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We investigate the Rayleigh–Taylor instability of a thin liquid film coated on the inside
of a cylinder whose axis is orthogonal to gravity. We are interested in the effects of
geometry on the instability, and contrast our results with the classical case of a thin
film coated under a flat substrate. In our problem, gravity is the destabilizing force
at the origin of the instability, but also yields the progressive drainage and stretching
of the coating along the cylinder’s wall. We find that this flow stabilizes the film,
which is asymptotically stable to infinitesimal perturbations. However, the short-time
algebraic growth that these perturbations can achieve promotes the formation of
different patterns, whose nature depends on the Bond number that prescribes the
relative magnitude of gravity and capillary forces. Our experiments indicate that a
transverse instability arises and persists over time for moderate Bond numbers. The
liquid accumulates in equally spaced rivulets whose dominant wavelength corresponds
to the most amplified mode of the classical Rayleigh–Taylor instability. The formation
of rivulets allows for a faster drainage of the liquid from top to bottom when
compared to a uniform drainage. For higher Bond numbers, a two-dimensional
stretched lattice of droplets is found to form on the top part of the cylinder. Rivulets
and the lattice of droplets are inherently three-dimensional phenomena and therefore
require a careful three-dimensional analysis. We found that the transition between the
two types of pattern may be rationalized by a linear optimal transient growth analysis
and nonlinear numerical simulations.

Key words: instability, pattern formation, thin films

1. Introduction
The interface separating two fluids of different densities is subjected to the

Rayleigh–Taylor instability (RTI) when the heavier fluid accelerates towards the
lighter one (Rayleigh 1882; Taylor 1950; Sharp 1984). A classical description of the
RTI for two semi-infinite domains can be found in Chandrasekhar (1981, chap. X).
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In particular, this instability occurs when a thin viscous fluid coats the underside of
a substrate orthogonal to gravity. The occurrences of this phenomenon may be found
in everyday life, when cooking, as condensed vapour arranges in a well-ordered
pattern underneath a lid. Given the aspect ratio of such films, a lubrication approach
is often used to describe their dynamics and thereby reduce the dimensionality of the
problem: a two/three-dimensional problem can be described by a one/two-dimensional
equation. One-dimensional linear stability analyses (Yiantsios & Higgins 1989; Limat
1993) indicate that the fluid’s interface is asymptotically linearly unstable and that the
most amplified perturbation has a wavelength of λ0 = 2π

√
2`c. The capillary length,

`c =
√
γ /ρg, is defined, balancing the effect of surface tension γ and gravity ρg,

where ρ is the film density. Fermigier et al. (1992) investigated the RTI of a thin
layer of oil coated on the underside of a horizontal planar substrate and considered
nonlinear effects as well. In the three-dimensional configuration, the fastest-growing
patterns have circular and hexagonal symmetries. Additional complexity arises as the
resulting pendent drops following the instability may pinch off or translate, collide
and bounce (Limat et al. 1992; Lister, Rallison & Rees 2010), depending on the film
thickness and the initial conditions.

Controlling and predicting the RTI is crucial to many engineering applications.
In coating processes, the patterns resulting from the RTI may lead to undesired
irregularities or even to the detachment of droplets for thick coatings. In toroidal
nuclear fusion reactors, liquid metals coating the inside are used to protect the
tokamak walls from the high-temperature plasma (Kaita et al. 2010). A droplet
detaching and falling into the plasma could quench the process, with severe
consequences. In oil-recovery applications, maximizing oil extraction is of paramount
economic importance. In this context, the RTI in tubes might be a desirable feature, as
it promotes a faster drainage of the film, as we shall discover in this paper. Similarly,
interfacial instabilities have recently been seen in a new light and considered as a
potential fabrication pathway to shape materials (Gallaire & Brun 2017). Desirable
or not, the dynamics of the RTI in various configurations deserves to be understood.

A variety of stabilizing techniques have been explored in recent years, including
the use of heat, vibrating substrates and electrical current (e.g. Burgess et al. 2001;
Lapuerta, Mancebo & Vega 2001; Alexeev & Oron 2007; Weidner, Schwartz &
Eres 2007; Weidner 2012; Cimpeanu, Papageorgiou & Petropoulos 2014). Babchin
et al. (1983), considering the RTI between two fluids in a Couette flow, showed that
the instability saturates as a consequence of the convective term in the evolution
equation. A similar effect arises when the substrate is tilted (Oron & Rosenau 1989;
Abdelall et al. 2006; Rohlfs, Pischke & Scheid 2017). Brun et al. (2015) have
shown that dripping droplets can be avoided for sufficient inclinations, owing to
the flow advection induced by the component of gravity parallel to the substrate.
This stabilizing effect can be rationalized as a transition from an absolute to a
convective instability (Brun et al. 2015; Scheid, Kofman & Rohlfs 2016). Likewise,
the substrate curvature – such as that of a cylinder – suppresses the RTI if surface
tension forces are strong enough (Trinh et al. 2014). Similarly to the tilted case,
gravity acts not only as the destabilizing force at the origin of the instability
(through its component perpendicular to the substrate) but also as a stabilizing force
originating in the progressive drainage of the film (through its component parallel
to the substrate). Furthermore, in the curved geometry, the increasing substrate
inclination induces the stretching of the film. As a consequence, the interface
is found to be asymptotically stable. Nonetheless, we have recently shown that
such curved systems are still able to greatly amplify initial noise at short times
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(Balestra, Brun & Gallaire 2016). Depending on the initial magnitude of the
perturbation, the initial transient growth might be sufficiently large to trigger nonlinear
effects resulting in three different regimes when solely considering a two-dimensional
circular section of the cylinder: (i) no droplets, (ii) transient droplets eventually
reabsorbed by the film and (iii) dripping droplets (Balestra et al. 2016). Contrasting
with the RTI under a horizontal substrate, where there is no preferential direction
for the instability (if boundaries are neglected) and a one-dimensional stability
analysis suffices, the cylindrical substrate requires in principle a more intricate
theoretical treatment. The dynamics in the polar and axial directions are different and
a two-dimensional analysis has to be undertaken to consider the three-dimensionality
of the problem (recall that the wall-normal direction has been averaged out into the
lubrication approximation). Yet, as pointed out by Trinh et al. (2014), the dynamics
of the RTI can be investigated by considering only the uppermost sector of the
cylinder, which simplifies the theoretical treatment.

Here we undertake the analysis of a thin liquid film of initial average thickness
H∗i coating the inner side of a horizontal cylinder of radius R, extending the
one-dimensional analyses of Trinh et al. (2014) and Balestra et al. (2016) to the
remaining axial dimension. We show that allowing film perturbations along the axial
direction can trigger various instability patterns, including drops and rivulets, which
we explore experimentally, theoretically and numerically. The results of the linear
optimal transient growth analysis, together with nonlinear numerical simulations,
allow us to rationalize our experimental results. For moderate Bond numbers,
Bo = ρgH∗i R/γ , a purely axial instability – yielding rivulets – arises. The liquid
accumulates in equally spaced rivulets, similar to the rolls of Fermigier et al. (1992),
yet with the significant difference that they persist over time as they drain out the film.
For large Bond numbers, the instability pattern consists of droplets. These droplets
form on a two-dimensional array similar to the one observed for the planar geometry
(Fermigier et al. 1992), although the pattern in the curved geometry is stretched in
the polar direction because of the draining flow.

The paper is structured as follows. The relevant dimensionless quantities are
introduced in § 2.1. The experimental set-up is presented in § 2.2, followed by
the description of the phase diagram in § 2.3. The linear optimal transient growth
analysis is detailed in § 3. In particular, the governing equations are presented in § 3.1,
linearized and solved analytically in § 3.2, and the results of the optimal transient
growth analysis, described in § 3.3, are elucidated in § 3.4. Nonlinear effects on the
pattern selection are investigated by performing two-dimensional simulations, which
are presented in § 4. The draining rivulets are described in greater detail in § 5. The
influence of the nonlinear interactions are discussed in § 5.1, whereas the experimental
characterization of the rivulet dynamics is presented in § 5.2, followed by a numerical
experiment of rivulet drainage in § 5.3.

