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Abstract
We prove and generalise a conjecture in [MPP4] about the asymptotics of 1√

n! f
λ/μ, where f λ/μ is the number

of standard Young tableaux of skew shape λ/μ which have stable limit shape under the 1/
√
n scaling. The

proof is based on the variational principle on the partition function of certain weighted lozenge tilings.
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1. Introduction
In enumerative and algebraic combinatorics, Young tableaux are fundamental objects that have
been studied for over a century with a remarkable variety of both results and applications to other
fields. The asymptotic study of the number of standard Young tableaux is an interesting area in
its own right, motivated by both probabilistic combinatorics (longest increasing subsequences) and
representation theory. This paper is a surprising new advance in this direction, representing a
progress which until recently could not be obtained by existing tools.

1.1. Main results
Let us begin by telling the story behind this paper. Denote by f λ/μ = SYT (λ/μ) the number of
standard Young tableaux of skew shape λ/μ. There is Feit’s determinant formula for f λ/μ, which
can also be derived from the Jacobi–Trudy identity for skew shapes. In some cases, there are mul-
tiplicative formulas for f λ/μ, e.g. the hook-length formula (HLF) when μ=∅, see also [MPP3].
However, in general, it is difficult to use Feit’s formula to obtain even the first order of asymptotics,
since there is no easy way to diagonalize the corresponding matrices.

It is easy to show (see e.g. [Pak2]), that when |λ/μ| =N and λ1, �(λ) ≤ s
√
N, we have:

cN1 ≤
(
f λ/μ

)2
N! ≤ cN2 ,

where c1, c2 > 0 are universal constants which depend only on s. Improving upon these estimates
is of interest in both combinatorics and applications (cf. [MPP3, MPP4]).

In [MPP4], much sharper bounds on c1, c2 were given, when the diagrams λ and μ have a limit
shape ψ/φ under 1/

√
N scaling in both directions (see below). Based on observations in special
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cases, we conjectured that there is always a limit

lim
N→∞

1
N

log
(
f λ/μ

)2
N!

in this setting. The main result of this paper is a proof of this conjecture.

Theorem 1.1 Let
{
λ(N)} and {μ(N)} be two partition sequences with strongly stable (limit) shapes

ψ and φ, respectively (see §2.4 for precise definitions). Let ν(N):= λ(N)/μ(N), such that |ν(N)| =
N + o(N/ logN). Then

1
N

(
log f ν

(N) − 1
2
N logN

)
−→ c(ψ/φ) as N → ∞,

for some fixed constant c(ψ/φ).

The constant c(ψ/φ) is given in Corollary 4.7. The proof of the theorem is even more inter-
esting perhaps than one would expect. In [Nar], Naruse developed a novel approach to counting
f λ/μ, via what is now known as the Naruse hook-length formula (NHLF):

f λ/μ = N!
∑

D∈E(λ/μ)

∏
u∈λ\D

1
hλ(u)

, (1.1)

where E(λ/μ)⊆ ([λ]
|μ|
)
is a collection of certain subsets of the Young diagram [λ] called excited

diagram (see e.g. [MPP3, Sec. 2.6]), and hλ(u) is the hook-length at u ∈ λ. The (usual) hook-length
formula is a special case μ=∅. Let us mention that E(λ/μ) can be viewed as the set of certain
particle configurations, giving it additional structure [MPP3].

Although E(λ/μ) can have exponential size, the NHLF can be useful in getting the asymptotic
bounds [MPP4]. It has been reproved and studied further in [MPP1, MPP2], including the q-
analogues and generalisations to trees and shifted shapes. See §2.3 for the precise statements.

The next logical step was made in [MPP3], where a bijection between E(λ/μ) and lozenge
tilings of a certain region was constructed. Thus, the number of standard Young tableaux f λ/μ
can be viewed as a statistical sum of weighted lozenge tilings. In a special case of thick hooks, this
connection is especially interesting, as the corresponding weighted lozenge tilings were previously
studied in [BGR] (see the example below).

Now, there is a large literature on random lozenge tilings of the hexagon and its relatives in
connection with the arctic circle phenomenon, see [CEP, CKP, Ken]. In this paper, we adapt the
variational principle approach in these papers to obtain the arctic circle behavior for the weighted
tilings as well. Putting all these pieces together implies Theorem 1.1.

Let us emphasise that the approach in this paper can be used to obtain certain probabilistic
information on random SYTs of large shapes, e.g. in [MPP3, §8] we show how to compute asymp-
totics of various path probabilities. However, in the absence of a direct bijective proof of NHLF,
our approach cannot be easily adapted to obtain limit shapes of SYTs as Sun has done recently
[Sun] using the beads model, and Gordenko [Gor] using a modified totally asymmetric simple
exclusion process (TASEP); see also §6.5.

1.2. Thick hooks
Let λ= (a+ c)b+c, μ= ab, N = |λ/μ| = c(a+ b+ c), where a, b, c≥ 0. This shape is called the
thick hook in [MPP4]. The HLF applied to the 180 degree rotation of λ/μ gives:

f λ/μ = N! �(a)�(b)�(c)2 �(a+ b+ c)2

�(a+ b)�(a+ c)�(b+ c)�(a+ b+ 2c)
.
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Here the superfactorial�(n) = 1! · 2! · · · (n− 1)! is the integer value of the Barnes G-function, see
e.g. [AsR].

On the other hand, E(λ/μ) in this case in bijection with the set of lozenge tilings of the hexagon
H (a, b, c)= 〈a× b× c× a× b× c〉, and the weight is simply a product of a linear function on
horizontal lozenges (see below). The number of lozenge tilings in this case is famously counted by
theMacMahon box formula for the number P(a, b, c) of solid partitionswhich fit into a [a× b× c]
box: ∣∣E(λ/μ)∣∣ = P(a, b, c) = �(a)�(b)�(c)�(a+ b+ c)

�(a+ b)�(b+ c)�(a+ c)
,

see e.g. [Sta2, §7.21]. It was noticed by Rains (see [MPP3, §9.5]), that in this example our weights
are special cases of multiparameter weights studied in [BGR] in connection with closed formulas
for q-Racah polynomials, cf. §6.2.

Now, Theorem 1.1 in this case does not give anything new, of course, as existence of the limit
when c→ ∞, a/c→ α and b/c→ β , follows from either the Vershik–Kerov–Logan–Shepp hook
integral of the strongly stable shapes [MPP4, §6.2] (see also [Rom]), or from the asymptotics of
the superfactorial:

log�(n) = 1
2
n2 log n − 3

4
n2 + 2n log n + O(n).

This gives the exact value c(ψ/φ) as an elementary function of (α, β).

1.3. Thick ribbons
Let νk:= (2k− 1, 2k− 2, . . . , 2, 1)/(k− 1, k− 2, . . . , 2, 1). This skew shape is a strongly stable
shape. The main theorem implies that there is a limit

1
N

(
log f νk − 1

2
N logN

)
→ C as k→ ∞,

where N = |νk| = k(3k− 1)/2. This proves a conjecture in [MPP4, §13.7]. The best known upper
and lower bounds for C calculated in [Pak2] are

−0.2368 ≤ C ≤ −0.1648,
but the exact value of C has no known closed formula. This paper describes C as solution of a
certain very involved variational problem (see Corollary 4.7 and §6.5).

1.4. Structure of the paper
We start with Section 2 which reviews the notation and known results on tilings, standard Young
tableaux and limit shapes. In Section 3, we state our main technical result (Theorem 3.3) on the
variational principle for weighted lozenge tilings, whose proof is postponed until Section 5. In the
technical Section 4, we deduce Theorem 1.1 from the variational principle. We conclude with final
remarks and open problems in Section 6.

