp, which by

projection away from p is the same as the degree of G(n− 3, n− 1): for n= 4, this equals

2, while for n= 5, it equals 5. On the other hand, since Λ is a linear section of G(n− 2, n),

its degree equals the degree of G(n− 2, n): for n= 4, this equals 5, while for n= 5, it equals

14. In both cases, the degree of Σp is strictly less than the degree of Λ, so the latter cannot

be an irreducible component of the former. So this case is impossible.

The second possibility that Σp ∩H1 ∩ · · · ∩Hn−2 is not of the maximal codimension n.

We claim that we can move the hyperplanes Hi to new hyperplanes H ′i such that both of

the following hold:

• Σp ∩H ′1 ∩ · · · ∩H ′n−2 is of codimension n;

• H ′1 ∩ · · · ∩H ′n−2 =H1 ∩ · · · · · ·Hn−2.

(Note that the new hyperplanes H ′i in general no longer correspond to Schubert varieties

in the Grassmannian G(n− 2, n), but that does not affect our proof.) Given the claim, we

can then write Λ as G(n− 2, n) ∩H ′1 ∩ · · · ∩H ′n−2, and the argument from the first case

applies again to complete the proof.

It remains to prove the claim. Write Z =H1 ∩ · · · ∩Hn−2. For i < n− 2, assume that we

have chosen hyperplanes H ′1, . . . , H
′
i such that each of them contains Z, and Σp ∩H ′1 · · · ∩

H ′i has codimension i+ 2. Since i+ 2< n, we see that Σp ∩H ′1 · · · ∩H ′i is not contained in

Λ, and since Λ = G(n− 2, n) ∩ Z, this proves that it is not contained in Z either. So we

can find another hyperplane H ′i+1 which contains Z but does not contain Σp ∩H ′1 · · · ∩H ′i.
Hence, the intersection Σp ∩H ′1 · · · ∩H ′i ∩H ′i+1 has codimension i+ 3. Continuing in this

way, we end up with hyperplanesH ′1, . . . , H
′
n−2 satisfying the two bulleted conditions above,

as required.

Now we can prove our first main result about nefness of codimension-2 linear spaces in

P4. The idea is to project away from a point and use the information from the previous

lemmas about configurations of 4 lines in P3.

Theorem 3.3. Let r 6 4. Let L4
r be the proper transform on X4

r of a codimension-2

linear space in P4 that intersects all the blown-up lines properly. Then, L4
r is nef.

Proof. We first observe that if L4
r is nef on X4

r , then Ln
r−1 is nef on X4

r−1. To see this,

note that the pullback of the class [L4
r−1] equals [L4

r ] + [F ], where F is a fiber of the blowup.

If L4
r is nef, then any irreducible surface that has a negative intersection with the pullback

of L4
r−1 must have a negative intersection with F and so must be contained in Er since F

is a nef divisor in Er. But surfaces contained in Er are contracted by the blowup map, so

they have zero intersection with the pullback of [L4
r−1] by the projection formula. So the

pullback of [L4
r−1] is nef, and, therefore, L4

r−1 is nef by Proposition 2.1. So it suffices to

prove that L4
4 is nef.

The restriction of L4
4 to any of the divisors Ei is an effective curve class, hence nef, so

if S is an irreducible surface contained inside one of the divisors Ei, then L4
4 · S̃ > 0. We

can therefore restrict our attention to irreducible surfaces S̃ that are proper transforms of

surfaces S in P4. For such a surface, the intersection S̃ ∩ Ei is one-dimensional, hence a
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union of curves. We can write it in the form S̃ ∩ Ei = C1 ∪ · · · ∪ Ck ∪ Γ1 ∪ · · · ∪ Γj , where

the Ci are curves contained in fibers of the blowdown map π :X4
4 →P4, and the Γj intersect

each fiber of π in finitely many points. By Lemma 3.2, we can choose a plane L4
4 that is

disjoint from any given finite set of fibers of π, and for such a plane, we get L4
4 ∩ S̃ ∩ Ei =

L4
4 ∩ (

⋃j
k=1 Γj), a finite set of points. Therefore, if S̃ is a surface intersecting every plane L4

4

nonproperly, we see that S ∩ L has dimension at least 1 for every plane L⊂P4 intersecting

all four lines.

So suppose that S ⊂P4 is an irreducible surface such that dim(S ∩ L) > 1 for every plane

L⊂P4 intersecting all four lines. We form the following incidence correspondence:

Here, Λ⊂G(2, 4) is the subset of the Grassmannian parametrizing planes intersecting all

four lines. By Lemma 3.2, Λ is irreducible of dimension 2. Hence, by our assumption on the

dimension of the fibers of π2, we see that I has dimension at least 3.

