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This paper studies a periodic-review single-commodity setup-cost inventory model with
backorders and holding/backlog costs satisfying quasiconvexity assumptions. We show
that the Markov decision process for this inventory model satisfies the assumptions that
lead to the validity of optimality equations for discounted and average-cost problems and
to the existence of optimal (s, S) policies. In particular, we prove the equicontinuity of
the family of discounted value functions and the convergence of optimal discounted lower
thresholds to the optimal average-cost lower threshold for some sequence of discount fac-
tors converging to 1. If an arbitrary nonnegative amount of inventory can be ordered,
we establish stronger convergence properties: (i) the optimal discounted lower thresholds
converge to optimal average-cost lower threshold; and (ii) the discounted relative value
functions converge to average-cost relative value function. These convergence results previ-
ously were known only for subsequences of discount factors even for problems with convex
holding/backlog costs. The results of this paper also hold for problems with fixed lead
times.

Keywords: average-cost optimality equations, inventory control, relative value functions, (s, S)
policies

1. INTRODUCTION

In this paper, we study a periodic-review single-commodity setup-cost inventory model with
backorders and holding/backlog costs satisfying quasiconvexity assumptions. We show that
the Markov decision process for this inventory model satisfies the assumptions that lead to
the validity of optimality equations for discounted and average-cost problems and to the
existence of optimal (s, S) policies. In particular, we prove the equicontinuity of the family
of discounted value functions and the convergence of optimal discounted lower thresholds to
the optimal average-cost lower threshold for some sequence of discount factors converging
to 1. If an arbitrary nonnegative amount of inventory can be ordered, we establish stronger
convergence properties: (i) the optimal discounted lower thresholds sα converge to an opti-
mal average-cost lower threshold s; and (ii) the discounted relative value functions converge
to an average-cost relative value function. These convergence results previously were known
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only for subsequences of discount factors even for problems with convex holding/backlog
costs. The results of this paper hold for problems with deterministic positive lead times.

For problems with convex holding/backlog cost functions, Scarf [22] introduced the
concept of K-convexity to prove the optimality of (s, S) policies for finite-horizon prob-
lems with continuous demand and convex holding/backlog costs. Zabel [27] indicated some
gaps in Scarf [22] and corrected them. References [2–6,11–13,18,22,24,26] deal with con-
vex or linear holding/backlog cost functions. Iglehart [18] extended Scarf’s [22] results
to infinite-horizon problems with continuous demand. Veinott and Wagner [26] proved
the optimality of (s, S) policies for both finite-horizon and infinite-horizon problems with
discrete demand. Beyer and Sethi [3] completed the missing proofs in Iglehart [18] and
Veinott and Wagner [26]. Chen and Simchi-Levi [4,5] studied coordinating inventory con-
trol and pricing problems and proved the optimality of (s, S) policies without assuming
that the demand is discrete or continuous. Under certain assumptions, their results imply
the optimality of (s, S) policies for problems without pricing. Beyer et al. [2] and Huh
et al. [17] studied problems with parameters depending on exogenous factors modeled by
a Markov chain. Additional references can be found in monographs by Porteus [20] and
Zipkin [29].

The analysis of periodic-review inventory models is based on the theory of Markov
Decision Processes (MDPs). However, most of inventory control papers use only basic facts
from the MDP theory, and the corresponding general results had been unavailable for a long
time. Feinberg et al. [7] developed the results on MDPs with Borel state spaces, possibly
noncompact action sets, and possibly unbounded one-step costs. Discrete-time periodic-
review inventory control problems are particular examples of such MDPs; see Feinberg [6]
for details. Feinberg and Lewis [11] obtained additional convergence results for convergence
of optimal actions for MDPs and established the optimality of (s, S) policies for inventory
control p roblems as well as other results. Feinberg and Liang [12] provided descriptions
of optimal policies for all possible values of discount factors (for some parameters, opti-
mal (s, S) policies may not exist for discounted and finite-horizon problems). Feinberg and
Liang [13] proved that discrete-time periodic-review inventory models with backorders and
convex holding/backlog costs satisfy the equicontinuity assumption, and this implies several
additional properties of optimal average-cost policies including the validity of average-cost
optimality equations (ACOEs).

Veinott [25] studied the nonstationary setup-cost inventory model with a fixed lead time,
backorders, and holding/backlog costs satisfying quasiconvexity assumptions. Veinott [25]
proved the optimality of (s, S) policies for finite-horizon problems and also provided bounds
on the values of the optimal thresholds s and S. Zheng [28] proved the optimality of
(s, S) policies for models with quasiconvex cost functions and discrete demand under both
discounted and average cost criteria by constructing a solution to the optimality equations.

In this paper, we consider the infinite-horizon stationary inventory model with hold-
ing/backlog costs satisfying quasiconvexity assumptions. These quasiconvexity assumptions
are introduced by Veinott [25] for finite-horizon nonstationary models. Zheng [28] and
Chen and Simchi-Levi [5] considered a slightly stronger quasiconvexity assumption for
infinite-horizon stationary models. For inventory model with holding/backlog costs satis-
fying quasiconvexity assumptions, this paper establishes convergence properties of optimal
discounted thresholds for discounted problems to the corresponding thresholds for average-
cost problems. Some of the results are new even for problems with convex holding/backlog
costs. While convergence of optimal thresholds and relative discounted value functions was
known only for subsequences of discount factors (see [2,11,13,17]), here we show that conver-
gence of lower thresholds and discounted value functions takes place for all discount factors
tending to 1.
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The rest of the paper is organized in the following way. Section 2 describes the setup-cost
inventory model and introduces the assumptions used in this paper. Section 3 establishes
the optimality of (sα, Sα) policies for the infinite-horizon problem with the discount factor
α. Section 4 verifies average-cost optimality assumptions and the equicontinuity conditions
for discounted relative value functions. Section 5 establishes the validity of ACOEs for
the inventory model and the optimality of (s, S) policies under the average cost criterion.
Section 6 establishes the convergence of discounted optimal lower thresholds sα when the
discount factor α converges to 1, to the average-cost optimal lower threshold s. Section 7
establishes the convergence of discounted relative value functions, when the discount factor
converges to 1. Section 8 presents a reduction from the inventory model with constant lead
times to the model without lead times using Veinott’s [25] approach. The proofs of all the
lemmas and corollaries in this paper are presented in Appendices.

2. SETUP-COST INVENTORY MODEL WITH BACKORDERS: DEFINITIONS AND
ASSUMPTIONS

Let R denote the real line, Z denote the set of all integers, R+ := [0,+∞) and N0 :=
{0, 1, 2, . . .}. Consider the stochastic periodic-review setup-cost inventory model with back-
orders. At times t = 0, 1, . . ., a decision-maker views the current inventory of a single
commodity and makes an ordering decision. Assuming zero lead times, the products are
immediately available to meet demand. The cost of ordering is incurred at the time of
delivery of the order. Demand is then realized, the decision-maker views the remaining
inventory, and the process continues. The unmet demand is backlogged. The demand and
the order quantity are assumed to be nonnegative. The objective is to minimize the infinite-
horizon expected total discounted cost for discount factor α ∈ (0, 1) and long-run average
cost per unit time for α = 1. The inventory model is defined by the following parameters:

1. K > 0 is a fixed ordering cost;
2. c̄ > 0 is the per unit ordering cost;
3. {Dt, t = 1, 2, . . . } is a sequence of i.i.d. nonnegative finite random variables represent-

ing the demand at periods 0, 1, . . . . We assume that E[D] < +∞ and P (D > 0) > 0,
where D is a random variable with the same distribution as D1;

4. h(x) is the holding/backlog cost per period if the inventory level is x. Assume
that: (i) the function E[h(x−D)] is finite and continuous for all x ∈ X; and
(ii) E[h(x−D)] → +∞ as |x| → +∞.

Without loss of generality, assume that the function E[h(x−D)] is nonnegative. The
assumption P (D > 0) > 0 avoids the trivial case when there is no demand.

Now we formulate an MDP for this inventory model. The state and action spaces can
be either (i) X = R and A = R+; or (ii) X = Z and A = N0, if the demand D takes only
integer values and only integer orders are allowed.

The dynamics of the system are defined by the equation

xt+1 = xt + at −Dt+1, t = 0, 1, 2, . . . , (2.1)

where xt and at denote the current inventory level and the ordered amount at period t,
respectively. The transition probability q(dxt+1|xt, at) for the MDP defined by the stochastic

https://doi.org/10.1017/S0269964818000335 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964818000335


432 Feinberg and Liang

equation (2.1) is

q(B|xt, at) = P (xt + at −Dt+1 ∈ B) (2.2)

for each measurable subset B of R. The one-step expected cost is

c(x, a) := K1{a>0} + c̄a+ E[h(x+ a−D)], (x, a) ∈ X × A, (2.3)

where 1B is an indicator of the event B.
Let Ht = (X × A)t × X be the set of histories for t = 0, 1, . . . . Let Π be the set of

all policies. A (randomized) decision rule at period t = 0, 1, . . . is a regular transition
probability πt : Ht �→ A, that is, (i) πt(·|ht) is a probability distribution on A, where
ht = (x0, a0, x1, . . . , at−1, xt), and (ii) for any measurable subset B ⊂ A, the function πt(B|·)
is measurable on Ht. A policy π is a sequence (π0, π1, . . . ) of decision rules. Moreover, π is
called non-randomized if each probability measure πt(·|ht) is concentrated at one point. A
non-randomized policy is called stationary if all decisions depend only on the current state.
According to the Ionescu Tulcea theorem (see Hernández-Lerma and Lasserre [16, p. 178]),
given the initial state x, a policy π defines the probability distribution Pπx on the set of all
trajectories H+∞ = (X × A)+∞. We denote by E

π
x the expectation with respect to Pπx .

For a finite-horizon N = 0, 1, . . . , let us define the expected total discounted costs

vπN,α(x) := E
π
x

[
N−1∑
t=0

αtc(xt, at)

]
, x ∈ X, (2.4)

where α ∈ [0, 1] is the discount factor and vπ0,α(x) = 0, x ∈ X. When N = +∞ and α ∈
[0, 1), (2.4) defines the infinite-horizon expected total discounted cost denoted by vπα(x).
Let vα(x) := infπ∈Π v

π
α(x), x ∈ X. A policy π is called optimal for the respective criterion

with discount factor α if vπN,α(x) = vN,α(x) or vπα(x) = vα(x) for all x ∈ X.
The average cost per unit time is defined as

wπ(x) := lim sup
N→+∞

1
N
vπN,1(x), x ∈ X. (2.5)

Define the optimal value function wac(x) := infπ∈Π w
π(x), x ∈ X. A policy π is called

average-cost optimal if wπ(x) = wac(x) for all x ∈ X.
Recall the definition of quasiconvex functions.

Definition 2.1: A function f is quasiconvex on a convex set X ⊂ R, if for all x, y ∈ X,
and 0 ≤ λ ≤ 1

f(λx+ (1 − λ)y) ≤ max{f(x), f(y)}.