2. Background and notation
2.1. Tilings and height functions
Let R be a connected region in the triangular lattice. One can view a lozenge tiling of R as a stepped
surface in R

3 where the first two coordinates are the coordinates of the points in the lattice and
the third coordinates is the height function h( · ) of a lozenge tiling defined in the following way:

• For every edge (x, y) in R, h(y)− h(x)= 1 if (x, y) is a vertical edge and h(y)− h(x)= 0
otherwise.
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Figure 1. A region R of the triangular lattice. A lozenge tiling of that region and the associated admissible stepped curve
(ASC).

Figure 2. Left: height function of the maximal tiling centered at x with height g(x). Right: the local move on lozenges.

In fact, there is a one to one correspondence between tilings of a given region and functions
which verify this property defined up to a constant. Using this bijection, we will denote by th the
tiling associated to a given height function h and we will do most of the subsequent reasoning
using height functions rather than tilings. The position (x, y) of a horizontal lozenge in th is the
coordinates of its upper corner in the triangular lattice.

We extend the definition of height functions to any region of the lattice as follows: for gen-
eral sets S, we say that a function h:S→Z is a height function if its restriction on each simply
connected component of S is a height function.

Let R be a lozenge tileable region. We say that the three-dimensional curve obtained by trav-
eling along ∂R and recording the height of each point is an admissible stepped curve (ASC). See
Figure 1.

Lemma 2.1 Let R be a connected region in the triangular grid and let g be a height function on a
subset S of R, such that for all x= (x1, x2), y= (y1, y2) ∈ S:

g(y)− g(x) ≤ min{y1 − x1, y2 − x2}. (2.1)

Then g can be extended into a height function on the whole region R.

The lemma is a variation on [PST, Thm. 4.1] (see also [Thu]). It can be viewed as a Lipschitz
extendability property on height functions (cf. [CPT]).We include a quick proof for completeness.

Proof. Note that hx(y)= g(x)+min{y1 − x1, y2 − x2} is the height function of the maximal
tiling centered at x and with height g(x) at x (see Figure 2). Define h(y):=minx∈S hx(y). Since
the minimum of two height functions is still a height function, we conclude that h is itself a height
function.Moreover, the inequality (2.1) implies that for all pairs x, y ∈ S:g(y)≤ hx(y).We conclude
that h(y)= g(y), which implies the result.

Second, we need the following standard proposition which will be useful later in this article.

Proposition 2.2 (see [Thu]). Every two lozenge tilings of a simply connected region R have equal
number of lozenges of each type.
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Figure 3. Skew shape λ/μ, the ASC γ ∗
λ/μ (in blue), and the ASC γλ/μ (in red).

In other words, the number of lozenges of each type depends only on R and not on the tiling.
This follows, e.g. since every two tilings of R are connected by local moves which do not change
the number of lozenges of each type (see Figure 2).

2.2. Skew shapes and tableaux
Let λ= (λ1, . . . , λr) andμ= (μ1, . . . ,μs) denote integer partitions of length �(λ)= r and �(μ)=
s. The size of the partition is denoted by |λ|. We denote by λ′ the conjugate partition, and by [λ] the
corresponding Young diagram (in English notation). The hook length hλ(x, y) of a cell (x, y) ∈ λ is
defined as hλ(x, y):= λx − x+ λ′y − y+ 1. It counts the number of cells directly to the right and
directly below (x, y) in [λ]. The content of a cell (x, y) ∈ λ is c(x, y)= y− x.

A skew shape λ/μ is defined as the difference of two shapes. Let N = |λ/μ|. We always assume
that the skew shape is connected. Let N = |λ/μ|, a=μ1, b= �(μ) and da, da−1, . . . , d−b be the
length of the diagonals in [λ/μ] with contents x− y= a, a− 1, . . . ,−b, respectively. Note that
the dμ1−1, dμ2−2, . . . , dμb−b are the diagonal lengths of the last cell (k,μk) of a row of μ.

A standard Young tableau (SYT) of shape λ/μ is a bijective function T:[λ/μ]→ {1, . . . ,N},
increasing in rows and columns. The number of such tableaux is denoted by f λ/μ. This counts the
number of linear extensions of the poset defined on [λ/μ], with cells increasing downward and to
the right.

2.3. Naruse’s hook-length formula
As mentioned in the introduction, the Naruse hook-length formula (1.1) gives a positive formula
for f λ/μ. It was restated in [MPP3, §7] in terms of lozenge tilings as follows.

Let λ/μ be a skew shape withN cells and a=μ1, b= �(μ). Let γ ∗
λ/μ be the ASC inR

3 bounded
below by the polygonal chain with points (0,a,0),(0,0,0),(b,0,0) and with upper side given by the
polygonal chain with points (k,μk, d) where d =max (dμ1−1, . . . , dμb−b)

1 . Let H∗
λ/μ be the set of

height functions h that extend γ ∗
λ/μ with the additional restriction that on each vertical diagonal

x− y= k there are no horizontal lozenges of th with position (x, y) with y>λx.
For our purposes, it will be more convenient to modify the upper side of the ASC instead of

imposing the above restriction on the horizontal lozenges. In order to do this, let γλ/μ be the ASC
inR3 bounded below by the polygonal chain with points (0,a,0),(0,0,0),(b,0,0) and with upper side
given by the polygonal chain with points (xi, yi, di) for i= a, a− 1, . . . , b, where (xi, yi) is the last
cell of [μ] in the diagonal with content i (see Figure 3). Let Hλ/μ be the set of height functions h
that extend γλ/μ.

For both height functions in H∗
λ/μ and Hλ/μ, the weight of a horizontal lozenge of th with

position (x, y) is the hook length hλ(x, y). The weight of a tiling th is the product of the weights of
its horizontal lozenges and we denote it by hooksλ(th),

hooksλ(th):=
∏
♦∈th

hλ(x♦, y♦).
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Figure 4. A lozenge tiling th for a height function h in Hλ/μ and its corresponding reverse plane partition π and excited
diagram D. Excited diagrams appear in Naruse’s formula.

Proposition 2.3 There is a weight preserving bijection between the height functions in Hλ/μ and
H∗
λ/μ.

Proof. The ASC γλ/μ and γ ∗
λ/μ are bounded below by the same polygonal chain with points

(0,a,0),(0,0,0),(b,0,0). The restriction on the horizontal lozenges of th for height functions h in
H∗
λ/μ is the same as the restriction imposed by the upper side of the polygonal chain bounding the

ASC γλ/μ. Therefore, there is a correspondence on the height functions that extend each of the
ASCs. Moreover, if h inHλ/μ corresponds to h′ inH∗

λ/μ, the horizontal lozenges in th and th′ have
the same respective positions (x, y) and therefore hooksλ(th)= hooksλ(th′), as desired. �
Remark 2.4 Alternatively, from the proof of [MPP3, Thm. 7.2] there is a correspondence from
lozenge tilings for height functions in H∗

λ/μ (in Hλ/μ) to excited diagrams in E(λ/μ) (see e.g.
[MPP3, Sec. 2.6] for a definition of these diagrams). The map is as follows, th corresponds to a
reverse plane partition of shape μ : th �→ π where π(i, j) is the height of the horizontal lozenge at
position (i, j). Next, such plane partitions π correspond to excited diagrams D in E(λ/μ) : π �→D
where ri,j:= πi,j − i is the row number of the final position of cell (i, j) ofμ after it has been moved
under the excited moves from [μ] to D (see Figure 4). The condition that D⊂ [λ] is equivalent to
the restriction on horizontal lozenges imposed by either the height restriction on such lozenges
for h inH∗

λ/μ or by the polygonal chain with points (xi, yi, di) where di are the lengths of diagonals
of λ/μ in the definition of Hλ/μ.

