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OPTIMAL POLICY IN RATIONAL
EXPECTATIONS MODELS: NEW
SOLUTION ALGORITHMS

RICHARD DENNIS
Federal Reserve Bank of San Francisco

This paper develops methods to solve for optimal discretionary policies and optimal
commitment policies in rational expectations models. These algorithms, which allow the
optimization constraints to be conveniently expressed in second-order structural form, are
more general than existing methods and are simple to apply. We use several New
Keynesian business cycle models to illustrate their application. Simulations show that the
procedures developed in this paper can quickly solve small-scale models and that they can
be usefully and effectively applied to medium- and large-scale models.
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1. INTRODUCTION

Central banks and other policy makers are commonly modeled as agents whose
objective is to minimize some loss function subject to constraints that contain
forward-looking rational expectations [see Woodford (2002), Clarida, Galı́, and
Gertler (1999), or the Taylor (1999) conference volume, for example]. But of
course Kydland and Prescott (1977) showed that in the absence of some com-
mitment mechanism optimal policies were time-inconsistent. The modern policy
literature addresses this time-consistency problem either by simply assuming that
the policymaker can commit to not reoptimize or by explicitly modeling the strate-
gic interactions that occur between the various economic agents in the model.1

When the former approach is taken the policy maker commits to undertake a
single optimization and implements the chosen policy in all subsequent periods.
When the latter approach is pursued the technique is to solve for a subgame-
perfect equilibrium. Although other time-consistent equilibria could be studied,2

it is most common to solve for Markov-perfect Stackelberg-Nash equilibria in
which the policy maker is the Stackelberg leader and private-sector agents and
future policy makers are Stackelberg followers.
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Several methods for solving for optimal commitment policies and for Markov-
perfect Stackelberg-Nash equilibria (optimal discretionary policies in what fol-
lows) have been developed. For commitment, available algorithms include those
developed in Currie and Levine (1985, 1993) and Söderlind (1999), which are
based on Hamiltonian and Lagrangian methods, respectively, and Backus and
Driffill (1986), which transforms the system to a dynamic programming problem
to obtain the commitment policy. For discretion, two popular algorithms are those
developed by Oudiz and Sachs (1985) and Backus and Driffill (1986). Both Oudiz
and Sachs (1985) and Backus and Driffill (1986) solve for optimal discretionary
rules using dynamic programming, but Oudiz and Sachs (1985) solve for the sta-
tionary feedback rule by taking the limit as t → −∞ of a finite horizon problem,
whereas Backus and Driffill (1986) solve the asymptotic problem directly.3 By
construction optimal discretionary policies are time-consistent.

A feature common to all of these solution methods is that they require the
optimization constraints to be written in state-space form. An attractive feature of
the state-space form is that it provides a compact and efficient representation of
an economic model in a form that contains only first-order dynamics. However,
reliance on the state-space form also has disadvantages. In particular, use of
the state-space representation forces the distinction between predetermined and
nonpredetermined variables and often requires considerable effort to manipulate
the model in the required form. Both of these requirements, but especially the
latter, mean that these solution methods come with “overhead” costs that can be
considerable.

In this paper, we develop algorithms to solve for optimal commitment policies
and optimal discretionary policies that differ from existing algorithms in that they
allow the constraints to be written in structural form rather than in state-space
form. As a broadbrush characterization, for small-scale models that have only a
few nonpredetermined variables, it is generally not too difficult to express the
model in state-space form, in which case solving the model using a state-space
solution method may be convenient. However, even for models that are only
modestly complex it is often much easier to write the model in structural form,
and the algorithms presented here have been developed with these models in
mind.4 Although of interest in their own right, the algorithms developed also here
have several other useful attributes. First, they do not require the predetermined
variables to be separated from the nonpredetermined variables; second, they can
be easily applied to models whose optimization constraints contain the expectation
of next period’s policy instrument(s); and, third, they supply the Euler equation
for the optimal discretionary policy, which makes them particularly convenient
when a “targeting rule” rather than an “instrument rule” (see Svensson, 2003) is
sought.

Although the relative strength of these algorithms is that they can be easily ap-
plied to models that are difficult to manipulate into a state-space form, to illustrate
their use we apply them to several, reasonably simple, New Keynesian models and
compare their properties to existing solution methods. For this comparison, we take
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the models developed by Galı́ and Monacelli (2005) and Erceg, Henderson, and
Levin (2000) and solve for optimal commitment policies and optimal discretionary
policies for a range of policy regimes. Although the algorithms developed in this
paper exploit less model structure than the state-space methods, they are still
reasonably efficient. To demonstrate that they can usefully solve larger models,
we also apply them to the model developed by Fuhrer and Moore (1995).5

The remainder of this paper is structured as follows. The following section in-
troduces the components of the policy maker’s optimization problem, describing
the objective function and the equations that constrain the optimization process.
Section 3 shows how to solve for optimal commitment rules. Section 4 turns
to discretion. The discretionary problem is formulated in terms of an uncon-
strained optimization, which contrasts with the more usual dynamic programming
or Lagrangian-based approaches. In Section 5, we employ two New Keynesian
models to calculate the computation times of a range of solution methods. Section 5
also discusses situations for which convergence problems can be encountered
when solving for optimal policies. Section 6 concludes while appendices contain
technical details.

2. THE OPTIMIZATION PROBLEM

Let yt be an (n × 1) vector of endogenous variables and xt be a (p × 1) vector of
policy instruments. For convenience, the variables in yt and xt represent deviations
from nonstochastic steady-state values. The policy maker sets xt to minimize the
loss function6

Loss(0,∞) = E0

∞∑
t=0

βt [y′
tWyt + x′

tQxt ], (1)

where β ∈ (0, 1) is the discount factor and W (n× n) and Q (p × p) are symmet-
ric, positive semidefinite, matrices containing policy preferences, or policy tastes.
Here E0 represents the mathematical expectations operator conditional on period 0
information. Loss functions like equation (1) are widely employed in the literature
because, with linear constraints, they lead to linear decision rules. Furthermore,
as is now well documented, this loss function can represent a second-order ap-
proximation to a representative agent’s utility function [see Diaz-Gimenez (1999),
for example] and in certain situations it collapses to an expression containing just
output and inflation (Woodford, 2002).

The policy maker minimizes (1) subject to the following system of dynamic
constraints7

A0yt = A1yt−1 + A2Etyt+1 + A3xt + A4Etxt+1 + A5vt , (2)

where vt ∼ iid [0,Ω] is an (s × 1, s ≤ n) vector of innovations and the matrices
A0, A1, A2, A3, A4, and A5 contain the model’s structural parameters, which are
conformable with yt , xt , and vt , as necessary. The dating convention in equation (2)
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is such that every element in yt−1 has a known value as of the beginning of period
t . A0 is assumed to be nonsingular.

