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This paper characterizes the geometry of converging near-elliptic shock waves at a Mach
number of 6. The converging shocks are produced by elliptic conical surfaces with shapes
made up from adjacent straight generators, each deflected a constant angle from the
free-stream direction. Combined shock tunnel experiments and numerical analyses are
conducted to depict the evolution of the converging shock waves for several elliptic entry
aspect ratios ARs (i.e. the ratio of the major axis to the minor axis). It is revealed that the
deviation from axial symmetry is amplified as the shock front approaches the centreline,
which results in different shock interaction types compared with the axisymmetric case.
Three typical shock interaction types are classified depending on various ARs. For a
small AR, faster shock strengthening in the major plane dominates, although a Mach
reflection (type A) that resembles the axisymmetric flow field is formed. However, for a
sufficiently large AR, the shock strengthening is eventually terminated by the intersection
of the weaker shocks in the minor plane owing to their smaller off-centre distances, which
results in a regular reflection (type B). Between these two interaction patterns, there is a
critical AR for which both the shock fronts in the major and minor planes intersect at the
centreline coincidentally, and this critical intersection (type C) exhibits an extreme case
of a shock front converging to a singular point. This study indicates that deviation from
axial symmetry affects the evolution of the shock structures in converging flow.

Key words: gas dynamics, shock waves

1. Introduction

Inward-turning intakes have received considerable attention because of their advantages
of high compression ratio, high mass capture rate, small wetted area, etc. (Smart 1999;
Zuo & Mölder 2019; Zuo et al. 2019). However, due to the three-dimensional converging
geometry of this type of intake, a clear characterization seems to be very challenging;
therefore, it is helpful to use simplified models to explore the basic characteristics and
mechanisms of the flow. One of the simplest cases might be the shock reflections in
axisymmetric converging flows, which can be traced back to as early as the work of
Ferri (1946), which calculated and showed the strengthening of a conical intake shock
and formation of a normal shock at the centreline. It has since been well demonstrated that
due to the intrinsic effects of flow convergence, a conical converging shock continuously
strengthens as it approaches the centreline and can only be finalized by the generation
of a central Mach disc (Rylov 1990; Courant & Friedrichs 1999; Hornung 2000;
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Hornung & Schwendeman 2001; Isakova et al. 2012; Shoev & Ogawa 2019). In
recent years, attention has been concentrated on the effects and characteristics of
longitudinal/transverse shock curvatures, including theoretical descriptions and inherent
mechanisms. Mölder (2012, 2017a,b,c), after efforts to develop curved shock theory (CST)
which relates shock curvatures to gradients of flow properties immediately upstream and
downstream of the shock, extended the applications to various cases of doubly curved
shock waves. Gounko (2017) focused on triple-shock configurations with free-stream
Mach numbers M∞ = 1.6 and 2.0, and explored conditions to determine the position
and size of the Mach disc. Filippi & Skews (2017, 2018), on the other hand, performed
a series of careful and detailed examinations of the effects of internal surface curvature
and leading-edge angle on the behaviours of a converging shock wave and the flow behind
it, which were also used to validate the aforementioned CST to some extent.

However, to the best of the authors’ knowledge, the majority of previous works were
carried out with axisymmetric configurations. From a practical point of view, intake flow
is non-axisymmetric in reality. A deviation from the axisymmetric condition may cause
fundamental changes in the shock interactions. In the present work, simplified elliptic
conical surfaces are chosen as typical non-axisymmetric models, in which the level of
the deviation from axial symmetry is quantified with the aspect ratio (AR) between the
major and minor axes. Our primary motivation is to present some new features of this
near-axisymmetric flow that differ basically from the case of axisymmetric flow and shock
structure.

2. Model and methodology

2.1. Description of the model
The schematics of the elliptic conical surfaces are displayed in figure 1, where the
local leading-edge radii along the major and minor directions are denoted as c and d,
respectively. The wall profile of the model can be defined by (2.1):

y2

(c − x tan δ0)
2 + z2

(d − x tan δ0)
2 = 1, 0 ≤ x ≤ L. (2.1)

The x, y and z axes denote the directions along the free-stream, major and minor directions,
respectively, and the origin of the coordinates is situated at the centre of the leading-edge
plane. To generate converging incident shocks with initially uniform strengths, the models
are designed with the same leading-edge angle δ0 = 10◦. The length of all the models is
L = 100 mm. All the models considered in the present work share a common c = 100 mm,
while d varies to obtain different ARs (defined as AR = c/d) on the leading-edge plane.
Initially converging near-elliptic shocks are generated immediately at the leading edges
of the models, which develop downstream and form longitudinally curved surfaces (see
figure 1a). The polar angle ϕ is defined as the angle from the major direction to the polar
line. The leading edges of the four models with different ARs (AR = 1, 1.11, 1.25 and 1.43)
are shown in figure 1(b), where the leading edges deviate from a circular shape (AR = 1)
with increasing AR.

