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Solving the problem of ship weather routing has been always a goal of nautical navigation
research and has been investigated by many scientists. The operation schedule of an oceango-
ing ship can be influenced by wave or wind disturbances, which complicate route planning. In
this paper, we present a real-coded genetic algorithm to determine the minimum voyage route
time for point-to-point problems in a dynamic environment. A fitness assignment method based
on an individual’s position in the sorted population is presented, which greatly simplifies the
calculation of fitness value. A hybrid mutation operator is proposed to enhance the search for
the optimal solution and maintain population diversity. Multi-population techniques and an elite
retention strategy are employed to increase population diversity and accelerate convergence
rates. The effectiveness of the algorithm is demonstrated by numerical simulation experiments.
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1. INTRODUCTION. Marine transport is the most important form of transport for
international commodity trade. Maritime routes play a vital role in maritime transport and
an efficient route can not only ensure the safety of navigation but also brings great eco-
nomic benefits. Therefore, the problem of optimal route computation is very important,
especially for longer voyages. For example, for transoceanic voyages, the travelling time
is several days, and fuel consumption reaches thousands of tons. Optimal route planning
is generally based on the predicted weather, sea conditions and ship characteristics. These
factors complicate the process of determining the optimal route due to various constraints
such as coastline, shallow water and prohibited areas. Information on these constraints can
be obtained in advance. Dynamic constraints such as wind conditions, waves and other
factors can be predicted by weather forecasting technology. At the same time, following
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winds, currents and other favourable factors can be used to increase passage speed and
reduce the voyage time.

Optimal weather routing has practical significance. In the prevailing weather and sea
conditions, the ‘optimal route’ may be defined as the route with the mean minimum voyage
time, minimum fuel consumption or any combination of these factors while still ensur-
ing the safety of navigation. Determination of optimal ship weather routing requires a
combination of the following three actions (Sen and Padhy, 2015):

a) forecasting the sea conditions (i.e., ocean-state forecast);
b) estimating ship behaviour in such ocean wave conditions;
c) developing an appropriate and efficient track or path optimisation algorithm.

The focus of this paper is mainly on the third action: developing a fast and efficient opti-
misation algorithm to determine the optimal route. This paper aims to determine the fastest
route from point-to-point in a dynamic environment. It is organised as follows: in Section 2,
some previous studies on weather routing algorithms are summarised. In Section 3, we pro-
vide basic information for a mathematical model of the optimal weather routing problem.
In Section 4, loss of ship speed in wind and waves is introduced. In Section 5, application
of a real-coded genetic algorithm for ship weather routing is described. In addition, we
present a series of simulation experiments to verify the validity of the proposed algorithm.

2. SUMMARY OF PREVIOUS WORK. Ship weather routing is often based on an
extensive geographic domain, usually for longer voyages across the Atlantic or Pacific
Oceans. This process considers mainly medium and short-term weather effects, especially
the influence of the significant wave height and wave direction on the ship voyage speed in
order to determine the minimum voyage time or the minimum fuel consumption target. The
problem of effective weather routing is popular among researchers; many approaches have
been proposed to solve ship weather routing problems. The major methods include the
isochrone method, calculus of variations, dynamic programming, Dijkstra algorithm and
nature-based heuristic algorithms such as the Genetic Algorithm/Evolutionary Algorithm
(GA/EA), Ant Colony Optimisation (ACO), etc.

The isochrone method was first proposed by James (1957) and is the earliest algorithm
applied to ship weather routing. This method aims to minimise the sailing time. An
isochrone is defined as a line connecting points that indicate locations of ships traveling in
various directions from the departure point after a certain time by considering factors such
as constant engine power. A new isochrone is constructed at the end point of the previ-
ous isochrone, and the above steps are repeated until the isochrone reaches the destination
point so that the optimal route can be reconstructed. The original method can determine
the route for the minimum sailing time manually but is not suitable for computer calcu-
lations. Hagiwara and Spaans (1987) improved this method to make it more appropriate
for computer calculations and used it to determine the route for minimum voyage time
and fuel consumption. Fang and Lin (2015) recently proposed a Three-Dimensional Mod-
ified Isochrone (3DMI) method utilising the recursive forward technique and floating grid
system to globally search for Estimated Time of Arrival (ETA), routing and Fuel-saving
(FUEL) routing based on the composite influences of dynamic forces.

The calculus of variations method was originally proposed by Haltiner et al. (1962). This
method considers the ship routing problem as a continuous minimum optimisation problem
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and derives the control differential equation using the calculus of variations. Bijlsma (2001)
extended this method to determine the route for minimum fuel consumption, but this
method is limited to theoretical analysis and is not suitable for practical implementation.