Theorem 2.5 (Naruse [Nar]; lozenge tiling versions [MPP3, §7]).

f λ/μ = N!∏
(x,y)∈λ hλ(x, y)

∑
h∈H∗

λ/μ

hooksλ(th) (2.2)

= N!∏
(x,y)∈λ hλ(x, y)

∑
h∈Hλ/μ

hooksλ(th). (2.3)

Proof. The first lozenge tiling reformulation is implicit in [MPP3, §7.1]. The second formula-
tion follows from the first one by using Proposition 2.3. �
Example 2.6 The skew shape 332/21 has five height functions that extend γ2,1,1:

Formula (2.3) yields in this case

f 332/21 = 5!
5 · 42 · 3 · 22

(
5 · 4 · 4 + 5 · 4 · 1 + 5 · 4 · 1 + 5 · 1 · 1 + 3 · 1 · 1) = 16.
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2.4. Stable shapes
Letψ :[0, a]→ [0, b] be a nonincreasing left continuous function. Assume a sequence of partitions
{λ(N)} satisfies the following property

(
√
N − L)ψ < [λ(N)] < (

√
N + L)ψ , for some L> 0,

where [λ] denotes the function giving the boundary of the Young diagram of λ. In this setting,
we say that {λ(N)} has a strongly stable shape ψ and denote it by λ(N) →ψ . Note that �(λ(N)),
�(λ(N)′)=O(

√
N). Such shapes are also called balanced (see e.g. [FeS]).

Let ψ , φ:[0, a]→ [0, b] be nonincreasing left continuous functions, and suppose that
area(ψ/φ)= 1. Let {vN = λ(N)/μ(N)} be a sequence of skew shapes with the strongly stable shape
ψ/φ, i.e. λ(N) →ψ , μ(N) → φ and in addition they satisfy the condition

|μ(N)| = area(φ) ·N + o(N/ logN). (2.4)
Denote by C(ψ), C(ψ/φ)⊂R

2+ the region below the curve ψ and between the curves ψ and φ,
respectively. One can view C(ψ/φ) as the stable shape of the skew diagrams.

Finally, define the hook function � : C(ψ)→R+ to be the limit of the scaled function of the
hooks:

�(x, y) := lim
N→∞

1√
N
hλ(N)

(�x√N�, �y√N�)=ψ(x)+ψ−1(y)− x− y , (2.5)

where ψ−1:[0, b]→ [0, a] is the inverse of the function ψ , which is the continuous analogue of
the conjugate partition, i.e. λ

′(N) →ψ−1.

3. Variational principle for weighted lozenge tilings
Lozenge tilings is a dimer model and the existence of a variational principle which governs the
limiting behavior of dimers under the uniform measure is a well known result (see [CKP]). Our
goal in this section will be to extend it to the case where we add weights to each tilings that depend
on the position and the type of the lozenge tiles.

3.1. Weighted tilings and smooth weights
Let D⊂R

2 be a connected domain in the plane, and let {w(i) :D→R}i≤3 be three real valued
functions corresponding to the weight of each type of lozenge. For a region R⊂D, define the
weight of a height function h on R associated to the weight functions w= (w(1),w(2),w(3)) as

wt(h) :=
∏
♦∈th

exp (w(i♦)(x♦, y♦)), (3.1)

where (x♦, y♦) are the coordinates of the center of the tile ♦ and i♦ ∈ {1, 2, 3} is the type of the
lozenge tile:

Given a weight function w, the partition function associated to an ASC γ is defined as

Z(γ ,w) :=
∑
h∈Hγ

wt(h),

where Hγ is the set of height functions which extend γ . Let Nγ be the size of Hγ and let L(i)(γ )
be the (common) number of type i lozenges in each height function that extends γ .
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Definition 3.1 Let D be a domain in R
2. A sequence of weight functions {wn}n∈N converges to a

piecewise smooth function ρ :D→R
3 if it has the following property:

lim
n→∞ sup

(x1,x2)∈D
‖wn(nx1, nx2)− ρ(x1, x2)‖∞ = 0. (*)

3.2. The variational principle
Our goal in this section is to establish a variational principle for weighted tilings. We recall the
unweighted version of the variational principle from [Ken, Thm. 9]. Let Lip[0,1] be the set of 1-
Lipschitz functions f :R2 →R that satisfy

0 ≤ ∂x1 f , ∂x2 f , 1− ∂x1 f − ∂x2 f ≤ 1 (3.2)
everywhere except on a set of Lebesgue measure 0. Let

σ (s, t) := 1
π

(
�(πs) + �(π t) + �

(
π(1− s− t)

))
, (3.3)

where�( · ) is the Lobachevsky function, see e.g. [TM].

Theorem 3.2 ([Ken]). Let {γn}n∈N be a sequence of ASC. Suppose that 1
nγn converges to a closed

curve γ in R
3 in the �∞ norm as n→ ∞. Then:

lim
n→∞

1
n2

logNγn → ϒ(gmax),

where gmax:U → R is the only extension of γ in Lip[0,1] that maximizes the following integral:

ϒ(g) :=
∫∫

U
σ
(∇g(x1, x2)

)
dx1dx2 ,

and U is the region enclosed by the projection of γ . Moreover, for all ε > 0 the height function of a
random tiling chosen from the weighted measure associated to wn on height functions with boundary
γn, stays within ε of gmax with probability → 1 as n→ ∞.

The proof of this result is sketched in [Ken] and is the analogue of an earlier result for dominoes
[CKP]. The argument in the latter paper extends to our setting of lozenges.

We are now ready to state the variational principle for the weighted case. The proof is
postponed to Section 5.

Theorem 3.3 (Weighted variational principle). Let {γn}n∈N be a sequence of ASC, and let
{wn}n∈N be a sequence of weight functions converging to a function ρ. Suppose that 1

nγn converges
to a closed curved γ in R

3 in the �∞ norm as n→ ∞. Then we have:

lim
n→∞

1
n2

log Z(Hγn ,wn) = �(fmax).

Here fmax:U →R is the only extension of γ in Lip[0,1] which maximises the following integral:

�(f ) :=
∫∫

U

(
σ (∇f ) + L(x1, x2,∇f )

)
dx1dx2, (3.4)

where U is the region enclosed by the projection of γ , and
L(x1, x2,∇f ) := ρ(x1, x2) · (∂x1 f , ∂x2 f , 1− ∂x1 f − ∂x2 f ). (3.5)

Moreover, for all ε > 0, the height function of a random tiling chosen from the weighted measure
associated to wn on height functions with boundary γn, stays within ε of fmax with probability
tending to 1 as n→ ∞.
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Figure 5. Left: For points (x, y) near the top border (schematically indicated in grey) of the region the values of log hλ(x, y)
are small and can affect convergence of the weight function. Right: The hook measured in hλ(N) (x, y).

4. From lozenge tilings to standard Young tableaux
In this section, we apply the weighted variational principle to prove themain result on asymptotics
of the number of skew SYT of skew shapes with strongly stable shapes.

Recall that {νN = λ(N)/μ(N)} is a sequence of skew shapes with the strongly stable shape ψ/φ
as defined in Section 2.4. We denote by U the region enclosed by φ in the first quandrant of R2.