2.2. Methodology
The experiments were conducted in the KDJB330 shock tunnel of the University of
Science and Technology of China with a free-stream Mach number M∞ = 6 (Li et al.
2013, 2018; Zhang et al. 2019b). The stagnation pressure and temperature of the
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FIGURE 1. (a) Schematic of the elliptic conical surface. (b) Leading edges of the elliptic
conical surfaces.
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FIGURE 2. (a) Experimental model. (b) Computational domain.

incoming flow were 1.4 MPa and 830 K, respectively, corresponding to a free-stream unit
Reynolds number of approximately 4.2 × 106 m−1. The effective experimental time was
approximately 20 ms. A schlieren photographic system was employed to visualize the
general features of the flow field. The schlieren images were recorded by a camera with a
frame rate of 6273 frames per second and an exposure time of 1 μs. A schematic of the
experimental model is shown in figure 2(a). To obtain more details of the shock structure,
schlieren photographs were taken along both the major and minor directions of the model.

A three-dimensional Euler solver based on the finite volume method was employed
to simulate the flow field as the effects of viscosity and the presence of a supersonic
boundary layer were deemed negligible. The Roe flux difference splitting scheme was
employed for the approximation of the inviscid fluxes (Roe 1981). The convective terms
were discretized by a second-order upwind scheme. To capture the shock structures,
the total variation diminishing gradient limiter was utilized to avoid spurious numerical
oscillations near the shocks (Barth & Jespersen 1989). The equation of state for a perfect
gas was used, and the ratio of specific heat was 1.4. This solver has been proven reliable
in our previous study in which it well captured complex shock structures (Zhang et al.
2019a). The computational domain is shown in figure 2(b), where four types of boundary
conditions were used: inflow, outflow, non-reflecting boundary and solid wall. At the
inflow boundary, static conditions and free-stream Mach number were specified (M∞ = 6,
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FIGURE 3. Validation of the numerical method. (a) Comparison of shock structures. (b) Grid
convergence study.

p∞ = 891 Pa, T∞ = 101 K). At the outflow boundary, the flow quantities were extrapolated
from the interior. The computational domain was discretized by hexahedral grids. To
capture the shock structures elaborately, the grids were greatly refined in the regions of
shock interactions. The numerical solution was considered to have converged when the
variation of the pressure near the shock reflection point was kept below 0.1 %, along with
the stability of continuity and velocity residual.

The configuration with AR = 1 was chosen as a representative case for numerical
validation and grid independence study. Three sets of grids were tested, in which the
coarse, fine and dense grids contain 1.5 × 107, 2.1 × 107 and 2.8 × 107 cells, respectively.
Accordingly, the grid sizes in the x direction are Δx/L = 2 × 10−3, 1.5 × 10−3 and
8 × 10−4 near the Mach disc. As shown in figure 3(a), the isodensity lines obtained using
the dense grid are superimposed on the experimental schlieren image, which yields a good
agreement in terms of shock structures. Moreover, the shock angle of the incident shock
near the triple point is extracted for quantitative comparison. The experimental value of
29.8◦ is slightly less than the numerical value of 30.7◦. This minor discrepancy might be
induced by the slight deviation of experimental incoming flow from the nominal Mach
number of 6 (Li et al. 2013, 2018), which does not affect the type of shock reflection near
the centreline. The non-dimensionalized pressure distributions along the y/L = 0.06 line
acquired using the three sets of grids are compared in figure 3(b). The results obtained
by the fine and dense grids collapse together, indicating a reasonable convergence of grid
resolutions. Therefore, the dense grid was used in the present study. The numerical results
are validated against experiments in the form of schlieren images, which are discussed in
appropriate locations throughout § 3.