2. Experimental results
2.1. Relevant dimensionless parameters

A thin viscous film of initial average thickness H∗i coats the inside of a cylinder of
inner radius R whose axis is orthogonal to gravity (figure 1). The film aspect ratio
δ = H∗i /R is small, δ � 1. Defining µ as the dynamic viscosity, ρ the density and
g the gravitational field, the drainage time is given by the gravitational relaxation
scale τd = µR/(ρgH∗2i ) (Trinh et al. 2014). The other relevant time scale of the
problem is that of the classic RTI, τRT , which is proportional to µγ /(ρ2g2H∗3i )
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FIGURE 1. (Colour online) Sketch of the three-dimensional problem geometry.

(Fermigier et al. 1992), where γ is the fluid’s surface tension. Taking the ratio
between these two times, we define the Bond number as Bo = ρgH∗i R/γ , therefore
accounting for the relative magnitude of gravitational and surface tension forces.

2.2. Experimental set-up
Experiments are performed with two types of silicone oil (Carl Roth GmbH)
with kinematic viscosity ν = 1000 cSt, density ρ = 970 kg m−3, surface tension
γ = 21.2 mN m−1 and ν= 5000 cSt, ρ= 973 kg m−3, γ = 21.4 mN m−1, respectively.
Two different techniques are adopted to obtain the initial uniform coating (see
figure 2). The first one consists in using a poly(methyl methacrylate) (PMMA)
cylinder partially filled with silicone oil and spinning it around its axis (see figure 2a).
Following Melo (1993), the critical rotation velocity Ωc above which a homogeneous
film can be obtained is Ωc = (A/4.428R)2g/νR, where A is the cross-section of the
cylinder occupied by the fluid. For Ω � Ωc, the film thickness is expected to be
uniform, so that the liquid is in solid-body rotation with the cylinder; whereas for
Ω < Ωc, different kinds of undesired instabilities can be observed (Thoroddsen &
Mahadevan 1997; Hosoi & Mahadevan 1999; Pougatch & Frigaard 2011; Seiden &
Thomas 2011). For the range of parameters under study, the threshold Ωc is always
less than 100 rpm, the speed at which we operate. Furthermore, for this speed, inertial
instabilities such as the ones studied by Benilov & Lapin (2013) do not form in our
experiments. The relative non-uniformity of the film thickness is within 2 %. After the
uniform film is obtained, the rotation is suddenly stopped so that the coating stops
too with time scale τ =H∗2i /ν. Owing to the small film thickness and large viscosity,
the time τ is small compared to the gravitational drainage time τd. More precisely,
we get 0.4 ms < τ < 16 ms and 0.55 s < τd < 20.1 s, confirming τ � τd. We can
therefore assume that the gravity-induced drainage starts from a uniform stationary
condition.

For the second technique (see figure 2b), a uniform film of silicone oil is coated
onto a planar PMMA plate with dimensions 500 mm× 200 mm× 4 mm using a film
applicator (Film Casting Knife 15 cm, BYK GmbH), whose gap clearance can be
tuned. The actual film thickness as well as its uniformity, which is within 4 %, are
verified before proceeding. The film thickness is measured with a Confocal Chromatic
Sensing technique (STIL CL2-MG140 and CL4-MG20 with CCS PRIMA), which
allows measurements between 20 and 4000 µm, with an accuracy of 250 nm (see
appendix E for further details on the measurement technique). After coating, the
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(a) (b)

FIGURE 2. (a) Cylindrical substrate formed by a PMMA cylinder of radius R= 8.6 cm
and length Lz=15 cm partially filled with silicone oil. The axis of the cylinder is mounted
on a motor which can reach 100 rpm for coating purposes. (b) Curved PMMA plate of
500 mm× 200 mm× 4 mm clamped at its extremities to prescribe the desired substrate
curvature. The thin film of silicone oil is applied with a film applicator prior to deforming
the plate. Scale bars correspond to 10 cm. Rivulets are visible in both photographs.

Rotating cylinder Curved plate

H∗i 0.9–7.7 mm 0.11–2.04 mm
R 0.086 m 0.18–0.98 m
δ 1.1× 10−2 to 9.3× 10−2 1.1× 10−4 to 9.8× 10−3

Bo 35–308 37–349
τd 0.55–20.1 s 5.4 s to 2 h 10 min

TABLE 1. Values of relevant quantities for the experimentally explored parameter range.

plate is then turned upside down and bent by clamping its extremities. As a result,
the upper part of the substrate – expected to be the key region – has a circular
cross-section.

The achievable parameter range for each method is reported in table 1. As evident
from the table, the rotating cylinder is suitable for intermediate Bond numbers and
relatively large film aspect ratios, whereas the curved plate allows for a slightly wider
range of Bond numbers and smaller aspect ratios owing to its flexibility in tuning the
plate curvature.

A Basler camera (acA1300-60gm) with a long-focus zoom lens 18–108 mm
f /2.5 (LMZ 45C5, Japan Lens Inc.) is employed to record the experiment. For the
cylindrical set-up, we measured the temporal evolution of the film thickness at θ = 0
along the cylinder length of Lz= 15 cm (see figure 1). The optical pen, measuring the
film thickness at 200 Hz, is mounted on a linear motor stage (Aerotech PRO165LM),
which performs oscillatory motions at 0.4 Hz. Given the slow dynamics induced by
the high viscosity of the fluid, a sufficient temporal and spatial resolution (0.6 mm)
is thus achieved.

2.3. Phase diagram: rivulets or dripping droplets?
In the classical RTI for horizontal substrates, thin films eventually destabilize into
droplets, either directly or following the formation of rolls and axisymmetric structures
caused by the presence of the contact line at the boundaries or local perturbations
(Fermigier et al. 1992). The orientation of these structures is dictated only by the
boundaries of the geometry or initial conditions. The fate of thin films coating the
concave side of a cylindrical substrate is qualitatively different, as patterns such as
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FIGURE 3. (Colour online) Phase diagram as a function of the film aspect ratio δ and
Bond number Bo. Full symbols correspond to ν = 1000 cSt and empty symbols to ν =
5000 cSt. Numbers correspond to supplementary movies. The uncertainty on the film
aspect ratio is of the order of 4 % (respectively 2 %) for the curved plate (respectively
cylinder) set-up and the uncertainty on the Bond number is of the order of 5 %. Insets:
top view of the two-dimensional hexagonal pattern of droplets (left) and side view of
rivulets (right). Scale bars correspond to 10 mm.

rivulets may persist over time, i.e. drops do not necessarily form. Aiming to classify
the patterns observed in our experiments, we have built a phase diagram that we report
in figure 3. As evident from the figure, the diagram divides into three main regions,
which we now describe.

Dripping droplets arise in the limit of very large Bond numbers (Bo & 200) and
vanishing film aspect ratios (δ < 10−2), that is, when the substrate may be seen
as nearly horizontal on the scale of the film (see supplementary movie 1 available
online at https://doi.org/10.1017/jfm.2017.817). Often, droplets arrange themselves
on a hexagonal structure, as shown in the inset of figure 3. However, the initially
formed two-dimensional array of droplets deforms over time following the drainage
flow. Droplets were found to pinch off or slide along the substrate.

Rivulets are found for smaller Bond numbers, Bo . 100 (see figure 2 and
supplementary movie 2), yet larger than the critical value, Bo > 12 (Trinh et al.
2014; Balestra et al. 2016). Unlike the rolls forming under a horizontal substrate,
rivulets persist over time and do not further destabilize into droplets. These rivulets
have a clear orientation dictated by the geometric anisotropy of the substrate curvature
and are always orthogonal to the axis of the cylinder.

Dripping droplets and rivulets are separated by a mixed regime for Bond numbers
of the order of 100, where both patterns coexist on the substrate: rivulets are typically
found at the boundaries and droplets in the centre (see supplementary movie 3). For
film aspect ratios δ > 7× 10−3, rivulets are found to experience a secondary instability
at later times and destabilize into several aligned droplets which pinch off, similar
to the pinch-off studied by Indeikina, Veretennikov & Chang (1997) and Alekseenko
et al. (2015) (see supplementary movie 4).

Experiments performed with the cylinder display a larger critical Bond number for
the transition from rivulets to the mixed regime. The main reason is the smoother
initial film thickness in this configuration compared to the curved plate set-up. As
will become clear in § 4, the system is very sensitive to ambient noise and particular
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care has to be taken when performing the experiments. The thin-film evolutions in
a cylinder for two different experiments with the same parameters are shown in
supplementary movies 5 and 6, illustrating the reproducibility of the results.