It is not necessary to explicitly include the matrix A5 in equation (2) because it
is always possible to include vt within yt . However, its presence allows us to easily
accommodate models where the innovations are scaled by structural parameters
without having to expand the state vector or redefine the innovations. An important
feature of equation (2) is that it contains not just the contemporaneous policy
instruments but also the expectation of next period’s instrument vector, which is
useful for models that contain an interest rate term structure, for example.8

3. COMMITMENT

Under commitment the policymaker optimizes once and never reoptimizes. The
assumption is that either the policy maker can adhere to its chosen policy or that
the discount factor is sufficiently large to allow the chosen policy to be supported
as a reputation equilibrium [see Currie and Levine (1993, Chapter 5)]. To solve
for optimal commitment policies, we observe that from the definition of rational
expectations we can write

yt+1 = Etyt+1 + ηt+1 (3)

xt+1 = Etxt+1 + µt+1, (4)

where the expectation errors, ηt+1 and µt+1, are martingale difference sequences.
Substituting equations (3) and (4) into equation (2) gives

A0yt = A1yt−1 + A2yt+1 + A3xt + A4xt+1 + ρt (5)

ρt = A5vt − A2ηt+1 − A4µt+1. (6)

To solve the optimization problem from the standpoint of period t0, we form the
Lagrangian

L = Et0

∞∑
t=t0

β(t−t0)[y′
tWyt + x′

tQxt + 2λ′
t (7)

× (A0yt − A1yt−1 − A2yt+1 − A3xt − A4xt+1 − ρt )],

and take derivatives with respect to xt , yt , and λt , giving9

∂L

∂xt

= Qxt − A′
3λt − β−1A′

4λt−1 = 0, t > t0 (8)

∂L

∂yt

= Wyt + A′
0λt − β−1A′

2λt−1 − βA′
1Etλt+1 = 0, t > t0 (9)

∂L

∂λt

= A0yt − A1yt−1 − A2Etyt+1 − A3xt − A4Etxt+1 − A5vt = 0, t ≥ t0 (10)
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∂L

∂xt

= Qxt − A′
3λt = 0, t = t0 (11)

∂L

∂yt

= Wyt + A′
0λt − βA′

1Etλt+1 = 0, t = t0, (12)

where yt0−1 = y. The fact that the policy maker behaves differently in the first
period than it does in subsequent periods in reflected in the fact that equations (11)
and (12) apply in the initial period (t = t0), whereas equations (8) and (9) apply
in all subsequent periods. However, the recursive nature of the system can be
restored by employing equations (8)–(10), for all t ≥ t0, but with the initial
conditions yt0−1 = y and λt0−1 = 0.10 The Lagrange multipliers equal zero at the
start of the initial period because, as implied by equations (11) and (12), the policy
maker exploits agent’s expectations in the initial period, while promising never to
do so in the future (Kydland and Prescott, 1980). It is worth noting that it is the very
fact that the policy maker behaves differently in the initial period that provides
the starting values for the Lagrange multipliers that are needed for the first-order
conditions to have a unique, stable, rational expectations equilibrium. The presence
of the expected future instrument vector in the optimization constraints presents no
special difficulties because the policy maker optimizes only once and the dynamics
arising from this term can easily be accounted for during that optimization.

Given yt0−1 = y and λt0−1 = 0, equations (8)–(10), can be solved in a number
of ways. One possibility is to write them in second-order form⎡

⎢⎣ 0 A0 −A3

A′
0 W 0

−A′
3 0 Q

⎤
⎥⎦

⎡
⎢⎣λt

yt

xt

⎤
⎥⎦ =

⎡
⎢⎣ 0 A1 0

β−1A′
2 0 0

β−1A′
4 0 0

⎤
⎥⎦

⎡
⎢⎣λt−1

yt−1

xt−1

⎤
⎥⎦ (13)

+

⎡
⎢⎣ 0 A2 A4

βA′
1 0 0

0 0 0

⎤
⎥⎦ Et

⎡
⎢⎣λt+1

yt+1

xt+1

⎤
⎥⎦ +

⎡
⎢⎣ A5

0
0

⎤
⎥⎦ [vt ] , (14)

and to apply an undetermined-coefficient technique, such as these developed by
Binder and Pesaran (1995), McCallum (1999), or Uhlig (1999). An alternative
approach is to write equations (8)–(10) in first-order form

MΓt = NEtΓt+1 + ϒt, (15)

where

M =

⎡
⎢⎢⎢⎢⎢⎣

0 −A1 0 A0 −A3

−β−1A′
2 0 A′

0 W 0
0 0 I 0 0
0 0 0 I 0

−β−1A′
4 0 −A′

3 0 Q

⎤
⎥⎥⎥⎥⎥⎦ ,Γt =

⎡
⎢⎢⎢⎢⎢⎣

λt−1

yt−1

λt

yt

xt

⎤
⎥⎥⎥⎥⎥⎦ ,
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N =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 A2 A4

0 0 βA′
1 0 0

I 0 0 0 0
0 I 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ , ϒt =

⎡
⎢⎢⎢⎢⎢⎣

A5

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎦ [vt ] ,

and to solve the system using an eigenvalue method, such as Anderson and Moore
(1985), Klein (2000), King and Watson (2002), Christiano (2002), or Sims (2002).
Notice that the vectors in equations (15) have been allocated such that the predeter-
mined variables, λt−1 and yt−1, enter at the top of the system, the “stable” block,
whereas the jump variables, λt , yt , and xt , enter at the bottom, the “unstable”
block. The order of the variables within these vectors is irrelevant because by
construction every element in λt−1 and yt−1 has a known value at the beginning
of period t . Although the order of the variables within the system is an issue for
many solution methods, here one simply orders vectors, which makes these Euler
equations particularly easy to solve.

Both undetermined-coefficient methods and eigenvalue methods return solu-
tions in the form

⎡
⎣λt

yt

xt

⎤
⎦ =

⎡
⎣θ11 θ12 0

θ21 θ22 0
ϕ1 ϕ2 0

⎤
⎦

⎡
⎣λt−1

yt−1

xt−1

⎤
⎦ +

⎡
⎣θ13

θ23

ϕ3

⎤
⎦ [ vt ]. (16)

The optimal commitment rule can be seen in equation (16) to depend on the vector
of lagged Lagrange multipliers. These Lagrange multipliers enter the rule to ensure
that today’s policy validates how private sector expectations were formed in the
past.

Remark 1: The Euler equations for optimal commitment policy, equations (8)–
(10), do not depend on the covariance matrix of the shocks, Ω. Consequently,
optimal commitment policies are certainty equivalent.

Remark 2: Let zt ≡ [ λ′
t y′

t x′
t ]′,

K̂ ≡
⎡
⎣ 0 0 0

0 W 0
0 0 Q

⎤
⎦ ,

and, in obvious notation, equation (16) be written as zt = Hzt−1 + Gvt . Then,
the loss function can be written as Loss(t,∞) = [z′

t−1H′P̂Hzt−1 + v′
tG

′P̂Gvt +
β

1 − β
tr (G′P̂GΩ)], where P̂ ≡ K̂ + βH′P̂H (see Appendix A.2).
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Remark 3: A consequence of Remark 2 is that limβ↑1 (1 − β) Loss(t,∞) =
tr (KΦ) where Φ is the unconditional variance-covariance matrix of [ y′

t x′
t]

′ and

K ≡
[

W 0
0 Q

]

(see Appendix A.3).