For α ∈ (0, 1], let us define

hα(x) := h(x) + (1 − α)c̄x+ c̄E[D], x ∈ X. (2.6)

Note that since E[h(x−D)] → +∞ as x→ +∞ and (1 − α)c̄ ≥ 0 for all α ∈ (0, 1], the
function E[hα(x−D)] = E[h(x−D)] + (1 − α)c̄x+ αc̄E[D] tends to +∞ as x→ +∞ for
all α ∈ [0, 1]. In addition, for α ∈ (0, 1] the function E[hα(x−D)] is continuous on X because
the functions E[h(x−D)] and (1 − α)c̄x are continuous on X.

Consider the following assumptions on the quasiconvexity or convexity of the cost
function.
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Assumption 1: There exists α∗ ∈ [0, 1) such that for all α ∈ (α∗, 1]:

(i) The function E[hα(x−D)] is quasiconvex; and
(ii) limx→−∞ E[hα(x−D)] > K + infx∈X{E[hα(x−D)]}.

Assumption 2: The function h(·) is convex on X.

For the discounted criterion, consider the following assumption, which is weaker than
Assumption 1. Assumption 1 is used for the convergence of discounted-cost problems to the
average-cost problem.

Assumption 3: For a given α ∈ (0, 1] assume that:

(i) the function E[hα(x−D)] is quasiconvex; and
(ii) limx→−∞ E[hα(x−D)] > K + infx∈X{E[hα(x−D)]}.

We recall that Veinott [25] considered quasiconvexity assumptions for finite-horizon
nonstationary problems. Being applied to stationary infinite-horizon problems, the corre-
sponding assumption is Assumption 3. For stationary infinite-horizon models and discrete
demands, Zheng [28] used a slightly stronger assumption, which is Assumption 3 with
inequality (ii) replaced with limx→−∞ E[hα(x−D)] = +∞.

For α ∈ [0, 1], if

lim
x→−∞ E[hα(x−D)] > inf

x∈X

E[hα(x−D)], (2.7)

then we define

xmin
α := min

{
argmin
x∈X

{E[hα(x−D)]}}. (2.8)

Since the function E[hα(x−D)] is continuous, E[hα(x−D)] → +∞ as x→ +∞ and (2.7)
imply that |xmin

α | < +∞.
The following assumption is used to establish the convergence of the discounted optimal

lower thresholds and relative value functions in Sections 6 and 7, respectively.

Assumption 4: For a given α ∈ (0, 1], the function E[hα(x−D)] is strictly decreasing on
(−∞, xmin

α ], where xmin
α is defined in (2.8).

We state the relationships between these assumptions in the following two lemmas.

Lemma 2.2: Assumption 2 implies the validity of Assumption 1 with

α∗ ∈ [max
{

1 + lim
x→−∞

h(x)
c̄x

, 0
}
, 1) (2.9)

and the validity of Assumption 4 for all α ∈ (α∗, 1].

Lemma 2.3: Assumption 1 implies Assumption 3 for α ∈ (α∗, 1].
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3. SETUP-COST INVENTORY MODEL WITH DISCOUNTED COSTS

This section establishes the existence of optimal (sα, Sα) policies for the problems with
discounted costs stated in Theorem 3.6. We start this section by verifying the weak con-
tinuity of the transition probability q defined in (2.2) and the K-inf-compactness of the
one-step cost function c defined in (2.3). These properties stated in Assumption W∗, imply
the validity of optimality equations and the convergence of value iterations for problems
with discounted costs; see Feinberg et al. [7, Theorem 4].

Recall that a function f : U �→ R ∪ {+∞}, where U is a subset of a metric space U, is
called inf-compact, if for every λ ∈ R the level set {u ∈ U : f(u) ≤ λ} is compact.

Definition 3.1 Feinberg et al. [8, Definition 1.1], Feinberg [6, Definition 2.1]: A function
f : X × A �→ R̄ is called K-inf-compact, if for every nonempty compact subset K of X, the
function f : K × A �→ R̄ is inf-compact.

It is known for discounted MDPs that if the one-step cost function c and transition
probability q satisfy the Assumption W∗ below, then it is possible to write the optimality
equations for the finite-horizon and infinite-horizon problems, these equations define the
sets of stationary and Markov optimal policies for infinite and finite horizons, respectively,
vα(x) = limN→+∞ vN,α(x) for all x ∈ X, and the functions vN,α, N = 1, 2, . . ., and vα are
lower semicontinuous; see Feinberg et al. [7, Theorems 3, 4].

Assumption W* (Feinberg et al. [7], Feinberg and Lewis [11], or Feinberg [6]):

(i) The function c is K-inf-compact and bounded below, and
(ii) the transition probability q(·|x, a) is weakly continuous in (x, a) ∈ X × A, that

is, for every bounded continuous function f : X �→ R, the function f̃(x, a) :=∫
X
f(y)q(dy|x, a) is continuous on X × A.

Theorem 3.2: The inventory model satisfies Assumption W∗, and the one-step cost
function c is inf-compact.

Proof: Since the function E[h(x−D)] is continuous and tends to +∞ as |x| → +∞, the
proof of Theorem 3.2 follows from the same arguments as in Feinberg and Lewis [11,
Theorem 5.3(i)] and Feinberg [6, p. 22] �

According to Feinberg and Lewis [11], since Assumption W∗ holds for the MDP corre-
sponding to the described inventory model, the optimality equations for the total discounted
costs can be written as

vt+1,α(x) = min
{

min
a≥0

[K +Gt,α(x+ a)], Gt,α(x)
}
− c̄x, t = 0, 1, 2, . . . , x ∈ X, (3.1)

vα(x) = min
{

min
a≥0

[K +Gα(x+ a)], Gα(x)
}
− c̄x, x ∈ X, (3.2)

where

Gt,α(x) := c̄x+ E[h(x−D)] + αE[vt,α(x−D)], t = 0, 1, 2, . . . , x ∈ X, (3.3)

Gα(x) := c̄x+ E[h(x−D)] + αE[vα(x−D)], x ∈ X, (3.4)

and v0,α(x) = 0 for all x ∈ X. Let G := Gt,α, t = 1, 2, . . ., or G := Gα. Then a∗ = 0 is an
optimal action defined by (3.1) or (3.2) if G(x) ≤ K +G(x+ a) for all a > 0. Also, a∗ > 0
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is an optimal action of the same equation if G(x) ≥ K +G(x+ a) for some a > 0 and
G(x+ a∗) = mina>0G(x, a). According to Feinberg et al. [7, Theorem 2], for a finite (infi-
nite) horizon problem there exists an optimal Markov (stationary) policy and the set of
optimal Markov (stationary) policies is defined by the set of optimal actions that achieve
the minimum in (3.1) ((3.2)). The following lemma states properties of the value functions.

Lemma 3.3: For x ≤ y and t = 1, 2, . . .

vt,α(x) + c̄x ≤ vt,α(y) + c̄y +K, (3.5)

va(x) + c̄x ≤ va(y) + c̄y +K, (3.6)

Gt,α(y) −Gt,α(x) ≥ E[hα(y −D)] − E[hα(x−D)] − αK, (3.7)

Gα(y) −Gα(x) ≥ E[hα(y −D)] − E[hα(x−D)] − αK. (3.8)

The properties of the value functions stated in Lemma 3.3 imply that it is possible to
consider smaller action sets.

Lemma 3.4: Let Assumption 3 hold for some α ∈ (0, 1). If a∗ is an optimal action defined
by (3.1) or (3.2) for some x ∈ X, then a∗ ∈ [0,max{S∗

α − x, 0}], where

S∗
α := inf{x > xmin

α : E[hα(x−D)] ≥ K + E[hα(xmin
α −D)]. (3.9)

Therefore, without loss of generality, it is possible to reduce the action sets A(x) to the
action sets Ã(x) = A(x) ∩ [0,max{S∗

α − x, 0}], x ∈ X.

Recall the definition of (s, S) policies. Suppose f(x) is a lower semicontinuous function
such that lim inf |x|→+∞ f(x) > K + infx∈X f(x). Let

S ∈ argmin
x∈X

{f(x)}, (3.10)

s = inf{x ≤ S : f(x) ≤ K + f(S)}. (3.11)

Definition 3.5: Let st and St be real numbers such that st ≤ St, t = 0, 1, . . .. A policy is
called an (st, St) policy at step t if it orders up to the level St, if xt < st, and does not order,
if xt ≥ st. A Markov policy is called an (st, St) policy if it is an (st, St) policy at all steps
t = 0, 1, . . .. A policy is called an (s, S) policy if it is stationary and it is an (s, S) policy at
all steps t = 0, 1, . . ..

In this section, we consider Assumption 3, which guarantees the optimality of (sα, Sα)
policies for infinite-horizon problems with the discount factor α, as this is stated in the
following theorem, the proof of which is delayed until later in this section.

Theorem 3.6: Let Assumption 3 hold for some α ∈ (0, 1). For the infinite-horizon problem,
there exists an optimal (sα, Sα) policy, where Sα and sα are real numbers such that Sα
satisfies (3.10) and sα is defined in (3.11) with f(x) := Gα(x), x ∈ X.

Remark 3.7: Under slightly stronger assumptions, this theorem is proved by Zheng [28] for
inventory models with integer demands and integer orders. Under Assumption 2 and some
other technical assumptions, this conclusion also follows from Chen and Simchi-Levi [5].
Under Assumption 2, Theorem 3.6 is proved in Feinberg and Liang [12, Theorem 4.4] with
α ∈ (α∗, 1) for α∗ defined in (2.9). In addition, the structure of optimal policies is described
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in Feinberg and Liang [12, Theorem 4.4] for all α ∈ [0, 1). However, under Assumption 3
from this paper, if α ∈ [0, α∗), then the structure of optimal policies is currently not clear.

To prove the optimality of (sα, Sα) policies, we first consider the same inventory model
with a terminal cost −c̄x, that is, each unit of stock left over can be discarded with the return
of c̄ and each unit of backlogged demand is satisfied at the cost c̄. By using Lemma 3.4,
for all x ∈ X we reduce the action sets A(x) to the action sets Ã(x) defined in the lemma.
For the model with terminal costs, the one-step cost function is the same as the original
problem and the expected total discounted cost is

ṽπN,α(x) := E
π
x

[
N−1∑
t=0

αtc(xt, at) − αN c̄xN

]
, x ∈ X.

In view of Lemma 3.4, the function ṽπN,α is well-defined because E
π
x [xN ] ≤ max{S∗

α, x} for
each N = 1, 2, . . .. Then we transform the problem into the one with c̄ = 0 and follow the
induction proofs in Veinott [25] to establish properties for ṽα. Then, we shall also show that
ṽα = vα.

The finite-horizon discounted cost optimality equations for the inventory model with
terminal costs −c̄x are the same as (3.1) with v0,α(x) = 0, vt,α, and Gt,α replaced with
ṽ0,α(x) = −c̄x, ṽt,α, and G̃t,α for t = 1, 2, . . ..

Then, following Veinott [25], we transform the model with the positive unit order-
ing cost c̄ and terminal cost −c̄x into the model with zero unit and terminal costs and
holding/backlog costs hα defined in (2.6). The one-step cost function for the new model is

cα(x, a) = K1{a>0} + E[hα(x+ a−D)] (3.12)

and the expected total discounted cost is

v̄πN,α(x) := E
π
x

[
N−1∑
t=0

αtcα(xt, at)

]
, x ∈ X.