In the phase diagram of figure 3, experiments with similar values of (Bo, δ) and
different viscosities collapse to the same region. This is an indication that viscosity
does not seem to play a major role in pattern selection, while it modifies the time
scale for the appearance of such a pattern. Note that in our problem the typical time
scale of the Rayleigh–Plateau instability (Hammond 1983; Duclaux, Clanet & Quéré
2006; Lister et al. 2006) is several orders of magnitude larger than the characteristic
time of the classical RTI. In fact we have τRP ∼ µ(R − H∗i )

4/(γH∗3i ) ∼ µR/(γ δ3)
for the Rayleigh–Plateau instability and τRT ∼ µ`4

c/(γH∗3i ) for the RTI, so that
τRP/τRT = (R/`c)

4
� 1. Furthermore, the dominant wavelength (see figure 2 or the

inset of figure 3) is found to be proportional to the capillary length in our experiments
as another indication of the relevance of the RTI. Recall that for the Rayleigh–Plateau
instability the wavelength is proportional to the cylinder radius. We thus argue that
rivulets form following the gravitational RTI.

Note finally that perturbations invariant in the axial direction, or waves, as studied in
Trinh et al. (2014) and Balestra et al. (2016), are not observed in our experiments. In
§ 3 we propose a two-dimensional linear optimal transient growth analysis, for small
aspect ratios, where we expect to identify the transition between rivulets and dripping
droplets. Given the phase diagram in figure 3, we expect the value of the critical Bo
to be independent of δ for δ . 10−2.

3. Linear optimal transient growth analysis
3.1. Governing equation

Owing to the small aspect ratio of the problem, δ� 1, we use a lubrication approach
to model the evolution of the film thickness (Oron, Davis & Bankoff 1997). Inertial
effects are neglected due to the large viscosity of the fluid (the Reynolds number is of
the order of 10−3). The flow is driven by the gravitational field and by the capillary
pressure gradient. By using the local mass conservation in cylindrical coordinates
as well as H∗i and τd as length and time gauges of the problem, the governing
equation for the dimensionless film thickness H̄ for small aspect ratios reduces to
(see appendix A for more details on the derivation)

H̄t +
1
3

 H̄3︸︷︷︸
IV

 1
Bo
κ̄θ︸ ︷︷ ︸

I

+ δH̄θ cos θ︸ ︷︷ ︸
II

+ sin θ︸︷︷︸
III



θ

+
1

3δ2

 H̄3︸︷︷︸
IV

 1
Bo
κ̄z︸ ︷︷ ︸

I

+ δH̄z cos θ︸ ︷︷ ︸
II




z

= 0,

(3.1)
where indices represent partial derivatives and κ̄ is the curvature of the film interface.
Terms I represent surface tension effects, terms II the variation of the hydrostatic
pressure distribution, term III accounts for the gravity-induced drainage and term IV
is the mobility of the liquid. The curvature up to the second order in δ is

κ̄ =
H̄zz

(H̄2
z + 1)3/2

+
δ

(H̄2
z + 1)1/2

− δ2

[
H̄zzH̄2

θ

2(H̄2
z + 1)3/2

−
3H̄2

z H̄zzH̄2
θ

2(H̄2
z + 1)5/2

+
2H̄zH̄θzH̄θ

(H̄2
z + 1)3/2

−
H̄θθ

(H̄2
z + 1)1/2

−
H̄

(H̄2
z + 1)1/2

]
+O(δ3). (3.2)
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Inspired by the good agreement between the linear optimal transient growth analysis
of the top region of the cylinder (Trinh et al. 2014) with that of the entire circular
geometry (Balestra et al. 2016), we concentrate on the cylinder’s most unstable region
close to θ = 0. For δ� 1, the change of variable θ = δ1/2x and z= δ−1/2y is suitable.
At leading order, the curvature reduces to κ̄ = δ(1+ H̄xx+ H̄yy). In the limit x� 1, the
lubrication equation (3.1) becomes (see appendix B)

H̄t +∇ ·

 H̄3

3
∇

 1
Bo
∇

2H̄ + H̄ +
x2

2︸︷︷︸
III


= 0, (3.3)

where ∇ = [∂x, ∂y]
T is the gradient operator. Equation (3.3) differs from the classical

lubrication equation employed for the horizontal substrate (Fermigier et al. 1992)
only by the presence of the drainage term III. This term breaks the symmetry of the
problem and is the key to the following analysis.

3.2. Linear disturbance solution

For a uniform film thickness, H̄(x, y, t)=H(t), (3.3) has an analytical solution of the
form (Takagi & Huppert 2010; Trinh et al. 2014; Lee et al. 2016)

H(T)=
1
√

T
, (3.4)

with T = 1+ (2/3)t (see appendix C for the derivation). This solution will be shown
to be asymptotically stable and we will refer to it as the drainage solution.

The film thickness is decomposed into this spatially uniform drainage solution H(T)
and small space-dependent disturbances εh(x, y, T):

H̄(x, y, T)=H(T)+ εh(x, y, T), ε� 1. (3.5)

Entering the decomposition (3.5) into the lubrication equation (3.3) and considering
first-order terms, we obtain the linear disturbance equation for the perturbations:

hT +
1

2T3/2

(
∇

4h
Bo
+∇

2h
)
+

3
2T
(xhx + h)= 0. (3.6)

In this expression, the base flow H is explicitly accounted for by the powers of T .
For an initially harmonic disturbance h(x, y, 1)= h0(x, y)= exp[i(αx+ βy)] + c.c. with
wavenumber α in the polar direction and β in the axial direction, the solution is

h(x, y, T)= A(α, β, T) exp
[
i
(
α

x
T3/2
+ βy

)]
+ c.c., (3.7)

where A satisfies

AT +
1
2

[
1

Bo

(
α4

T15/2
+
β4

T3/2
+ 2

α2β2

T9/2

)
−

(
α2

T9/2
+
β2

T3/2

)
+

3
T

]
A= 0. (3.8)

The temporal dependence of the apparent wavenumber in the polar direction, x/T3/2,
is chosen so as to annihilate the stretching term xhx in (3.6). The solution
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A(α, β, T) =
1

T3/2
exp

[ (
1−

1
T7/2

)
α2

7
−

1
Bo

(
1−

1
T13/2

)
α4

13

+

(
1−

1
T1/2

)
β2
−

1
Bo

(
1−

1
T1/2

)
β4

−
1

Bo

(
1−

1
T7/2

)
2α2β2

7

]
(3.9)

is composed of two parts. On the one hand, the exponential term results from the
RTI, with both destabilizing terms in α2 or β2 and stabilizing terms in α4, β4 or
α2β2. This exponential term saturates to a maximal amplitude due to the thinning of
the film, accounted for by the powers of T . The largest amplitude depends only on
the wavenumbers and on the Bond number. On the other hand, the gravity-induced
drainage also enters through the algebraic term 1/T3/2, which eventually makes the
amplitude vanish for large times, limT→∞ A(α, β, T) = 0. In view of (3.9), it is
therefore clear that the system is linearly asymptotically stable and only a transient
growth can be achieved.

The initial amplitude evolution is given by

A(α, β, T→ 1)∼ 1+
(α2
+ β2
− 3)Bo− (α2

+ β2)2

2Bo
(T − 1)+O[T − 1]2. (3.10)

Introducing the oblique mode k= α ex+ β ey, with norm k=
√
α2 + β2, initial growth

occurs only if k2
− 3− k4/Bo> 0. This condition is best met for

k0 =
√

Bo/2, (3.11)

which is the initially most amplified wavenumber. In agreement with Trinh et al.
(2014) and Balestra et al. (2016), we thus recover the condition Bo > 12. We
conclude that the threshold of the initial growth is not dependent on perturbation
direction and the wavenumber k0 corresponds to the wavenumber with the largest
linear growth in the planar RTI (Fermigier et al. 1992).

In our formalism, waves and rivulets correspond to modes with k = α ex and k =
β ey, respectively. The time evolution of the amplitude of waves and rivulets for the
initial wavenumber of norm k0 are shown in figure 4 for different Bond numbers. The
growth of rivulets is much stronger than that of waves, and they persist longer, thereby
rationalizing why waves are never seen in experiments. Note that waves and rivulets
are the two limiting cases, as more generic perturbations can be expressed as a linear
combination of α and β such that k= α ex + β ey.

3.3. Optimal growth
The optimization of the perturbations modes is performed for pure α and pure β

modes separately. The optimal wavenumbers and the optimal times correspond to the
wavenumbers and times for which the amplitude is the largest.