4. DISCRETION

In this section, we consider discretion and develop a numerical procedure that
solves for Markov-perfect Stackelberg-Nash equilibria in which the policy maker
optimizing today is the Stackelberg leader and private sector agents and future
policymakers are Stackelberg followers. Broadly, the innovations in this section are
that we allow expected future instruments to enter the optimization constraints and
that we base the algorithm on a framework in which the optimization constraints
are written in structural form, not in state-space form. The outcome is a solution
procedure that is easy to apply and that eliminates the need to represent the
optimization constraints in state-space form. The solution method also returns
the Euler equations associated with the optimal discretionary policy, not just the
decisions rules, which makes it particularly well suited for studying “targeting
rules” (Svensson, 2003).

Because the system’s state variables are yt−1 and vt , in the equilibrium that we
seek the endogenous variables and the policy instruments will all be functions
of these variables. Assume, then, that a stationary solution to the policy maker’s
optimization problem exists and is given by

yt = H1yt−1 + H2vt (17)

xt = F1yt−1 + F2vt . (18)

It is the time-invariant matrices H1, H2, F1, and F2 that we seek.
Substituting equations (17) and (18) into equation (2) gives

Dyt = A1yt−1 + A3xt + A5vt (19)

where

D ≡ A0 − A2H1 − A4F1. (20)

The matrix D embeds how future policy makers respond to movements in yt and
the policy maker setting xt today allows for D, rather than just A0, when calculating
the impact of its policy decisions. Thus, future policy makers are followers with
respect to current policy makers.
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Using equations (17) and (18), we can express the loss function in terms of H1,
H2, F1, F2, yt and the instrument vector, xt as (see Appendix B.1)

Loss(t,∞) = y′
tPyt + x′

tQxt + β

1 − β
tr[(F′

2QF2 + H′
2PH2)Ω], (21)

where

P ≡ W + βF′
1QF1 + βH′

1PH1. (22)

Although a Lagrangian could be used, it is just as simple to substitute equation (19)
into equation (21) and transform what was a constrained optimization problem
into an unconstrained optimization problem. Following this substitution we have11

Loss(t,∞) = (A1yt−1 + A3xt + A5vt )
′ D′−1PD−1 (A1yt−1 + A3xt + A5vt )

+ x′
tQxt + β

1 − β
tr[(F′

2QF2 + H′
2PH2)Ω]. (23)

Differentiating equation (23) with respect to xt and setting the resulting derivative
equal to zero gives

∂Loss (t,∞)

∂xt

= A′
3D′−1PD−1 (A1yt−1 + A5vt ) + (Q + A′

3D′−1PD−1A3)xt = 0.

(24)

Equation (24) can alternatively be expressed in terms of endogenous variables as

Qxt + A′
3D′−1Pyt = 0, (25)

which is useful when a “targeting rule” rather than an “instrument rule” (Svensson,
2003) is of interest. Solving equation (24) for xt produces

xt = − (
Q + A′

3D′−1PD−1A3
)−1

A′
3D′−1PD−1(A1yt−1 + A5vt )

≡ F1yt−1 + F2vt , (26)

which when inserted back into equation (19) leads to

yt = D−1(A1 + A3F1)yt−1 + D−1 (A5 + A3F2) vt

≡ H1yt−1 + H2vt . (27)

Of course, both P and D are implicit functions of H1, H2, F1, and F2. Thus,
equations (26) and (27) must be solved for a fixed point to obtain the desired
solution. The numerical procedure is as follows

Step 1. Initialize H1, H2, F1, and F2.
Step 2. Solve for D according to equation (20) and for P from equation (22), iterating

“backward through time” using a method such as the doubling algorithm.12
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Step 3. Update H1, H2, F1, and F2 according to

F1 = −(Q + A′
3O′−1PD−1A3)

−1A′
3D′−1PD−1A1, (28)

F2 = −(Q + A′
3D′−1PD−1A3)

−1A′
3D′−1PD−1A5, (29)

H1 = D−1(A1 + A3F1), (30)

H2 = D−1(A5 + A3F2). (31)

Step 4. Iterate over Steps 2 and 3 until convergence.

As should be clear from these four steps, the procedure is easy to implement,
requiring no more than standard matrix operations. It is worth noting that the
procedure does not require the predetermined variables to be separated from the
non-predetermined variables, thereby avoiding the matrix partitioning required by
state-space methods.

Remark 4: The feedback parameter matrices, F1 and F2, are independent of Ω
and thus optimal discretionary policies are certainty equivalent. Moreover, P and
D, and hence H1, H2, F1, and F2, are independent of the economy’s initial state.

Remark 5: Let zt ≡ [ y′
t x′

t ]′ and

K ≡
[

W 0
0 Q

]
.

For given F1, F2, and H2 matrices, and an H1 matrix whose spectral radius is less
than one, the transition equation for zt is zt = Hzt−1 + Gvt , where H and G are
formed from F1, F2, H2, and H1 in a straightforward way. Then equation (1) can
be written as Loss(t,∞) = z′

t−1H′
1P̃H1zt−1 + v′

tG
′P̃Gvt + β

1 − β
tr(G′P̃GΩ), where

P̃ ≡ K + βH′P̃H (see Appendix B.2).

Remark 6: As a consequence of Remark 5, limβ↑1(1−β)Loss(t,∞) = tr(KΦ),
where Φ is the unconditional covariance matrix of zt (see Appendix B.3).

5. COMPARING SOLUTION METHODS13

The previous two sections showed how to solve for optimal commitment policies
and optimal discretionary policies when the optimization problem is formulated
with the constraints in structural form. This contrasts with the approach taken
in Oudiz and Sachs (1985), Currie and Levine (1985, 1993), Backus and Driffill
(1986), and Söderlind (1999), which is to minimize

Loss(t,∞) = Et

∞∑
j=0

βj [p′
t+j Spt+j + 2p′

t+j Uxt+j + x′
t+j Rxt+j ], (32)
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subject to [
p1t+1

Etp2t+1

]
=

[
A11 A12

A21 A22

] [
p1t

p2t

]
+

[
B1

B2

]
[xt ] +

[
st+1

0

]
, (33)

where pt ≡ [ p′
1t p′

2t ]′ combines the predetermined variables, p1t, and the nonpre-
determined variables, p2t. The key difference between this formulation and that
employed in this paper lies largely in how the constraints are expressed, structural
form, equation (2), or state-space form, equation (33).