Since the function E[hα(x−D)] is quasiconvex, limx→−∞ E[hα(x−D)] > K + infx∈X

E[hα(x−D)], and limx→+∞ E[hα(x−D)] = +∞, the function E[hα(x−D)] is bounded
below. Therefore, cα is bounded below and the new model satisfies Assumption W∗. The
optimality equations for the new model are

v̄t+1,α(x) = min
{

min
a≥0

[K + Ḡt,α(x+ a)], Ḡt,α(x)
}
, t = 0, 1, 2, . . . , x ∈ X, (3.13)

v̄α(x) = min
{

min
a≥0

[K + Ḡα(x+ a)], Ḡα(x)
}
, x ∈ X, (3.14)

where

Ḡt,α(x) = E[hα(x−D)] + αE[v̄t,α(x−D)], t = 0, 1, 2, . . . , x ∈ X, (3.15)

Ḡα(x) = E[hα(x−D)] + αE[v̄α(x−D)], x ∈ X, (3.16)

and v̄0,α(x) = ṽ0,α(x) + c̄x = 0 for all x ∈ X. The arguments in the proof of Lemma 3.4
imply that mina>0 can be replaced with mina∈Ã(x) in formulae (3.13) and (3.14).
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It is easy to see by induction that

v̄t,α(x) = ṽt,α(x) + c̄x, x ∈ X, (3.17)

Ḡt,α(x) = G̃t,α(x), t = 0, 1, 2, . . . , x ∈ X. (3.18)

Since the validity of Assumption W∗ for the model with zero unit cost implies that v̄t,α → v̄α
as t→ +∞, in view of (3.17) and (3.18), we can define

ṽα(x) := lim
t→+∞ ṽt,α(x) = lim

t→+∞ v̄t,α(x) − c̄x = v̄α(x) − c̄x. x ∈ X. (3.19)

In view of (3.18), the finite-horizon model with terminal costs −c̄x and the finite-horizon
model with zero unit and terminal costs have the same sets of optimal actions for the same
state-time pairs. In addition, (3.14) implies that

ṽα(x) = min
{

min
a≥0

[K + G̃α(x+ a)], G̃α(x)
}
− c̄x, (3.20)

where, in view of (3.16),

G̃α(x) = Ḡα(x) = c̄x+ E[h(x−D)] + αE[ṽα(x−D)], x ∈ X. (3.21)

Now, we extend the properties of finite-horizon value functions v̄t,α and Ḡt,α, t = 0, 1, 2, . . .,
stated in Veinott [25, Lemmas 1 and 2] to infinite-horizon value functions v̄α and Ḡα.

Lemma 3.8: For x ≤ y and t = 1, 2, . . .

v̄t,α(x) ≤ v̄t,α(y) +K, (3.22)

v̄α(x) ≤ v̄α(y) +K, (3.23)

Ḡt,α(y) − Ḡt,α(x) ≥ E[hα(y −D)] − E[hα(x−D)] − αK, (3.24)

Ḡα(y) − Ḡα(x) ≥ E[hα(y −D)] − E[hα(x−D)] − αK. (3.25)

Lemma 3.9: Let Assumption 3 hold for some α ∈ (0, 1). Then for t = 0, 1, . . . and x ≤ y ≤
xmin
α , where xmin

α is defined in (2.8),

Ḡt,α(y) − Ḡt,α(x) ≤ 0, (3.26)

v̄t,α(y) − v̄t,α(x) ≤ 0, (3.27)

v̄α(y) − v̄α(x) ≤ 0, (3.28)

Ḡα(y) − Ḡα(x) ≤ 0. (3.29)

Theorem 3.10: Let Assumption 3 hold for some α ∈ (0, 1). For the inventory model with
zero unit and terminal costs, the following statements hold:

(i) For an N -horizon problem, where N = 1, 2, . . ., there exists a Markov optimal
(st,α, St,α)t=0,1,2,...,N−1 policy, where St,α and st,α are real numbers such that
St,α satisfies (3.10) and st,α is defined in (3.11) with f(x) := ḠN−t−1,α(x), t =
0, 1, 2, . . . , N − 1, x ∈ X. In addition, the functions v̄t,α and Ḡt,α, t = 0, 1, . . . , N ,
are continuous on X;

(ii) For an infinite-horizon problem, there exists a stationary optimal (sα, Sα) policy,
where Sα and sα are real numbers such that Sα satisfies (3.10) and sα is defined
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in (3.11) with f(x) := Ḡα(x), x ∈ X. In addition, the functions v̄α and Ḡα are
continuous on X;

(iii) For all st,α, St,α, t = 0, 1, 2, . . . , and Sα defined in (i) and (ii),

st,α ≤ xmin
α ≤ St,α ≤ S∗

α and sα ≤ xmin
α ≤ Sα ≤ S∗

α, (3.30)

where S∗
α is defined in (3.9).

Proof of Theorem 3.10: (i) Consider N = 1, 2, . . . and t = 0, 1, 2, . . . , N − 1. According
to Theorem 3.2, Assumption W∗. Therefore, in view of Feinberg et al. [7, Theorem 2],
the functions v̄N−t−1,α and ḠN−t−1,α are lower semicontinuous functions. In view
of Lemma 3.9, the function ḠN−t−1,α(x) is nonincreasing on (−∞, xmin

α ], where
xmin
α is defined in (2.8). In view of (3.15), ḠN−t−1,α(x) ≥ c̄x→ +∞ as x→ +∞.

Therefore, the function ḠN−t−1,α is inf-compact; see the definition of inf-compact
functions in the paragraph preceding Definition 3.1. In view of (3.15) and (3.27),
ḠN−t−1,α(x) ≥ E[hα(x−D)] + αE[v̄N−t−1,α(xmin

α −D)] for all x ≤ xmin
α . Therefore,

lim inf
x→−∞ ḠN−t−1,α(x) ≥ lim

x→−∞ E[hα(x−D)] + αE[v̄N−t−1,α(xmin
α −D)]

> K + E[hα(xmin
α −D)] + αE[v̄N−t−1,α(xmin

α −D)]

= K + ḠN−t−1,α(xmin
α ) ≥ K + inf

x∈X

ḠN−t−1,α(x),

(3.31)

where the first inequality follows from the inequality in the previous sentence, the
second inequality follows from Assumption 3, the equality follows from the definition
of the function ḠN−t−1,α in (3.16), and the last inequality is straightforward.
Let St,α satisfy (3.10) and st,α be defined in (3.11) with f := ḠN−t−1,α. The lower
semicontinuity of ḠN−t−1,α(x) implies that

ḠN−t−1,α(st,α) ≤ ḠN−t−1,α(St,α) +K. (3.32)

Since the function ḠN−t−1,α(x) is nonincreasing on (−∞, xmin
α ],

St,α ≥ xmin
α . (3.33)

To prove the optimality of (st,α, St,α) policies, we consider three cases: (1) x ≥ xmin
α ;

(2) st,α ≤ x ≤ xmin
α ; and (3) x < st,α. (1) In view of Lemma 3.8, for xmin

α ≤ x < y

ḠN−t−1,α(y) +K − ḠN−t−1,α(x) ≥ E[hα(y −D)] − E[hα(x−D)] +K − αK > 0,
(3.34)

where the first inequality follows from (3.24) and the second one holds because
the function E[hα(x−D)] is nondecreasing on [xmin

α ,+∞) and K − αK > 0. There-
fore, the action a = 0 is optimal for x ≥ xmin

α . In addition, (3.34) implies that
ḠN−t−1,α(x) < ḠN−t−1,α(St,α) +K for all x ∈ [xmin

α , St,α], which implies

st,α ≤ xmin
α . (3.35)

(2) For st,α ≤ x ≤ xmin
α ,

ḠN−t−1,α(x) ≤ ḠN−t−1,α(st,α) ≤ K + ḠN−t−1,α(St,α) = K + min
y∈X

ḠN−t−1,α(y),

where the first inequality follows from (3.26) and the second one follows from (3.32).
Therefore, the action a = 0 is optimal for st,α ≤ x ≤ xmin

α .
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(3) For x < st,α

ḠN−t−1,α(x) > K + ḠN−t−1,α(St,α) = K + min
y∈X

ḠN−t−1,α(y),

where the inequality follows from the definition of st,α in (3.11) with f := ḠN−t−1,α.
Therefore, the action a = St,α − x is optimal for x < st,α. Thus, for N -horizon
problem the (st,α, St,α)t=0,1,2,...,N−1 policy is optimal.

Now, we prove that the functions v̄t,α and Ḡt,α, t = 0, 1, . . . , N , are continuous
on X. Observe that v̄0,α(x) = 0, x ∈ X, and Ḡ0,α(x) = E[hα(x−D)], then the func-
tions v̄0,α and Ḡ0,α are continuous on X. Since E[hα(x−D)] is continuous, the same
arguments as the proof of case (ii) from Feinberg and Liang [12, Theorem 5.2] with
vt,α and Gt,α replaced with v̄t,α − c̄x and Ḡt,α imply that the functions v̄t,α and
Ḡt,α, t = 1, 2, . . . , N , are continuous on X.

(ii) In view of Lemmas 3.8 and 3.9, Ḡα and v̄α satisfy the same properties as Ḡt,α
and v̄t,α. Therefore, statement (ii) follows from the same arguments as those in the
proof of (i) with ḠN−t−1,α, v̄N−t−1,α, st,α, and St,α replaced with Ḡα, v̄α, sα, and
Sα respectively. The continuity of the function v̄α and Ḡα follows from the same
arguments of Feinberg and Liang [12, Theorem 5.3] with vα and Gα replaced with
v̄α − c̄x and Ḡα.

(iii) In view of (3.9), limx→+∞ E[hα(x−D)] = +∞ and Assumption 3 imply that |S∗
α| <

+∞ and for x > S∗
α

E[hα(x−D)] ≥ E[hα(S∗
α −D)] ≥ K + E[hα(xmin

α −D)]. (3.36)

Therefore, (3.24) and (3.36) imply that, for t = 0, 1, 2, . . . and x > S∗
α,

Ḡt,α(x) − Ḡt,α(xmin
α ) ≥ E[hα(x−D)] − E[hα(xmin

α −D)] − αK ≥ K − αK > 0.
(3.37)

Thus, for t = 0, 1, 2, . . . and x > S∗
α,

Ḡt,α(x) > Ḡt,α(xmin
α ) ≥ min

x∈X

Ḡt,α(x). (3.38)

Therefore, if x ∈ argmin{Ḡt,α(x)}, t = 0, 1, 2, . . ., then x ≤ S∗
α. Thus, St,α ≤ S∗

α, t =
0, 1, 2, . . .. In addition, the same arguments with (3.24) and Ḡt,α replaced with (3.25)
and Ḡα imply that Sα ≤ S∗

α.
Furthermore, (3.33) and (3.35) imply that st,α ≤ xmin

α ≤ St,α and the same arguments
as those before (3.33) and (3.35) being applied to infinite-horizon problem with ḠN−t−1,α

replaced with Ḡα imply that sα ≤ xmin
α ≤ Sα. Hence, (3.30) holds. �

Lemma 3.11: Let Assumption 3 hold for some α ∈ (0, 1). Then

v̄α(x) − c̄x = ṽα(x) = vα(x) ≥ 0, x ∈ X. (3.39)

In addition, (3.39) implies that Gα(x) = Ḡα(x), x ∈ X.