Following (3.9) we find that the optimal wavenumber for the waves is

∂A
∂α

∣∣∣∣
β=0

= 0 ⇐⇒ αmax(T)=

√
13
14
(1− T−7/2)

(1− T−13/2)
Bo, (3.12)
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FIGURE 4. (Colour online) Linear perturbative results. The amplitude A is shown for
waves (β = 0) and rivulets (α= 0). They correspond to an initial perturbation with k= k0
(see (3.11)) for Bond numbers Bo= 10, 30, 50, 70, 90 and 110. Stars denote the largest
amplitudes.

whereas for the rivulets it is

∂A
∂β

∣∣∣∣
α=0

= 0 ⇐⇒ βmax =

√
Bo
2
. (3.13)

Hence, the wavenumber for the rivulets to reach the largest growth at any time
always corresponds to the classical RTI most amplified wavenumber k0. The optimal
wavenumber for waves has a weak dependence on the optimization time and tends to
k0
√

13/7 for large time horizons (see inset in figure 5a). The largest growths reached
by waves and rivulets as a function of time are therefore

Aαmax(T)= A(αmax, 0, T)=
1

T3/2
exp

[
13

196

(
1− T−7/2

)2(
1− T−13/2

)Bo

]
, (3.14)

Aβmax(T)= A(0, βmax, T)=
1

T3/2
exp

[
1
4
(1− T−1/2)Bo

]
. (3.15)

Solving ∂Aαmax/∂T = 0 and ∂Aβmax/∂T = 0 yields the times at which the amplitude
is the largest. For rivulets, one finds TAβmax

= (Bo/12)2 and the largest linear transient
growth of rivulets is thus

Aβmax =

(
12
Bo

)3

exp
(

1
4

Bo− 3
)
. (3.16)

The time optimization for waves yields an irreducible polynomial of degree 25 that
does not have an algebraic solution. The numerical solution shows that TAαmax

follows
a power law with exponent close to 0.2 for the considered Bond-number range. The
largest linear transient growth that the waves can achieve for large Bond numbers
scales as

Aαmax ∼ exp
(

13
196

Bo
)

for Bo� 12. (3.17)
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FIGURE 5. (Colour online) (a) Times TAmax = {TAαmax
, TAβmax

} corresponding to the largest
amplitude Amax={Aαmax,Aβmax} obtained by perturbing with the optimal wavenumbers kmax=

{αmax, βmax} as a function of the Bond number. Inset: optimal wavenumbers rescaled by
the horizontal RTI wavenumber k0 as a function of time. (b) Largest achievable amplitudes
Amax as a function of the Bond number. Black dashed lines correspond to the high-Bond-
number limit evolutions. Note that the disturbance amplitude εA needs to be smaller than
the base flow of order unity for the linear theory to hold.

The optimal times, as well as the corresponding largest amplitudes, are reported in
figure 5. This optimization procedure confirms what has been observed in figure 4.
The optimal times and amplitudes of the rivulets are much greater than those of
the waves. Waves are stretched by the draining flow, see (3.7), reducing the time
available for the instability to grow. The stretching effect is evidenced by the different
temporal evolutions of the stabilizing and destabilizing RTI terms in (3.9). In contrast,
rivulets only experience the thinning of the film, without being stretched along
their characteristic direction. They grow for longer times and therefore reach larger
amplitudes.

3.4. Linear prediction
Equipped with the results of the linear optimal transient growth (summarized
in table 2), we aim to better understand our experimental results. In particular,
we consider the linear evolution of rivulets, h0(x, y) = exp(ik0y) + c.c., waves,
h0(x, y) = exp(ik0x) + c.c., and hexagons having one vector aligned with the axis
of the cylinder,

h0(x, y)= 1
3 {exp(ik0y)+ exp[i( 1

2

√
3k0x− 1

2 k0y)] + exp[i(− 1
2

√
3k0x− 1

2 k0y)]} + c.c.,
(3.18)

with α = β = k0 the initially most amplified wavenumber, and we choose an initial
perturbation with amplitude ε=10−3. The linear theory holds as long as the magnitude
of the disturbances εA is smaller than the base flow, which is of order unity; see (3.5).

We find that, for low Bond numbers, Bo' 60, rivulets experience a linear growth
strong enough for the perturbation to become of the order of the base flow (see
figure 6a), while the waves remain much smaller. The hexagons experience a large
linear growth since they contain a rivulet mode. However, their amplitude remains
smaller than one-third of that of the rivulets. For larger Bond numbers, e.g. Bo= 160
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FIGURE 6. (Colour online) Amplitude evolution of rivulets, waves and hexagons for
(a) Bo = 60 and (b) Bo = 160. Thin dashed lines indicate necessary amplification of
disturbances to become of order one when ε = 10−3. Given the asymptotic stability of
the system, the amplitude of all initial conditions saturates and tends to zero for large
times, which is the reason why only the evolution for T 6 20 is presented here.

Optimal wavenumber Optimal time Optimal gain (Bo� 12)

Waves αmax(T)=

√
13
14

(1− T−7/2)

(1− T−13/2)
Bo TAαmax

∼ Bo0.2 Aαmax ∼ exp
(

13
196

Bo
)

αmax(T→ 1)=

√
Bo
2

,

αmax(T→∞)=

√
13Bo

14

Rivulets βmax =

√
Bo
2

TAβmax
=

(
Bo
12

)2

Aβmax ∼ exp
(

1
4

Bo
)

TABLE 2. Summary of main results of the linear optimal transient growth analysis.

in figure 6(b), rivulets, hexagons as well as waves experience a similar linear growth
up to the amplitude where nonlinear effects become relevant. Thereby, for sufficiently
large Bond numbers, the instability pattern is selected only by the nonlinear effects.
Conversely, linear growth selects the pattern for low Bond numbers. Note that the
critical Bond number at which nonlinear effects enter into play before the linear
growth has promoted a specific pattern is dependent on perturbation amplitude. The
experimental threshold of Bo ∼ 100, corresponding to the mixed regime of figure 3,
is related to our experimental settings.

4. Nonlinear two-dimensional simulations
We have seen in § 3.4 that the linear stability analysis is sufficient to predict the

occurrence of rivulets is some cases (low Bond numbers), but does not allow us to
conclude anything about the fate of perturbations in other cases (large Bond numbers).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

81
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.817


3D Rayleigh–Taylor instability under unidirectional curved substrate 31

Fermigier et al. (1992) performed a weakly nonlinear analysis for the horizontal RTI.
In particular, they showed that the fundamental mode of rolls, which correspond to
rivulets for the planar geometry, is stabilized by the nonlinear interaction with the
first harmonic of the perturbations. This interaction modifies the amplitude of the
rolls only at order ε3. Furthermore, they have also shown that a two-dimensional
pattern of hexagons is amplified at second order through the interactions between
fundamental modes oriented at 120◦ to each other, like the one of (4.1). This pattern
typically appears when the instability’s vertical symmetry is broken (Fauve 2005;
Lister et al. 2010), meaning that the equations are not invariant under a change of
sign for h. In our context, these nonlinear effects could explain the predominance
of a two-dimensional array of droplets instead of rivulets for large Bo. However,
although the weakly nonlinear expansion of Fermigier et al. (1992) suggests the right
stabilizing/destabilizing nonlinear effects, the expansion is not convergent and can be
used only for t→ 0 when ε gets larger.

Here, such a truncated weakly nonlinear expansion is even more delicate in view
of the draining flow in the polar direction, which stretches the wavenumbers. As a
consequence, we instead propose to use two-dimensional numerical simulations of
(3.1) so as to investigate nonlinear effects in two-dimensional initial disturbances (see
appendix D.1 for details on the numerical methods). The computational domain is
θ ∈ [−π, π] and z ∈ [−4π/b0, 4π/b0]. We consider the most amplified pattern for
the classic RTI with wavenumbers in the (θ, z)-space a0 = k0δ

−1/2
=
√

Bo/2δ and
b0 = k0δ

1/2
=
√

Boδ/2, and set the initial condition to be

H̄0 = 1+ ε{cos(b0z)+ cos[− 1
2 b0z+ 1

2

√
3a0(θ + φ)] + cos[− 1

2 b0z− 1
2

√
3a0(θ + φ)]}.

(4.1)

The initial condition is chosen to be aligned with z and shifted by φ along the polar
direction to avoid symmetry at θ = 0.