3. Results and discussion

3.1. Type A shock intersection with formation of a central Mach disc
Figure 4 presents the basic features for AR = 1, the case of axisymmetric flow, as a
benchmark sample for later comparison. The experimental schlieren image, the numerical
contour of the normalized density ρ/ρ∞ and the schematic of the primary wave patterns
are displayed in figures 4(a), 4(b) and 4(c), respectively. As shown, a converging
axisymmetric shock (IS), generated by the conical surface, approaches and steepens
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FIGURE 4. Experimental and numerical flow features in the symmetry plane with AR = 1:
(a) experimental, (b) numerical and (c) schematic.
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FIGURE 5. Pressure–deflection polar illustrating flow regions in the vicinity of the triple point
with AR = 1.

slightly with increasing strength towards the centreline, which is eventually finalized by a
Mach disc (or Mach stem in terms of a two-dimensional view, labelled MS in figure 4c)
near the centreline as the termination of the shock strengthening. With the help of close-up
views from both experimental and numerical images (figure 4a,b), it is recognized that MS
is slightly concave towards the free stream and the shear layers (Σ) emanating from the
triple points are inclined towards the centreline and form a converging stream tube.

To quantify the triple-shock configuration shown in figure 4 using shock polars, a
post-processing procedure similar to the algorithm adopted by Gounko (2017) is performed
on the numerical results. This post-processing procedure first involves the extraction of a
streamline released from z/L = 0.041 (see figure 4b), which is as close as possible to
the triple point. As shown in figure 5, point (1) is on the M∞ free-stream shock polar
(I-polar) at the location δ = −21.9◦, which represents the flow of region (1) shown in
figure 4(c) in the vicinity of the triple point T . Then the flow parameters just behind IS (i.e.
region (1)) along the streamline are used to determine the reflection shock polar (R-polar)
originating from point (1), where the positive angles in the shock polars correspond
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to counterclockwise flow deflections. The intersection points between the I-polar and
R-polar, labelled (3) and (5), represent the theoretical solution of the flow states in regions
(3) and (5) (see figure 4c), respectively. The theoretical pressure ratio of 41.9 agrees well
with the computed value of 41.7 in region (3). Thus, the shock polars can be used to
distinguish the type of shock reflection and to quantify the strength of the reflected shock.
Note that this type of reflection is categorized as direct Mach reflection (DiMR) according
to Ben-Dor’s definition (Li, Chpoun & Ben-Dor 1999; Ben-Dor et al. 2002; Ben-Dor
2007), since the shear layer converges towards the centreline. In other words, the flow
direction behind RS is on the same side as the flow behind IS.

The non-axisymmetric case starts with AR = 1.11, i.e. a small difference between the
major and minor axes. As shown in figure 6, although MS is still located in the central
region, the effects of the deviation from axial symmetry are notable. Even though the
shock structure in the major plane (figure 6a) resembles that in figure 4, where MS is also
concave towards the free stream, IS1 is obviously steeper near the triple point. This result
is more clearly quantified with the help of the shock polars shown in figure 7, where the
R-polar is determined by extracting the streamline released from z/L = 0.027. Note that
the deflection angle is as high as 26.8◦ instead of the aforementioned 21.9◦ for AR = 1.
Once again, the theoretical pressure ratio of 41.3 agrees well with the computed value
of 41.9 in region (3). Furthermore, the wave configuration in the minor plane exhibits
very different behaviours. The MS, in contrast, is now convex facing the incoming flow
(figure 6b). The shear layers emanating from the triple points flow away from the centreline
and form a diverging stream tube. A comparison between the major and minor planes
reveals that there is a DiMR for the former and an inverse Mach reflection (InMR) for
the latter. Such a phenomenon is more clearly displayed by the shock polars in figure 7,
where the R-polar is determined by the streamline released from y/L = 0.025, and the
deflection of the shear layer (points (3) and (5)) is located at the right-hand side of the
vertical axis. The theoretical pressure ratio of 41.7 agrees well with the computed value of
41.9 in region (3). Interestingly, the deflection angle behind the incident shock in the minor
plane is only 15.6◦, which is much lower than that of 26.8◦ in the major plane. This result
suggests that the deviation from axial symmetry in initial entry condition can be markedly
amplified as the flow converges towards the centreline. Figure 8 illustrates the evolution
of the shock structure by contours of density superimposed by isodensity lines on several
representative cross-sections, which are roughly categorized into two phases. During the
first phase, the incident shock converges and strengthens smoothly, through which the
circumferential non-uniformity behind the incident shock is enhanced as the cross-section
moves downstream, as shown in figure 8(a–c). It is evident that the shock strength at the
two ends of the major axis increases obviously faster than the rest of the shock front, which
is easily recognized from the higher post-shock density shown in figure 8(c). However,
as the flow convergence and shock strengthening go further, the non-uniform strength
distribution accumulates to such a critical condition that a kink, or a discontinuous shock
strength jump, is inevitably generated. The resulting shock structures are recognized as the
second phase once kinks appear on the shock front. As shown in figure 8(d– f ), the incident
converging shock front collapses into two pairs of arch-shaped shock segments (IS1 and
IS2). It can be easily found that the shock segments around the major direction (IS1) are
stronger, since not only are their post-shock densities higher but they also travel a longer
distance and approach the centreline more closely (see figure 8e) than the shock segments
around the minor direction (IS2). One more emphasis that needs to be made is about the
shock convergence and strength enhancement during the second phase. It is well known
that a converging axisymmetric shock wave faces the problem of unlimited amplification
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FIGURE 6. Experimental and numerical flow structures with AR = 1.11. (a) Major plane.
(b) Minor plane.