4.1. The weight function of hook lengths
In order to apply the weighted variational principle, we need weight functions that converge in
the sense of Definition 3.1. In order to obtain a partition function that matches Naruse’s formula
(2.3), the natural choice of weight function on U is the following

wN(x, y) :=
(
0, 0, log (hλ(N) (x, y)/

√
N)

)
.

Denote by wtN(h) the corresponding weight on height functions. Then

wt(h) = (
√
N)−|μ(N)| · hooksλ(N) (th).

However for this choice of weight function, log hλ(N) (x, y) can be very small for points (x, y) near
the border of the shape λ(N); see Figure 5:Left. In this regime, Property (∗) might not hold. To fix
this, we change the weight function to cap these small values as follows. For ε > 0 and (x, y) in
C(ψ/φ), let

wεN(x, y) :=
(
0, 0, max

{
log

(
hλ(N) (x, y)/

√
N
)
, log ε

})
.

Denote by wtεN(h) the corresponding weights on a height function h. Similarly, denote by ZN and
ZεN the corresponding partition functions associated to weights wN and wεN , respectively.

4.2. From lozenge tilings to counting tableaux
We first show in Lemma 4.2 that the weighted variational principle, Theorem 3.3, applies to ZεN .
We then apply the variational principle in this case to obtain

lim
N→∞

1
N

log ZεN = c(ε),

for some constant c(ε) depending on ε and the shapes ψ and φ. We then show that the con-
stant c(ε) converges to a constant c as ε→ 0 (Lemma 4.3). In Corollary 4.4, we show that log ZεN
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converges to c as ε→ 0. Finally, we conclude that

lim
N→∞

1
N

log ZN = c,

by showing that log ZεN must also converge to limN→∞ 1
N log ZN as ε→ 0 (Theorem 4.5). In

Section 4.3, we use this last result to prove Theorem 1.1. An explicit formulation of the constant c
is given in Corollary 4.7

We need some extra definitions. For the nonincreasing left continuous function φ:[0, a]→
[0, b] define φ̃:[− b, a]→R by:

φ̃(u) = x+ φ(x) for x : x− φ(x)= u.
and define ψ̃ in an similar way. In other words, φ̃ and ψ̃ are continuous analogues of the Russian
representations of partitions. Next, we define the continuous limit of the ASCs associated to the
sets of polygonal regions Hλ(N)/μ(N) .

Definition 4.1 Let γ in R
3 be the continuous closed curve that is formed by: the line segment

from {a, 0, ψ̃(a)− φ̃(a)} to {a, 0, 0}, the line segment from {a, 0, 0} to the origin, the line segment
from the origin to {0, b, 0}, the line segment from {0, b, 0} to {0, b, ψ̃(− b)− φ̃(− b)} and the
curve {φ(x), x, ψ̃(x− φ(x))− φ̃(x− φ(x))} for x in [0,a].

Let Lip[0,1](γ ) be the subset of Lip[0,1] of functions which extend γ .

Lemma 4.2 We have:

lim
N→∞

1
N

log ZεN = sup
f∈Lip[0,1](γ )

�ε(f ),

where�ε( · ) is the integral defined in (3.4) for the limiting weight function

ρε(x, y) :=
(
0, 0, max

{
log �(x, y), log ε

})
.

Proof. First, we show that the weight function wεN(x, y) converges to ρε(x, y), in the sense
of Definition 3.1 verifying property (∗). By convergence of the sequence of shapes, for N large
enough, either both hλ(N) (x, y)/

√
N and �(x, y) defined in (2.5) are smaller than or equal ε or both

are greater or equal to ε. In the first case, we have wεN(x, y)= ρε(x, y)= (0, 0, log ε), and property
(∗) vacuously holds.

In the second case, we have that for all (x, y) ∈D :∣∣∣wεN(x√N, y
√
N)− ρε(x, y)

∣∣∣ =
∣∣∣∣log 1√

N
hλ(N)

(�x√N�, �y√N�)− log �(x, y)
∣∣∣∣

≤ kε
∣∣∣∣ 1√

N
hλ(N)

(�x√N�, �y√N�)− �(x, y)
∣∣∣∣ ,

where the inequality follows because the logarithm function is k-Lipschitz on [ε,∞), for some
constant kε . From the definition of hook lengths (see Figure 5:Right), we also have:∣∣∣∣ 1√

N
hλ(N)

(�x√N�, �y√N�)− �(x, y)
∣∣∣∣≤ ∥∥λ(N)/

√
N −ψ

∥∥∞ + ∥∥λ′(N)
/
√
N −ψ−1∥∥∞ .

Thus, by convergence of the sequence of shapes, we have

lim
N→∞

∣∣∣wεN(√Nx,
√
Ny)− ρε(x, y)

∣∣∣
≤ lim

N→∞ kε ·
(∥∥λ(N)/

√
N −ψ

∥∥∞ + ∥∥λ′(N)
/
√
N −ψ−1∥∥∞

)
= 0.

This proves property (∗).
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By construction of the sequence of polygonal regions Hλ(N)/μ(N) , after rescaling by
√
N, the

corresponding sequence of ASCs 1√
N γλ(N)/μ(N) converges to γ for the infinite norm. Thus the

weighted variational principle, Theorem 3.3, applies giving

lim
N→∞

1
N

log ZεN = �ε
(
fmax

)
, (4.1)

as desired. �
The next lemma explains what happens to supf∈Lip[0,1](γ ) �ε(f ) as ε→ 0.

Lemma 4.3 Let�(f ) be the integral defined in (3.4) for f ∈ Lip[0,1](γ ) and the weight function

ρ(x, y) := (
0, 0 , log �(x, y)

)
.

Then

lim
ε→0

sup
f∈Lip[0,1](γ )

∣∣�ε(f ) − �(f )
∣∣ = 0.

In particular,

lim
ε→0

sup
f∈Lip[0,1](γ )

�ε(f ) = sup
f∈Lip[0,1](γ )

�(f ) .

Proof. Let f ∈ Lip[0,1](γ ), since the || · ||∞-norm of the partial derivatives of f are uniformly
bounded by 1 on U (see (3.2)), we obtain directly that:∣∣�ε(f )−�(f )

∣∣ =
∫∫

U
(ρε(x1, x2)− ρ(x1, x2)) · (∂x1 f , ∂x2 f , 1− ∂x1 f − ∂x2 f ) dx1dx2

≤
∫∫

U
||ρε(x1, x2)− ρ(x1, x2)||∞ dx1dx2

The last integral of the previous inequality can be rewritten as∫∫
U

||ρε(x1, x2)− ρ(x1, x2)||∞dx1dx2 =
∫∫

{log �(x1,x2)≤log ε}
| log �(x1, x2)− log ε|dx1dx2

≤
∫∫

{log �(x1,x2)≤log ε}

(
| log �(x1, x2)| + | log ε|

)
dx1dx2 .

The last integral converges to 0 when ε goes to 0 provided the function log � is integrable on the
domain U. To show the integrability of log � we use the following bounds on �(x, y):

|φ(x)− y| ≤ �(x, y)≤ a+ b, (4.2)

where the upper bound follows from the definition of a hook and the bound of ψ(x) ∈ [0, b].
The lower bound follows from the fact that �(x, y)≥ |ψ(x)− y| (see Figure 6) and the inequality
φ(x)≤ψ(x) implied by the definition of the stable shape ψ/φ. By taking the log and the absolute
value, the bound (4.2) becomes

| log �(x, y)| ≤max ( log |φ(x)− y|, 2√2b). (4.3)

Using standard analysis, one can show that the RHS of (4.3) is integrable on U and thus the
function log � is also integrable on U, as desired. �

Next, we write the log of the partition function ZεN in terms of the log of the partition function
ZN .
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Figure 6. Representation of the rescaled hook function �(x, y). The segment of length φ(x)− y (depicted in red) is a lower
bound for the hook length �(x, y) (depicted in gray).