The dynamic programming method is based on Bellman’s (1952) optimisation princi-
ple, which considers the optimal route problem as a discrete multi-stage decision problem.
This method considers great circle route waypoints as reference points and then extends the
latitude point at a certain interval (for example, 0·5◦) latitudinally to divide the navigational
area into a grid system with several segments. Using the forward dynamic programming
method and treating engine power and the ship heading as stage variables, the optimal
route is determined by solving each local optimal solution step by step. The accuracy of
this method depends on the fineness of the grid system; however, when the accuracy is too
high, the computational complexity increases. The two-dimensional Dynamic Program-
ming method was originally applied by de Wit (1990) and Calvert et al. (1991). Shao et al.
(2012) presented a Three-Dimensional Dynamic Programming (3DDP) method that used
voyage progress as the stage variable and adopted the forward algorithm to determine the
route with minimum fuel consumption.

The Dijkstra algorithm is a typical method for determining the single source of a prob-
lem in finding the shortest path. Montes (2005), Panigrahi et al. (2012), Sen and Padhy
(2015) and Mannarini et al. (2016) used this method to solve weather routing problems.
The basic idea of this method is that the navigation area is divided into a directed network.
The directed network is G = (N , A) defined by a set N of n nodes and a set A of m directed
arcs. The weight of each arc is determined by the voyage time from one node to the next.
Sen and Padhy (2015) noted that the main drawback of this method is that the obtained
optimal route is not always smooth.

In addition to the above methods, some evolutionary heuristic algorithms have been
used to solve the ship weather routing problem in recent years, such as the simulated
annealing algorithm (Kosmas and Vlachos, 2012), ant colony algorithm (Tsou and Cheng,
2013), genetic algorithm (Maki et al., 2011; Kang et al., 2012), and multi-objective evo-
lutionary algorithm (Marie and Courteille, 2009; Szłapczyńska and Śmierzchalski, 2009;
Szlapczynska, 2015; Vettor and Soares, 2016).

In our study we use a Real-Coded Genetic Algorithm (RCGA) (Eshelman and Schaffer,
1992) which allows each individual in the population to directly represent a route without
the need for encoding and decoding operations. We divide the sailing area into several
segments, which is similar to the grid system in some other algorithms, such as dynamic
programming and the ant colony algorithm. However, the value of the grid system in the
y-direction is usually discrete, in particular for the two above-mentioned algorithms. In
our algorithm it is continuous, which makes the search area more accurate. Moreover, in
addition to treating the great circle route or the rhumb line as a reference route to establish
the sailing area, this paper also provides an extension method based on a custom route
which can enhance flexibility. Another benefit of the proposed method is that some shipping
companies have their own fixed routes that can be optimised by extending the route within
a small range without departing too far from their familiar route. This paper also presents
a fitness assignment method based on an individual’s position in the sorted population
which greatly simplifies the calculation of fitness value. A hybrid mutation method that
combines the uniform mutation and the Gaussian mutation is presented to enhance the
search for the optimal solution and maintain population diversity. It can be easily extended
to multi-objective ship weather routing.
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Figure 1. Dynamic and static prohibited areas in three-dimensional space.

3. MATHEMATICAL MODEL OF MINIMUM VOYAGE TIME OPTIMISATION.
In this section, we introduce a general mathematical model of the minimum voyage
time optimisation and consider the most realistic point-to-point examples. The following
limitations are imposed on an allowed ship route while seeking the optimum route:

1) external borders of the sailing area;
2) safety contours around land obstacles and shoal waters;
3) weather alarm zones; and
4) interval for maximum and minimum ship’s speeds in calm water.

Let the sailing area �0 be included in a spherical rectangle:

�0 ⊂ {(λ, l)|λmin ≤ λ ≤ λmax, lmin ≤ l ≤ lmax} (1)

The limitations 1) and 2) are static zones that remain invariant during the sailing period
denoted as �i

k, i = 1, O; thus, the static feasible area �s can be expressed as follows:

�s = �0/
O∪

i=1
�i

k (2)

The areas in 3) are the dynamic weather alarm zones caused by severe weather con-
ditions and depend on time. Each predefined time step corresponds to a set of polygons
denoted as �

j
w(t), j = 1, W(t). Then, the final navigable area �a(t) can be expressed as:

�a(t) = �s/
W(t)
∪

j =1
�j

w(t) (3)

A graphic representation of three-dimensional space is shown in Figure 1 (Veremei and
Sotnikova, 2016). The green cylinders correspond to the static prohibited area during the
voyage period, while the red cylinders correspond to the dynamic prohibited areas due to
severe weather and are time dependent.
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Figure 2. Route curve and current position of the ship.

Condition 4) is related to the structural characteristics of the ship itself. Let us assume
that the ship’s calm water set speed is limited to [Vmin, Vmax], where Vmin and Vmax are
constructive parameters of the vessel.