In this section we apply the algorithms developed in Sections 3 and 4 to two
optimization-based New Keynesian models and compare their computation times
to state-space solution methods. Because optimal commitment policies and opti-
mal discretionary policies are often studied in the monetary policy literature, the
models that we analyze are drawn from that literature. We study the small open-
economy model developed by Galı́ and Monacelli (2005) and closed-economy
model developed by Erceg, Henderson, and Levin (2000) (EHL), both are repre-
sentative of the models used to examine monetary policy issues. For discretion,
we compare the algorithm developed in Section 4 to those developed in Oudiz and
Sachs (1985) and Backus and Driffill (1986). For commitment, we compare the
algorithm presented in Section 3 to those developed by Backus and Driffill (1986)
and Söderlind (1999). Subsequently, we apply our procedures to the larger Fuhrer
and Moore (1995) model and discuss situations in which convergence problems
can sometimes be encountered when solving for optimal policies.

Solving for optimal commitment policies using the approach of Section 3 re-
quires solving a rational expectations (RE) model and there are numerous tech-
niques available to perform this task. We take the opportunity to compare two RE
solution methods, the “brute force” undetermined-coefficient method presented
in Binder and Pesaran (1995) and the QZ-decomposition method presented in
Klein (2000). For the latter, we used both the real QZ decomposition and the
complex QZ decomposition14; however, only the computation times for the real
QZ decomposition are reported since they were uniformly faster than those for the
complex QZ decomposition.15

5.1. A Small-Scale Open-Economy Model

In the open-economy model developed by Galı́ and Monacelli (2005), house-
holds consume an aggregate of domestically produced and imported goods. The
law-of-one-price applies to imported goods. Domestic firms are monopolistically
competitive and subject to Calvo-style price rigidities (Calvo, 1983). Financial as-
sets are internationally tradable and nominal uncovered interest parity holds. The
law-of-one-price together with the definition for consumer price inflation implies
that the real exchange rate and the terms-of-trade are perfectly correlated, whereas
nominal uncovered interest parity coupled with the law-of-one-price implies that
real uncovered interest parity holds.
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For our purposes, the relevant model equations are16

yt = Etyt+1 − ωα

σ
(it − Etπt+1) + gt

πt = βEtπt+1 + καyt + ut

πc
t = πt + α

1 − α
(qt − qt−1)

qt = Etqt+1 − (1 − α)(it − Etπt+1 − i∗t + Etπ
∗
t+1) + (1 − α)εt ,

where yt denotes the output gap, πt denotes domestic goods’ inflation, πc
t denotes

consumer price inflation rate, qt denotes the real exchange rate (an increase in
qt represents a real depreciation), it and i∗t denote domestic and foreign nominal
interest rates, respectively, π∗

t denotes foreign inflation, and gt , ut , and εt are
white noise shocks.17

The central bank sets the nominal interest rate, it , to minimize the loss function

Loss(t,∞) = Et

∞∑
j=0

βj
[(

πc
t+j

)2 + λy2
t+j + ν

(
it+j − it+j−1

)2]
, (34)

where the policy preference parameters, λ and ν, are restricted to be nonnegative. In
the experiments that follow, we consider a range of policy preference parameters,
allowing λ to take on the values 0, 1, and 3 and ν to take on the values 0, 1

2 ,
and 1.

5.1.1. Solution times. We first assume that policy is set with discretion. Table 1
reports the time it takes to solve the Galı́-Monacelli model using the algorithm
in Section 4 and the algorithms in Oudiz and Sachs (1985), Backus and Driffill
(1986), and Söderlind (1999).18 The procedure presented in Söderlind (1999) is

TABLE 1. Solution times under discretion (hundreds of seconds)

Backus-Driffill/
Regime Section 4 Oudiz-Sachs Söderlind

(λ, ν) = (0, 0) 0.09 0.16 0.16
(λ, ν) = (0, 1

2 ) 0.17 0.16 0.17
(λ, ν) = (0, 1) 0.19 0.17 0.18
(λ, ν) = (1, 0) 0.15 0.11 0.11
(λ, ν) = (1, 1

2 ) 0.14 0.12 0.12
(λ, ν) = (1, 1) 0.16 0.12 0.12
(λ, ν) = (3, 0) 0.08 0.08 0.08
(λ, ν) = (3, 1

2 ) 0.12 0.09 0.10
(λ, ν) = (3, 1) 0.12 0.10 0.10
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TABLE 2. Solution times under commitment (hundreds of seconds)

Section 3
Backus-Driffill Söderlind

Regime Binder-Pesaran Real-QZ Dyn. Prog. Real-QZ

(λ, ν) = (0, 0) — — — —
(λ, ν) = (0, 1

2 ) 0.10 0.13 0.07 0.09
(λ, ν) = (0, 1) 0.12 0.12 0.09 0.09
(λ, ν) = (1, 0) 0.15 0.11 — 0.05
(λ, ν) = (1, 1

2 ) 0.21 0.12 0.14 0.08
(λ, ν) = (1, 1) 0.19 0.12 0.14 0.09
(λ, ν) = (3, 0) 0.27 0.11 — 0.05
(λ, ν) = (3, 1

2 ) 0.29 0.12 0.21 0.08
(λ, ν) = (3, 1) 0.30 0.12 0.21 0.08

the same as Backus and Driffill (1986) and for this reason both algorithms are
attributed the same computation time.

The first point to note is that all of the algorithms are able to quickly obtain
the optimal discretionary rule for each parameter combination considered. At the
same time, the results indicate that the Oudiz-Sachs algorithm is the fastest for this
model, but only marginally; the difference between the fastest algorithm (Oudiz-
Sachs) and the slowest algorithm (Section 4) is just 0.00012 second on average. It
takes slightly longer to solve the model when the constraints are in structural form
because the structural form does not exploit as much of the model’s structure as
the state-space form does. No convergence problems were encountered with any
of the algorithms.

Turning to the commitment solution methods, Table 2 shows that for the
algorithms that use recursive methods—Binder-Pesaran and Backus-Driffill—the
solution time is increasing in λ and ν. The algorithms that obtain the commitment
policy using the real QZ decomposition are both quicker in general than the
recursive methods and have solution times that are largely invariant to the loss
function’s parameterization. As with discretion, use of the structural form weighs
on the computation time slightly. Table 2 also shows that for this model the
Backus-Driffill algorithm cannot obtain the solution when ν = 0, regardless of
the value for λ.19 In fact, none of the algorithms are able to obtain a solution when
λ = ν = 0. For the Binder-Pesaran method the matrix recursion used to solve the
RE model does not converge, although the iterations do converge when ν is small
but nonzero. The procedures that rely on eigenvalue methods determine the correct
number of unstable eigenvalues, but a singularity prevents the jump variables from
being related to the predetermined variables in a way that eliminates the unstable
dynamics.20 The fact that the problem occurs regardless of whether the model is
in structural or state-space form shows that it is not idiosyncratic to one particular
formulation of the optimization problem.
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5.2. A Small-Scale Closed-Economy Model