Figure 7. The slope of a periodic tiling.

As a direct corollary of the previous two lemmas we obtain the following.

Corollary 4.4

lim
ε→0

lim
N→∞

1
N

log ZεN = sup
f∈Lip[0,1](γ )

�(f ).

Proof. This follows by combining lemmas 4.2 and 4.3. �
We can now prove our main tool used to prove the main result on asymptotics of the number

of skew SYT.

Theorem 4.5 We have

lim
N→∞

1
N

log ZN = sup
f∈Lip[0,1](γ )

�(f ). (4.4)

Proof. By Corollary 4.4 it suffices to show that

lim
N→∞

1
N

log ZN = lim
ε→0

lim
N→∞

1
N

log ZεN .

Since by definition of ZεN and ZN (see §4.1) we have that ZεN ≥ ZN and

1
N

log ZεN ≥ 1
N

log ZN ,

it is enough to prove that

lim
ε→0

lim
N→∞

1
N

log ZεN ≤ lim
N→∞

1
N

log ZN . (4.5)

By the median inequality, we have

ZεN
ZN

≤ max
h

wtεN(h)
wtN(h)

. (4.6)
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Outside of a border strip of μ(N) of height �ε√N� the weights will not change. The hooks on
the remaining lozenges in the strip are lower bounded by their depth. So the RHS in (4.6) can be
bounded as follows:

max
h

wtεN(h)
wtN(h)

≤ (elog ε)εN∏�ε√N�
k=1 (elog

(
k/(ε

√
N)

)
)ε

√
N

= (elog ε)εN

exp
(∑�ε√N�

k=1 ε
√
N log

(
k/(ε

√
N)

)) . (4.7)

We can rewrite the denominator on the RHS above as

exp

⎛⎝�ε√N�∑
k=1

ε
√
N log

k
ε
√
N

⎞⎠ = exp

⎛⎝ ε2N
ε
√
N

�ε√N�∑
k=1

log
k

ε
√
N

⎞⎠ . (4.8)

If ε is fixed and N goes to infinity, the quantity 1
ε
√
N
∑�ε√N�

k=1 log k
ε
√
N is a Riemann sum for the

function x→ log x on the interval [0,1]. Hence,

1
ε
√
N

�ε√N�∑
k=1

log
k

ε
√
N

=
∫ 1

0
log xdx + oε(1) (4.9)

where oε(1) is a function depending on ε which goes to 0 when N goes to ∞. Thus, using (4.8)
and (4.9), (4.7) becomes

max
h

wtεN(h)
wtN(h)

≤ exp
(
εN

(
log ε − ε

∫ 1

0
log xdx− oε(1)

))
. (4.10)

Combining the previous equation with the bound in (4.6), taking logs, and letting N → ∞ yields
the following upper bound

lim
N→∞

1
N

log
ZεN
ZN

≤ lim
N→∞

1
N

log
wtεN(h)
wtN(h)

≤ ε
(
log ε − ε

∫ 1

0
log xdx

)
.

Since limε→0 ε
(
log ε − ε

∫ 1
0 log xdx

)
= 0, by taking the limit when ε goes to 0 in the previous

bound we obtain (4.5) which finishes our proof. �

4.3. The number of standard Young tableaux
We are now ready to prove Theorem 1.1. We require the following technical result.

Lemma 4.6 We have:

1
N

⎡⎢⎣ log
( ∑

h∈H
λ(N)/μ(N)

hooksλ(N) (th)
)

− area(φ)
2

N logN

⎤⎥⎦ → c,

where c:=�(fmax) is a constant which depends only on ψ and φ.

Proof. Recall that for the weight function wN(x, y) and a height function h inHλ(N)/μ(N) we have
that

hooksλ(N) (th)=
∏
♦∈th

hλ(N) (x♦, y♦)= (
√
N)|μ(N)| ×

∏
♦∈th

ew
i♦ (x♦y♦)

= (
√
N)|μ(N)| ×wt(h), (4.11)
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where wt(h) is a defined in (3.1). Then the log of the partition function of all height functions in
Hλ(N)/μ(N) equals

log
( ∑
h∈H

λ(N)/μ(N)

hooksλ(N) (th)
)

= log (
√
N)|μ(N)| + log ZN , (4.12)

where ZN =∑
h∈H

λ(N)/μ(N)
wt(h).We treat each of the two summands in the RHS above separately.

By condition (2.4) on the area of φ in the definition of the stable shape we have that

log (
√
N)|μ(N)| = 1

2
∣∣μ(N)∣∣ logN = area(φ)

2
N logN + o(N). (4.13)

Next, by Theorem 4.5 we have

lim
N→∞

1
N
ZN = c, (4.14)

where c:=�(fmax) is a constant that only depends on ψ and φ.
Finally, we take the limit as N → ∞ in (4.12) and use both (4.13) and (4.14) to obtain the

desired result. �
Proof of Theorem 1.1.We take logs in (2.3) to obtain

log f ν
(N) = log |ν(N)|! −

⎛⎝ ∑
(x,y)∈λ(N)

log hλ(N) (x, y)

⎞⎠+ log

⎛⎜⎝ ∑
h∈H

λ(N)/μ(N)

hooksλ(th)

⎞⎟⎠ (4.15)

Observe that |ν(N)| =N +O(
√
N) as N → ∞. Then by Stirling’s formula we have

log |ν(N)|! =N logN −N +O(
√
N logN). (4.16)

Next, we use the definition and compactness of the stable shape C(ψ)∑
(x,y)∈λ(N)

log hλ(N) (x, y) = N
∫∫

C(ψ)
log

(√
N�(x, y)

)
dxdy + o(N),

where the leading N outside the integral comes from a change of variables x→ √
Nx, y→ √

Ny
and the

√
N inside the integral comes from rewriting hλ(N) (·, ·) in terms of �(x, y) defined in (2.5).

The error term o(N) comes from approximating the sumwith the scaled integral (cf. [MPP4, Thm.
6.3]).

By linearity of integration with respect to the integrand 1
2 logN + log �(x, y), we obtain

∑
(x,y)∈λ(N)

log hλ(N) (x, y) = area(ψ)
2

N logN + k(ψ)N + o(N), (4.17)

where k(ψ)= ∫∫
C(ψ) �(x, y) dxdy. Lastly, applying to each term in (4.15) the bounds from (4.16),

(4.17) and Lemma 4.6, respectively, we obtain

log f ν
(N) =

(
1− area(ψ/φ)

2

)
N logN + c(ψ/φ)N + o(N),
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where c(ψ/φ):= c+ k(ψ) is the sum of the constant c from Lemma 4.6 and k(ψ). Finally, since
area(ψ/φ)= 1, the result follows. �

We end this section by extracting from the proof above the explicit expression for the constant
of Theorem 1.1.

Corollary 4.7 The constant c(ψ/φ) of Theorem 1.1 is given by

c(ψ/φ) := k(ψ) + �(fmax),

where

k(ψ) =
∫∫

C(ψ)
�(x, y) dxdy,

�(f ) =
∫∫

U

(
σ (∇f ) + (1− ∂xf − ∂yf ) log �(x, y)

)
dxdy,

for σ ( · ) defined by (3.3), U is the region enclosed by the projection of γ from Definition 4.1, and
fmax:U →R is the only function in Lip[0,1](γ ) which maximizes the integral�(f ).