Every fiber π−11 (p) is a subset of Λ, which is irreducible of dimension 2, so any fiber of

dimension 2 must equal Λ. But if a fiber π−11 (p) equals Λ, then all the planes parametrized

by Λ pass through the point p, contradicting Lemma 3.2(b). Hence, no fiber π−11 (p) has

dimension 2.

Therefore, every fiber of π1 has dimension 1, and so π1 is surjective. That is, for every

point p ∈ S, there are infinitely many planes L passing through p and intersecting all four

lines. We will show that this is impossible.

By Lemma A.1, we may assume that S is not contained in any of the linear spaces

Span(Li, Lj). By this assumption, if p ∈ S is a general point, then when we project away

from p, the images of our lines L1, . . . , L4 give four skew lines l1, . . . , l4 in P3. Under this

projection, planes L⊂P4 passing through p and intersecting all the lines Li correspond

to lines l ⊂P3 intersecting all the lines li. So if there are infinitely many planes L passing

through p and intersecting all four lines, then there must be infinitely many lines in P3

intersecting the four skew lines l1, . . . , l4.

For the four skew lines l1, . . . , l4 in P3, there are at most two lines intersecting them all

unless the four lines all lie on a quadric Q⊂P3. So we must have that p is contained in the

vertex of a quadric cone Q′ ⊂P4, which also contains the lines L1, . . . , L4. Let us examine

the possibilities for the rank of Q′:

• rank 1: in this case, all the lines Li would be contained in a hyperplane, contradicting

generality;

• rank 2: in this case, all the lines would be contained in a union of two hyperplanes whose

intersection contains p. Each of the two hyperplanes would be spanned by two of the lines

Li, contradicting the assumption that p is not contained in the span of any two of the Li;

• rank 3: in this case, the vertex of Q′ is a line L, and projecting from L, maps Q′ to a

smooth conic Q′′ ⊂P2. On the other hand, any line in Q′ which is disjoint from L would

map to a line in P2 contained in Q′′, which is impossible. So all lines in Q′, in particular

all the Li, must intersect a fixed line L. Again, by generality, this is impossible.

We conclude that any such quadric Q′ must have rank 4; hence, its vertex has dimension 0.
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The linear system V of quadrics containing the Li has dimension 2. In order to complete

the proof, we now analyze two possible cases.

If the general member of V is smooth, then the subset of singular quadrics has dimension

at most 1. We just proved that, except for the three quadrics of rank 2 which are unions

of hyperplanes Span(Li, Lj), the vertex of any such quadric has dimension 0. So we get

a one-dimensional set of vertices of quadrics outside the subsets Span(Li, Lj). This one-

dimensional set cannot contain any surface S, so there cannot exist a surface S outside the

subspaces Span(Li, Lj) such that through each point of S, there pass infinitely many planes

touching all the lines Li.

If the general member of V is singular, then Bertini’s theorem still guarantees that the

set of singularities of a general member of V is contained in the base locus Bs(V ). Other

than the three rank-2 quadrics from the last paragraph, the set of members of V whose

singular set is not contained in Bs(V ) is at most one-dimensional, so the set of singular

points of such quadrics again gives a one-dimensional set. On the other hand, Bs(V ) is also

one-dimensional, as one sees, for example, by intersecting the three rank-2 quadrics, so we

get a one-dimensional set of vertices altogether. Again, this set cannot contain a surface S.

Next, we prove the corresponding result for codimension-2 linear spaces in P5. The idea

of the proof in this case is to project away from a line, rather than a point, and then argue

as before.

Theorem 3.4. Let r 6 5. Let L5
r be the proper transform on X5

r of a codimension-2

linear space in P5 that intersects all the blown-up lines properly. Then, L5
r is nef.

Proof. As in the previous theorem, it suffices to prove the result when r = 5. We suppose

for contradiction that there is an irreducible surface S ⊂P5 such that dim(S ∩ L) > 1 for

every codimension-2 linear space L that intersects all five lines. Again, we form the incidence

correspondence

where now Λ⊂G(3, 5) is the subset of the Grassmannian parametrizing linear spaces

intersecting all five lines. Arguing exactly as before, we see that all fibers of π1 must have

dimension 2. We will show that the locus of points p ∈P5 through which we have a two-

dimensional family of linear spaces from Λ does not contain any irreducible surfaces except

for those contained in subspaces Span(Li, Lj). As the proper transform of such a subspace

is a toric variety, its cone of surfaces is linearly generated, and so L5
5 has a nonnegative

intersection product with the class of any such surface.

So assume p ∈P5 is a point such that the set Λp of linear spaces in Λ that pass through

p is two-dimensional. By Proposition 2.4, we can assume that the surface S above does not

lie in one of the linear spaces Span(Li, Lj), so it is enough to consider points p not in any

of these linear spaces.