The results for several values of ε and φ = 0.02 are shown in figure 7. They
correspond to the same Bond number, Bo= 100. As evident from the figure, different
patterns arise depending on the initial perturbation amplitude. Rivulets are found to
form for small ε, despite the imposed hexagonal initial condition. However, when the
perturbation is large, the two-dimensional pattern of hexagons grows and dominates
the dynamics. Note an intrinsic limitation of our model: owing to the use of the
lubrication equation, we do not account for pinching-off drops, which may arise at
longer times. Given the amplifying nature of this system (see table 2), the same
result is obtained by fixing the disturbance amplitude and varying the Bond number
(see figure 8).

It has to be stressed that the finally observed pattern is not dependent on the
structure of the initial condition. If random noise is imposed as initial condition,
rivulets will still appear at low Bond numbers and a two-dimensional pattern of
isolated droplets will form at large Bond numbers (see figure 9). The randomness
of the initial condition limits the nonlinear interactions and pushes the critical Bo as
well as the pattern-formation time to larger values.

The transition from rivulets to a two-dimensional pattern is in agreement with
what has been obtained experimentally and presented in § 2.3. Rivulets dominate at
low Bond numbers whereas nonlinear interactions select the pattern from linearly
equally growing modes at larger Bond numbers. Numerical results show that this
transition can be triggered similarly by varying disturbance amplitudes, which is
difficult to check experimentally. Nonlinear two-dimensional simulations complete
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FIGURE 7. (Colour online) Numerical results of nonlinear two-dimensional simulation.
Evolution of the film thickness for a similar initial hexagonal condition (4.1) with
amplitude ε = 10−5, 10−4, 10−3 and 10−2 at times t = 0.5, 1.2 and 4 for Bo = 100
and δ = 0.01. The angular shift is φ = 0.02. Only the uppermost area in the sector
z ∈ [−4π/b0, 4π/b0] and θ ∈ [−π/4,π/4] is shown.

the analysis of the pattern selection for the three-dimensional RTI under a curved
substrate. While rivulets are mainly selected by linear effects along the axial direction,
the two-dimensional pattern of droplets relies solely on nonlinear interactions.

5. Characterization of the rivulets
5.1. Nonlinear simulations at the top of the cylinder

In order to gain more insight into the dynamics of the rivulets, numerical simulations
of the one-dimensional lubrication equation for the film thickness at the top of the
cylinder are carried out (θ = 0). The lubrication equation (3.1) at θ = 0 with vanishing
polar derivatives reads

H̄t +
1
3

H̄3︸︷︷︸
I

+
1

3δ2

[
H̄3

(
1

Bo
κ̄z + δH̄z

)]
z︸ ︷︷ ︸

II

= 0. (5.1)

The term labelled I results from the drainage term in (3.1) and is responsible for the
thinning of the film over time. The terms labelled II match the classical terms of the
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FIGURE 8. (Colour online) Numerical results of nonlinear two-dimensional simulation.
Evolution of the film thickness for a similar initial hexagonal condition (4.1) with
amplitude ε= 10−3 at times t= 0.5, 1.2 and 4 for Bo= 40, 60, 100, 160 and δ= 0.01. The
angular shift is φ = 0.02. Only the uppermost area in the sector z∈ [−4π/b0, 4π/b0] and
θ ∈ [−π/4, π/4] is shown. If one fixes the initial film thickness and the cylinder radius,
increasing Bo reduces to increasing the most amplified wavenumber in the axial direction
b0 =
√

Boδ/2, i.e. to decreasing the capillary length.

equation describing the classical horizontal RTI (Fermigier et al. 1992). Equation (5.1)
can be resolved numerically (see appendix D.2 for details) and its solution is validated
by comparison with a two-dimensional nonlinear numerical simulation in figure 10(b).
The domain size is Lz = 2 × 2π/b0, with b0 = k0δ

1/2
=
√

Boδ/2 the linear optimal
wavenumber in the physical z-space and the initial condition is H̄0 = 1 + ε cos(b0z).
Periodic boundary conditions are used. An example of nonlinear evolution given by
(5.1) is presented in figure 10. The narrow rivulets, whose peaks grow initially in time,
are separated by a rather flat thin-film region (see figure 10b).

The nonlinear perturbation solution is given by h(z, t) = [H̄(z, t) − H(t)]/ε, where
H(t)= (1+ 2t/3)−1/2 is the drainage solution at θ = 0 introduced in (3.4) and H̄(z, t)
is obtained by the numerical resolution of (5.1). The amplitudes of the different
harmonics can be found by the Fourier series decomposition of the perturbation h:

h(z, t)=
∑
n∈N

An(t) exp(inb0z)+ c.c. (5.2)
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Bo 0.6 1.7

0.21 0.33

FIGURE 9. (Colour online) Numerical results of nonlinear two-dimensional simulation.
Evolution of the film thickness for a random-noise initial condition with maximal
amplitude ε = 5 × 10−4 at times t = 1 and 20 for Bo = 60 and 180 and δ = 0.01. Only
the uppermost area in the sector z∈ [−4π/b0, 4π/b0] and θ ∈ [−π/4,π/4] is shown, with
b0 =
√

Boδ/2.
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FIGURE 10. (Colour online) Nonlinear simulations at θ = 0, i.e. using (5.1). Film
thickness as a function of time for rivulets with optimal initial disturbance H̄0 = 1 +
0.01 cos(b0z) with b0 =

√
Boδ/2. (a) Spatio-temporal map of the film thickness H̄.

Dash-dotted and dashed lines correspond to the locations of the peaks and valleys,
respectively, whose thickness evolution is shown in figure 12(a). (b) Profiles of H̄ at
successive times t = 0, 2, . . . , 20. The black dashed line corresponds to the nonlinear
solution at θ = 0 and t = 20 obtained when considering the entire circular geometry
−π< θ <π, equation (3.1). Here Bo= 70 and δ = 0.02.

Results are presented in figure 11(a). The fundamental mode, A1, obtained via
nonlinear simulations agrees well with our linear prediction for small values of
ε. Nonetheless, for larger initial perturbations, A1 is found to saturate and to
subsequently decrease well before the linear prediction A does. Albeit ‖A‖2 and
A1 mostly agree, that is, A0 and higher harmonics do not contribute significantly
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FIGURE 11. (Colour online) (a) Linear (green solid line) and nonlinear (blue dashed lines)
amplitudes of the fundamental, together with the total nonlinear amplitude (red solid lines)
for the optimal initial disturbance H̄0 = 1 + ε cos(b0z) with b0 =

√
Boδ/2 and different

initial disturbance amplitudes ε= 10−5, 10−4, 10−3 and 10−2. Here Bo= 70 and δ= 0.02.
(b) Evolution of the total nonlinear disturbance energy ‖A‖2 together with the relative
amplitude of the different harmonics An of (5.2). Here ε= 10−3, Bo= 70 and δ = 0.02.

to the energy, as evident from figure 11(b), we argue that their interaction with A1
generates the observed saturation and therefore cannot be neglected. This type of
stabilizing effect is in agreement with the aforementioned analysis of Fermigier et al.
(1992) for rolls. Note that, the larger the initial disturbance amplitude, the earlier the
higher harmonics will influence the dynamics of the fundamental mode. Yet, if the
amplitude is sufficiently small, the transient growth nature of the instability guarantees
that the linear prediction holds for all times (not shown in figure 11(a), the linear
evolution remains superimposed on the nonlinear evolution for ε= 10−5 and T > 10).
The perturbation amplitude saturates and eventually vanishes due to the asymptotic
stability of the system.

Despite their small contribution to ‖A‖2, the higher-order harmonics are visible
in our system. In figure 10(b), one can see that the flat regions between two
fundamentals are subject to an instability too. This phenomenon is akin to the
cascade of structures observed by Boos & Thess (1999) for the Marangoni instability
in a thin film.