5. Proof of the weighted variational principle
Our strategy to prove this theorem consists of three parts. In the first part, we give a lemma
(Lemma 5.1) that shows that fundamental domains with similar plane-like boundary conditions
have the same number of tilings and that all those tilings contain a similar number of lozenges of
each type. Both numbers depend on the slope of the domain. In the second part, we give a lemma
(Lemma 5.3) that shows that the weighted contribution of lozenges with similar plane-like bound-
ary conditions is also the same. Finally, in the third part, we use the two previous lemmas to prove
the weighted variational principle.

5.1. Tilings of similar plane-like regions (unweighted)
Let (s, t) be a pair of numbers such that {0≤ s, t, 1− s− t ≤ 1}, let ε > 0 and let Dm be them×m
diamond of the hexagonal grid whose left corner is the origin.

Let HεDm(s, t) be the set of admissible boundary height functions h̄ : ∂Dm →Z, such that:

• the left corner of the diamond has height 0
• for all x= (x1, x2) ∈ ∂Dm we have

|h̄(x1, x2)− (sx1 + tx2)| ≤ εm.
Lemma 5.1 Let (s,t) be such that {0≤ s, t, 1− s− t ≤ 1}, let ε > 0 and let Dm ⊂Z

2 and HεDm(s, t)
be as defined above. Then for each h̄ ∈HεDm(s, t) we have that

lim
m→∞

1
m2 logN(h̄)= lim

m→∞
1
m2 log

∑
h̄∈HεDm (s,t)

N(h̄)= σ (s, t)+O(ε log (1/ε)), (5.1)

and

lim
m→∞

1
m2

(
logL(1)(h̄), logL(2)(h̄), logL(3)(h̄)

)
= (s, t, 1− s− t)+O(ε)1. (5.2)

Proof. Let Pm(s, t) be the set of tilings of Dm with periodic boundary conditions with slope (s,
t) and Nm(s, t) be the number of tilings in Pm(s, t). Note that Pm(s, t) is also the set of tilings of a
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torus with slope (s, t). By [Ken, Thm. 8] we have that:
1
m2 logNm(s, t) = σ (s, t) + o(1),

and that each of those tilings has exactly {m2s,m2t,m2(1− s− t)} lozenges of each type.
Additionally, if we choose a height function uniformly amongst all height functions in Pm(s, t)
then we have the following concentration results:

P

(
|h(x1, x2)− (sx1 + tx2)| ≥ ε

)
≤ e4εm. (5.3)

This can be shown by applying the same martingale argument as in [CEP, Prop. 22]. Although the
argument in this paper is made for simply connected regions, it extends for tilings of a torus with
given slopes.

Denote byPεm(s, t) the set of periodic configurations on a torus of sizemwhose height function
stays within εm of a linear plane of slope (s, t) that is

Pεm(s, t) :=
{
h ∈Pm(s, t) : max

x∈Dm

{|h(x1, x2)− (sx1 + tx2)|
}≤ εm

}
.

Let Nεm(s, t) be the size of Pεm(s, t). As a direct consequence of the inequality (5.3), we have
1
m2 log

(
Nm(s, t)(1− e−cεm)

)≤ 1
m2 logNεm(s, t)≤

1
m2 logNm(s, t)

Therefore,

lim
m→∞

1
m2 logNεm(s, t) = σ (s, t).

We must now distinguish between the case where ε ≤ 1
2 (1−max{s, t, 1− s− t}) and the case ε >

1
2 max{s, t, 1− s− t}.

Case 1: Suppose ε ≤ 1
2 (1−max{s, t, 1− s− t}). Consider h̄ ∈HεDm(s, t) and h− ∈Pεm(1−3ε)(s, t).

For all x= (x1, x2) ∈ ∂Dm(1−3ε) and y= (y1, y2) ∈ ∂Dm we have

h̄(y)− h−(x) ≤

≤
[
h̄(y)− (sy1 + ty2)

]
+

[
(sy1 + ty2)− (sx1 + tx2)

]
+

[
(sx1 + tx2)− h−(x)

]
≤ εm + max{s, t, 1− s− t} ·max{y1 − x1, y2 − x2} + εm
≤ (

1−max{s, t, 1− s− t})‖x− y‖1 + max{s, t, 1− s− t} ·max{y1 − x1, y2 − x2}
≤ max{y1 − x1, y2 − x2}.

where ‖ · ‖1 denotes the 1-norm.
Using Lemma 2.1, we deduce that there exists a height function h on Dm such that h= h̄ on

∂Dm and h= h− on ∂Dm(1−3ε). As a consequence, we obtain that N(h̄)≥Nεm(1−3ε)(s, t). For the
same reasons, for h+ ∈Pεm(1+3ε)(s, t), for all x ∈ ∂Dm and z ∈ ∂Dm(1+3ε) we have

|h̄(x)− h+(z)| ≤ min{z1 − x1, z2 − x2}.
Thus, every boundary height functions inPεm(1+3ε)(s, t) can be extended to h̄ on ∂Dm. This implies:

Nεm(1−3ε)(s, t) ≤ N(h̄) ≤ Nεm(1+3ε)(s, t),
which can be rewritten as

1
m2 logNεm(1−3ε)(s, t) ≤ 1

m2 logN(h̄) ≤ 1
m2 logNεm(1+3ε)(s, t).
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Figure 8. Illustration of the proof of Lemma 5.1. The number of tilings with boundary conditions in h ∈ ∂Dm is at least the
number of tilings with periodic boundary conditions in ∂Dm(1−3ε) and at most the number of tilings with periodic boundary
conditions in ∂Dm(1+3ε).

Since 1/(m2(1− 3ε))= 1/m2 +O(ε), we deduce that

lim
m→∞

1
m2 logN(h̄) = σ (s, t) + O(ε).

Finally, we can bound the number of boundary conditions inHεDm
(s, t) by the number of different

types of lozenges to the power of the length of ∂Dm. Since there are at most 34m = eo(m2) different
boundary height functions in HεDm(s, t), then this allows us to deduce (5.1):

lim
m→∞

1
m2 log

∑
h̄∈HεDm (s,t)

N(h̄)= σ (s, t)+O(ε).

For the second part of the statement, we notice that when attaching two tilings as described above
(see Figure 8), we are adding at most ε2m2 tilings of each type. Hence, we obtain that for all
i ∈ {1, 2, 3}:

L(i)(h−)− ε2m2 ≤L(i)(h̄)≤L(i)(h+)+ ε2m2.

Dividing bym2 and taking the logarithm, we obtain (5.2).
Case 2: Suppose ε ≥ 1

2 (1−max{s, t, 1− s− t}). Let h̄ ∈HεDm(s, t). Without loss of generality
we can assume that max{s, t, 1− s− t} = 1− s− t so that ε ≥ (s+ t)/2. The height difference
between the top vertex and the bottom vertex of each vertical section of Dm is at most 4εm.
Hence, each of such vertical sections contains at most �4εm� vertical edges. This means that the
total number of non-horizontal lozenges in each tiling of a height function that extends h̄ is smaller
than �4εm2� and implies directly (5.2). Notice that we can determine a tiling by specifying what
is the position of the non-horizontal lozenges and their types. Hence, the total number of tilings

N(h̄) is bounded by

⎛⎝m2

�4εm2�

⎞⎠ 2�4εm2�. By using Stirling’s formula, we obtain

N(h̄)≤
⎛⎝ m2

�4εm2�

⎞⎠ 2�4εm2� = em
2O(ε log (1/ε)) .