The ship trajectory can be presented as a piecewise azimuth-constant curve (route curve)
on the spherical surface as shown in Figure 2, where S and D are departure and destination
respectively, Ni represents the starting waypoint of the i-th segment, λi and li are the latitude
and longitude coordinates of the i-th waypoint Ni respectively, Vi is the calm water set speed
of the i-th segment and ϕi is the azimuth of the i-th segment.

Let us assume that the route is composed of n segments. Each segment consists of start-
ing waypoint location, the calm water set speed and azimuth. Therefore, let vector r be the
vector of route variables, presented in Equation (4):

r = {(λ1, l1, V1, ϕ1), . . . , (λi, li, Vi, ϕi), . . . , (λn, ln, Vn, ϕn)} (4)

The latitude and longitude of each waypoint should be within the range of set �a(t). More-
over, we determine the ship route as a set of points γ r = γ r(r). It is important to note not
only that the waypoints must be within the navigable area, but also that the whole route
γ r = γ r(r) formed by these points must be within the navigable area. This is presented in
Equation (5):

γ r = γ r(r) ⊂ �a(t) (5)

The procedure of checking feasibility of a given ship route γ r = γ r(r) includes the
following steps.

1) Finding intersection points of a ship trajectory with static constraints �i
k, i = 1, O. If

such points exist, then the given route is infeasible.
2) Computing time in alarm zones for a given route. If this time is nonzero, then the

route is infeasible. The corresponding computational algorithm includes finding an
intersection point of a particular route segment with alarm zones �

j
w(t), j = 1, W(t).

The calm water set speed Vi of each segment constitutes the speed variable v. The com-
ponents of this vector represent the desirable constant ship speed for the corresponding

https://doi.org/10.1017/S0373463318000048 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463318000048


994 HONG-BO WANG AND OTHERS VOL. 71

segments of the route curve, as presented in Equation (6):

v = (V1, . . . , Vi, . . . , Vn), Vi ∈ [Vmin, Vmax], i = 1, n (6)

Let L denote the total length of the route. The route length can be calculated using the
following formula:

L = L(r) =
n∑

i=1

Li (7)

where Li is the length of each segment and can be calculated using the rhumb line distance
in Equations (8), (9) and (10).

Let us treat the earth as a standard sphere. The rhumb line heading ϕ for the two
coordinate points on the Mercator projection can be calculated as follows:

ld − ls = tan ϕ ×
[

ln tan
(

π

4
+

λd

2

)
− ln tan

(
π

4
+

λs

2

)]
(8)

where λs and ls are the latitude and longitude of the starting point, respectively. λd and ld
are the latitude and longitude of the end point, respectively. Let Lr denote the rhumb line
distance between two points. It can be calculated as follows:

Lr = R × (λd − λs) × sec ϕ (9)

If the ship is sailing parallel to the weft, that is λs = λd, then the rhumb line distance
equation becomes:

Lr = R × (ld − ls) × cos λs (10)

where R is the average radius of the Earth.
The total voyage time Tvoyage from departure to destination can be summed by the time

ti taken for each segment and is represented by Equation (11):

Tvoyage =
n∑

i=1

ti, ti =
Li

Vi
a

(11)

where Vi
a is the actual speed of the i-th segment, which will be discussed in the next section.

Let Talarm be the time passing through the weather alarm zone �
j
w(t), j = 1, W(t) during

the voyage period. To ensure safety, Talarm must be as small as possible; the best value is
zero. To facilitate the calculation of the fitness of each route in the genetic algorithm, the
objective function is designed as follows:

J = JT(r, v) =
[

1 +
1 − (e/2) ∧ (−0·1 × Talarm)
1 + (e/2) ∧ (−0·1 × Talarm)

]
× Tvoyage (12)

As we can see, when Talarm approaches zero, JT(r, v) is equal to Tvoyage. When Talarm
becomes larger, JT(r, v) also increases. The objective function value is set to infinity as the
path passes through land or non-navigable areas. The minimum voyage time optimisation
problem can be expressed as presented in Equation (13):

JT(r, v) → min
γ r⊂�a(t),Vi∈[Vmin,Vmax],i∈1,n

(13)
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4. SHIP SPEED LOSS. It is necessary to estimate a ship’s actual speed in wind and
waves for the purpose of calculating the voyage between two points. Suppose the ship
travels using a constant power, the speed in calm water is V0. The actual speed is usu-
ally lower than the calm water speed due to the additional resistance caused by wind and
waves. James (1957) found that the most important parameter regarding a ship’s motion
was surface wave action. The effects of these waves are manifested mainly in two ways:
first, natural speed loss due to the increased resistance in wind and waves and the decreased
propeller efficiency in rough weather, and second, voluntary speed reduction, which is the
deliberate reduction in speed by the ship’s captain in order to reduce the violent effects of
roll, pitch and heave and ensure the ship’s safety.