Proof of Theorem 3.6: Theorem 3.6 follows from Theorem 3.10(ii) and Lemma 3.11 because
equations (3.2) and (3.14) are equivalent, and they define the same optimal (sα, Sα) policies.

�
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Remark 3.12: Note that (st,α, St,α)t=0,1,2,...,N−1 policies are optimal for N = 1, 2, . . . hori-
zon inventory models with terminal costs −c̄x (see Theorem 3.10(i)), they may not be
optimal for finite-horizon inventory models without terminal costs (see Example 1). How-
ever, Theorem 3.6 states that there exists an optimal (sα, Sα) policy for infinite-horizon
discounted cost inventory models.

Example 1: Consider the inventory model without terminal costs defined by the following
parameters: fixed ordering cost K = 1, per unit ordering cost c̄ = 1, deterministic demand
D = 1, holding/backlog cost function h(x) = 0.5|x|, and the discount factor α = 0.75.
Since E[hα(x−D)] = 0.5|x− 1| + 0.25x+ 0.75, the function E[hα(x−D)] is convex and
hence quasiconvex. In addition, limx→−∞ E[hα(x−D)] = +∞ > K + infx∈X E[hα(x−D)].
Therefore, Assumption 3 holds. For the single-period problem, the policy that does not order
is optimal, because the cost incurred if nothing is ordered, is 0.5|x− 1| and the cost incurred
if a > 0 units are ordered, is 1 + a+ 0.5|x+ a− 1| = 1 + 0.5(a+ | − a| + |x+ a− 1|) ≥
1 + 0.5(a+ | − a+ x+ a− 1|) > 0.5|x− 1|.

4. VERIFICATION OF AVERAGE-COST OPTIMALITY ASSUMPTIONS FOR THE
SETUP-COST INVENTORY MODEL

In this section, we show that, in addition to Assumption W∗, under Assumption 1, the
setup-cost inventory model satisfies Assumption B introduced by Schäl [23]. This implies
the validity of average-cost optimality inequalities (ACOIs) and the existence of station-
ary optimal policies; see Feinberg et al. [7, Theorem 4]. In addition, we show that, under
Assumption 1 the inventory model satisfies the equicontinuity condition from Feinberg and
Liang [13, Theorem 3.2], which implies the validity of the ACOE for the inventory model.

As in Schäl [23] and Feinberg et al. [7], define

mα := inf
x∈X

vα(x), uα(x) := vα(x) −mα,

w := lim inf
α↑1

(1 − α)mα, w̄ := lim sup
α↑1

(1 − α)mα.
(4.1)

The function uα is called the discounted relative value function. Consider the following
assumption in addition to Assumption W∗.

Assumption B:

(i) w∗ := infx∈X w
ac(x) < +∞, and

(ii) sup
α∈[0,1)

uα(x) < +∞, x ∈ X.

As follows from Schäl [23, Lemma 1.2(a)], Assumption B(i) implies that mα < +∞ for
all α ∈ [0, 1). Thus, all the quantities in (4.1) are defined. According to Feinberg et al. [7,
Theorems 3, 4], if Assumptions W* and B hold, then w = w̄ and therefore,

lim
α↑1

(1 − α)mα = w = w̄. (4.2)

Define the following function on X for the sequence {αn ↑ 1}n=1,2,... :

ũ(x) := lim inf
n→+∞,y→x

uαn
(y). (4.3)

In words, ũ(x) is the largest number such that ũ(x) ≤ lim infn→+∞ uαn
(yn) for all sequences

{yn → x}. Since uα(x) is nonnegative by definition, ũ(x) is also nonnegative. The function
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ũ, defined in (4.3) for a sequence {αn ↑ 1}n=1,2,... of nonnegative discount factors, is called
an average-cost relative value function.

If Assumptions W* and B hold, then Feinberg et al. [7, Corollary 2] implies the validity
of ACOIs and

wφ(x) = w = lim
α↑1

(1 − α)vα(x) = w̄ = w∗, x ∈ X, (4.4)

where wφ(x) is defined in (2.5). Furthermore, let us define w := w; see (4.2) and (4.4) for
other equalities for w.

Consider the renewal counting process

N(t) := sup{n = 0, 1, . . . : Sn ≤ t}, (4.5)

where t ∈ R+, S0 := 0, and

Sn :=
n∑
j=1

Dj , n = 1, 2, . . . . (4.6)

Observe that since P (D > 0) > 0, E[N(t)] < +∞, t ∈ R+; see Resnick
[21, Theorem 3.3.1]. For x ∈ X and y ≥ 0 define

Ey(x) := E[h(x− SN(y)+1)]. (4.7)

Since x− y ≤ x− SN(y) ≤ x and the function E[h(x−D)] is quasiconvex,

Ey(x) = E[h(x− SN(y) −D)] ≤ max{E[h(x− y −D)],E[h(x−D)]} < +∞. (4.8)

Theorem 4.1: Let Assumption 1 hold. The inventory model satisfies Assumption B.

Proof: Assumption B(i) follows from the same arguments in the first paragraph of the
proof in Feinberg and Lewis [11, Proposition 6.3].

The inf-compactness of the function c : X × A �→ R and the validity of Assumption W∗

imply that for each α ∈ [0, 1) the function vα is inf-compact (Feinberg and Lewis [10,
Proposition 3.1(iv)]), and therefore the set

Xα := {x ∈ X : vα(x) = mα}, (4.9)

where mα is defined in (4.1), is nonempty and compact. Furthermore, the validity of
Assumption B(i) implies that there is a compact subset K of X such that Xα ⊂ K for
all α ∈ [0, 1); see Feinberg et al. [7, Theorem 6]. Following Feinberg and Lewis [11], consider
a bounded interval [x∗L, x

∗
U ] ⊂ X such that

Xα ⊂ [x∗L, x
∗
U ] for all α ∈ [0, 1). (4.10)

Consider an arbitrary α ∈ [0, 1) and a state xα such that vα(xα) = mα, where mα is defined
in (4.1). In view of (4.10), the inequalities x∗L ≤ xα ≤ x∗U hold.

Let
E(x) := E[h(x−D)] + Ex−x∗

L
(x) < +∞, (4.11)

where the function Ey(x) is defined in (4.7) and its finiteness is stated in (4.8). For xt =
x− St, t = 1, . . . ,N(x− x∗L) + 1,

E[h(xt)] ≤ E[h(x−D)] + E[h(x− SN(x−x∗
L)+1)] = E(x), (4.12)

where the inequality holds because the function E[h(x−D)] is quasiconvex and x−
SN(x−x∗

L)+1 = x− SN(x−x∗
L) −D ≤ xt = xt−1 −D ≤ x−D for t = 1, . . . ,N(x− x∗L) + 1.
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By considering the same policy σ and following the arguments thereafter as in the proof
in Feinberg and Lewis [11, Proposition 6.3] with the equation (6.14) there replaced with
(4.12), we obtain the validity of Assumption B. �

Now we establish the boundedness and the equicontinuity of the discounted relative
value functions uα defined in (4.1). Consider

U(x) :=

{
K + c̄(x∗U − x), if x < x∗L,
K + c̄(x∗U − x∗L) + (E(x) + c̄E[D])(1 + E[N(x− x∗L)]), if x ≥ x∗L,

(4.13)

where the real numbers x∗L and x∗U are defined in (4.10) and the function E(x) is defined
in (4.11).

Lemma 4.2: Let Assumption 1 hold. The following statements hold for all α ∈ [0, 1):

(i) uα(x) ≤ U(x) < +∞ for all x ∈ X;
(ii) If x∗, x ∈ X and x∗ ≤ x, then C(x∗, x) := supy∈[x∗,x] U(y) < +∞;
(iii) E[U(x−D)] < +∞ for all x ∈ X.

Proof: The proof of this lemma is identical to the proof in Feinberg and Liang
[13, Lemma 4.6]. �

The following theorem is proved in Feinberg and Lewis [11, Theorem 6.10(iii)] under
Assumption 2. The proof there remains correct under the weaker Assumption 1.

Theorem 4.3: Let Assumption 1 hold. For each nonnegative discount factor α ∈ (α∗, 1),
consider an optimal (s′α, S

′
α) policy for the discounted criterion with the discount factor

α. Let {αn ↑ 1}n=1,2,... be a sequence of negative numbers with α1 > α∗. Every sequence
{(s′αn

, S′
αn

)}n=1,2,... is bounded, and each of its limit points (s∗, S∗) defines an average-cost
optimal (s∗, S∗) policy. Furthermore, this policy satisfies the optimality inequality

w + ũ(x) ≥ min
{

min
a≥0

[K +H(x+ a)],H(x)
}
− c̄x, (4.14)

where
H(x) := c̄x+ E[h(x−D)] + E[ũ(x−D)], (4.15)

where the function ũ is defined in (4.3) for an arbitrary subsequence {αnk
}k=1,2,... of

{αn}n=1,2,... satisfying (s∗, S∗) = limk→+∞(s′αnk
, S′
αnk

).

Recall the following definition of equicontinuity.

Definition 4.4: A family H of real-valued functions on a metric space X is called equicon-
tinuous at the point x ∈ X if for each ε > 0 there exists an open set G containing x such
that

|h(y) − h(x)| < ε for all y ∈ G and for all h ∈ H.
The family of functions H is called equicontinuous (on X) if it is equicontinuous at all
x ∈ X.

Consider the following assumption on the discounted relative value functions.
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Assumption EC (Feinberg and Liang [13]): There exists a sequence {αn ↑ 1}n=1,2,... of
nonnegative discount factors such that

(i) the family of functions {uαn
}n=1,2,... is equicontinuous, and

(ii) there exists a nonnegative measurable function U(x), x ∈ X, such that U(x) ≥
uαn

(x), n = 1, 2, . . . , and
∫

X
U(y)q(dy|x, a) < +∞ for all x ∈ X and a ∈ A.

The following theorem provides sufficient conditions for the existence of a stationary
policy φ and a function ũ(·) satisfying the ACOEs.

Theorem 4.5 (Feinberg and Liang [13, Theorem 3.2]): Let Assumptions W* and B hold.
Consider a sequence {αn ↑ 1}n=1,2,... of nonnegative discount factors. If Assumption EC is
satisfied for the sequence {αn}n=1,2,..., then the following statements hold.

(i) There exists a subsequence {αnk
}k=1,2,... of {αn}n=1,2,... such that {uαnk

(x)} con-
verges pointwise to ũ(x), x ∈ X, where ũ(x) is defined in (4.3) for the subsequence
{αnk

}k=1,2,..., and the convergence is uniform on each compact subset of X. In
addition, the function ũ(x) is continuous.

(ii) There exists a stationary policy φ satisfying the ACOE with the nonnegative function
ũ defined for the sequence {αnk

}k=1,2,... mentioned in statement (i), that is, for all
x ∈ X,

w + ũ(x) = c(x, φ(x)) +
∫

X

ũ(y)q(dy|x, φ(x)) = min
a∈A

[c(x, a) +
∫

X

ũ(y)q(dy|x, a)],
(4.16)

and every stationary policy satisfying (4.16) is average-cost optimal.

The following theorem shows that the equicontinuity conditions stated in Theorem 4.5
holds for the inventory model with holding/backlog costs satisfying quasiconvexity assump-
tions.