Therefore, the total number of configurations with boundary h̄ satisfies
1
m2 N(h̄) = O

(
ε log (1/ε)

) + o(1).

Since σ (0, 0)= 0, this implies (5.1) and concludes our proof. �
Lemma 5.1 holds when we replace lozenges by equilateral triangles. This will be useful for the

remainder of the proof as explained in Section 5.2.
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Corollary 5.2 Let Tm be an equilateral triangle of size m and HεTm(s, t) be as defined above. Then
for each h̄ ∈HεTm(s, t) we have that

lim
m→∞

4√
3m2

logN(h̄) = lim
m→∞

4√
3m2

log

⎛⎜⎝ ∑
h̄∈HεDm (s,t)

N(h̄)

⎞⎟⎠ = σ (s, t) + O
(
ε log (1/ε)

)
,

(5.4)
and

lim
m→∞

4√
3m2

(
logL(1)(h̄), logL(2)(h̄), logL(3)(h̄)

)
= (s, t, 1− s− t) + O(ε)1. (5.5)

Proof. Let Tm be a triangle of size m and h̄ be a boundary height function which stays within
εm of the plane with slope (s, t). For each h ∈ h̄, if we reflect h along one side we obtain a height
function of a lozenge Dm which also stays within εm of the plane with slope (s, t). Hence we can
bound N(h̄)2 by the number of ways to extend a boundary in HεDm(s, t) and we obtain

2
m2 logN(h̄) = 1

m2 log
(
N(h̄)2

)
≤ 1

m2 log

⎡⎢⎣ ∑
h̄∈HεDm (s,t)

N(h̄)

⎤⎥⎦ ≤ σ (s, t) + O
(
ε log (1/ε)

)
.

Now consider a triangle Tm2 of sizem2, h̄ be a boundary height function which stays within εm of
the plane with slope (s, t). We can fill partially Tm2 with m− o(1) lozenges of size m each having
the same periodic boundary height function with slope (s, t). Using a similar argument as the one
in the previous lemma for attaching configurations, we can attach h̄ to the height function on
those lozenges and we obtain

σ (s, t) + O
(
ε log (1/ε)

) ≤ 1
2m2 logN(h̄),

as desired. �

5.2. Tilings of similar plane-like regions (weighted)
For the remainder of this proof we will be working with triangles since later in this proof we will
need to approximate surfaces with piecewise-linear functions. Such approximations are done in a
standard way using triangles (see for example Lemma 2.2 in [CKP]).

Since the weight of each individual lozenge tile depends on its position in the lattice, we now
evaluate the weight contribution of a large triangle as a function of its position.

Lemma 5.3 Let x= (x1, x2) ∈R
2 and � ∈R be such that ρ is smooth on B(x, �). Let T(x, �n) be

the triangle of size �n centered at the point xn:= (�nx1�, �nx2�) and let h̄ ∈HεT(x,�n)(s, t). For a
converging sequence of weights {wn}n∈N we have

lim
n→∞

4√
3(�n)2

log Z(Hh̄,w�) = lim
n→∞

4√
3(�n)2

log

⎡⎢⎣ ∑
h̄∈HεT(x,�n)(s,t)

Z
(
Hh̄,w�

)⎤⎥⎦
= σ (s, t) + L(x1, x2, s, t) + O

(
ε log (1/ε)

) + O(�), (5.6)

where Z(Hh̄,w�) is the total weight of all configurations with boundary h̄.
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Proof.The sequence of weights {wn}n∈N is convergent, by Condition (ii) of Definition 3.1. Thus,
for all ny ∈ T(x, �n), and for each type of lozenge tile i ∈ {1, 2.3}, we have:

|wi
n(ny)− ρi(x)| ≤ |wi

n(ny)− ρi(y)| + |ρi(y)− ρi(x)| = o(1)+O(�).

Here we used the smoothness of ρ on B(x, �) to bound |ρi(y)− ρi(x)| =O(�). This means that for
all height function h ∈HεT(x,l)(s, t) with boundary h̄, we must have

wt(h)=
∏
♦∈h

ew
i♦ (x♦) =

∏
♦∈h

e(ρ
i♦ (x)+O(�)+o(1))

=
3∑

j=1
exp

[√
3(�n)2

4
(
xj + o(1) + O(ε)

)] · exp
[
ρ1(x) + o(1) + O(�)

]

= exp

[√
3(�n)2

4

(
L(x1, x2, s, t) + o(1) + O(�) + O(ε)

)]
,

where x3 = 1− x1 − x2. Then the contribution of all configurations with boundary h̄ is given by:

Z(Hh̄,wn) =
∑

h∈HεT(x,�)(s,t)
wt(h)

= exp

[√
3(�n)2

4

(
L(x1, x2, s, t) + o(1) + O(�) + O(ε)

)]
N(h̄).

Applying Corollary 5.2 to the equation above, we obtain

Z(Hh̄,wn) = exp

[√
3(�n)2

4

(
L(x1, x2, s, t) + o(1) + O(ε)

)]
×

× exp

[√
3(�n)2

4

(
σ (s, t) + o(1) + O

(
ε log (1/ε)

))]

= exp

[√
3(�n)2

4

(
σ (s, t) + L(x1, x2, s, t) + o(1) + O(�) + O

(
ε log (1/ε)

))]
.

Then (5.6) follows by taking the logarithm of the equation above. Since the number of boundary
height functions for a given triangle is bounded by 33�n = eo(�2n2), we also obtain:

lim
�→∞

4√
3(�n)2

∑
h̄∈HεT(x,�)(s,t)

Z(Hh̄,w�) = σ (s, t) + L(x1, x2, s, t) + O
(
ε log (1/ε)

) + O(�).

This finishes the proof.

5.3. Proof of Theorem 3.3
We now prove the weighted variational principle. At this stage our strategy is exactly the same as
Theorem 4.3 in [CKP] or Theorem 2.9 in [MT]. We recall the following two lemmas from [CKP]
which will be useful in our proof.

Lemma 5.4 ([CKP] Lemma 2.2). For � > 0, consider a mesh made up of equilateral triangles of
side length � (which we call an �-mesh). Let f ∈ Lip[0,1] be such that f = γ on U, and let ε > 0. If � is
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Figure 9. The grid G̃n of equilateral triangles of size � that partitions U used in the proof of Theorem 3.3.

sufficiently small then on at least (1− ε) fractions of the triangles in the �-mesh that intersect U we
have the following two properties:

1. The piecewise linear approximation f̃ stays within �ε of f.
2. For at least a (1− ε) fraction (in measure) of the points x of the triangle, the tilt ∇f (x) exists

and is within ε of f̃ (x).

Lemma 5.5 ([CKP] Lemma 2.3). Suppose that T is an equilateral triangle of length �, and the
height function f satisfies |fδT − f̃ | ≤ ε� on δT, where f̃ is the piecewise linear approximation from
Lemma 5.4, then

�(f ) = � (̃f ) + o
(
area(T)

)
.

Remark 5.6 Note that Lemma 2.3 in [CKP] is stated forϒ( · ), however, since the function L( · · · )
from the definition of�( · ) in (3.4) is linear, this lemma still holds for�( · ).

Next, we approximate the partition function of all height functions which stays close to a given
function f using� and show that the error term goes to zero.