In general, there are three ways to study the natural speed reduction of a ship in wind and
waves. The first is the theoretical method, according to the water-hull-air system energy
balance method. This uses a formula to calculate the increase in resistance, in order to
calculate the decrease in the speed under constant engine power. The second is the test
method, which uses tank and wind tunnel simulation experiments to measure the relevant
factors to determine the stall value. The third is the empirical formula method based on a
large amount of real-time data and results of ship seakeeping experiments; this method uses
statistics to obtain the empirical formula for calculating the stall characteristics of a ship in
wind and waves. The third method is most often used in practice. Zhang et al. (2005) listed
a variety of empirical formulae for calculating ship speed loss. Since the purpose of this
paper is to present an algorithm for ship weather routing, we use the following empirical
formula, Equation (14) (Liu, 1992) to calculate speed loss. However, the algorithm has
the capability of accommodating more sophisticated models for speed loss, as it will only
increase the complexity of the actual speed calculation without affecting the algorithm itself
when dealing with more complex models.

Va = V0 − (1.08h − 0.126qh + 2.77 × 10−3 × F cos α)(1 − 2.33 × 10−7WV0) (14)

where Va is the actual ship speed in the sea (kt), V0 is the ship speed in calm water (kt), h
is the significant wave height (m), q is the angle between ship heading and wave direction
(radians), F is the wind speed (m/s), α is the angle between ship heading and wind direction
(radian) and W is the actual displacement of the ship (tonnes).

For the purposes of safety, a ship has a critical speed Vc (maximum allowed speed) when
sailing in wind and waves. When the actual speed is greater than the critical speed, the ship
must be slowed down for safety. In this paper, the following equation is used to calculate
the critical speed (Tsou and Cheng, 2013):

Vc = exp[0.13 × (μ(q) − h)1.6] + r(q) (15)

where μ(q) = 12.0 + 1.4 × 10−4 × q2.3; r(q) = 7.0 + 4.0 × 10−4 × q2.3; q is the angle
between ship heading and wave direction (radian) and h is the significant wave height (m).

This equation reflects the ships’ critical speed under different wave conditions to ensure
safe navigation, and it is suitable for container ships.

5. REAL-CODED GENETIC ALGORITHM AND SHIP WEATHER ROUTING. The
genetic algorithm learning model is based on the natural selection principle of Darwin
originally proposed by Holland (1975) and has been successfully applied to solve problems
that are difficult to solve using traditional methods.

https://doi.org/10.1017/S0373463318000048 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463318000048


996 HONG-BO WANG AND OTHERS VOL. 71

Figure 3. Real-coded genetic algorithm flow chart.

In this paper, we use a RCGA as it is more convenient than binary coding in continuous
space and has better performance and efficiency. For minimum voyage time optimisation,
each route can be encoded as a chromosome. The fitness of each route can be obtained
by proper transformation of the voyage time. The basic genetic algorithm is usually com-
posed of selection operator, crossover operator and mutation operator. Multi-population
techniques have been adopted to apply different evolutionary strategies for different sub-
populations in this paper. The reinsert operation is performed according to the fitness to
ensure that the best-fit individuals in the population survive to produce the next generation.
The hybrid mutation operator is presented to enhance the search for the optimal solution
and maintain the population diversity. The process of a RCGA is shown in Figure 3. The
details of each section will be described below.
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The notations used in the algorithm are defined as follows: (λs, ls) are the departure coor-
dinates and (λd, ld) are the destination coordinates. Lgc is the great circle route distance (as
an arc of a circle) from departure to destination, ϕgc is the initial heading of the great circle
route from departure to destination, t0 is the departure time (λs, ls), �T is the fixed time
period of the weather forecast update interval and t̃ is the time interval between the last
weather forecast update time and the departure time t0. Tvoyage is the voyage time, Talarm
is the alarm time, Nnum_�T is the position where the weather forecast updated during the
voyage, M is the population size, N is the length of the chromosome (number of way-
points), Pt is the parental population of the t-th iteration and Qt is the offspring population
of the t-th iteration. UpperBound is an N -dimensional vector whose i-th element is the
upper bound of the population initialisation at the i-th coordinate, LowerBound is an N -
dimensional vector whose i-th element is the lower bound of the population initialisation
at the i-th coordinate, lonpts is an N -dimensional vector whose i-th element is the longi-
tude coordinate of the i-th waypoint of the population, latptsj is an N -dimensional vector
whose i-th element is the latitude coordinate of the i-th waypoint of the j -th chromosome,
where j = 1, . . . , M and J is an M -dimensional vector whose i-th element is the objective
function value of the i-th chromosome.