Fix one of the lines, say L1. First, we claim that for any point q ∈ L1, the subset Λpq ⊂ Λp

consisting of linear spaces through both p and q has dimension 1. If this were not the case,

there would be a point q ∈ L1 such that the family of linear spaces through p and q has

dimension 2. Projecting away from the line joining p and q, the lines L2, L3, L4, L5 would
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then map to lines l2, l3, l4, l5 in P3 with a two-dimensional family of lines intersecting all

four. By Lemma 3.1, this can only happen in the following cases: first, two of the lines

coincide; second, all four lines pass through a common point p ∈P3; third, all four lines

lie in a common plane P ⊂P3. The first case only occurs if the center of projection pq is

contained in Span(Li, Lj) for some i 6= j, but since q is a point in L1, this means that L1

intersects Span(Li, Lj), contradicting generality of the lines. The second case occurs only if

there is a two-dimensional linear space in P5 (namely, the cone over the point p) intersecting

all five lines Li, and again, this contradicts generality. The third cases only occurs if there

is a hyperplane in P5 (namely, the cone over P ) containing all five lines Li, and again, this

contradicts generality.

So we see that for any q ∈ L1, the set of linear spaces through p and q and intersecting

the lines L2, L3, L4, L5 has dimension 1. We may assume that the line pq is not contained

in any of the linear subspaces Span(Li, Lj), so projecting away from the line pq, we obtain

a set of four distinct lines in P3 such that the family of lines in P3 touching all four has

dimension 1. Again using Lemma 3.1, this implies that either two of the lines intersect or

else they are pairwise skew and lie on a smooth quadric in P3.

Let us first deal with the case when two of the lines intersect. We will think of the

projection away from the line pq as the projection away from p first, followed by the

projection away from the image of q in P4. As explained above, we can assume that p does

not lie in any of the linear spaces Span(Li, Lj), so first projecting away from p gives five skew

lines l1, . . . , l5 in P4. We next project away from a point q̃ on l1. If l1 is contained in any

of the hyperplanes Span(li, lj), then in P5, we would have three lines L1, Li, Lj contained

in a hyperplane, contradicting generality. So l1 meets each of the hyperplanes Span(li, lj)

in a single point. Choosing q̃ to be different from all of these points, the projection away

from q then gives us four pairwise skew lines in P3.

So we may suppose that the four lines are pairwise skew and lie on a smooth quadric

surface in P3. By taking the cone over this quadric, we get a quadric in P5 of corank 2

that contains L2, L3, L4, L5 and whose vertex is a line intersecting L1 and passing through

p. Moreover, for each q ∈ L1, we get such a quadric, so there is a one-dimensional family of

lines through p that are vertices of quadrics of this type. We will prove that the set of such

points p either has dimension at most 1 or is a plane in P5.

By Lemma 3.5, the family of quadrics in P5 of corank 2 that contain the lines L2, . . . , L5

and whose vertex intersects L1 is of dimension 2. Call this two-dimensional family F and

consider the following incidence correspondence:

All fibers of π2 are lines, so every irreducible component of J has dimension 3. We may

assume that J is irreducible: if not, we apply the same argument to each component of J

in turn. We distinguish two possible cases. If π1 is generically finite, then the points p ∈P5

which lie on a one-dimensional family of vertex lines of members of F are contained in

a proper closed subset Z of π1(J). The preimage π−11 (Z) is a proper closed subset of J ,

hence has dimension at most 2, and the fibers of π1 over points of Z are one-dimensional

by hypothesis. Hence, Z has dimension at most 1. If π1 is not generically finite, then π1(J)

is irreducible of dimension at most 2. For each point p ∈ π(J), there is a one-dimensional
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family of vertex lines touching L1 and passing through p. Such a family sweeps out a plane

Π inside P5, and so π1(J) is a plane.

Lemma 3.5. For any k ∈ {0, . . . , n− 1} and any N , the set Λ(k, N, n) of quadrics in

Pn of corank k and containing N general lines has the expected codimension

e(k, N, n) := max

{
3N +

(
k + 1

2

)
,

(
n+ 2

2

)}
.

Moreover, for k > 1, the set Λv(k, N, n) of those quadrics in Λ(k, N, n) whose vertex

intersects another general line has the expected codimension

ε(k, N, n) := max

{
e(k, N) + n− k − 1,

(
n+ 2

2

)}
.

In particular, with n= 5, N = 4 and k = 2, we see that the locus Λv(2, 4, 5) of quadrics

in P5 of corank 2 containing four general lines and with vertex intersecting another general

line has dimension (
5 + 2

2

)
− 1− ε(2, 4, 5) = 20− 3 · 4−

(
3

2

)
− 3 = 2

as claimed in the proof of Theorem 3.4.