as the shock front approaches the centreline, until it is terminated by a Mach disc. Then,
a natural question is, how are the characteristics changed if there is a certain level of
deviation from the axisymmetric condition? The aforementioned formation of the Mach
disc for AR = 1.11 shows some similarities in incrementation and termination of shock
strengthening for the case of axisymmetric flow. However, the enlarged non-axisymmetric
shock structures shown in figure 8(d– f ) do present at least two fundamentally different
behaviours. One behaviour is the formation of two pairs of shock segments that are
connected by discontinuous kinks. The other is the suppression effects of these shock
segments for further strengthening. As shown in figure 8(d,e), the radii of curvature of
the curved shock segments are far larger than their distances to the centreline. This means
that when the shock segments converge to the centre, their radii of curvature never shrink
to zero. In other words, the shock amplification effects are greatly suppressed with the
appearance of these planarized shock segments.

3.2. Type B shock intersection without a central Mach disc
When AR increases beyond a certain value, a new type of shock structure is obtained
in which the central Mach disc disappears and the incident shocks intersect with each
other in a manner of regular reflection. Figure 9 demonstrates the shock structures in the
major and minor planes for AR = 1.43. Although the numerical images agree well with
the experimental schlieren images, the complicated structures in the intersection region
cannot be determined with only the information provided in figure 9. Thus, a series of
cross-sectional structures are displayed in figure 10 to give a better interpretation. It is
noticeable from figure 10 that the aforementioned second phase starts earlier for such
a large deviation from the axial symmetry condition. Figure 10(c) exhibits two obvious
pairs of shock segments, although the segments at the two ends of the major direction
are shorter owing to the larger AR. As the incident shocks converge further, the scale of
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FIGURE 7. General pressure–deflection polar combination illustrating the shock structures
(AR = 1.11). (a) Major plane. (b) Minor plane.

0.6

–0.6

–0.6 0.60

0

0.1
Kink Kink

–0.1

–0.1 0.10 –0.1 0.10 –0.1 0.10

0

0.1

–0.1

0

0.1

–0.1

0

0.6

–0.6

–0.6 0.60

0

0.2

–0.2

–0.2 0.20

0

y/L y/L y/L

z/L

z/L

IS
IS IS

IS2 IS2

IS2

1 4ρ/ρ∞

1 6ρ/ρ∞ 1 6ρ/ρ∞ 1 12ρ/ρ∞

1 4ρ/ρ∞ 1 4ρ/ρ∞

Wall Wall

Σ Σ Σ1

Σ2IS1

TS TS TS
IS1

IS1

(a) (b) (c)

(d ) (e) ( f )