Theorem 4.6: Let Assumption 1 hold. Then for each β ∈ (α∗, 1), the family of functions
{uα}α∈[β,1) is equicontinuous on X.

Proof: Consider β ∈ (α∗, 1). According to Theorem 3.6, since the (sα, Sα) policies are
optimal, the arguments provided to prove formula (4.38) in Feinberg and Liang [13,
Theorem 4.9(a)] imply that the set {sα}α∈[β,1) is bounded. Therefore, there exist constants
b > 0 and δ0 > 0 such that

− b ≤ sα − δ0 < sα + δ0 ≤ b, α ∈ [β, 1). (4.17)

Consider x∗ ∈ X and ε > 0. Let M := max{b, x∗} + 1. To prove that the family
{uα}α∈[β,1) is equicontinuous at x∗, we show that there exists δ∗ > 0 such that, if y∗ ∈ X

satisfies |x∗ − y∗| < δ∗, then for all α ∈ [β, 1)

|uα(x∗) − uα(y∗)| < ε. (4.18)

We consider the following three cases: (1) x∗ < sα and y∗ < sα; (2) either x∗ ≤ sα ≤ y∗

or y∗ ≤ sα ≤ x∗; and (3) x∗ > sα and y∗ > sα. In each case, we will prove the validity of
(4.18).
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(1) The optimality of (sα, Sα) policy implies that v(x) = c̄(sα − x) + vα(sα) if x ≤ sα,
Then uα(x∗) − uα(y∗) = c̄(y∗ − x∗). Therefore, if |x∗ − y∗| < δ1 := ε/4c̄, then

|uα(x∗) − uα(y∗)| = c̄|x∗ − y∗| < ε

4
. (4.19)

(2) In this case, we first prove that there exists δ2 > 0 such that for x ∈ [sα, sα + δ2]

|uα(x) − uα(sα)| < ε

4
. (4.20)

Let h̃(x) := E[h(x−D)]. For x ≥ sα

vα(x) = h̃(x) + αE[vα(x−D)] (4.21)

and

E[vα(x−D)] = P (D ≥ x− sα)E[c̄(sα − x+D)|D ≥ x− sα]

+ P (0 < D < x− sα)E[vα(x−D)|0 < D < x− sα] + P (D = 0)vα(x).
(4.22)

Formulae (4.21) and (4.22) imply

[1 − αP (D = 0)]vα(x) = h̃(x) + α(P (D ≥ x− sα)E[c̄(sα − x+D)|D ≥ x− sα]

+ P (0 < D < x− sα)E[vα(x−D)|0 < D < x− sα]). (4.23)

Therefore, since uα(y1) − uα(y2) = vα(y1) − vα(y2) for all y1, y2 ∈ X, for x ∈ [sα, sα + δ1]

[1 − αP (D = 0)]|uα(x) − uα(sα)| = [1 − αP (D = 0)]|vα(x) − vα(sα)|
=
∣∣∣h̃(x) − h̃(sα) + αP (D ≥ x− sα)c̄(sα − x)

+ αP (0 < D < x− sα)E[uα(x−D) − uα(sα −D)|0 < D < x− sα]
∣∣∣

≤ |h̃(x) − h̃(sα)| + c̄(x− sα) + 2P (0 < D < x− sα)C(−b, b), (4.24)

where the nonnegative function C is defined in Lemma 4.2. Let us define Q1 := (1 − P (D =
0))−1, and Q2(x, sα) := P (0 < D < x− sα). Recall that P (D > 0) > 0, which is equivalent
to P (D = 0) < 1. Since (1 − αP (D = 0))−1 ≤ Q1, formula (4.24) implies that

|uα(x) − uα(sα)| ≤ Q1(|h̃(x) − h̃(sα)| + c̄(x− sα) + 2Q2(x, sα)C(−b, b)). (4.25)

Since the function h̃ is uniformly continuous on the interval [−b, b], all three summands in
the right-hand side of the last equations converge uniformly in α to 0 as x ↓ sα. Therefore,
there exists δ2 ∈ (0, δ0) such that (4.20) holds for all x ∈ [sα, sα + δ2].

For x ≤ sα ≤ y satisfying |x− y| < δ3 := min{δ1, δ2},

|uα(x) − uα(y)| ≤ |uα(x) − uα(sα)| + |uα(sα) − uα(y)| < ε

2
, (4.26)

where the first inequality is the triangle property and the second one follows from (4.19)
and (4.20). Therefore, in this case, (4.26) imply that, if |x∗ − y∗| < δ3, then (4.18) holds.
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(3) Consider y∗ < M. Let z1 := min{x∗, y∗} and z2 := max{x∗, y∗}. Then sα < z1 ≤
z2 < M. The optimality of (sα, Sα) policy implies that

|uα(x∗) − uα(y∗)| = |uα(z1) − uα(z2)| = |vα(z1) − vα(z2)|

=

∣∣∣∣∣∣E
⎡
⎣N(z1−sα)+1∑

j=1

αj−1(h̃(z1 − Sj−1) − h̃(z2 − Sj−1))

+ αN(z1−sα)+1(vα(z1 − SN(z1−sα)+1) − vα(z2 − SN(z1−sα)+1))

⎤
⎦
∣∣∣∣∣∣

≤ E

⎡
⎣N(M+b)+1∑

j=1

|h̃(z1 − Sj−1) − h̃(z2 − Sj−1)|
⎤
⎦

+ E[|uα(z1 − SN(z1−sα)+1) − uα(z2 − SN(z1−sα)+1)|], (4.27)

where the inequality follows from the standard properties of expectations and absolute
values, z1 − sα ≤M + b, and α < 1. Recall that the function h̃(x) is continuous and finite.
Therefore, the function h̃ is uniformly continuous on the closed interval [−(M + 2b),M ]. In
addition, Assumption 1 implies that the function h̃ is quasiconvex.

In view of (4.26), if |z1 − z2| < δ3, then with probability 1

|uα(z1 − SN(z1−sα)+1) − uα(z2 − SN(z1−sα)+1)| < ε

2
,

and therefore

E[|uα(z1 − SN(z1−sα)+1) − uα(z2 − SN(z1−sα)+1)|] < ε

2
. (4.28)

Now, we estimate the first term in right-hand side of the inequality in (4.27).
Since −(M + 2b) < x− Sj−1 < M for all x ∈ [−b,M ] and j = 1, 2, . . . ,N(M + b) + 1, the
nonnegativity and quasiconvexity of h̃ imply that

0 ≤ h̃(x− Sj−1) ≤ max{h̃(−(M + 2b)), h̃(M)}, x ∈ (−b,M). (4.29)

Since −b < z1 ≤ z2 < M

E

⎡
⎣N(M+b)+1∑

j=1

|h̃(z1 − Sj−1) − h̃(z2 − Sj−1)|
⎤
⎦

≤ E

⎡
⎣N(M+b)+1∑

j=1

max{h̃(−(M + 2b)), h̃(M)}
⎤
⎦

≤ E[N(M + b) + 1]max{h̃(−(M + 2b)), h̃(M)} < +∞, (4.30)
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where the first inequality follows from (4.29), the second one follows from Wald’s identity,
and the last one follows from the finiteness of the function h̃. Therefore,

lim
z→z2

E

⎡
⎣N(M+b)+1∑

j=1

|h̃(z − Sj−1) − h̃(z2 − Sj−1)|
⎤
⎦

= E

⎡
⎣N(M+b)+1∑

j=1

lim
z→z2

|h̃(z − Sj−1) − h̃(z2 − Sj−1)|
⎤
⎦ = 0, (4.31)

where the first equality follows from (4.30) and Lebesgue’s dominated convergence theorem,
and the second one follows from the continuity of h̃. In view of (4.31), there exists δ4 > 0
such that, if |z1 − z2| < δ4, then

E

⎡
⎣N(M+b)+1∑

j=1

|h̃(z1 − Sj−1) − h̃(z2 − Sj−1)|
⎤
⎦ ≤ ε

2
. (4.32)

In view of (4.27), (4.28), and (4.32), for z1, z2 ≥ sα satisfying |z1 − z2| < δ5 := min{δ3, δ4}

|uα(z1) − uα(z2)| < ε, (4.33)

which is equivalent to that, in this case, if |x∗ − y∗| < δ5, then (4.18) holds.
Hence, the cases (1-3) imply that (4.18) holds with δ∗ := min{δ1, δ3, δ5}. �

Theorem 4.7: Let Assumption 1 hold. Then for α ∈ (α∗, 1), the functions vα and Gα are
continuous on X.

Proof of Theorem 4.7: According to Theorem 3.6, there exists an optimal (sα, Sα) optimal
policy for the infinite-horizon problem. In addition, Theorem 4.6 implies that the func-
tion vα(x) = uα(x) +mα is continuous on X. Therefore, since the function E[h(x−D)] is
continuous, the same arguments in the proof of Feinberg and Liang [12, Theorem 5.3], start-
ing from the definition of the function gα there, imply that the function Gα is continuous
on X. �

5. SETUP-COST INVENTORY MODEL: AVERAGE COSTS PER UNIT TIME

As follows from Chen and Simchi-Levi [5], an average-cost optimal (s, S) policy exists if
Assumption 3 holds for α = 1. In this section, we study approximations of average-cost
optimal (s, S) policies by discount-cost optimal (sα, Sα) policies as the discount factor tend
to 1. The following theorem establishes the convergence of discounted-cost optimality equa-
tions to the ACOEs for the described inventory model and the optimality of (s, S) policies
under the average cost criterion under Assumption 1.

Theorem 5.1: Let Assumption 1 hold. For every sequence {αn ↑ 1}n=1,2,... of nonnegative
discount factors with α1 > α∗, there exist a subsequence {αnk

}k=1,2,... of {αn}n=1,2,..., a
stationary policy ϕ, and a function ũ defined in (4.3) for the subsequence {αnk

}k=1,2,...
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such that for all x ∈ X

w + ũ(x) = K1{ϕ(x)>0} +H(x+ ϕ(x)) − c̄x

= min
{

min
a≥0

[K +H(x+ a)],H(x)
}
− c̄x,

(5.1)

where the function H is defined in (4.15). In addition, the functions ũ and H are continuous
and inf-compact, and a stationary optimal policy ϕ satisfying (5.1) can be selected as an
(s∗, S∗) policy described in Theorem 4.3. It also can be selected as an (s, S) policy with the
real numbers S and s satisfying (3.10) and defined in (3.11) respectively for f(x) = H(x),
x ∈ X.

Remark 5.2: The relations between the function ũ in ACOE (5.1) and the solutions to the
ACOE constructed by Chen and Simchi-Levi [5] are currently not clear.

To prove Theorem 5.1, we first establish several properties of the average-cost relative
value function. Recall that xmin

1 is defined in (2.8).