Our nonlinear analysis also indicates a modification in the base flow. We found
that the mean film thickness of the perturbed film is smaller than the one of the
draining solution H(t)=1/

√
1+ 2 t/3 (Takagi & Huppert 2010; Trinh et al. 2014; Lee

et al. 2016) (see figure 12a). The development of rivulets hastens the drainage, which
results from the coupling between the shape of the rivulets and the strong variation
in the mobility of the liquid that scales as the cube of the local thickness, see (3.1).
Initially, the different components of the thickness follow the linear evolution. There is
no correction of the drainage solution due to the rivulets at early times. Nonetheless,
when the higher harmonics come into play, A0 is no longer vanishing (see figure 11b).
Building upon this observation, forcing the formation of rivulets is advantageous if
one wishes to accelerate the drainage. Similar effects exist when waves run down at
the surface of a liquid film flowing down an inclined plane (Kofman, Ruyer-Quil &
Mergui 2016). Such a modification of the mean flow is also a key to the saturation
of hydrodynamic instabilities like vortex shedding in the wake flow behind a cylinder
(Maurel, Pagneux & Wesfreid 1995; Mantič-Lugo, Arratia & Gallaire 2014).
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FIGURE 12. (Colour online) (a) Film thickness evolutions at the peaks (red dash-dotted
line) and valleys (green dashed line) of the rivulets shown in figure 10. The thick black
solid line corresponds to the pure drainage solution H and the blue dotted line to the
mean film thickness 〈H̄〉. (b) Long-time evolutions for peaks, valleys and the pure drainage
solution. Here Bo= 70, δ = 0.02 and ε= 10−2.

Moving away from the mean value of the film thickness, we now describe the
evolution of the film thickness evolution in the peaks and valleys shown in figure 12.
The growth of the peaks is fed by liquid extracted from the valleys. This mechanism
is similar to the rolls in the planar RTI (Fermigier et al. 1992; Weidner, Schwartz &
Eres 1997; Lister et al. 2010) or to the collars in the instability of a thin annular film
coating the inside or outside of a cylinder in the absence of gravity (Hammond 1983;
Lister et al. 2006). However, due to the thinning of the film in time, rivulets can only
grow at short times. At later stages, the film thins and thus limits the liquid that a
rivulet can pull from its vicinity. We find that, before the film becomes uniform again,
the thickness in the valleys follow the scaling t−1/4 (see figure 12b). The same scaling
was found by Lister et al. (2010) for thin regions between pendent drops below planar
substrates and for the lobes inside a cylinder studied by Hammond (1983). At these
intermediate times, the drainage of the rivulet valleys is driven by the classical RTI
term II in (5.1), yielding H̄ ∼ t−1/4, as the effect of the term I is negligible. For
peaks, the term I of (5.1) is not negligible, as the film thicknesses H̄ is relatively
larger. Eventually, the film thickness becomes uniform again due to the drainage in
the rivulets and the drainage scales like the base flow, H̄ ∼ t−1/2.

5.2. Experimental measurements
Rivulets are characterized experimentally by measuring the film thickness at the top of
the cylinder. The spatio-temporal film thickness map is shown in figure 13(a). Rivulets
first form at the boundaries of the cylinder where the film is perturbed by the existence
of a meniscus. They then progressively invade the entire domain (see figure 13b). As
time evolves, the thickness of the rivulets eventually decreases, but their structure does
not destabilize and we do not see any drops forming.

The rivulets were found to be almost equally spaced in experiments, with
wavelength λ = 14 ± 1 mm. The linearly most amplified wavelength is λβmax =

2π/
√

Bo δ/2H∗i = 13.5 mm (see § 3.3). Keeping in mind that the calculation leading
to this value is idealized – infinite domain approximation – we find that the agreement
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FIGURE 13. (Colour online) (a) Spatio-temporal diagram of the film thickness H̄∗
measured experimentally along the cylinder generatrix at θ = 0. Solid and dashed lines
correspond to the locations of the peaks and valleys, respectively, whose thickness
evolutions are shown in figure 14(b). The white line corresponds to the invading front
location z∗f predicted by the linear theory. The film thickness close to the extremities of
the cylinder is not shown in the spatio-temporal diagram due to measurement uncertainties
induced by the large thickness gradients. (b) Profiles of H̄ at successive times t =
30, 60, . . . , 270 s for a range of dimensional axial locations z∗ ∈ [−61, 0] mm. The Bond
number is approximatively 67 and the film aspect ratio 0.02.

is satisfactory. In reality, rivulets grow in a finite domain whose width is not an integer
multiple of the most amplified wavelength, which they progressively invade starting
from the boundaries. The profiles in figure 13(b) are qualitatively similar to their
numerical counterpart. In particular the aforementioned higher harmonics are evident
in the valleys between the rivulets. The detailed evolution of film thickness along
the peaks and valleys is shown in figure 14(b). The trend of these curves is similar
to that found numerically (see figure 12a). Rivulets undergo a transient growth,
whose magnitude decreases as we move towards the centre of the sample. The RTI
propagates from the boundaries, where it is forced by a meniscus or a contact line.
Limat et al. (1992) have shown that the front velocity of rolls predicted by the linear
marginal stability criterion is given by vf = 0.54 (H∗)3(ρg)3/2/µγ 1/2, corresponding
to the pulled fronts of Van Saarloos (2003). Such a front velocity model would
predict a linear propagation of the front position in time. In experiments the front
velocity reduces with time – the white lines from linear theory as reported in
figure 13(a) are concave up. We hypothesize that this effect is caused by drainage,
which effectively lowers H∗ as time goes by: H∗(t∗) = H∗i /

√
1+ 2 t∗/3. We have

successfully reproduced the effect of the lateral boundaries on the inward propagation
of rivulets using a periodic but inhomogeneous initial condition, as described in § 5.3.

5.3. Numerical experiment on the front propagation of rivulets
The experimentally observed drainage characteristics of rivulets presented in § 5.2 can
be reproduced by resolving the lubrication equation (5.1) with particular boundary
conditions. In order to avoid dealing with the difficult problem of a moving contact
line at the boundaries, we consider periodic boundary conditions with a symmetric
initial perturbation of the form H̄0 = 1 + ε{exp[−(z + Lz/2)2/(2σ 2)] + exp[−(z −
Lz/2)2/(2σ 2)]}, with σ = 2 for example.
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FIGURE 14. (Colour online) (a) Evolution of the mean film thickness 〈H̄∗〉 obtained
experimentally (blue dashed line) and numerically (orange thin line) compared to the
uniform pure draining solution H∗(t∗)=H∗i /

√
1+ 2 t∗/3 (thick black solid line). (b) Film

thickness evolutions at the peaks (solid lines) and valleys (dashed lines) of the rivulets
shown in figure 13(a). The location in mm is shown in the legend. The thick black solid
line corresponds to the pure drainage solution H∗. Here Bo= 67, δ = 0.02, ε = 0.01 and
σ = 2 (for numerical results, see § 5.3).
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FIGURE 15. (Colour online) (a) Spatio-temporal diagram of the film thickness H̄∗
obtained numerically using the initial and boundary conditions described in § 5.3. The
white line corresponds to the invading front location z∗f predicted by the linear theory.
(b) Comparison between experimental (blue dashed line) and numerical (orange solid line)
film thicknesses at different times. Here Bo= 67, δ = 0.02, ε= 0.01 and σ = 2.

The spatio-temporal evolution of the film thickness for such an initial condition is
displayed in figure 15(a). Similarly to figure 13(a), the rivulets first form close to the
boundary and then propagate into the domain. Again, the front velocity reduces as the
film becomes thinner. The linearly most amplified wavelength λβmax is also selected.
This ad hoc model for the boundary conditions is able to capture the dynamics of
the rivulets invading the domain (see figure 15b) and thus the faster drainage of the
rivulets (see figure 14a). The initial differences, imputable to the ad hoc boundary
conditions, do not affect the later stage of rivulet formation and invasion, making this
model satisfactory.
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6. Conclusions
We have investigated the RTI of thin viscous films coating the interior of a cylinder.