Proof. For 1 6 i6N , let Λ(Li) denote the set of quadrics in Pn that contain the ith line

Li, and let λ(Li) denote the intersection of Λ(Li) with the set Rk of quadrics of corank k.

Then λ(Li) has codimension 3 in Rk. To see this, one can, for example, fix the vertex l and

project away πl : Pn 99KPn−k: quadrics with vertex l and containing Li then correspond to

smooth quadrics in Pn−k containing πl(Li). If Li is disjoint from l, this clearly gives a set

of codimension 3. Varying l among all linear spaces disjoint from Li, we then get a subset

of codimension 3 in Rk. If Li intersects l, then πl(Li) is a point, so we get one condition on

the smooth quadrics; however, for n> 4, the condition for l to intersect a fixed line imposes

n− 2 > 2 conditions, and so we get codimension at least 3 in this case too.

For any k, the group PGL(n+ 1) acts transitively on Rk and maps λ(Li) to λ(L′i) for

some other line L′i in P5. For each i, we can apply Kleiman’s transversality theorem [Kl]

to each component of λ(Li) to find a Zariski-open subset of PGL(n+ 1) that moves the

component into proper position relative to
⋂

16j<i λ(Lj). Intersecting these open subsets,

we get a nonempty subset of elements moving every component of λ(Li) into proper position

relative to
⋂

16j<i λ(Lj), and, therefore, the intersection λ(L′i) ∩
⋂

j<i λ(L′j) has the

expected codimension
(
k+1
2

)
+ 3i. Putting i= n, we get the claimed codimension e(k, N, n)

of Λ(k, N, n).

To prove the claimed codimension ε(k, N, n) of Λv(k, N, n), for a line L, we write λv(L)

to denote the set of quadrics in Rk whose vertex intersects L. Then λv(L) has codimension

n− k − 1 in Rk, as one sees again by the projection away from the vertex. Then the same

argument as in the previous paragraph applies again to show that the codimension of

Λv(k, N, n) in Λ(k, N, n) is n− k − 1.

§4. 2-cycles on X4
r for r 6 4

In the next two sections, we will prove our main results about linear generation of cones

of cycles. We begin with the case of lines in P4. In this case, N2(X
4
r ) =N2(X4

r ) has a basis
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consisting of the classes

H2, Fi :=HEi, Gi :=−E2
i (i= 1, . . . r),

where we have chosen signs so that effective classes in the exceptional divisors have positive

coefficients with respect to the basis.

The intersections among these classes are given by the following matrix:

Using Corollary 2.3, we can write down all the classes of linear subvarieties in X4
4 . The linear

cone Lin2(X
4
4 ) is then generated by the following list of classes, in which (as explained in

Section 2.5) we list generators up to permutations of indices:

(The class F1 +G1 appearing here is the class of a linear subvariety P1 ×P1 inside the

exceptional divisor E1
∼= P1 ×P2.)

Before stating our first main result on linear generation, we record one fact that will save

work when verifying that certain classes are nef.

Lemma 4.1. Let α ∈Nk(Xn
r ) be a nef class. Let β be any class of the form β = α+∑

i[Zi], where {Zi} are subvarieties of Xn
r contained in exceptional divisors. If β is contained

in Lin∗k(Xn
r ), then β is also nef.

Proof. We must show that for every irreducible subvariety S of dimension k in Xn
r , we

have β · [S] > 0.

If S ⊂ Ej for some j, then since Ej is toric, we have [S] ∈ Link(Ej)⊂ Link(Xn
r ), and

hence by hypothesis, β · [S] > 0.

If S is not contained in any exceptional divisor Ej , then it intersects each Ej either

in the empty set or in a set of dimension k − 1. If S ∩ Ej is nonempty and Zi ⊂ Ej is

one of the subvarieties appearing in β, then we can compute [S] · [Zi] as ([S ∩ Ej ] · [Zi])Ej ,

where the subscript indicates that the intersection is considered in the ambient space Ej .

Since Ej
∼= P1 ×Pn−2, the intersection of any two effective cycles is again effective, so

[S] · [Zi] = ([S ∩ Ej ] · [Zi])Ej > 0. Since α is nef, we conclude that β · [S] > 0, as required.

Here is our first main result about linear generation.

Theorem 4.2. The effective cone of 2-cycles Eff2(X
4
r ) is linearly generated if and only

if r 6 4.