The second model that we examine is that developed by Erceg, Henderson, and
Levin (2000) (EHL). EHL assume that both prices and wages are subject to Calvo-
contracts, but the model is otherwise a standard New Keynesian business cycle
model with monopolistically competitive firms. When log-linearized about the
model’s Pareto optimal equilibrium, the relevant equations are:21

gt = Etgt+1 − 1

σ lc
(it − Etπt+1 − r∗

t )

πt = βEtπt+1 + κρ (wt − mplt )

wt = βEtwt+1 + κρ (mrst − wt)

mplt = w∗
t − λmplgt

mrst = w∗
t + λmrsgt

wt = wt−1 + wt − πt

r∗
t = σ lc(Ety

∗
t+1 − y∗

t ) + σ lq (Etqt+1 − qt )

w∗
t = w∗

xxt + w∗
qqt + w∗

z zt

y∗
t = y∗

xxt + y∗
qqt + y∗

z zt

xt = ρxt−1 + επt ,

where gt denotes the output gap, it denotes the short-term nominal interest rate,
πt denotes price inflation, wt denotes the real wage, mplt denotes the marginal
product of labor, wt denotes wage inflation, mrst denotes the marginal rate of
substitution between consumption and leisure, and r∗

t , w∗
t , and y∗

t denote the
Pareto optimal real interest rate, real wage, and level of output, respectively.
Finally, xt , zt , and qt , denote a technology shock, a leisure preference shock, and
a consumption preference shock.22

For the purposes of this section, the central bank’s loss function is assumed to
be

Loss(t,∞) = Et

∞∑
j=0

βj
[
π2

t+j + λg2
t+j + ν(it+j − it+j−1)

2
]

with the nominal interest rate, it , serving as the central bank’s policy instrument.

5.2.1. Solution times. Table 3 reports the time taken to solve the model under
discretion for different parameterizations of the policy objective function.23

As with the Galı́-Monacelli model, none of the algorithms had any difficulty
solving the model for any of the parameterizations considered. Aside from two
notable outliers, the Oudiz-Sachs algorithm is again the most efficient while the
algorithm developed in Section 4 is typically the slowest, taking on average
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TABLE 3. Solution times under discretion (hundreds of seconds)

Backus-Driffill/
Regime Section 4 Oudiz-Sachs Söderlind

(λ, ν) = (0, 0) 0.38 0.51 0.51
(λ, ν) = (0, 1

2 ) 1.67 4.02 2.07
(λ, ν) = (0, 1) 1.83 4.03 2.14
(λ, ν) = (1, 0) 4.54 2.40 2.52
(λ, ν) = (1, 1

2 ) 4.92 2.34 2.48
(λ, ν) = (1, 1) 5.03 2.33 2.49
(λ, ν) = (3, 0) 4.49 2.51 2.63
(λ, ν) = (3, 1

2 ) 4.99 2.48 2.60
(λ, ν) = (3, 1) 5.16 2.48 2.62

1.5 hundreds of a second longer the obtain the solution. Although all of the
algorithms are notably slower when solving the EHL model than when solving
the Galı́-Monacelli model, the relative inefficiency of the structural form method
is more apparent here because the EHL model contains a larger number of non-
predetermined variables, whose lagged values are all treated as candidate state
variables by the algorithm.

Table 4 reports computation times for the EHL model when solving for optimal
commitment policies; several interesting results emerge. First, the computation
time is longer when a recursive method is used, such as the Backus-Driffill algo-
rithm or Binder and Pesaran’s RE solution method. Second, optimal commitment
policies can generally be obtained more quickly than optimal discretionary poli-
cies, even if a recursive method is used to solve for the optimal commitment
policy. Third, as earlier, the Backus-Driffill algorithm is unable to solve for the
optimal commitment policy when ν = 0, but now none of the other algorithms
have problems.

TABLE 4. Solution times under commitment (hundreds of seconds)

Section 3
Backus-Driffill Söderlind

Regime Binder-Pesaran Real-QZ Dyn. Prog. Real-QZ

(λ, ν) = (0, 0) 2.81 0.26 — 0.10
(λ, ν) = (0, 1

2 ) 0.91 0.32 1.18 0.16
(λ, ν) = (0, 1) 1.07 0.35 1.18 0.15
(λ, ν) = (1, 0) 2.06 0.27 — 0.06
(λ, ν) = (1, 1

2 ) 1.82 0.29 1.23 0.12
(λ, ν) = (1, 1) 1.77 0.30 2.08 0.13
(λ, ν) = (3, 0) 2.93 0.25 — 0.07
(λ, ν) = (3, 1

2 ) 3.22 0.30 1.48 0.12
(λ, ν) = (3, 1) 3.26 0.31 1.51 0.12
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5.3. A Larger Model

The final model that we consider is the well-known model developed by Fuhrer
and Moore (1995). The particular specification that we analyze comes from Fuhrer
(1997, Table IV). The model equations are given by

yt = 1.45yt−1 − 0.47yt−2 − 0.34ρt−1 + εt

ρt = 40

41
Etρt+1 + 1

41
(it − Etπt+1)

pt = 0.42wt + 0.31wt−1 + 0.19wt−2 + 0.08wt−3

πt = 4 (pt − pt−1)

vt = 0.42w̄t + 0.31w̄t−1 + 0.19w̄t−2 + 0.08w̄t−3

w̄t = 0.42vt + 0.31Etvt+1 + 0.19Etvt+2 + 0.08Etvt+3

+ 0.002 (0.42yt + 0.31Etyt+1 + 0.19Etyt+2 + 0.08Etyt+3) + εt ,

where yt represents the output gap, pt represent the price level, wt represents the
nominal wage, πt represents inflation, w̄t represents the real wage, ρt represents
the real yield on a 10-year bond, and it , the short-term nominal interest rate, serves
as the central bank’s policy instrument.

Unlike the optimization-based models analyzed earlier, which each contained
only two endogenous state variables, the Fuhrer-Moore model contains seven
endogenous state variables, and it also contains a relatively large number of non-
predetermined variables. Despite its larger size, the Fuhrer-Moore model can
easily be written in second-order structural form and solved using the algorithms
developed in Sections 3 and 4. As earlier, the central bank’s loss function takes
the form

Loss(t,∞) = Et

∞∑
j=0

βj
[
π2

t+j + λy2
t+j + ν(it+j − it+j−1)

2
]
.