5.1. Sailing area initialisation. Three ways are used to establish the sailing area
in this paper. The first is by expanding the great circle route waypoints. The second is
by expanding the rhumb line waypoints. The third is by expanding a custom route. For
example, the specific method of establishing sailing area by expanding great circle route
waypoints is as follows:

1) According to the departure and destination coordinates (λs, ls) and (λd, ld), the great
circle route distance Lgc (as an arc of a circle) and the initial heading ϕgc can be
calculated using Equations (16) and (17) (Snyder, 1982):

sin(Lgc/2) = {sin2[(λd − λs)/2] + cos λd cos λs sin2[(ld − ls)/2]}1/2 (16)

tan ϕgc = cos λd sin(ld − ls)/[cos λs sin λd − sin λs cos λd cos(ld − ls)] (17)

2) We can divide the great circle route into n + 1 segments. The distance d of each
segment is Lgc/(n + 1). For example, we can divide the great circle route by the length
of a six-hour (or less) voyage at the calm water set speed.

3) We can calculate the coordinate (λi, li) that has an initial heading ϕgc and a distance
of i × d from departure coordinates (λs, ls) using Equations (18) and (19) (Snyder,
1982):

λi = arcsin(sin λs cos(i × d) + cos λs sin(i × d) cos ϕgc (18)

li = ls + arcsin[sin(i × d) sin ϕgc/(cos λs cos(i × d) − sin λs sin(i × d) cos ϕgc)]
(19)

4) According to the waypoints (λi, li), extend the latitude point λi along the lati-
tude direction at longitude li. Assuming that the extended latitude has an upper
bound UpperBoundi and a lower bound LowerBoundi, the sailing area is then
obtained. We can introduce the vectors UpperBound and LowerBound to preserve
the upper bound and lower bound of each waypoint, respectively. This is presented
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Figure 4. Extended sailing area based on great circle route.

Figure 5. Extended sailing area based on Rhumb Line.

in Equations (20) and (21):

UpperBound = [λs UpperBound1 . . . UpperBoundi . . . λd], i = 1, n
(20)

LowerBound = [λs LowerBound1 . . . LowerBoundi . . . λd], i = 1, n
(21)

The method of establishing sailing area based on the rhumb Line waypoints is similar.
The sailing area can be calculated using rhumb Line distance and heading Equations (8),
(9) and (10), as mentioned above.

Examples of establishing the sailing area are shown in Figures 4, 5 and 6. Figure 4 is
extended based on great circle route waypoints; Figure 5 is extended based on rhumb line
waypoints and Figure 6 is extended based on a custom route.

5.2. Population initialisation. To solve the minimum voyage time optimisation prob-
lem using a RCGA, it is necessary to represent each route in a chromosome form. Let us
assume that the population size is M . Let vector lonpts represent the longitude informa-
tion of the chromosome and vector latptsj represent the latitude information of the j -th
chromosome. The longitude for each chromosome is the same, while the latitude for each
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Figure 6. Extended sailing area based on custom route.

chromosome should be within the range of LowerBound and UpperBound.

lonpts = [ls l1 . . . li . . . ld], i = 1, n (22)

latptsj = [λs λj 1 . . . λji . . . λd], i = 1, n; j = 1, M (23)

The numbers of required chromosomes are randomly generated according to the
population size. For example, one individual chromosome can be generated by
Equation (24):

latpts1 = rand(1, N ) × [UpperBound − LowerBound]′ + LowerBound (24)

where N is the dimension of the variables (the number of waypoints), rand(1, N ) generates
a random number vector with a length of N , which is uniformly distributed between 0 and 1.

5.3. Route calculation. Let us now consider the computational algorithm for the voy-
age time for the given route (r, v). Assume the following notations: t0 is the departure time
from the departure point (λs, ls), �T is the fixed time period of the weather forecast update
interval, t̃ is the time interval between the last weather forecast update time and the depar-
ture time t0, Tvoyage is the voyage time, Talarm is the alarm time and Nnum_�T is the position
where the weather forecast updated during the voyage.

We will first split each segment of the route into several small legs according to the
grid size of meteorological data as shown in Figure 7. The meteorological data are consid-
ered the same for each small leg and remain unchanged for �T time. The actual speed for
each small leg can be calculated using Equation (14) and the voyage time Tvoyage can be
obtained using Equation (11). The meteorological data will be updated whenever Tvoyage + t̃
is a multiple of the time period �T, as shown by the green star point in Figure 7. Simultane-
ously, the voyage time of the small legs are marked as alarm time when the significant wave
height is greater than a certain value (weather alarm zone), thus the Talarm can be calculated.
Finally, the objective function value of the route can be calculated using Equation (12)
and it is set to infinity no matter which small leg passes through the land obstacles or
non-navigable areas.
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Figure 7. Split route according to the grid size of meteorological data.