Proof. As explained in Section 2.3, to prove linear generation, it is enough to consider

the case r = 4. Our strategy is to use the list of linear classes above to compute generators

https://doi.org/10.1017/nmj.2019.41 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2019.41


EFFECTIVE CYCLES ON LINEAR BLOWUPS 255

for the dual of the linear cone Lin2(X
4
4 )∗ and verify that the generators are indeed nef

classes. According to the output of theorem 3.2.m2, the generators of Lin2(X
4
4 )∗ are as

follows:

The class ε is represented by the proper transform of a two-dimensional linear subspace in

P4 intersecting all four lines; hence, it is nef by Theorem 3.3. Lemma 4.1 then implies that

the classes α to δ are also nef.

The class π is pulled back from a class π′ on the toric variety X4
1 . It is straightforward

to check that π′ is in the cone Lin∗2(X
4
1 ), so is nef by Proposition 2.4, and therefore by

Proposition 2.1, the class π is nef too.

It remains to deal with the classes λ to ξ. Again, by Lemma 4.1, it is enough to show

that λ and ξ are nef.

To show that λ and ξ are nef classes, we will decompose them into effective classes and

analyze the summands geometrically. In each table below, the rows sum up to the class in

the top-left corner. The symbol πij denotes the class of the proper transform of a plane

containing Li and intersecting Lj , while γk denotes the class of the proper transform of a

plane containing Li.

We have already noted that the classes γ2 and γ3 are nef. The classes πij are not nef, but

we will show that any surface intersecting a class πij from the above tables negatively must

nevertheless have nonnegative intersection with λ and ξ.

For convenience, let us consider π12; other cases are identical. Let H = Span(L1, L2),

and let H̃ be the proper transform of H on X4
4 . By generality, the lines L3 and L4 each

intersect H in a point, and so H̃ ∼=X3
2,2. Now, π12 is a divisor inside H̃, and by Lemma A.1,

it is nef. Therefore, if Z ⊂X4
4 is an irreducible surface that is not contained in H̃, we have

Z · π12 > 0. On the other hand, if Z is contained in H̃, then we know that Z is linear by
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Lemma A.1. Since λ and ξ are both in the dual of the linear cone Lin2(X
4
4 ), they must both

have nonnegative intersection with Z.

Finally, to prove that linear generation does not hold for r > 5, it is enough to consider the

case r = 5. Choose any linear subspace spanned by two of the lines, say H = Span(L1, L2).

The other three lines intersect H in three points p3, p4, p5. Counting dimensions, there is a

quadric surface Q inside H containing the lines L1 and L2 and the points p3, p4, p5. Blowing

up, Corollary 2.3 tells us that the class of the proper transform of Q on X4
5 is

[Q̃] = 2H2 − 3F1 − 3F2 − F3 − F4 − F5 −G1 −G2

and it is straightforward to check that this is not in the linear cone Lin2(X
4
5 ).

§5. 2-cycles on X5
r for r 6 5

The space N2(X5
r ) has a basis consisting of the classes

H2, Fi :=HEi (i= 1, . . . , r), Gi :=−E2
i (i= 1, . . . r)

and the space N2(X
5
r ) has a basis consisting of the classes

H3, fi :=−HE2
i (i= 1, . . . , r), gi := E3

i (i= 1, . . . r)

where, again, signs are chosen so that effective cycles in exceptional divisors have positive

coefficients in the basis.

The intersections among these are as follows:

The linear cone Lin2(X
5
5 ) is then generated by the following classes:

We can now prove our second main result.

Theorem 5.1. The cone of effective 2-cycles Eff2(X
5
r ) is linearly generated for r 6 5.

Proof. As before, we compute the classes generating Lin2(X
5
5 )∗. To avoid an extremely

long list, let us say that a subset {v1, . . . , vn} of the full set of generators of Lin2(X
5
5 )∗

is maximally incident if every generator can be written in the form v = vi +
∑

j ajFj +∑
k bk(Fk +Gk) for some positive integers aj and bk. Using Lemma 4.1, it is sufficient to

show that all generators in a maximally incident set are nef. A maximally incident set of

generators for Lin2(X
5
5 )∗ is as follows:
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Let us prove that each of these classes is nef:

• α: this class is pulled back from a class α̃ on the toric variety X5
1 . Since the effective cones

of toric varieties are linearly generated, α̃ is nef, and hence so too is α.

• β: this is the class of a codimension-2 linear space touching all five lines. We proved that

this class is nef in Theorem 3.4.

• γ: let H denote the proper transform of a four-dimensional linear space containing L1

and L2. We can write the class γ as q + F1 + F2, where q is the pushforward of a class

in H ∼=X4
2,3. By Lemma 4.1, any subvariety intersecting γ negatively must intersect q

negatively, but by Lemma A.3, we can see that q is nef in H, so any such subvariety must

be contained in H. However, again by Lemma A.3, the cone of 2-cycles on H is linearly

generated, so γ has positive degree on any subvariety contained in H.