Table 5 reports the time taken (in hundreds of seconds) to solve the Fuhrer-
Moore model using the algorithms presented in Sections 3 and 4 for different
values of λ and ν. The discount factor, β, is set to 0.99.24

Table 5 underscores the point that it is much more efficient to solve for optimal
commitment policies the real QZ decomposition than it is to use the Binder-
Pesaran solution method, which employs recursive iterations, and that optimal
commitment policies can be obtained more quickly than optimal discretionary
policies. Nevertheless, averaging across the parameterizations for which the
solution could be obtained, it takes less than one-tenth of a second to solve
for the optimal discretionary policy. Perhaps the most notable feature of Table 5,
however, is that when λ = ν = 0 the optimal commitment policy is obtained
when using the real QZ decomposition but not (to sufficient accuracy) when
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TABLE 5. Solution times (hundreds of seconds)

Commitment

Regime Discretion Binder-Pesaran Real-QZ

(λ, ν) = (0, 0) — — 1.40
(λ, ν) = (0, 1

2 ) 4.36 8.37 1.63
(λ, ν) = (0, 1) 5.17 9.20 1.63
(λ, ν) = (1, 0) 11.70 8.94 1.47
(λ, ν) = (1, 1

2 ) 5.35 6.17 1.64
(λ, ν) = (1, 1) 5.17 5.57 1.65
(λ, ν) = (3, 0) 16.24 7.26 1.48
(λ, ν) = (3, 1

2 ) 9.26 7.53 1.66
(λ, ν) = (3, 1) 8.73 7.21 1.72

using Binder-Pesaran. Moreover, for this parameterization of the loss function,
the optimal discretionary policy could not be obtained.

5.4. Convergence Issues

For the three models analyzed here, one or more of the solution algorithms could
not obtain the optimal (commitment/discretionary) policy for some parameteriza-
tions of the loss function. Looking closely at the offending parameterizations, it is
notable that they are all parameterizations for which no penalty is placed on the
policy instruments, that is cases where the central bank is not concerned about in-
terest rate smoothing/stabilization. Similar instances are documented in Svensson
(2000) and Dennis and Söderström (Forthcoming), and, together, these occurrence
highlight the fact that the properties of the solution algorithms, particularly those
for obtaining discretionary policies, have not been explored. In fact, when dis-
cussing their algorithm for obtaining optimal discretionary policies, Oudiz and
Sachs (1985, p. 311) comment “We do not know of any general result concerning
the convergence of this process. However in our empirical applications we have
not run into major problems.” Similarly, Söderlind (1999, p. 819), notes that “The
general properties of this algorithm are unknown. Practical experience suggests
that it is often harder to find the discretionary equilibrium than the commitment
equilibrium. It is unclear if this is due to the algorithm.”

The approach taken in this paper provides insights as to why, and under what cir-
cumstances, convergence problems may be encountered when solving for optimal
discretionary policies. For this purpose, the key equations in the algorithm are

P = W + βF′
1QF1 + βH′

1PH1 (35)

D = A0 − A2H1 − A4F1 (36)

H1 = D−1
(
I − A3

(
Q + A′

3D−1PD−1A3
)−1

A′
3D′−1PD−1)A1 (37)
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where equations (35) and (36) are taken directly from Sections 4 and (37)
is obtained by substituting equation (28) into equation (30). By inspection,
difficulties obtaining the optimal discretionary policy can arise when:

1. The discount factor is close to one and the H1 matrix associated with the optimal
discretionary policy has a spectral radius close to one. In this situation, it take a long
time for recursive methods to obtain the fixed point P. If this problem occurs, it may
be useful to solve for P using a nonrecursive method, such as the Hessenberg-Schur
algorithm described in Anderson et al. (1996).

2. The iterations produce a D matrix that is singular. Because A2 and A4 are typically
sparse and A0 has full rank, a singularity in D is unlikely to occur.

3. The iterations produce a
(
Q + A′

3D−1PD−1A3

)
matrix that is singular. This will occur

if both Q and PD−1A3 equal null matrices, that is, if the loss function does not penalize
movements in the policy instrument(s) and the target variables are contemporaneously
unaffected by movements in the policy instruments. When both PD−1A3 and Q equal
null matrices the optimal discretionary policy is not uniquely determined by setting
the derivative of the loss function with respect to the policy instrument(s) to zero, see
equation (24).

Among these three situations, the first will likely increase the computation time,
the second is very unlikely to occur, and the third accounts for the problems
encountered above, in Svensson (2000), and in Dennis and Söderström
(Forthcoming), which all involve a loss function that does not penalize the policy
instrument. In fact, the assumption that Q is positive definite—rather than just
positive semi-definite—which would preclude this problem, is standard in linear-
quadratic control theory (Rustem and Zarrop, 1979; Anderson et al. 1996, p. 175).
We did not restrict Q to be positive definite in our analysis because policies where
the central bank does not smooth or stabilize interest rates are of broad interest
and can be obtained for many models.

6. CONCLUSION

This paper has presented new algorithms to solve for optimal commitment rules
and optimal discretionary rules in rational expectation models. These algorithms
differ from those developed by Oudiz and Sachs (1985), Backus and Driffill (1986),
and Söderlind (1999) in that they do not require the optimization constraints to be
written in state-space form. This paper has also extended the class of models that
can be analyzed, allowing expectations of future policy instruments to enter the
optimization constraints, which can be useful when solving models that contain
an interest rate term structure, and showed how to derive the Euler equation for
the optimal discretionary policy, which is needed to study targeting rules.

After setting up the optimization problem in Section 2, the approaches taken
to solve for optimal commitment policies and optimal discretionary policies were
described in Sections 3 and 4, respectively. Section 5 took two optimization-based
New Keynesian models and used a range of solution algorithms to solve them for
optimal commitment policies and optimal discretionary policies for a variety of
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policy objective functions. For these models it was feasible to analytically derive
state-space representations. Although the relative advantage of the solution meth-
ods developed in this paper is that they save the user from having to manipulate
a model into state-space form, computational experiments on these small-scale
models showed that the state-space solution methods are generally more efficient,
precisely because they exploit more of the model’s structure. Nevertheless, the
methods developed here can be employed to solve larger models and for small mod-
els they are efficient enough to be used in estimation exercises, which may involve a
model being solved many times within a hill-climbing routine [see Dennis (2004b)
for an application]. Section 5 also solved the Fuhrer-Moore model, a model that
can be much more quickly expressed in structural form than in a state-space form.

The paper also has discussed some of the computational problems that can
be encountered when solving for optimal policies and showed why, in practice,
placing a small penalty on movements in the policy instrument(s), invariably
overcomes these problems. These experiments also showed that it is generally
more efficient to solve for optimal commitment policies by solving the underlying
rational expectations model using the real QZ-decomposition rather than either
the complex QZ-decomposition or the Binder-Pesaran algorithm.

NOTES

1. An alternative approach is to assume that the policy maker sets policy according to a “timeless
perspective” (Woodford, 1999). According to the timelsss perspective the policymaker optimizing
today behaves as it would have chosen to if it had optimized at a time far in the past. Useful discussions
and analyses of timelessly optimal policies can be found in Giannoni and Woodford (2002) and Jensen
and McCallum (2002).

2. See Holly and Hughes-Hallett (1989), Amman and Kendrick (1999), Chen and Zadrozney
(2002), and Blake (2004), for other approaches.

3. Söderlind (1999) provides a popular implementation of the Backus and Driffill (1986) algorithm.
Krusell, Quadrini, and Rios-Rull (1997) provide an alternative, guess-and-verify, approach to solving
for time-consistent policies.

4. Dennis (2004a) shows how to solve for optimal simple rules when the optimization constraints
are written in structural form.