5.4. Fitness assignment. The fitness greatly influences the performance of the genetic
algorithm, which is generally related to the objective function value. In the minimum value
problem, the smaller the objective function value, the greater the fitness will be. It is not
recommended to use the objective function as the fitness directly; thus, it is necessary
to perform a certain scale transformation between the objective function and the fitness
function. Linear scale transformation, power scale transformation and exponential scale
transformation are some commonly used transformation methods.

In this paper, we first sort the individuals in descending order according to the objective
function value. The fitness values are then assigned to each individual based on the sorted
position. Individuals who rank in the front-row position have low fitness. Let vector J
represent the objective function values of each individual, after calculating the objective
function value for each route according to Equation (12):

J = [J1 . . . Ji . . . JM ]′, i = 1, M (25)

where Ji is the objective function value of i-th individual, and M is the population size.
Let posi represent the position of the i-th individual after sorting in descending order;

then, the fitness fiti of the i-th individual can be calculated using Equation (26):

fiti = 2 × posi − 1
M − 1

(26)

The fitness value is linearly distributed according to the sorted position. The fitness of
the individual in the top position (objective function is the largest) is 0, and the fitness of
the individual in the last position (objective function is the smallest) is 2.

5.5. Selection operation. The selection operation is based on the fitness value of the
individuals in the parent population to determine which individuals need to generate the off-
spring population. The greater the fitness of an individual, the greater the probability that
this individual will produce the offspring population. In this paper, three selection opera-
tions are provided: roulette wheel selection, stochastic universal selection and tournament
selection.

Roulette wheel selection is the simplest. This method first accumulates the fitness of
each individual. Suppose that the accumulated value is fitsum. Individuals are mapped in a
continuous interval [0, fitsum] in a one-to-one way and then they generate a pointer (random
number) within the interval [0, fitsum] at the same probability. The individual is selected
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according to the range in which the pointer is located. If M individuals need to be selected,
then M pointers need to be generated.

Stochastic universal selection is similar to roulette wheel selection. The difference is
that this method produces M equidistant pointers at the same time. The first pointer ptr is
generated at interval [0, fitsum/M ], while the remaining M − 1 pointers are as follows:

[ptr, ptr + fitsum/M , . . . , ptr + (M − 1) × fitsum/M ] (27)

Tournament selection first selects a small number of individuals from the population. An
individual who has the highest fitness value will be selected to produce the offspring popu-
lation. This operation is repeated until the number of offspring meets the requirements. Each
selection method has its own characteristics. In this paper, different selection strategies are
used in different subpopulations in order to achieve a different evolutionary strategy.

5.6. Recombination operation (Crossover). A recombination operation is the main
operation to generate new individuals. It combines two chromosomes to receive good genes
from the parent to generate new individuals so that the population can gradually improve
during evolution. The traditional one-point crossover introduced by Holland (1975) swaps
the genes between the parents, starting from a point selected randomly from the chromo-
somes. There are expanded crossovers (Kang et al., 2012), such as the two-point crossover,
k-point crossover, and uniform crossover; however, these methods are more suitable for
binary coding. As a result of using the RCGA, an arithmetic operation is adopted to perform
the recombination operation. Assuming that the two individuals who need to be crossed are
latptst

1 and latptst
2, the new individuals generated after the recombination operation can be

expressed as follows:{
latptst+1

1 = α × (latptst
2)′ + (1 − α) × (latptst

1)′

latptst+1
2 = α × (latptst

1)′ + (1 − α) × (latptst
2)′

(28)

where α is a vector parameter with a length of N , and each of its values is a uniform random
number within a range. In this paper, the range is set to [−0.5, 1.5]. In the meantime, in
order to ensure that the individuals obtained after the recombination operation are within
the boundary, the individuals who exceed a boundary are placed on the nearest boundary.

5.7. Mutation operation. The main purpose of the mutation operator is to put the
missing allele back into the population to produce a new solution while increasing the
diversity of the population. A number of mutation methods have been applied to RCGAs:
uniform mutation, boundary mutation, non-uniform mutation and Gaussian variation, each
of which has its own characteristics. We present a hybrid mutation method that combines
uniform and Gaussian mutations; that is, part of the subpopulation adopts the uniform
mutation, and the other part adopts the Gaussian mutation. The genotypes of the subpop-
ulations can be exchanged through the migration operation to increase the diversity of the
population.