Unlike the classic RTI under a horizontal substrate, where the most amplified pattern
has a circular or hexagonal symmetry, here, the geometry of the substrate breaks the
symmetry of the problem and gives rise to different patterns depending on the Bond
number and the perturbations amplitude. For moderate Bond numbers (12<Bo. 100)
and small film aspect ratios, the thin film results into rivulets, i.e. equally spaced
axial perturbations that initially grow and eventually decay due to the drainage. For
Bo & 100, the initially uniform film quickly destabilizes into a two-dimensional
pattern of droplets, which might drip for thick coatings or are convected to the
bottom of the cylinder for thinner films. We showed numerically that this transition
is dependent on the amplitude of the perturbation, which precludes the determination
of universal thresholds. We have rationalized our experimental phase diagram using
a linear optimal transient growth analysis and nonlinear numerical simulations. The
linear optimal transient growth analysis at the top of the cylinder predicts the faster
growth of rivulets for moderate Bond numbers (or small perturbations) as well as the
eventual asymptotic stability of the coating. The linearly most amplified wavenumber
along the axial direction corresponds to the classical wavenumber 1/(

√
2`c) of the

horizontal RTI. Yet, the linear amplification does not coincide with the classical
theory (Fermigier et al. 1992) because of the film drainage in the polar direction. For
larger Bond numbers (or large perturbations), all modes experience the same linear
growth so that the resulting pattern is solely selected by their nonlinear interactions.
In particular, the thin film may destabilize into a two-dimensional array of droplets
rather than into rivulets, as seen in our numerical simulations of the nonlinear
lubrication equation. The novelty of our work lies in the proof that rivulets are
the prevailing pattern at moderate Bond numbers (12 < Bo . 100) for thin films in
cylindrical substrates. Recall that they are not dominant for the horizontal RTI. Such
rivulets may induce a faster drainage (up to 20 % faster in the case under study).
We have shown that this effect relies on the nonlinear interactions between the
fundamental and higher-order harmonics. The more the film is perturbed, the earlier
the nonlinear terms will become relevant and the faster the mean film thickness on
the upper part of the cylinder will decrease. When the film aspect ratio is larger, the
transition to a two-dimensional array of droplets shifts to larger Bond numbers, as
found experimentally. Rivulets first form and destabilize into aligned droplets due to
a secondary instability.

It should be mentioned that rivulets, defined here as structures aligned in the
direction of the flow, are not intrinsic to the cylindrical geometry. Similar structures
arise when totally different forces are at play. For example, Scheid et al. (2008)
observed the formation of equally spaced rivulets aligned with the direction of the
flow for thin films on a vertical heated wall when inertia effects are negligible. They
also appear for a thin film above (Troian et al. 1989) and below (Lin, Kondic &
Filippov 2012) an inclined plane or a cylinder (Takagi & Huppert 2010) in the
presence of a moving contact line, or on a film falling along the outside wall of a
vertical spinning cylinder (Rietz et al. 2017).

As a possible follow-up to this work, it would be interesting to consider a thin
liquid film coating the outside of horizontal or inclined cylinders of moderate diameter.
For this configuration, the drainage solution is not asymptotically stable. Reisfeld &
Bankoff (1992), de Bruyn (1997) and Weidner et al. (1997), who considered thin films
on the exterior of a horizontal cylinder, showed that the fluid accumulates at the lower
external part of the cylinder and forms droplets, which grow in size and eventually
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pinch off. However, the diameter of the cylinder in all these studies was too small
to observe the transition from rivulets to a two-dimensional array of droplets. Mainly
single droplets aligned along the axial direction were observed. For even smaller radii,
the Rayleigh–Plateau instability would appear (Duclaux et al. 2006).

Concerning the limitations of our work, the pinching off of droplets (Eggers &
Villermaux 2008) as well as the later stages of the dynamics are not considered in this
study. After the rivulets have drained out and the droplets have dripped, the liquid will
be mainly collected at the bottom of the cylinder and only a thin layer will remain
on the upper part of the cylinder. When the corresponding Bond number becomes of
the order of the film aspect ratio, we expect lobes, collars and dry spots to form, as
discussed by Jensen (1997) and King et al. (2007) for inclined and curved cylinders.

Finally, we expect that a spherical substrate would annihilate the formation of
rivulets. This is probably the key to the success of chocolatiers, who easily coat
spherically shaped moulds in a uniform way (Lee et al. 2016).
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Appendix A. Derivation of the lubrication equation

The derivation of the model equation presented in § 3.1 is briefly outlined here,
extending to the axial direction the derivation of Balestra et al. (2016). Consider a thin
film coating the interior of a cylinder of radius R and length Lz, as shown in figure 1.
Given an initial average thickness of H∗i , the resulting film aspect ratio reads δ=H∗i /R.
The characteristic length in the radial direction is H∗i , whereas the characteristic length
in the polar and axial directions is R. The long-wavelength approximation is employed
since δ�1 (Oron et al. 1997). Mass conservation indicates that the velocity normal to
the interface is much smaller than the polar and axial components, v∗∼ δ u∗� u∗ and
v∗ ∼ δ w∗�w∗, respectively. The Stokes equations are used, as the Reynolds number
is low and inertial effects can be neglected. The momentum equation in the radial
direction is

0=−
1
ρ

∂p∗

∂r∗
− g cos θ, (A 1)

and the boundary condition for the pressure is given by p∗(R− H̄∗, θ, z∗)= p∗0 − γ κ̄
∗,

where p∗0 is the external pressure, γ the surface tension and κ̄∗ the curvature of
the interface. Equation (A 1) can be integrated along the radial direction, and,
using the aforementioned boundary condition, one obtains the pressure distribution
p∗(r∗, θ, z∗) = p∗0 − γ κ̄

∗
+ ρg cos θ (R − H̄∗ − r∗). The θ and z∗ components of the

momentum equation read
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0=−
1
ρr∗

∂p∗

∂θ
+ ν

[
∂

∂r∗

(
1
r∗

∂

∂r∗
(r∗u∗)

)
+

1
r∗2
∂2u∗

∂θ 2
+
∂2u∗

∂z∗2

]
+ g sin θ, (A 2)

0=−
1
ρ

∂p∗

∂z∗
+ ν

[
1
r∗

∂

∂r∗

(
r∗
∂w∗

∂r∗

)
+

1
r∗2
∂2w∗

∂θ 2
+
∂2w∗

∂z∗2

]
. (A 3)

With the change of variable r∗ = R − s, where 0 6 s 6 H̄∗ � R, the viscous terms
in (A 2) and (A 3) reduce to ν∂2u∗/∂s2 and ν∂2w∗/∂s2, respectively, plus terms at least
an order δ smaller. Keeping the dominant order of the viscous term, as well as the
surface tension and gravitational terms, equations (A 2) and (A 3) with the expression
for p∗ become

0=
γ κ̄∗θ

ρR
+

g cos θ H̄∗θ
R

+ ν
∂2u∗

∂s2
+ g sin θ, (A 4)

0=
γ κ̄∗z∗

ρ
+ g cos θ H̄∗z∗ + ν

∂2w∗

∂s2
. (A 5)

Equations (A 4) and (A 5) can be integrated twice, and considering the zero-slip
boundary condition at the cylinder surface, u∗(0, θ, z∗) = 0 and w∗(0, θ, z∗) = 0, as
well as the zero-shear-stress interface, ∂u∗(H̄∗, θ, z∗)/∂s= 0 and ∂w∗(H̄∗, θ, z∗)/∂s= 0,
yields the velocity components:

u∗(s, θ, z∗)=
(
γ κ̄∗θ

µR
+
ρg cos θ H̄∗θ

µR
+
ρg sin θ
µ

)(
H̄∗ −

s
2

)
s, (A 6)

w∗(s, θ, z∗)=
(
γ κ̄∗z∗

µ
+
ρg cos θ H̄∗z∗

µ

)(
H̄∗ −

s
2

)
s. (A 7)

The flow rate in the polar direction is given by Qθ(θ, z∗)=
∫ H̄∗

0 u∗(s, θ, z∗) ds and in

the axial direction by Qz∗(θ, z∗)=
∫ H̄∗

0 w∗(s, θ, z∗) ds. Mass conservation in cylindrical
coordinates, ∂H̄∗/∂t∗ + R−1∂Qθ/∂θ + ∂Qz∗/∂z∗ = 0, yields the lubrication equation:

H̄∗t∗ +
1

3µR

H̄∗
3

γ κ̄∗θR︸︷︷︸
I

+
ρg cos θ H̄∗θ

R︸ ︷︷ ︸
II

+ ρg sin θ︸ ︷︷ ︸
III



θ

+
1

3µ

H̄∗
3

γ κ̄∗z∗︸︷︷︸
I

+ ρg cos θ H̄∗z∗︸ ︷︷ ︸
II


z∗

= 0. (A 8)

The term I in the spatial variation of the flux corresponds to the surface tension effects,
term II to the variation of the hydrostatic pressure distribution and term III to the
drainage.