Lemma 5.3: Let Assumption 1 hold. Consider the function ũ defined in (4.3) for a sequence
{αn}n=1,2,... such that αn ↑ 1 and α1 > α∗. Then the following statements hold:

(i) For x ≤ y

ũ(x) + c̄x ≤ ũ(y) + c̄y +K, (5.2)

H(y) −H(x) ≥ E[h(y −D)] − E[h(x−D)] − αK. (5.3)

(ii) For x ≤ y ≤ xmin
1

ũ(y) + c̄y − ũ(x) − c̄x ≤ 0, (5.4)

H(y) −H(x) ≤ 0. (5.5)

Proof of Theorem 5.1: The proof of this theorem is identical to the proof in Feinberg and
Liang [13, Theorem 4.5] with the following changes: (i) Lemmas 4.6 and 4.7 from [13] should
be replaced with Lemma 4.2 and Theorem 4.6 from this paper; and (ii) the proof of the K-
convexity of the functions u and H and the optimality of (s, S) policy under the average cost
criterion should be replaced with the following arguments. Consider cases (1-3) in the proof
of Theorem 3.10(i) with GN−t−1,α, hα and xmin

α replaced with H, h, and xmin
1 , respectively.

Then Lemma 5.3 implies that there exists an optimal (s, S) policy, with the real numbers
S and s satisfying (3.10) and defined in (3.11) for f := H. �

Furthermore, the continuity of average-cost relative value functions implies the following
corollary.

Corollary 5.4: Let Assumption 1 hold, the state space X = R, and the action space A =
R+. For the (s, S) policy defined in Theorems 5.1, consider the stationary policy ϕ coinciding
with this policy at all x ∈ X, except x = s, and with ϕ(s) = S − s. Then the stationary policy
ϕ also satisfies the optimality equation (5.1), and it is therefore average-cost optimal.
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6. CONVERGENCE OF OPTIMAL LOWER THRESHOLDS Sα

This section establishes convergence of discounted optimal lower thresholds sα → s as α ↑ 1,
where s the average-cost optimal lower threshold (stated in Theorem 5.1) for the inventory
model with holding/backlog costs satisfying quasiconvexity assumptions. In this and the
following sections, we assume that the state space X = R and the action sets A = A(x) = R+

for all x ∈ X. This means that an arbitrary nonnegative amount of inventory can be ordered
at any state.

The quasiconvexity of E[h(x−D)] assumed in Assumption 1 implies that the function
E[h(x−D)] is nonincreasing on (−∞, xmin

1 ), where xmin
1 is defined in (2.8). The stronger

Assumption 4 is used in this section and Section 7. The following theorem establishes
convergence of the discounted optimal lower thresholds sα when the discount factor α
converges to 1.

Theorem 6.1: Let Assumption 1 hold and for α = 1 Assumption 4 hold. Then the limit

s1 := lim
α↑1

sα (6.1)

exists and s1 ≤ xmin
1 .

Remark 6.2: As shown in Corollary 7.5, if Assumption 1 holds and for α = 1 Assumption 4
holds, then all the sequences {αn ↑ 1}n=1,2,... define the same functions ũ and H in (5.1),
and, according to Theorem 7.6, there exists a unique threshold s, for which there is an (s, S)
policy satisfying the ACOE (5.1). However, if X = Z, as this takes place for problems with
discrete commodity, there may be multiple average-cost optimal thresholds s, as shown in
Example 2.

Example 2: Consider the inventory model with X = A = Z, K = 124, c̄ = 0, P (D = 1) =
1 − P (D = 0) = 0.417, and

h(x) =

⎧⎪⎨
⎪⎩
−0.11x if x < 0,
0 if 0 ≤ x ≤ 100,
1.05(x− 100) if x > 100.

Let us consider S = 100, s = −5, and s̃ = −4. Straightforward calculations based on Chen
and Simchi-Levi [5, Lemma 2] imply that the average costs per unit time for the (s, S) and
(s̃, S) policies are equal to 20.584. Johnson [19, Theorem 5.2] implies that at least one of
these policies is optimal. Therefore, there are multiple average-cost optimal thresholds s.

Before the proof of Theorem 6.1, we first state several auxiliary facts. Consider the
infinite-horizon value function v̄α for the model with zero unit and terminal costs. According
to Lemma 3.11, v̄α(x) − c̄x = vα(x), x ∈ X. For x ∈ X, define

m̄α := min
x∈X

{v̄α(x)} and ūα(x) := v̄α(x) − m̄α. (6.2)

If there exists an α-discount optimal (sα, Sα) policy, then (3.14) can be written as

v̄α(x) =

{
Gα(x) if x ≥ sα,

K +Gα(Sα) if x < sα,
(6.3)
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which implies that

m̄α = min
x∈X

{Gα(x)} = Gα(Sα). (6.4)

Consider xα ∈ Xα, where Xα is defined in (4.10). For α ∈ [0, 1)

m̄α ≤ v̄α(xα) = mα + c̄xα ≤ mα + c̄x∗U , (6.5)

where x∗U is defined in (4.10). In view of (6.3), the continuity of v̄α(x) implies that v̄α(x) =
v̄α(sα) for all x ≤ sα. Therefore,

m̄α = inf
x≥sα

v̄α(x) = inf
x≥sα

{vα(x) + c̄x} ≥ inf
x≥sα

{vα(x) + c̄sα} ≥ mα + c̄sα, (6.6)

where the first inequality holds because x ≥ sα and the last one follows from mα =
infx vα(x). Then (6.5) and (6.6) imply

mα + c̄sα ≤ m̄α ≤ mα + c̄x∗U . (6.7)

For α ∈ (α∗, 1) define the set of all possible optimal discounted lower thresholds

Gα := {x ∈ [sα, Sα] : Gα(y) ≥ K +Gα(Sα) for all y ≤ x}, (6.8)

where Sα satisfies (3.10) and sα is defined in (3.11) with f := Gα. Note that sα ∈ Gα and
y ≥ sα for all y ∈ Gα.

Remark 6.3: The set Gα is not empty if X = R because the function Gα is continuous (see
Theorem 4.7) and limx→−∞Gα(x) > K +Gα(Sα). If X = Z, as this takes place for problems
with discrete commodity, it is possible that Gα is an empty set.

The following three lemmas state the relations between parameters defined in this
section.

Lemma 6.4: If Assumption 1 holds, then, for all α ∈ (α∗, 1) and y ∈ Gα,

(1 − α)(m̄α +K) = E[hα(y −D)]. (6.9)

Lemma 6.5: If Assumption 1 holds, then y ≤ xmin
α ≤ xmin

1 for all α ∈ (α∗, 1) and y ∈ Gα.

Lemma 6.6: If Assumption 1 holds, then

lim
α↑1

(1 − α)m̄α = lim
α↑1

E[hα(sα −D)] = w. (6.10)

Proof of Theorem 6.1: The proof is by contradiction. According to Theorem 4.3, for αn ↑ 1,
n = 1, 2, . . ., with α1 > α∗, every sequence {(sαn

, Sαn
)}n=1,2,... is bounded. Consider two

real numbers s(1) < s(2) such that there exist two sequences {αn}n=1,2,... and {α̃n}n=1,2,...

satisfying limn→+∞ sαn
= s(1) and limn→+∞ sα̃n

= s(2).
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Since the function E[h(x−D)] is continuous,

lim
n→+∞ E[h(sαn

−D)] = E[h(s(1) −D)]. (6.11)

Therefore,

lim
n→+∞ E[hαn

(sαn
−D)] = lim

n→+∞
{
E[h(sαn

−D)] + (1 − αn)c̄sαn
+ αnc̄E[D]

}
= E[h(s(1) −D)] + c̄E[D], (6.12)

where the second equality follows from (6.11) and sαn
→ s(1) ∈ R as αn ↑ 1. According to

Lemma 6.6, E[h(s(1) −D)] = w − c̄E[D]. By the same arguments with αn replaced with α̃n,
the formula E[h(s(2) −D)] = w − c̄E[D] holds. Therefore,

E[h(s(1) −D)] = E[h(s(2) −D)]. (6.13)

According to Lemma 6.5, sα ≤ xmin
α for all α ∈ (α∗, 1). Therefore

s(2) = lim
n→+∞ sα̃n

≤ lim inf
n→+∞ xmin

α̃n
≤ xmin

1 , (6.14)

where the last inequality follows from Lemma 6.5. Since s(1) < s(2) ≤ xmin
1 , Assumption 4

implies that

E[h(s(1) −D)] > E[h(s(2) −D)], (6.15)

which contradicts (6.13). Thus, the limit limα↑1 sα exists and (6.14) implies that s1 ≤ xmin
1 .

�

The following theorem establishes the uniqueness of possible optimal lower thresholds
for the inventory model with convex cost functions under the discounted criterion.

Theorem 6.7: Let Assumption 1 hold and for some α ∈ (α∗, 1) Assumption 4 hold. Then
Gα = {sα}, where Gα and sα are defined in (6.8) and (3.11) with f := Gα, respectively.

Proof: Recall that sα ∈ Gα and y ≥ sα for all y ∈ Gα. The proof is by contradiction.
Assume that there exists y1 ∈ Gα such that y1 > sα. According to Lemma 6.4,

E[hα(y1 −D)] = (1 − α)(m̄α +K) = E[hα(sα −D)].

Since Assumption 4 holds for the discount factor α, xmin
α < y1, where xmin

α is defined in (2.8).
However, according to Lemma 6.5, y1 ≤ xmin

α , which implies that y1 ≤ xmin
α < y1. Therefore,

Gα = {sα}. �

7. CONVERGENCE OF DISCOUNTED RELATIVE VALUE FUNCTIONS

This section establishes convergence of discounted relative value functions to the average-
cost relative value function for the setup-cost inventory model when the discount factor
tends to 1. This is a stronger result than the convergence for a subsequence that follows from
Theorem 5.1. We recall that in this section it is assumed that X = R and A = A(x) = R+

for all x ∈ X.
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Figure 1. MDP described in Example 3.

Let us define

u(x) := lim inf
α↑1,y→x

uα(y). (7.1)

According to Feinberg et el. [7, Theorems 3, 4], the ACOI holds for the relative value
functions ũ and u defined in (4.3) and (7.1), respectively.

The following theorem states the convergence of discounted relative value functions,
when the discount factor converges to 1, to the average-cost relative value function u.

Theorem 7.1: Let Assumption 1 hold and for α = 1 Assumption 4 hold. Then,

lim
α↑1

uα(x) = u(x), x ∈ X, (7.2)

and the function u is continuous.

In particular, Theorem 7.1 implies that the function ũ defined in (4.3) is the same for
every particular sequence {αn ↑ 1}n=1,2,.... The following example demonstrates that this is
not true in general for MDPs under Assumptions W∗ and B.

Example 3: Consider an MDP with state space X = {−2,−1, 0, 1, 2, . . .} and action space
A = {as, ac}, where the action as stands for ‘stop’ and the action c stands for ‘continue”; see
Figure 1. Let A(−1) = A and A(n) = {ac} for n ∈ X\{−1}. The transition probabilities are
P (−1| − 1, as) = 1 and P (n+ 1|n, ac) = 1 for n ∈ X. The costs are c(−2, ac) = 0, c(−1, a) =
1 for a ∈ A, and c(n, ac) = z

(1)
n for n = 0, 1, . . . , where z(1)

n is defined as

z(1)
n =

{
z0 + 1, if n = 0,
zn − zn−1 + 1, if n = 1, 2, . . . ,

(7.3)

where the sequence zn is taken from Bishop et al. [1, Equation (11)]:

zn =

{
1, if D(2k − 1) ≤ n < D(2k), k = 1, 2, . . . ,
0, otherwise,

where D(k) :=
∑k
i=1 i!, k = 1, 2, . . . . For the sequence {zn}n=0,1,..., define the function

f(α) := (1 − α)
∞∑
i=0

ziα
i, α ∈ [0, 1). (7.4)
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As shown in the proof of Lemma 7.2 in Appendix E, the relative value function

uα(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if n = −2,
1, if n = −1,
f(α) + 1, if n = 0,
(1 − α)

∑∞
i=0 zn+iα

i − zn−1 + 1, if n = 1, 2, . . . .