Uniform mutation replaces one or more original genes on the chromosome with
a smaller probability by generating random numbers distributed uniformly within the
boundary. The resulting mutation value is distributed throughout the constraint space
evenly, which can effectively improve the diversity of the population. Let us assume that
UpperBoundi and LowerBoundi are the upper bound and lower bound of the i-th coordi-
nate, respectively. The new value lat′i produced by uniform mutation can be calculated by
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Figure 8. Reinsert operation illustration.

the following equation:

lat′i = rand × (UpperBoundi − LowerBoundi) + LowerBoundi (29)

where rand generates a random number in interval [0,1] with the same probability.
Gaussian mutation replaces one or more original genes on the chromosome with a

smaller probability by generating random numbers with expectation X̄ and variance σ 2.
Gaussian mutation can focus on searching local regions to find the optimal solution.
Assuming that we need to perform a mutation operation for the lati, then a Gaussian ran-
dom number with expectation lati and variance 0.005 × (UpperBoundi − LowerBoundi)
can be generated to replace lati.

5.8. Reinsert operation (elite retention strategy). The reinsert operation inserts a
certain percentage of the offspring population into the parent population according to the fit-
ness value while removing individuals with lower fitness in the parent population; the new
population will be the next parent population. The reinsert operation ensures that the elite
individuals in the population are not eliminated while speeding up the convergence rate.
The process of the reinsert operation is shown in Figure 8. First, the parent population and
the offspring population are sorted in descending order according to fitness value. Then,
individuals who ranked in the back-row position in parent population Pt will be replaced
by individuals who ranked in the front-row position in offspring population Qt, and the new
population Pt+1 will be the next parent population.

5.9. Migration operation. The migration operation exchanges individuals between
each subpopulation of every certain generation. Each subpopulation can apply a different
evolutionary strategy. The individuals with high fitness in the subpopulation are then passed
to the other subpopulations through a migration operation, thus increasing the spread of
good individuals among populations, accelerating the convergence rate and improving the
accuracy of the solution. Individuals are either chosen randomly or based on fitness to
perform migration.

In this paper, individuals who have higher fitness will be chosen to perform migration
operations according to migration probability. The structure of migration can be network
topology, ring topology and adjacency topology. In this paper, a cyclic ring topology
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Figure 9. Cyclic ring topology illustration.

is chosen, as shown in Figure 9. The individuals in subpopulation 1 migrate to sub-
population 2, and the individuals in subpopulation 2 migrate to subpopulation 3, and
so on.

6. EXPERIMENTAL RESULTS. In this section three examples are presented to verify
the applicability of the proposed algorithm. The first focuses on finding a shortest route
without considering any weather constraints to test the basic performance of the present
algorithm. The second concentrates on searching a minimum voyage time route under bad
weather conditions and land obstacles constraints. The last gives an example of using a
custom reference route to establish the sailing area to find a minimum voyage time route.
The implementation of the proposed algorithms is realised in a Matlab environment on a
PC machine (AMD FX-6300 Six-core 3.5GHZ, RAM 4GB).

The container ship type S-175 (Zhang et al., 2005), with a standard displacement of
23,740 tonnes, was chosen to perform the simulation experiment for route optimisation.
In all examples, the genetic algorithm parameters were set as follows: the number of sub-
populations was six, the size of the subpopulation was 20, the mutation probability was
0.05, the migration probability was 0.2, the migration interval was 20 generations, the rein-
sertion rate was 0.9, the generation gap was 0.8 and the maximum number of iterations
was 1,000.

The meteorological data used in this research were previously ascertained from the
European Medium Weather Forecast Centre. The meteorological data included “10-metre
U wind component”, “10-metre V wind component”, “Mean wave direction” and “Signifi-
cant height of combined wind, waves and swell”. The grid size of the meteorological data
was 1◦ × 1◦. The forecasted data in a single file covers ten days. If a forecasted ship pas-
sage time was longer than ten days, it was assumed that the weather conditions remained
the same as that of the last day (the tenth day) for the excess time. The update interval of
the data is six hours, updating at 00:00, 06:00, 12:00 and 18:00 every day.

6.1. Example 1 - Tokyo Harbour (35◦ N , 141◦ E) to San Francisco City (37◦ N , 123◦ W),
departure time 2016.01.10 00:00:00. In general, the route obtained by the algorithm does
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Table 1. Optimum route distance.

Times 1 2 3 4 5

Distance (nm) 4,442.52 4,442.11 4,439.87 4,442.27 4,443.64 Average

Times 6 7 8 9 10 4441.69

Distance (nm) 4,440.19 4,440.35 4,440.41 4,443.15 4,442.36

Figure 10. Route simulation results.

not have an absolute evaluation criteria due to the impact of meteorological conditions. The
shortest path between two points on a sphere is the great circle route. Hence, we first solve
the shortest route problem without considering any weather constraints to test the basic
performance of the present algorithm. According to the great circle route distance formula,
the distance between the above two points is 4,438.82 nautical miles, which is the shortest
path length. We ran the proposed algorithm ten times to calculate the optimum route; the
results are shown in Table 1. The average execution time is 92 seconds.

From Table 1, we can see that the average length of the results has a difference of 2.87
nautical miles and relative error of 0.065% compared with the great circle route distance.
Therefore, the performance of the algorithm has some reliability.