5. Dennis and Söderström (Forthcoming) apply the methods developed in this paper to the macro-
policy model developed by Orphanides and Wieland (1998), which is somewhat more complicated
than the Fuhrer and Moore (1995) model.

6. The omission of terms interacting yt and xt in equation (1) is without loss of generality. When
the constraints are in structural form it is always possible in include xt within yt with W containing
the relevant penalty terms.

7. Binder and Pesaran (1995) show how a wide class of models, which can contain quite general
lead-lag structures and expectations formed with varying information sets, can be written in terms of
equation (2).

8. Svensson (2000) also solves a model that contains the expected future value of the policy
instrument. However, Svensson (2000) considers discretion but not commitment.

9. Because W and Q are symmetric positive semidefinite and the policy constraints are convex the
Lagrangian is also convex and the first-order conditions are sufficient for locating the minimum.

10. More precisely, the constraints on λt0−1 are [A′
2A′

4]′λt0−1 = 0. Because dim[ker([A′
2A′

4])] is
not necessarily zero, the restriction in the text, λt0−1 = 0, is sufficient but stronger than necessary.
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11. This transformation requires that D have full rank, which is invariably satisfied because A0 has
full rank.

12. A description of the doubling algorithm along with other methods for solving matrix Sylvester
equations can be found in Anderson, Hansen, McGrattan, and Sargent (1996).

13. All simulations were conducted in Gauss 6.0.17 using a Pentium IV 2.6Ghz processor with
1.5GB RAM.

14. Routines to perform the real QZ decomposition and the complex QZ decomposition in Gauss
are available from Paul Söderlind’s Web site. These excellent routines were employed in this study.

15. Söderlind’s (1999) method of solving for commitment equilibria also utilizes the real QZ
decomposition.

16. The structural form and the state-space form used for the Galı́-Monacelli model are contained
in a technical appendix that is available on request.

17. We follow Galı́ and Monacelli (2005) and set η = 1, α = 0.4, β = 0.99, θ = 0.75, σ = 1,

ϕ = 3, ωα = 1 + α (2 − α) (ση − 1) , and κα = (1 − θ) (1 − βθ)/θ(ϕ + σ
ωα

). We condition on the
foreign variables and normalize their values to zero.

18. The model was solved 100,000 times using each algorithm from which average solution times
were computed. The convergence criteria were set so that the algorithms all returned solutions that
were identical to 13 significant figures.

19. The source of this difficulty is a singularity in the transformation the algorithm uses to rotate
the dynamic programming solution into state/co-state space.

20. This instability differs from the standard form of instability encountered in rational expectations
models, which is that the system contains more unstable eigenvalues than there are nonpredetermined
variables.

21. The structural form and the state-space form used for the EHL model are contained in a
technical appendix that is available on request.

22. We parameterize the model according to Erceg, Henerson, and Levin (2000), setting σ = χ =
1.5, α = 0.3, θw = θp = 1

3 , ζw = ζp = 0.75, ρ = 0.95, β = 0.99, C = 3.163, Q = 0.3163,

N = 0.27, Z = 0.03, lc = C/(C − Q), lq = Q/(C − Q), ln = N/(1 − N − Z), lz =
Z/(1 − N − Z), � = α + χln + (1 − α)σ lc, λmpl = α/(1 − α), λmrs = σ lc + χln/(1 − α), κp =
(1 − ζp)(1 − βζp)/ζp, κw = (1 − ζw)(1 − βζw)/[(1 + χln(

1 +θw

θw
))ζw], w∗

x = (χln + αlc)/�,

w∗
q = −ασ lq/�, w∗

z = αχlz/�, y∗
x = (1 + χln)/�, y∗

q = (1 − α)σ lq/�, y∗
z = −(1 − α)χlz/�.

23. The model was solved 100,000 times using each algorithm from which average solution times
were computed. The convergence criteria were set so that the algorithms all returned solutions that
were identical to 12 significant figures.

24. The model was solved 10,000 times using each algorithm from which average solution times
were computed.
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APPENDIX A

A.1. MATHEMATICAL PRELIMINARY

Assume that 0 < β < 1 and that the spectral radius of the matrix θ is less than one,
then the infinite series S = ∑∞

j=0 βjθ′j Wθj is convergent. Consequently, βθ′Sθ =∑∞
j=1 βjθ′j Wθj = S − W, and S can be found as the fixed point of S = W + βθ′Sθ.

A.2. ESTABLISHING REMARK 2

Let

zt ≡
⎡
⎣λt

yt

xt

⎤
⎦

and

K̂ ≡
⎡
⎣ 0 0 0

0 W 0
0 0 Q

⎤
⎦ .

From equation (27) the recursive equilibrium law of motion for zt can be expressed as
zt = Hzt−1 + Gvt . Given this law of motion, we have

Loss(t,∞) = Et

∞∑
j=0

βj (z′
t+j Kzt+j )

=
⎡
⎣z′

t

⎛
⎝ ∞∑

j=0

βj H′j KHj

⎞
⎠ zt + β

1 − β

⎛
⎝ ∞∑

j=0

βj tr(G′H′j KH jGΩ)

⎞
⎠

⎤
⎦ ,
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which using the result regarding convergent infinite series in Appendix A.1 can be simplified
to

Loss(t,∞) =
[

z′
t P̂zt + β

1 − β
tr(G′P̂GΩ)

]
,

where P̂ ≡ K̂ + βH′P̂H. Finally, again using the law of motion for zt we obtain

Loss(t,∞) =
[

z′
t−1H′P̂Hzt−1 + v′

tG
′P̂Gvt + β

1 − β
tr(G′P̂GΩ)

]
,

as required.

A.3. ESTABLISHING REMARK 3

From A.2 the loss function under commitment can be written as

Loss(t,∞) =
[

z′
t P̂zt + β

1 − β
tr(G′P̂GΩ)

]
, (A.1)

where P̂ ≡ K̂ + βH′P̂H, and the economy’s evolution is given by

zt = Hzt−1 + Gvt . (A.2)

From Appendix A.2, the unconditional variance-covariance matrix for zt is the fixed point
of

Σ = HΣH′ + GΩG′, (A.3)

from which the unconditional variance-covariance matrix for [ y′
t x′

t ]′, Φ, can be obtained.
Multiplying (A.1) through by (1 − β) gives

(1 − β)Loss(t,∞) = (1 − β)z′
t P̂zt + βtr(G′P̂GΩ)

= (1 − β)z′
t P̂zt + βtr(̂PGΩG′).

Now employing (A.3) we have

(1 − β)Loss(t,∞) = (1 − β)z′
t P̂zt + βtr[̂P(Σ − HΣH′)]

= (1 − β)z′
t P̂zt + βtr(̂PΣ) − βtr(H′P̂HΣ)

= (1 − β)z′
t P̂zt + βtr(̂PΣ) − tr[(̂P − K̂)Σ]

= (1 − β)z′
t P̂zt − (1 − β)tr(̂PΣ) + tr(K̂Σ).