(7.5)

According to Bishop et al. [1, Proposition 1], lim infα↑1 f(α) = 0 and lim supα↑1 f(α) = 1.
Hence, lim infα↑1 uα(0) = 1 and lim supα↑1 uα(0) = 2, that is, in this example there exist
multiple relative value functions ũ defined in (4.3).

Lemma 7.2: The MDP described in Example 3 satisfies Assumptions W* and B, where the
discrete metric d(x, y) = 1{x=y} is considered on X and A.

Before the proof of Theorem 7.1, we first state several properties of the functions ūα
defined in (6.2). If there exists an α-discounted optimal (sα, Sα) optimal policy, then (6.3)
implies that

ūα(x) =

{
Gα(x) − m̄α, if x ≥ sα,

K, if x < sα.
(7.6)

Lemma 7.3: If Assumption 1 holds, then,

(i) for each β ∈ (α∗, 1) the family of functions {ūα}α∈[β,1) is equicontinuous on X;
(ii) supα∈(α∗,1) ūα(x) < +∞ for all x ∈ X.

Lemma 7.4: Let Assumption 1 hold and for α = 1 Assumption 4 hold. Then there exists the
limit

ū(x) := lim
α↑1

ūα(x), x ∈ X, (7.7)

where the function ū is continuous on X.

In view of (4.1), (3.39), and (6.2),

uα(x) = ūα(x) + m̄α −mα − c̄x, x ∈ X. (7.8)

Proof of Theorem 7.1: The theorem follows from the following two statements:

(i) there exists the limit u∗(x) := limα↑1 uα(x), x ∈ X, and the function u∗ is continuous
on X; and

(ii) u∗(x) = u(x) := lim infα↑1,y→x uα(x) for all x ∈ X.

Let us prove statements (i) and (ii). (i) We show that (1) there exists the limit u∗(s1) :=
limα↑1 uα(s1), where s1 is defined in (6.1); and (2) the limit exists for all x ∈ X.

(1) Consider xα ∈ Xα, α ∈ [0, 1), whereXα is defined in (4.9), and any given β ∈ (α∗, 1).
In view of (4.10), since Xα ⊂ [x∗L, x

∗
U ] for all α ∈ [0, 1), for every sequence {αn ↑ 1}n=1,2,...,

there exists a subsequence {αnk
↑ 1}k=1,2,... of the sequence {αn ↑ 1}n=1,2,... such that αn1 ≥

β and xαnk
→ x∗ as k → +∞ for some x∗ ∈ [x∗L, x

∗
U ].
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Consider ε > 0. Since the family of functions {uα}α∈[β,1) is equicontinuous
(see Theorem 4.6), there exists an integer M(ε) > 0 such that for all k ≥M(ε)

|uαnk
(xαnk

) − uαnk
(x∗)| < ε. (7.9)

Since uαnk
(xαnk

) = 0 for all k = 1, 2, . . . , (7.9) implies that for k ≥M(ε)

|uαnk
(x∗)| < ε. (7.10)

Therefore, (7.10) implies that
lim

k→+∞
uαnk

(x∗) = 0. (7.11)

Since the function uαnk
is nonnegative, (7.10) implies that for k ≥M(ε)

uαnk
(x∗) < uαnk

(x) + ε, x ∈ X. (7.12)

Then (7.12) and (7.8) imply that for k ≥M(ε)

ūαnk
(x∗) − c̄x∗ < ūαnk

(x) − c̄x+ ε, x ∈ X. (7.13)

By taking the limit of both sides of (7.13) as k → +∞, Lemma 7.4 implies that

ū(x∗) − c̄x∗ ≤ ū(x) − c̄x+ ε, x ∈ X. (7.14)

Since ε can be chosen arbitrarily, (7.14) implies that

ū(x∗) − c̄x∗ = min
x∈X

{ū(x) − c̄x}. (7.15)

Let Mū := ū(s1) − c̄s1 − minx∈X{ū(x) − c̄x}. Then

lim
k→+∞

uαnk
(s1) − uαnk

(x∗) = lim
k→+∞

ūαnk
(s1) − c̄s1 − [ūαnk

(x∗) − c̄x∗]

= ū(s1) − c̄s1 − [ū(x∗) − c̄x∗] = ū(s1) − c̄s1 − min
x∈X

{ū(x) − c̄x} = Mū,
(7.16)

where the first equality follows from (7.8), the second one follows from Lemma 7.4, and the
third one follows from (7.15). In view of (7.11) and (7.16),

lim
k→+∞

uαnk
(s1) = Mū. (7.17)

Thus, for every sequence {αn ↑ 1}n=1,2,... there exists a subsequence {αnk
}k=1,2,... such that

(7.17) holds. Therefore, limn→+∞ uαn
(s1) = Mū for every sequence {αn ↑ 1}n=1,2,..., which

is equivalent to
u∗(s1) := lim

α↑1
uα(s1) = Mū. (7.18)

(2) Now we prove that there exists the limit u∗(x) := limα↑1 u(x) for x ∈ X. For x ∈ X

lim
α↑1

uα(x) − uα(s1) = lim
α↑1

ūα(x) − c̄x− [ūα(s1) − c̄s1]

= ū(x) − c̄x− [ū(s1) − c̄s1],
(7.19)

where the first equality follows from (7.8) and the second one follows from Lemma 7.4.
Therefore, (7.18) and (7.19) imply that there exists the limit

u∗(x) := lim
α↑1

uα(x) = Mū + ū(x) − c̄x− [ū(s1) − c̄s1], x ∈ X. (7.20)

Furthermore, since the family of functions {uα}α∈[β,1) is equicontinuous and Assump-
tion B holds, Ascoli’s theorem (Hernández-Lerma and Lasserre [16, p. 96]) implies that the
function u∗ is continuous.
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(ii) Consider sequences {αn ↑ 1}n=1,2,... and {yn → x}n=1,2,... such that α1 > α∗ and
limn→+∞ uαn

(yn) = lim infα↑1,y→x uα(y). Then,

lim inf
α↑1,y→x

uα(y) ≤ lim inf
n→+∞,y→x

uαn
(y) ≤ lim

n→+∞uαn
(yn) = lim inf

α↑1,y→x
uα(x),

which implies that
lim inf
α↑1,y→x

uα(y) = lim inf
n→+∞,y→x

uαn
(y). (7.21)

According to Feinberg and Liang [13, Lemma 3.3], since limn→+∞ uαn
(x) = u∗(x),

Theorems 4.1 and 4.6 imply that

lim inf
n→+∞,y→x

uαn
(y) = lim

n→+∞uαn
(x) = u∗(x). (7.22)

Therefore, (7.21) and (7.22) imply that u := lim infα↑1,y→x uα(y) = u∗. This completes the
proof. �

Theorem 7.1 implies that (4.15) can be written as

H(x) := c̄x+ E[h(x−D)] + E[u(x−D)]. (7.23)

Corollary 7.5: Let Assumption 1 and for α = 1 Assumption 4 hold. Consider the function
u defined in (7.2). Then the conclusions of Theorem 5.1 hold with ũ = u and, in particular,
the lower threshold s∗, for the optimal (s∗, S∗) optimal policy whose existence is stated in
Theorem 5.1, can be chosen as s1 defined in (6.1).

Define the set of all possible optimal average-cost lower thresholds

G := {x ∈ [s, S] : H(y) ≥ K +H(S) for all y ≤ x}, (7.24)

where S = min{argminx{H(x)}} and s is defined in (3.11) with f := H Note that s ∈ G
and y ≥ s for all y ∈ G

The following theorem establishes the uniqueness of the optimal lower threshold satisfy-
ing the optimality equations for the inventory model with holding/backlog costs satisfying
quasiconvexity assumptions under the average cost criterion.

Theorem 7.6: Let Assumption 1 hold and for α = 1 Assumption 4 hold. Then, G = {s1},
and therefore s = s1, where s1 is defined in (6.1).

Proof: Consider G and S defined in (7.24). Recall that s ∈ G and y ≥ s, where s is defined
in (3.11) with f := H. According to Theorem 5.1 and Corollary 7.5, for y ∈ G

w + u(x) + c̄x =

{
K +H(S), if x ≤ y,

H(x), if x ≥ y,
(7.25)

which implies that for x ≤ y

H(x) = c̄x+ E[h(x−D)] + E[u(x−D)]

= K + E[h(x−D)] +H(S) + c̄E[D] − w.
(7.26)

Since H(y) = K +H(S) for y ∈ G, in view of (7.26),

E[h(y −D)] = w − c̄E[D], y ∈ G. (7.27)

The rest of the proof is by contradiction. Assume that there exists y1 ∈ G such that
y1 > s. Then (7.27) implies that E[h(y1 −D)] = E[h(s−D)]. Therefore, Assumption 4
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implies that xmin
1 < y1, where xmin

1 is defined in (2.8). Since S = min{argminx{H(x)}},
(7.25) implies that for x < S

w + u(x) + c̄x > H(S). (7.28)

Therefore, for x < S

H(y1) = K +H(S) = K + c̄S + E[h(S −D)] + E[u(x−D)]

> K + E[h(xmin
1 −D)] +H(S) + c̄E[D] − w,

(7.29)

where the first equality holds because y1 ∈ G, the second one follows from (7.23), and
the inequality holds because E[h(S −D)] ≥ E[h(xmin

1 −D)] and (7.28). Since y ∈ G and
xmin

1 < y1, H(xmin
1 ) ≥ H(y1). In view of (7.26),

H(y1) ≤ H(xmin
1 ) = K + E[h(xmin

1 −D)] +H(S) + c̄E[D] − w,

which contradicts (7.29). Then, G = {s}. In addition, Corollary 7.5 implies that s1 ∈ G,
where s1 is defined in (6.1). Therefore, s = s1 and G = {s1}. �

The following corollary states that all the results of this paper hold for inventory models
with convex holding/backlog costs.

Corollary 7.7: The conclusions of all the lemmas, theorems, and corollaries in Sections 6
and 7 hold under Assumption 2.

8. VEINOTT’S REDUCTION OF PROBLEMS WITH BACKORDERS AND POSITIVE
LEAD TIMES TO PROBLEMS WITHOUT LEAD TIMES

In this section, we explain, by using the technique introduced without formal proofs by
Veinott [25] for finite-horizon problems with continuous demand, that the infinite-horizon
inventory model with positive lead times and backorders can be reduced to the model with-
out lead times. Therefore, the results of this paper, Feinberg and Lewis [11], and Feinberg
and Liang [12,13] also hold for the inventory model with positive lead times. For inventory
model with positive lead times, we also provide a formal formulation of the MDP with
transformed state space.