• δ: we can prove this is nef by considering the following decomposition into classes of lower

degrees:

Let H23 denote a four-dimensional linear subspace containing the lines L2 and L3. Then,

q is the class of the proper transform of a quadric threefold in H23 containing L2 and L3

and the three points of intersection of the other lines with H23. As for our proof above for

γ, the proper transform of H23 is the fourfold X4
2,3, and the class of a quadric containing

all three points and two lines is nef on this space. So any surface class intersecting q

negatively must be contained in X4
2,3 and hence must be linearly generated.

We must now show the same for λ. This class is represented by a codimension-2 linear

space containing the line L1 and intersecting the lines L4 and L5. Let H14 denote a four-

dimensional linear space containing the lines L1 and L4: then, λ is represented by any

hyperplane inside H14 that contains L1 and the point p5 of intersection of L5 with H14.

Now let S be an irreducible surface in X5
5 . If S is contained in some linear space H14,

then again by Lemma A.3, S is linearly generated. If not, then for each choice of H14, we

have that the intersection S ∩H14 is a curve C. If S · λ < 0, then C must be contained

in the base locus of the family of hyperplanes containing L1 and p5, which is exactly the

plane P spanned by L1 and p5. As we vary the hyperplane H14, the corresponding curves

C will sweep out the whole surface S, and, therefore, S is contained in the union of all

the planes P , which is exactly the span of L1 and L5. Again, this shows that S is linearly

generated.

• ε: this class can be written as D2, where D = 2H −
∑5

i=1 Ei is the class of the proper

transform of a quadric containing all the lines. Since the intersection of nef divisors is nef

by Lemma 2.2, it is enough to prove that D is nef. We claim that it is sufficient to show

that there exists a set of five lines L1, . . . , L5 such that on the corresponding blowup, the

class D contains exactly six divisors D1, . . . , D6 whose common intersection is empty.

To prove the claim, write U to denote the subset of G(1, 5)5 consisting of ordered sets of

five distinct lines. There are five tautological sections U →P5 × U , and blowing up along

the image gives a family X 5
5 → U whose fibers are varieties of type X5

5 . The divisor class

D extends to a class D on X5
5 . A simple dimension count shows that on any fiber, the

line bundle D has at least six sections, so the divisors Di extend to divisors Di on the
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family. If we can show that, on a chosen fiber, the divisors Di have empty intersection,

by semicontinuity, the same is true for fibers in some open set U ′ ⊂ U , and therefore D

is basepoint-free, in particular nef, on a general fiber.

To conclude, we choose five lines L1, . . . , L5 in P5 as specified in theorem 4.1-b.m2 and

use Macaulay 2 to find a basis of the linear system L of quadrics containing all five. Output

2 of theorem 4.1-b.m2 shows that this linear system has six generators ∆1, . . . ,∆6 such

that, as a scheme, the intersection
⋂

i ∆i is exactly the union of the Li. In particular, the

divisors in this linear system have no common normal directions along any of the lines

Li. Blowing up, the strict transforms Di of the hypersurfaces ∆i give divisors in the class

D with no common point, and, therefore, D is basepoint-free as required.

5.1 3-cycles on X5
r

As a complement to the previous result, we next show that for 3-cycles on blowups of P5,

linear generation fails as soon as we blow up four lines. This is in keeping with the results

of [CLO] which show that as we blow up more, linear generation fails sooner for cones of

higher-dimensional cycles.

For this result, recall that the Segre cubic threefold is a copy of P1 ×P2 embedded in

P5 by sections of O(1, 1).

Proposition 5.2. The cone of effective 3-cycles Eff3(X
5
r ) is not linearly generated for

r > 4.

Proof. It suffices to prove the claim for r = 4. For four general lines Li in P5, there is a

Segre cubic S containing the lines as rulings P1 × {point}. The normal bundle of Li in S

is easily shown to be O ⊕O. Fulton’s blowup formula [Fu, Theorem 6.7] then shows that

the proper transform of S on X5
4 has class

[S̃] = 3H2 −
4∑

i=1

(4Fi +Gi).

It is straightforward to check that [S̃] is not in the linear cone Lin3(X
5
4 ).

§6. Curves and divisors on Xn
r

In this section, we round out the picture for cycles on the varieties Xn
r by considering

linear generation of cones of curves and divisors. We write l to denote the pullback of the

class of a line in Pn and li for the class of a line in an exceptional divisor which is contracted

by blowing down.

Proposition 6.1. For r 6 7 lines in P4, the cone of curves Eff1(X
4
r ) is linearly

generated. For r > 10 lines in P4, this cone is not linearly generated.