Lemma 5.7 Let f ∈ Lip[0,1] be such that f = γ on U and let δ > 0. If we denote by Z(Hδf ,wn) the
total weight of height functions which stay within δn of f, then:

lim
n→∞

1
n2

log Z(Hδf ,wn) = �(f ) + o(1). (5.7)

Proof. Let ε < 1 and consider a sequence of grids {Gn}n∈N which partition the triangular lattice
into equilateral triangles of size �n. Denote by G̃n the �-mesh obtained by rescaling Gn and f̃ the
linear approximation of f on G̃n. See Figure 9.

We start by approximating�(f ) by the terms on the RHS of (5.6) of Lemma 5.3. According to
Lemma 5.4, for � small enough we have:

sup
x∈T

|f (x)− f̃ (x)| ≤ �ε

on all but a portion at most ε of the triangles in U. Next, we rewrite� (̃f ) as

� (̃f ) =
∑
T∈U

4�2√
3

(
σ (∇ f̃ )+ L(xT1 , x

T
2 , f̃ )

)
+ o

(
area(U)

)
, (5.8)

where the error term o
(
area(U)

)
comes from bounding the following integral∑

T∈U

∫∫
T

(
ρ(x1, x2)− ρ(xT1 , x

T
2 )
)

· (∂x1 f , ∂x2 f , 1− ∂x1 f − ∂x2 f ) dx1dx2,

using the uniform continuity of ρ on each component of U where it is smooth.
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Combining (5.8) with Lemma 5.5 we have∣∣∣∣∣�(f )−
∑
T∈U

4�2√
3

(
σ (∇ f̃ ) + L(xT1 , x

T
2 , f̃ )

)∣∣∣∣∣ = o(1).

With this approximation, we are now ready to prove (5.7). Choose δ < �ε and {hn} to be any
height function with boundary γn. Define

an(x) := min
{
hn(x), �nf (x/n)+ δ�} and gn(x) := max

{
an(x), �nf (x/n)− δ�} .

Then |gn/n− f | ≤ δ/2 and gn ∈Hδf , by construction.
We can ignore the contribution of triangles that are not fully included in U which is O(δ)=

O(ε). The quantity log Z(Hδf ,wn) is bounded from below by the weight of all height functions that
agree with gn on the boundary of all triangles inGn completely contained inU after rescaling. This
gives

log
∏
T∈U

Z(Hḡ∂T ,wn) =
∑
T∈U

log Z(Hḡ∂T ,wn) ≤ log Z(Hδf ,wn),

where the product is taken over all triangle T fully contained in U and such that

sup
x∈T

|f (x)− f̃ (x)| ≤ δ

2
.

Now include the O(ε) in the bound. Then log Z(Hδf ,wn) is bounded from above by the total free
product of all height functions which stays within δ of f̃ on each one of those triangles. In other
words,

log Z(Hδf ,wn) ≤ log
∏
T∈U

Z(Hδf̃∂T ,wn) =
∑
T∈U

log Z(Hδf̃∂T ,wn) + O(ε).

Using Lemma 5.3 to approximate each log Z(Hḡ∂T ,wn) and log Z(Hδ
f̃∂T

,wn) in the above inequali-
ties, we obtain

1
n2

log Z(Hδf ,wn) =

= 1
n2

∑
T∈U

[√
3
4
�2n2

(
σ (̃f )+ L(xT1 , x

T
2 , f̃ )+ o(1)+O(�)+O(ε log 1/ε)

)]
+ o(1)

=
∑
T∈U

[√
3
4
�2
(
σ (̃f )+ L(xT1 , x

T
2 , f̃ )+ o(1)+O(�) + O(ε log 1/ε)

)]
+ o(1)

= � (̃f )+O(�) + O(ε log 1/ε) + o(1).

Since both � and ε can be chosen as small as needed when δ→ 0, we have
1
n2

log Z(Hδf ,wn) = � (̃f ) + O(�) + O(ε log 1/ε) + o(1) = �(f ) + o(1),

as desired. �
The function σ is strictly convex and L is linear, thus the function σ + L is itself strictly convex.

This implies that there exist a unique function fmax in Lip[0,1] that maximize � . By the previous
lemma, we obtain

lim
n→∞

1
n2

log Z(Hγn ,wn) ≥ �(fmax).
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Figure 10. Uniform and weighted random lozenge tilings of the hexagonH (50, 50, 50) from [MPP3, Fig. 2].

Moreover, the set Lip[0,1](U, γ ) of functions f ∈ Lip[0,1] such that f = γ onU is compact for the �∞
norm. Hence, for every fixed α > 0, there exist a finite covering

⋃kα
i=1 B�∞(fi, δi) of Lip[0,1](U, γ )

such that for all i≤ kα :

lim
n→∞

1
n2

log Z(Hδifi ,wn) ≤�(fi)+ α. (5.9)

If we denote by C(δ, α) the number of balls in this covering, this implies that for all δ, α > 0:

lim
n→∞

1
n2

log Z(Hγn ,wn) ≤ �(fmax)+ lim
n→∞

1
n2

log C(δ, α) + α = �(fmax)+ α.

Letting δ and α go to 0 gives the desired result. This finishes the proof of Theorem 3.3.

6. Final remarks and open problems
6.1 The Okounkov–Olshanski formula
There are other positive formulas for f λ/μ using the Littlewood–Richardson coefficients and the
Okounkov–Olshanski formula, see [MPP1, § 9] and [MZ] for the discussion and references. It
would be interesting to see if the variational principle applies in either case.

6.2 The case of thick hooks
In case of the thick hooks (see §1.2), the variational principle result (Theorem 3.3) is already inter-
esting and is now well understood. It corresponds to a degenerate case of more general weights
introduced in [BGR] and further studied in [Bet, DK] (see also [MPP3]), where both the frozen
region and the probability density are computed.

It is worth comparing frozen regions in the uniform and weighed cases, see Figure 10. The
uniform frozen region is famously a circle, while the weighted frozen region is an algebraic curve
with only mirror symmetry. Let us mention that explicit product formulas for q-Racah polynomi-
als allow a direct sampling from these weighted tilings in this case, see [Bet, §7.5] and [BGR, §9].
This approach does not generalize to other skew shapes.

6.3 Frozen regions for weighted lozenge tilings
It would be interesting to compute the frozen region explicitly for the weighted lozenge tilings
in some important special cases, such as thick ribbons described in §1.3. From the variational
principle, we cannot even tell if these regions are bounded by algebraic curves.

6.4 Other families of skew shapes
Beside stable limits shapes, there are other asymptotic regimes when the problem of computing
f λ/μ is of interest, see [DF, MPP4, Sta1]. Except for the case when |μ| =O(1), obtaining better
bounds is an interesting and difficult challenge.
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6.5 Limit curves for skew standard tableaux
In an important recent development, Sun showed the existence of limit curves for random stan-
dard Young tableaux with stable limit shape [Sun], also by modifying the variational principle and
using the beads model to encode standard tableaux. Soon after Gordenko [Gor] wrote an explicit
conjectural description of this limit shape using a modified TASEP on dimer configurations. This
suggests that in principle one can hope to evaluate the constant C of the for thick ribbons (see
§1.3).

6.6 Bijective proofs
It would be interesting to see if the strategy sketched in [Pak1, 3.5] can be used to conclude that
there is no natural bijective proof of the Naruse hook-length formula (1.1). Let us mention that
[Kon] gives a bijective proof of a recurrence involved in the proof of the NHLF. Unfortunately,
there seem to be no way to use this bijection for uniform sampling of random standard Young
tableaux of skew shape.
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