6.2. Example 2 - Tokyo Harbour (35◦ N , 141◦ E) to San Francisco City (37◦ N , 123◦ W),
departure time 2016.01.10 00:00:00. In this example, we aim to search for a minimum
voyage time route under bad weather and land obstacles constraints. The optimisation con-
straint set includes the following: land obstacles; external borders of the sailing area (by
increasing and decreasing of the latitude of the rhumb line waypoints by 12˚); and regions
where the forecasted significant wave height is above 5 metres (a dynamic constraint). The
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Figure 11. Genetic algorithm performance curve.

Figure 12. Comparison of the actual speed.

calm water set speed is in the range of 10 to 25 knots. The latitude range was chosen as
[0◦ N , 62◦ N ] and the longitude range was chosen as [120◦ E, 120◦ W].

Ship performance was simulated under the output power required to maintain a navi-
gation speed of 22 knots in calm water for all segments. The obtained optimised route is
shown in Figure 10. The execution time was 154 seconds. The distance of the optimised
route was 5,215.41 nautical miles, and the voyage time was 276.291 hours with an alarm
time of 0 hours. The distance of the great circle route was 4,438.82 nautical miles, and the
voyage time was 248.848 hours with the alarm time 87.571 hours under the same mete-
orological data. The distance of the rhumb line route was 4,664.14 nautical miles, and
the voyage time was 275.755 hours with an alarm time of 119.532 hours under the same
meteorological data. The voyage time of the optimised route is larger than the great circle
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Figure 13. Comparison of heading angle.

Figure 14. Comparison of the wave height.

route and the rhumb line. However, the alarm time was 0 hours, which indicates that it
chose to travel longer routes to bypass dangerous areas to ensure safety.

The best and the average objective function value for each generation are shown in
Figure 11. We can see that the algorithm converges after approximately 200 generations.
The comparisons of the actual voyage speed, the heading angle and the significant wave
height among these three routes are shown in Figures 12, 13 and 14, respectively. From
these figures, it can be seen that the optimum route has a lower significant wave height
(no more than 5 metres) compared to the other routes. As a result, the optimised route
succeeded in reducing the additional resistance, thereby reducing the ship speed loss.

Figure 15 shows snapshots of the optimised route at different voyage times. From it we
can see that the optimised route can effectively avoid the areas with significant wave height
larger than 5 metres (alarm zone) and choose areas with low significant wave height.
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Figure 15. Snapshot of the optimised route at different voyage times.

Figure 16. Route simulation results.

6.3. Example 3 – Saint-Denis (20.9◦ S, 55.5◦ E) to St. Helena (15.97◦ S, 5.71◦ W),
departure time 2016.01.01 00:00:00. In this example, the great circle route and rhumb
line between the two points pass through land obstacles. Thus, we establish the sailing area
by extending a customised reference route. The optimisation constraint set includes the
following: land obstacles; external borders of the sailing area (by increasing and decreas-
ing the latitude by 10◦ of the reference route waypoints); and regions where the forecasted
significant wave height is above 5 metres (a dynamic constraint); the calm water set speed
is in the range of 10 to 25 knots. The latitude range was chosen as [0◦ S, 50◦ S], and the
longitude range was chosen as [10◦ W, 60◦ E].
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Figure 17. Snapshots of the optimised route at different voyage times.

Ship performance was simulated under the output power required to maintain a
navigation speed of 22 knots in calm water for all segments. The obtained optimised route
is shown in Figure 16. The execution time was 112 seconds. The distance of the optimised
route was 3,883.69 nautical miles, and the voyage time was 194.455 hours with alarm time
0 hours. Figure 17 shows snapshots of the optimised route at different voyage times. It can
be seen from this figure that the optimised route can effectively avoid the land obstacles
without increasing the distance too greatly.

7. CONCLUSIONS. Ship weather routing has significant economic and practical value
in ship safety and operating costs. Therefore, new and effective decision-making tools
should be applied to ship navigation as the maritime industry develops. Such tools not
only enable route planning automation but also provide a reference for decision-making
in route planning. In this paper, a real-coded genetic algorithm is proposed to provide
decision-making for ship weather routing. Experimental results show that the algorithm
can minimise the voyage time and provide a route that does not intersect with dangerous
areas, which indicates that it can avoid dangers to some extent. Previous studies have con-
sidered multiple optimisation types, such as minimum fuel consumption, minimum voyage
time and minimum total distance. In contrast, here we have only taken minimum voyage
time as the optimisation criterion, but this method has the potential to consider other types
of criteria. Our future research will focus on including the effects of the multi-objective fac-
tors while constructing an optimal route. We will also investigate applying a safety distance
to the route to ensure separation from dangers.
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