Proof. For any three lines in P4, there is a line intersecting all three. Therefore, the

linear cone Lin1(X
4
r ) is generated by classes li for i= 1, . . . , r and classes l − li − lj − lk

for distinct 1 6 i, j, k 6 r. The dual cone Lin1(X
4
r )∗ is spanned by H, classes H − Ei for

i= 1, . . . , r and the class 3H − E1 − · · · − Er.

We claim that the last class is nef for any r 6 7. It suffices to prove this for r = 7. Exactly

as in the proof of Theorem 5.1, it suffices to prove this class is basepoint-free for any chosen

set of seven disjoint lines in P4. The output of proposition 5.1.m2 shows that, for a set of

seven randomly chosen lines, the scheme-theoretic base locus of the linear system of cubics
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containing the seven lines is exactly the union of the lines, and so blowing up the class

3H − E1 − · · · − E7 is basepoint-free as required.

In the other direction, using the intersection numbers in Section 2.1, we compute that

the top self-intersection number of the divisor 3H −
∑r

i=1 Ei on X4
r is 81− 9r. For any

r > 10, this is negative, so the class is not nef, and, therefore, Lin1(X
4
r ) does not equal

Eff1(X
5
r ).

For eight lines in P4, the base locus of the corresponding class 3H −
∑8

i=1 Ei has a

component that comes from a curve C of degree 19 in P4. Computation shows that C

intersects each of the blown-up lines transversely in six points; if C were irreducible, we

would be able to conclude that 3H −
∑8

i=1 Ei is nef and hence that the cone of curves

is again linearly generated in this case. Unfortunately, it seems to be out of reach of

computation to decide whether C is irreducible.

Proposition 6.2. The cone of curves Eff1(X
5
r ) is linearly generated if and only if r 6 5.

Proof. In this case, the linear cone Lin1(X
5
r ) is generated by the li together with classes

l − li − lj . The dual cone Lin1(X
5
r )∗ is then spanned by H, classes H − Ei and the class

2H − E1 − · · · − Er.

In the proof of Theorem 5.1, we showed that 2H − E1 − · · · − E5 is a nef divisor class

on X5
5 , and, therefore, 2H − E1 − · · · − Er is nef on X5

r for any r 6 5.

In the other direction, the top self-intersection number of the divisor 2H −
∑r

i=1 Ei on

X5
r is 32− 6r. For any r > 6, this is negative, so 2H −

∑r
i=1 Ei is not nef. Hence, Lin1(X

5
r )

does not equal Eff1(X
5
r ).

Proposition 6.3. The cone of divisors Eff
1
(X4

r ) is linearly generated if and only if

r 6 4.

Proof. It suffices to prove the linear generation claim for r = 4. The linear cone Lin1(X4
4 )

is spanned by classes Ei and H − Ei − Ej , so as in Proposition 6.2, the dual cone Lin1(X4
4 )∗

is spanned by curve classes l, l − li and 2l −
∑4

i=1 li. Curves in the classes l and l − li
evidently sweep out dense open subsets of P4, and consequently, they are nef. For the last

class, we argue as follows. For any point p ∈P4, Schubert calculus shows that there is a

plane Π touching our four blown-up lines Li and passing through p. There is a conic in Π

passing through the points Li ∩Π and p. The proper transform of this conic on X4
4 then

has class 2l −
∑4

i=1 li. Since these conics sweep out a dense open subset of X4
4 , the class is

nef as required.

Now we will prove that the cone is not linearly generated for r = 5; again, this implies

the claim for r > 5. In this case, the dual of the cone of linear divisors has an extremal

ray spanned by the effective class γ = 2l −
∑5

i=1 li. We claim that γ is not nef. To see this,

it suffices to find a big divisor D on X4
5 with D · γ = 0; applying Kodaira’s lemma, we

can write D ≡A+ E with A ample and E effective, so we must have E · γ < 0. Choose

D =−K = 5H − 2
∑5

i=1 Ei; we claim that D is big. A straightforward dimension count

shows that the dimension of the space of sections of mD is bounded below by a polynomial

with leading term km4, where

k =
54

4!
− 5 · 14

3
> 0,

and, therefore, D is big as required.
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Proposition 6.4. The cone of divisors Eff
1
(X5

r ) is linearly generated if and only if

r 6 3.

Proof. For r 6 3, the variety Eff
1
(X5

r ) is toric, so the claim follows from Proposition 2.4.

For the converse, as above, it suffices to prove the claim when r = 4. The divisor class

3H − 2E1 − 2E2 − 2E3 − E4 is not in the linear cone. This class is represented by the proper

transform of a cubic fourfold double along L1, L2, L3 and containing L4. A straightforward

dimension count shows that such fourfolds exist for any 4-tuple of lines in P5, and, therefore,

Eff
1
(X5

r ) is not linearly generated.