First phase

Second phase

FIGURE 8. Flow cross-sections at increasing distances from the leading edge (AR = 1.11):
(a) x/L = 0.2, (b) x/L = 1.0, (c) x/L = 2.0, (d) x/L = 2.46, (e) x/L = 2.49 and
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the shorter segments IS1 around the major direction soon shrinks to zero (see figure 10d),
and the longer segments IS2 around the minor direction intersect with each other at shock
intersection line 1 (SL1) to generate a pair of RS2 (see figure 10e). The reflection of IS2
can be illustrated by pressure–deflection polars. As shown in figure 11(a), the deflection
angle behind IS2 determined by a streamline released from z/L = 0.005 is merely 12.1◦,
which is lower than that of 15.6◦ for AR = 1.11. The computed value of the pressure ratio
in region (3) is 14.4, which agrees with the theoretical value of 14.8.
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FIGURE 11. General pressure–deflection polar combination illustrating the shock structures
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An interesting phenomenon that needs to be mentioned is that when the RS2 pair
spreads outwards along the minor direction, as shown in figure 10(e), another pair of
lateral inward shock segments is generated around the major direction. This pair of newly
generated shock segments is named lateral inward shock (LIS), which spreads inward and
reflects regularly at shock intersection line 2 (SL2) to generate RS1 further downstream
(see figures 10 f and 9a). The shock polar for the reflection of LIS is shown in figure 11(b),
where the R-polar is determined by the streamline released from y/L = 0.005. As
predicted by the shock polars, this shock reflection elevates the pressure ratio near the
centreline to 28.5, which agrees well with the computed value of 28.2. In general, the
shock structure of this type of flow field is determined by the reflection of the weak shock
segments along the minor direction, and this type of shock structure is termed as type B
regular shock intersection.

3.3. Type C critical intersection with coincidence at the centreline
For a critical value of AR = 1.25, the flow features behave somewhat surprisingly, as
shown figure 12, where IS1 in the major plane and IS2 in the minor plane intersect with
the centreline almost simultaneously to form a singular point, which is followed by the
generation of RS1 and RS2, respectively. This type of shock structure is specifically termed
as type C critical intersection. At least two puzzling questions deserve to be clarified.
The first question is: how can a non-axisymmetric shock front manage to converge to a
single point? The other question is: why is the inevitable formation of a central Mach disc
avoided for such a flow that converges towards the centreline?

For the first question, the answer can be found in the cross-sectional shock structures
shown in figure 13. The typical differences in the shock structures compared with the
aforementioned two types are the behaviours of the two pairs of shock segments during
the shock-converging process. For a low aspect ratio such as AR = 1.11, the stronger pair
of shock segments around the major direction approaches closer to the centreline (see
figure 8e). For a high aspect ratio such as AR = 1.43, however, the weaker shock segments
around the minor direction reach the centreline earlier (see figure 10). Therefore, there
exists a matching condition (AR = 1.25) under which the two pairs of shock segments
(IS1 and IS2) reach the centreline simultaneously (see figure 13e). For the second question,
we suggest that the principal reason is the collapse of the initially smooth shock front,
which suppresses the shock amplification effects. For the present case, when the two pairs
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FIGURE 12. Experimental and numerical flow structures with AR = 1.25. (a) Major plane.
(b) Minor plane.
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FIGURE 13. Flow cross-sections at increasing distances from the leading edge (AR = 1.43):
(a) x/L = 0.2, (b) x/L = 1.0, (c) x/L = 2.0, (d) x/L = 2.20, (e) x/L = 2.35 and
( f ) x/L = 2.40.

of shock segments (IS1 and IS2) intersect at the centreline, they behave more like two pairs
of planar shocks that regularly intersect with each other from two orthogonal directions.

3.4. Discussion
From the results described previously, it can be concluded that the amplification effects
of the deviations from axial symmetry are notable, which cause fundamental changes
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FIGURE 14. Schematic of the doubly curved shock. (a) Shock element adapted from Mölder
(2012) and Filippi & Skews (2017). (b) Shock traces in the meridional planes of symmetry.

in the shock reflection patterns. Therefore, it is valuable to seek the mechanism for
the non-uniform development of the circumferential shock strength and its converging
characteristics. For a steady supersonic flow, the CST proposed by Mölder (2012)
relates the shock curvatures and flow convergence in planar, axisymmetric flow and the
meridional symmetry plane of three-dimensional flows (Emanuel 2018). Thus, the CST is
adopted to evaluate the effects of flow convergences in the major and minor planes of the
present converging near-elliptic shocks.