The free surface of the viscous film is defined by

F(r∗, θ, z∗, t∗)= r∗ − [R− H̄∗(θ, z∗, t∗)] = 0, (A 9)
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and its normal vector n is given by

n=
∇F
‖∇F‖

=

[
1,

H̄∗θ
r∗
, H̄∗z∗

]T

√
1+

(
H̄∗θ
r∗

)2

+
(
H̄∗z∗
)2

(A 10)

at r∗ = R− H̄∗. The interfacial curvature therefore reads

κ̄∗ =∇ · n = −
H̄∗z∗z∗H̄

∗2
z∗(

H̄∗2θ
r∗2
+ H̄∗2z∗ + 1

)3/2 −
2H̄∗θ H̄∗θz∗H̄

∗

z∗

r∗2
(

H̄∗2θ
r∗2
+ H̄∗2z∗ + 1

)3/2

+
H̄∗θθ

r∗2
√

H̄∗2θ
r∗2
+ H̄∗2z∗ + 1

+
H̄∗z∗z∗√

H̄∗2θ
r∗2
+ H̄∗2z∗ + 1

+
1

r∗
√

H̄∗2θ
r∗2
+ H̄∗2z∗ + 1

−
H̄∗2θ H̄∗θθ

r∗4
(

H̄∗2θ
r∗2
+ H̄∗2z∗ + 1

)3/2

+
H̄∗2θ

r∗3
(

H̄∗2θ
r∗2
+ H̄∗2z∗ + 1

)3/2 (A 11)

at r∗ = R− H̄∗.
Lengths can be non-dimensionalized by the initial average film thickness H∗i and the

time by the gravitational relaxation scale µR/(ρgH∗2i ), so that the lubrication equation
expressed with non-dimensional quantities finally reads

H̄t +
1
3

H̄3

 1
Bo
κ̄θ︸ ︷︷ ︸

I

+ δH̄θ cos θ︸ ︷︷ ︸
II

+ sin θ︸︷︷︸
III



θ

+
1

3δ2

H̄3

 1
Bo
κ̄z︸ ︷︷ ︸

I

+ δH̄z cos θ︸ ︷︷ ︸
II




z

= 0,

(A 12)
where Bo= ρgH∗i R/γ is the modified Bond number.

The curvature up to the second order in δ is

κ̄ =
H̄zz

(H̄2
z + 1)3/2

+
δ

(H̄2
z + 1)1/2

− δ2

[
H̄zzH̄2

θ

2(H̄2
z + 1)3/2

−
3H̄2

z H̄zzH̄2
θ

2(H̄2
z + 1)5/2

+
2H̄zH̄θzH̄θ

(H̄2
z + 1)3/2

−
H̄θθ

(H̄2
z + 1)1/2

−
H̄

(H̄2
z + 1)1/2

]
+O(δ3). (A 13)

A more sophisticated model could be employed to consider higher-order curvature
terms and larger film aspect ratios, as done by Weidner et al. (1997).
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Appendix B. Lubrication equation for small angles
The lubrication equation (A 12) can be further simplified if one considers the limit

of small angles θ . Following Trinh et al. (2014), the change of variable θ = δ1/2x and
z= δ−1/2y can employed when δ� 1. The curvature becomes κ̄ = δ(1+ H̄xx + H̄yy)+
O(δ2) so that (A 12) reads, using cos θ ≈ 1 and sin θ ≈ θ = δ1/2x:

H̄t +
δ−1/2

3

[
H̄3

(
δδ−1/2

Bo

(
H̄xxx + H̄yyx

)
+ δδ−1/2H̄x + δ

1/2x
)]

x

+
δ1/2

3δ2

[
H̄3

(
δδ1/2

Bo

(
H̄xxy + H̄yyy

)
+ δδ1/2H̄y

)]
y

= 0. (B 1)

The resulting equation, which can be rewritten as

H̄t +∇ ·

[
H̄3

3
∇

(
1

Bo
∇

2H̄ + H̄ +
x2

2

)]
= 0, (B 2)

with ∇= [∂x, ∂y]
T as the gradient operator, is independent of the aspect ratio and the

Bond number is the only remaining parameter. Equation (B 2) is the planar thin-film
equation of Fermigier et al. (1992) with an additional polar flux term proportional to
the distance from the uppermost generatrix.

Appendix C. Derivation of the drainage solution
For an initial uniform profile H(x, y, 0)= 1, the film thickness will remain uniform

close to the top of the cylinder. Equation (B 2) becomes

Ht +
H3

3
= 0, (C 1)

whose solution with the unitary initial profile is the drainage solution (Takagi &
Huppert 2010; Trinh et al. 2014)

H(t)=
1√

1+ 2
3 t
. (C 2)

It has to be pointed out that, by employing the full lubrication equation (A 12)
and under the assumption of small deformations, i.e. neglecting surface tension and
hydrostatic pressure effects, the lubrication equation would be

Ht +
1
3(H

3 sin θ)θ = 0. (C 3)

Equation (C 3) can be resolved analytically by a regular perturbation expansion around
θ = 0 as explained in Lee et al. (2016) for the drainage on a sphere. The same cannot
be done starting from (B 2), as it requires terms in θ 2 to be kept in the equation.
Eventually, the first spatial correction to the drainage solution from a uniform initial
condition reads

H(t, θ)=
1√

1+ 2
3 t

[
1+

θ 2

16

(
1−

1
(1+ 2

3 t)4

)]
+O(θ 4). (C 4)

We have found that this solution is accurate at least up to π/6 and the largest error
with respect to the numerical resolution of the full lubrication equation (A 12) is
within 2.5 % at π/2. Finally, as the first correction is at second order in space, θ 2,
considering a uniform drainage solution is a valid assumption for the region close to
the top of the cylinder (see figure 16a).
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FIGURE 16. (Colour online) (a) Polar dependence of the film thickness profile at z= 0 for
t= 10 obtained by the two-dimensional numerical resolution with COMSOL Multiphysics
(solid line) and by the numerical resolution of the one-dimensional lubrication equation
in θ with a spectral code (dotted green line) (Balestra et al. 2016). The dashed red line
corresponds to spatial variation of drainage solution given by (C 4). (b) Film thickness
evolution at θ = 0 obtained by the two-dimensional numerical resolution with COMSOL
Multiphysics (solid line) and analytical prediction H given by (3.4) (dashed line). Here
Bo= 100 and δ = 0.01.

Appendix D. Numerical methods
D.1. Two-dimensional simulations

For the numerical resolution of the two-dimensional lubrication equation (3.1), we
employed COMSOL Multiphysics, which uses a finite element method. Cubic
elements with Lagrangian shape functions are employed on a free triangular grid
with characteristic size of 0.8. The film thickness H̄ as well as the curvature κ̄ are
the two resolved variables.

The obtained film thickness at θ = 0 and at z = 0 for an initially uniform profile
are compared to the analytical result H and to an in-house one-dimensional spectral
code (Balestra et al. 2016) in figure 16. The comparison for initially forced rivulets
is shown in figure 10(b). In view of the very good agreement, the choice for the use
of COMSOL Multiphysics to solve for the lubrication equation in two dimensions
follows naturally. Other options would be the implementation of an ADI method
(Witelski & Bowen 2003) such as the one employed by Weidner et al. (1997) or
Lister et al. (2010).

D.2. One-dimensional simulations
The lubrication equation (5.1) is discretized with a central finite difference scheme and
evolved in time with the second-order Crank–Nicolson MATLAB routine ode23t.m to
avoid numerical diffusion. The axial range is uniformly discretized with N collocation
points, giving a grid spacing typically of approximately 0.03 for N = 500. The
convergence study for a typical parameter set is shown in figure 17.

Appendix E. Confocal chromatic imaging technique
The principle of the confocal chromatic imaging technique is the following.

An achromatic lens decomposes the incident white light into a continuum of
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FIGURE 17. (Colour online) Convergence study for the nonlinear evolution of rivulets
initially perturbed with b0 for Bo = 70, δ = 0.02, ε = 10−2 and t = 20. The number of
collocation points N is shown in the legend.

monochromatic images, which constitutes the measurement range. The light reflected
by a sample surface put inside this range is collected by a beam splitter. A pinhole
then allows one to block the defocused light that does not come from the sample
surface. Eventually, the spectral repartition of the collected light is analysed by a
spectrometer. The wavelength of maximum intensity is detected and the distance value
is deduced from a calibration curve. Several reflecting interfaces can be detected at the
same time, allowing thickness measurement of thin transparent layers. When mounted
onto a linear translation stage, the spatial resolution depends on the measurement
frequency and speed of the translation stage.
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