Acknowledgments. Thanks to Izzet Coskun and Elisa Postinghel for helpful conversa-

tions.
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Supplementary materials are available at https://doi.org/10.1017/nmj.2019.41.

Appendix A. 2-cycles on X3
2,2 and X4

3,2

In this section, we prove linear generation for the cones of effective 2-cycles on the spaces

X3
2,2 and X4

3,2. These linear generation results were used in the proofs of Theorems 4.2

and 5.1.

Lemma A.1. The cone of effective 2-cycles Eff2(X
3
2,2) is linearly generated.

Proof. Writing down all linear classes on X3
2,2 and computing the dual, the output of

lemma 6.1.m2 shows that Lin2(X
3
2,2)
∗ is spanned by the classes

In each case, irreducible curves representing the class cover a dense open set in X3
2,2. For

example, the class κ is represented by proper transforms of conics touching L1 and L2 and

passing through p3 and p4. Choosing a general point p ∈P3, there is a plane Π containing

p, p3 and p4; this plane intersects L1 and L2 in points q1 and q2, and there is an irreducible

conic in Π through the five points q1, q2, p3, p4 and p.

Lemma A.2. The cone of effective 2-cycles Eff(X3
3,1) is linearly generated.

Proof. Similar to the previous lemma, the output of lemma 6.2.m2 shows that the dual

Lin2(X
3
3,1)
∗ of the linear cone of 2-cycles is spanned by the classes
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Curves representing the first three classes evidently cover X, and hence are nef. For the class

δ, picking any point p on L1, the plane spanned by p2, p3 and p is covered by irreducible

conics with class δ; varying p along L1, these conics cover X, and so ε is nef. Finally,

we can write ε as δ + (H2 −HE1 + E2
4); since δ is nef, any divisor which is negative on

ε must be negative on H2 −HE1 + E2
4 , which is the class of a line passing through p4

and intersecting L1. If π is the plane spanned by p4 and L1, these lines sweep out π, and

therefore H2 −HE1 + E2
4 and hence ε can be negative only on the proper transform of π.

Note, however, that π is a linear class, and ε is in the dual of the linear cone; so ε is in fact

nef.

Lemma A.3. The cone of effective 2-cycles Eff(X4
2,3) is linearly generated.

Proof. The strategy of proof is again very similar to the previous cases. The output of

lemma 6.3.m2 shows that the dual Lin2(X
4
2,3)
∗ of the linear cone of 2-cycles is spanned by

the classes

The first six classes are pulled back from classes on toric varieties that are easily checked

to be nef. Similarly, α7 is pulled back from a nef class on X4
2,2. The last class α10 can be

written as D2, where D is the divisor class 2H −
∑

i Ei. This is the pullback of the class

D̃ = 2H −
∑

i Ei on X5
5 , which was shown to be nef in Theorem 5.1, so D is a nef divisor,

and hence by Lemma 2.2, we know that α10 =D2 is nef too.

It remains to treat α8 and α9, which we do by decomposition. We start with α8, which

can be decomposed as follows:

The class β1 is pulled back from a nef class on the toric variety X4
1,1 and so is nef. The

class β2 is represented by the proper transform of a quadric containing L1, intersecting L2

and passing through p3 and p4. Let Π be a three-dimensional linear space containing L1

and passing through p3 and p4; then Π intersects L2 in a point, call it p2. Let π be the

plane spanned by L1 and p2 and let π′ be any plane containing p3 and p4: then Q= π ∪ π′
is a quadric with class β. Swapping the roles of p2 and p3, say, we see that the base locus

of the linear system |Q| consists of a union of lines in Π. Writing down the classes of

linear 1-cycles on X3
3,1, we check that Q has a positive degree on any such class. So Q is

nef inside the proper transform of Π. It follows that any 2-cycle which intersects α8 and

hence β2 negatively must be contained in the proper transform of Π. On the other hand,
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by Lemma A.2, we know that 2-cycles in X3
3,1 are linearly generated, and α8 is in the dual

of the linear cone. Hence, α8 is nef, as required.

For α9, we consider the following decomposition:

Again, the first class is pulled back from a nef class on a toric variety, and hence is nef. For

γ2 (and similarly for γ3), we argue as follows: γ2 is represented by the proper transform

of a plane π containing L1 and intersecting L2 in a point. Let Π be the three-dimensional

space spanned by L1 and L2. The proper transform Π̃ of Π is a toric variety X3
2 . One checks

that the proper transform of π is a nef divisor in X3
2 , and hence any surface intersecting γ2

negatively must lie in Π̃. On the other hand, as X3
2 is toric, its cone of effective divisors is

linearly generated, and so γ2 has nonnegative degree on surfaces contained in X3
2 .
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