As shown in figure 14(a), for a stationary curved shock element, the shock traces in the
flow and flow-normal planes are named a–a and b–b, respectively. The shock curvatures
along the two traces are termed the flow-plane curvature Sa and transverse curvature Sb,
respectively. As shown in figure 14(b), at the leading edge of the elliptic conical surface,
the incoming flow is deflected by an angle δ0, and the corresponding shock angle is θ (i.e.
an obtuse angle for the internal flow) (Mölder 2017c). Because of the flow convergence
effects, the shock traces in the major and minor planes that are denoted IS1 and IS2,
respectively, steepen towards the centreline and a doubly curved shock front (i.e. Sa /= 0
and Sb /= 0) is therefore formed. Note that the internal surface of the elliptic conical
surface is straight in the flow plane, and thus the streamline curvature at the internal
surface is fixed to zero. For this specific flow, the CST reduces to a simple form in which
the normalized pressure gradient on a streamline (i.e. P2 in the original CST (Mölder
2012)) is proportional to Sb and the coefficient of the proportionality is only determined
by the local shock angle and M∞ (Mölder 2017c). In other words, Sb is responsible for
the flow convergence effects behind the present doubly curved shock. Moreover, it is
determined that Sb for IS1 and IS2 at the leading edge is given by Sb1 = −c cos θ/d2 and
Sb2 = −d cos θ/c2, respectively, which are derived from Meusnier’s theorem in differential
geometry (Toponogov 2006). Consequently, the ratio of P2 induced by flow convergence
in the major and minor planes is given by Sb1/Sb2 = AR3, which means that the shock
strengthening in the major plane is faster and the non-uniformity along the circumferential
direction is more significant with increasing AR.

To quantitatively demonstrate the non-uniform shock strengthening, the strengths of the
shock fronts are analysed with the help of numerical results. Figure 15(a) presents the
evolution of the circumferential shock strengths for AR = 1.11 at different cross-sections,
where ϕ = 0◦ and 90◦ represent the major and minor directions, respectively. At the
cross-section near the leading edge (see x/L = 0.2 in figure 15a), the shock strength
presents little non-uniformity along the circumferential direction. However, the shock
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FIGURE 15. Circumferential shock strength during the converging process. (a) Different
cross-sections for AR = 1.11. (b) Different aspect ratios.

front around the major direction strengthens faster than the shock front around the
minor direction as the cross-section moves downstream (see x/L = 1, 2 and 2.3 in
figure 15a), which supports the aforementioned theoretical prediction. The increase in the
circumferential non-uniformity finally develops into a sharp jump in the shock strength
(see x/L = 2.46 and 2.49 in figure 15a), which corresponds to the formation of two pairs
(i.e. strong and weak) of shock segments (see figure 8 for a combined impression). For
a better understanding of the streamwise evolution of the circumferential non-uniformity
before the shock collapse, the ratios of the shock strength of IS1 (pIS1 ) to that of IS2 (pIS2 )
for different ARs are compared in figure 15(b). The non-uniformity is much more severe
with increasing AR, which presents favourable support for the aforementioned theoretical
prediction that the non-uniform shock strengthening is sensitive to the value of AR. Note
that IS1 and IS2 converge towards the centreline from different off-centre distances (c and
d) along with the enlarged differences in the shock strengths, which sets up a competition
between the smaller off-centre distance of weaker IS2 and the faster shock strengthening
of IS1 with a larger off-centre distance. This competition results in fundamental changes
in the shock interaction patterns compared with the axisymmetric case, which suggests a
mechanism for the formation of the present three types of shock interactions.

4. Conclusions

The shock contraction behaviours in elliptic conical surfaces are investigated by a
combination of experiments and numerical simulations at Mach 6. The influence of AR
on the evolution of the converging near-elliptic shock is analysed, three types of shock
interactions are identified and the underlying flow mechanisms are discussed.

It is revealed that the non-uniform flow convergence effects induced by the local
shock transverse curvature strengthen the converging near-elliptic shock with increasing
non-uniformity along the circumferential direction, which results in fundamental changes
in the shock interaction patterns compared with the axisymmetric case. In general,
the initially smooth shock front around the major axis strengthens and approaches the
centreline faster, while the shock front around the minor axis strengthens and approaches
the centreline slower. During this process, the initially smooth shock front evolves and
collapses into a strong pair (major direction) and a weak pair (minor direction) of shock
segments, which propagate towards the centreline with different intensities and scales
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(off-centre distances). For an elliptic conical surface with the same leading-edge angle
of 10◦, three types of shock interactions are observed depending on the value of AR. It
is determined that when AR is below 1.25, faster shock strengthening around the major
direction dominates, and a type A Mach reflection is therefore formed. As AR increases
beyond 1.25, the weaker shock segments around the minor direction reach the centreline
first, and a type B regular shock reflection is generated. Between these two types of
shock reflections, a type C critical intersection pattern is formed at AR = 1.25, which
is characterized by the nearly synchronous arrival of the two pairs of shock segments from
the minor and major directions at the centreline. This study provides fundamental insight
into the complex shock interactions in near-axisymmetric aerodynamic applications.
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