Provided the spectral radius of H is less than one, P̂ will remain bounded even in the
limit as β ↑ 1. Therefore, limβ↑1Loss (t,∞) = tr(K̂Σ). However, defining

K ≡
[

W 0
0 Q

]

so that

K̂ ≡
[

0 0
0 K

]
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only the elements in Σ associated with yt and xt (i.e., Φ) are relevant. Consequently, we
have limβ↑1 Loss (t,∞) = tr (KΦ), as required.

APPENDIX B

B.1. DERIVING EQUATION (21)

We show that

Loss(t,∞) = Et

∞∑
j=0

βj (y′
t+j Wyt+j + x′

t+j Qxt+j )

= y′
tPyt + x′

tQxt + β

1 − β
tr[(F′

2QF2 + H′
2PH2)Ω],

where P ≡ S + βR = W + βF′
1QF1 + βH′

1PH1.
To establish this equality we exploit the properties of convergent geometric series, and the

requirement that, in equilibrium, yt+j = H1yt+j−1 +H2vt+j , and xt+j = F1yt+j−1 +F2vt+j ,
∀ j > 0. First write

Et

∞∑
j=0

βj (y′
t+j Wyt+j + x′

t+j Qxt+j )

= x′
tQxt + Et

∞∑
j=0

βj (y′
t+j Wyt+j ) + Et

∞∑
j=1

βj (x′
t+j Qxt+j ).

(B.1)

The first term on the RHS of (B.1) is in the appropriate form. We will treat the second
and third terms on the RHS separately, beginning with the second term. We can write

Et

∞∑
j=0

βj (y′
t+j Wyt+j ) = y′

t

⎛
⎝ ∞∑

j=0

βj H′j
1 WHj

1

⎞
⎠ yt + β

∞∑
l=0

∞∑
j=0

β(l+j)tr
(
H′

2H′l
1 WHl

1H2Ω
)
.

Assuming that the spectral radius of H1 is less than one, the result in Appendix A.1 leads
to

Et

∞∑
j=0

βj (y′
t+j Wyt+j ) = y′

tSyt + β

1 − β
tr(H′

2SH2Ω), (B.2)

where S ≡ W + βH′
1SH1.

Turning to the third term on the RHS of (B.1)

Et

∞∑
j=1

βj (x′
t+j Qxt+j ) = βy′

t

⎛
⎝ ∞∑

j=0

βj H′j
1 F′

1QF1Hj

1

⎞
⎠yt + β

∞∑
l=0

∞∑
j=0

β(l+j)tr
(
H′l

2 F′
1QF1Hl

2Ω
)
.
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Again, provided the spectral radius of H1 is less than one, the result in Appendix A.1 gives
R ≡ F′

1QF1 + βH′
1RH1. Therefore,

Et

∞∑
j=1

βj (x′
t+j Qxt+j ) = βy′

tRyt + β

1 − β
tr(F′

2QF2Ω) + β2

1 − β
tr(H′

2RH2Ω). (B.3)

Substituting (B.2) and (B.3) back into (B.1) gives

Loss(t,∞) = y′
t (S + βR)yt + x′

tQxt + β

1 − β
tr(F′

2QF2Ω) + β

1 − β
tr[H′

2(S + βR)H2Ω].

Finally, let P ≡ S + βR = W + βF′
1QF1 + βH′

1PH1 giving

Loss(t,∞) = y′
tPyt + x′

tQxt + β

1 − β
tr(F′

2QF2Ω) + β

1 − β
tr(H′

2PH2Ω),

or

Loss(t,∞) = y′
tPyt + x′

tQxt + β

1 − β
tr[(F′

2QF2 + H′
2PH2)Ω],

as required.

B.2. ESTABLISHING REMARK 5

Let zt ≡ [ y′
t x′

t ]′, then the policy objective function, (B.1), can be written as

Loss(t,∞) = Et

∞∑
j=0

βj z′
t+j Kzt+j , (B.4)

where

K ≡
[

W 0
0 Q

]
,

and

zt+j =
[

H1 0
F1 0

]
zt+j−1 +

[
H2

F2

]
vt+j ≡ Hzt+j−1 + Gvt+j , ∀j > 0. (B.5)

Employing (B.5) in (B.4) gives

Loss(t,∞) = Et

∞∑
j=0

βj z′
t+j Kzt+j

= z′
t

⎛
⎝ ∞∑

j=0

βj H′jKHj

⎞
⎠ zt + β

1 − β

∞∑
j=0

βj tr(G′H′j KHj GΩ).

Now, exploiting the properties of convergent geometric series from Appendix A.1, we have

Loss(t,∞) = z′
t P̃zt + β

1 − β
tr(G′P̃GΩ),
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or

Loss(t,∞) = z′
t−1H′P̃Hzt−1 + v′

tG
′P̃Gvt + β

1 − β
tr(G′P̃GΩ),

where P̃ ≡ K + βH′P̃H, as necessary.

B.3. ESTABLISHING REMARK 6

In this appendix we establish that limβ↑1 (1 − β) Loss (t,∞) = tr (KΦ). Recall that the
policy objective function can be written as

Loss(t,∞) = y′
tPyt + x′

tQxt + β

1 − β
tr[(F′

2QF2 + H′
2PH2)Ω],

where P ≡ W + βF′
1QF1 + βH′

1PH1. The components of the unconditional variance-
covariance matrices for yt and xt are given by

Φy = H1ΦyH′
1 + H2ΩH ′

2 (B.6)

Φx = F1ΦyF′
1 + F2ΩF ′

2 (B.7)

Φyx = H1ΦyF′
1 + H2ΩF ′

2

Φxy = F1ΦyH′
1 + F2ΩH ′

2.

Scaling the policy objective function by (1 − β) gives

(1 − β)Loss(t,∞) = (1 − β)(y′
tPyt + x′

tQxt ) + βtr[(F′
2QF2 + H′

2PH2)Ω].

Exploiting the properties of the trace operator results in

(1 − β)Loss(t,∞) = (1 − β)(y′
tPyt + , x′

tQxt ) + βtr(QF2ΩF ′
2 + PH2ΩH ′

2).

Employing (B.6) and (B.7) gives

(1 − β)Loss(t,∞) = (1 − β)(y′
tPyt + x′

tQxt )

+ βtr[Q(Φx−F1ΦyF′
1) + P(Φy−H1ΦyH′

1)]

= (1 − β)(y′
tPyt + x′

tQxt ) + βtr[QΦx + WΦy − (1 − β)(F′
1QF1 + H′

1PH1)].

Because the spectral radius of H1 is less than one, P remains bounded even as β ↑ 1. Thus,
limβ↑1(1−β)(y′

tPyt +x′
tQxt ) = 0 and limβ↑1 (1 − β)

(
F′

1QF1 + H′
1PH1

) = 0, which gives
us the result that limβ↑1(1 − β)Loss(t,∞) = tr(QΦx + WΦy) = tr (KΦ), where

Φ ≡
[

Φy Φyx

Φxy Φx

]
.
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