Consider the inventory model defined in Section 2. Instead of assuming zero lead times,
assume that the fixed lead time is L ∈ N := {1, 2, . . .}, that is, an order placed at the begin-
ning of time t will be delivered at the beginning of time t+ L. In addition, let hL(x) be the
holding/backlog cost per period if the inventory level is x. We define

h∗(x) := E[hL(x−
L∑
i=1

Di)]. (8.1)

For the inventory model, the dynamics of the system are defined by the equation

xt+1 = xt + at−L −Dt+1, t = 0, 1, 2, . . . , (8.2)

where xt and at are the current inventory level before replenishment and the ordered amount
at period t. Equation (8.2) means that a decision-maker observes at the end of the period t
the history ht, places an order of amount at, which will be delivered in L periods (that is,
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at the end of the period t+ L), and the demand occurred during the period t+ 1 is Dt+1.
In addition, at period t, the one-step cost is

c̃(hLt , at) := K1{at−L>0} + c̄at−L + E[hL(xt + at−L −Dt+1)], t = 0, 1, . . . , (8.3)

where hLt = (a−L, a−L+1, . . . , a−1, x0, a0, . . . , at−1, xt) is the history at period t.
As usual, consider the set of possible trajectories hL+∞ = (hLt , at, xt+1, at+1, . . .). An

arbitrary policy is a regular probability distribution π(dat|hLt ), t = 0, 1, . . ., on R+. It defines
the transition probability for hLt to (hLt , at). The transition probability for (hLt , at) can be
defined by (8.2). Therefore, given the initial state hL0 = (a−L, a−L+1, . . . , a−1, x0), a policy
π defines, in view of the Ionescu Tulcea theorem, the probability distribution Pπ

hL
0

on the
set of trajectories. We denote by E

π
hL

0
the expectation with respect to Pπ

hL
0
.

For a finite-horizon N = 1, 2, . . . the expected total discounted cost is

ṽπN,α(hL0 ) := E
π
hL

0

[
N−1∑
t=0

αtc̃(xt, at)

]
= E

π
hL

0

[
L−1∑
t=0

αtc̃(xt, at) + αL
N−1∑
t=0

αtc̃(xt+L, at+L)

]
,

(8.4)

where α ∈ [0, 1] is the discount factor and ṽπ0,α(hL0 ) = 0. When N = +∞ and α ∈ [0, 1), (8.4)
defines the infinite-horizon expected total discounted cost denoted by ṽπα(hL0 ). The average
cost per unit time is defined as w̃π(h0) := lim supN→+∞ 1/NṽπN,1(h

L
0 ).

Let us define

yt := xt +
L∑
i=1

at−i = xt+L +
L∑
i=1

Dt+i, t = 0, 1, . . . , (8.5)

where yt is the sum of the current inventory level and the outstanding orders at the end of
period t. Since the distribution of xt+L is determined by yt, in view of (8.2), we show that
it is possible to make the decision at only based on the quantity yt.

Let us construct an MDP with state space Y = R (or Y = Z) with states yt defined in
(8.5). The actions are the amount of orders that can be placed at each period t; A(y) =
A = R+ (or A(y) = A = N0) for all y ∈ Y. In view of (8.2) and (8.5), the dynamics of the
system are defined by the equation

yt+1 = yt + at −Dt+1, t = 0, 1, 2, . . . . (8.6)

The transition probabilities for the MDP corresponding to (8.6) is

q∗(B|yt, at) = P (yt + at −Dt+1 ∈ B), (8.7)

for each measurable subset B of Y. Let the one-step cost be

c∗(y, a) := K1{a>0} + c̄a+ E[h∗(y + a−D)]. (8.8)

As was noticed by Veinott [25], the state space Y, action space A, action sets A(·),
transition probabilities (8.7), and costs (8.8) define the same MDP as for in the problem
without lead time with the only difference that the holding/backlog cost function h is
substituted with the function h∗. In addition, though the amount of inventory xt+L at
time (t+ L) is not known at time t, the distribution of xt+L is known because xt+L ∼ yt −∑L
l=1D

(l), where D(1), . . . , D(L) are i.i.d. random variables with D(l) ∼ D, l = 1, 2, . . . , L.
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Since the actual amount of inventory level xt+L is unknown at time t, when the amount
at is ordered, this problem can be modeled as a Partially Observable MDP. According to
the current available theory (see Hernández-Lerma [15, Chapter 4], Feinberg et al. [9], and
references therein), such models can be reduced to the MDPs whose states are probability
distributions of xt+L known at time t, which is the distribution of yt −

∑L
l=1D

(l). The
value of yt defines this distribution. This relation implies that optimal policies for the MDP
introduced by Veinott [25] with state space Y, action space A, and transition probabilities
(8.7), and costs (8.8) define the optimal actions at epoch t = 0, 1, 2, . . . .

Theorem 8.1: Consider the problem with the lead time L = 1, 2, . . . . Then the MDP
{Y,A, q∗, c∗} coincides the MDP {X,A, q, c} with the function h substituted with h∗. There-
fore, the conclusions of theorems in this paper hold for the problems with the lead time
L = 1, 2, . . . , if the holding/backlog cost function h∗ satisfies the conditions assumed for the
function h in the corresponding statements.

Proof: Since yt ∈ X and the actions are the same for these two models, we need to verify
only the correspondence for transition probabilities and costs. If h = h∗, then formulae (2.3)
and (8.8) coincide with xt = yt. The transition probabilities q∗ defined in (8.7) also coincides
with (2.2). Observe that it is easy to show that

ṽπN,α(hL0 ) = f(hL0 ) + αLvπN,α(y0), (8.9)

where f(hL0 ) :=
∑L−1
t=0 α

t
E[c̃(x0 +

∑t−1
i=0 a−L+i −

∑t−1
i=0 Dt+i, at)]. �

For the problems with convex holding/backlog cost function hL, the function h∗ is also
convex and E[h∗(x−D)] → +∞ as |x| → +∞. We also need the additional assumption
that E[h∗(x−D)] < +∞ for all x ∈ X. Then the results in this paper formulated under
Assumption 2 and the results in Feinberg and Lewis [11] and Feinberg and Liang [12,13]
hold for the problems with the lead time L = 1, 2, . . ..

Remark 8.2: Note that the assumption on the finiteness of the function E[h∗(x−D)] is
necessary for the problems with convex holding/backlog costs. Consider the lead time L = 1,
the holding/backlog cost function

hL(x) :=

⎧⎪⎪⎨
⎪⎪⎩
x+

e2

5
, if x ≥ 0,

e−x+ 2

(x− 2)2 + 1
, if x ≤ 0,

and the random variable D is exponential distribution with the density function fD(x) =
e−x, if x > 0, and fD(x) = 0, otherwise. Then the random variable S2 follows the Erlang
distribution with density function fS2(x) = xe−x, if x > 0, and fS2(x) = 0, otherwise.
Observe that the function hL is continuous and nonnegative. Some calculations show
that the function hL is convex on R and E[hL(x−D)] < +∞ for all x ∈ R. However,
E[h∗(0 −D)] = E[hL(0 − S2)] = +∞.

Remark 8.3: The reduction discussed in this section does not hold for the inventory model
with lost-sales. For such model with lead time L > 0, the dynamics of the system are defined
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by the equation

xt+1 = (xt + at−L −Dt+1)+ := max{xt + at−L −Dt+1, 0}, t = 0, 1, 2, . . . .

Consider the transformation similar to the one defined in (8.5). Then xt+L = yt −∑L
i=1 D̃t+i, where D̃j := min{Dj , xj−1 + aj−L−1}, j = t+ 1, t+ 2, . . . , t+ L. Since the dis-

tribution of xt+L does not depend solely on the information available at time t, the reduction
does not hold. Indeed, the structure of the optimal policies may depend on the lead times.
In particular, if the lead times are large, then the constant-order policy performs nearly
optimally; see Goldberg et al. [14].
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of Mathematical Analysis and Applications, 420(2): 1654–1661.

2. Beyer, D., Cheng, F., Sethi, S.P., & Taksar, M. (2010). Markovian demand inventory models. New York:
Springer.

3. Beyer, D. & Sethi, S. (1999). The classical average-cost inventory models of Iglehart and Veinott—
Wagner revisited. Journal of Optimization Theory and Applications, 101(3): 523–555.

4. Chen, X. & Simchi-Levi, D. (2004). Coordinating inventory control and pricing strategies with random
demand and fixed ordering cost: the finite horizon case. Operations Research, 52(6): 887–896.

5. Chen, X. & Simchi-Levi, D. (2004). Coordinating inventory control and pricing strategies with random
demand and fixed ordering cost: the infinite horizon case. Mathematics of Operations Research, 29(3):
698–723.

6. Feinberg, E.A. (2016). Optimality conditions for inventory control. In A. Gupta, & A. Capponi, (eds.),
Tutorials in operations research. Optimization challenges in complex, networked, and risky systems,
Cantonsville, MD: INFORMS, pp. 14–44.

7. Feinberg, E.A., Kasyanov, P.O., & Zadoianchuk, N.V. (2012). Average cost Markov decision processes
with weakly continuous transition probability. Mathematics of Operations Research, 37(4): 591–607.

8. Feinberg, E.A., Kasyanov, P.O., & Zadoianchuk, N.V. (2013). Berge’s theorem for noncompact image
sets. Journal of Mathematical Analysis and Applications, 397(1): 255–259.

9. Feinberg, E.A., Kasyanov, P.O., & Zgurovsky, M.Z. (2016). Partially observable total-cost Markov
decision processes with weakly continuous transition probabilities. Mathematics of Operations Research,
41(2): 656–681.

10. Feinberg, E.A. & Lewis, M.E. (2007). Optimality inequalities for average cost Markov decision processes
and the stochastic cash balance problem. Mathematics of Operations Research, 32(4): 769–783.

11. Feinberg, E.A. & Lewis, M.E. (2017). On the convergence of optimal actions for Markov decision pro-
cesses and the optimality of (s, S) inventory policies. Naval Research Logistic, DOI: 10.1002/nav.21750.

12. Feinberg, E.A. & Liang, Y. (2017). Structure of optimal policies to periodic-review inventory models
with convex costs and backorders for all values of discount factors. Annals of Operations Research, DOI:
10.1007/s10479-017-2548-6.

13. Feinberg, E.A. & Liang, Y. (2017). On the optimality equation for average cost Markov decision
processes and its validity for inventory control. Annals of Operations Research, DOI: 10.1007/s10479-
017-2561-9.

14. Goldberg, D.A., Katz-Rogozhnikov, D.A., Lu, Y., Sharma, M., & Squillante, M.S. (2016). Asymptotic
optimality of constant-order policies for lost sales inventory models with large lead times. Mathematics
of Operations Research, 41(3): 898–913.

15. Hernández-Lerma, O. (1989). Adaptive Markov Control Processes. New York: Springer-Verlag.
16. Hernández-Lerma, O. & Lasserre, J.B. (1996). Discrete-time Markov control processes: basic optimality

creteria. New York: Springer-Verlag.
17. Huh, W.T., Janakiraman, G., & Nagarajan, M. (2011). Average cost single-stage inventory models: an

analysis using a vanishing discount approach. Operations Research, 59(1): 143–155.

https://doi.org/10.1017/S0269964818000335 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964818000335


STOCHASTIC SETUP-COST INVENTORY MODEL 459

18. Iglehart, D.L. (1963). Dynamic programming and stationary analysis of inventory roblems. In H. Scarf,

D. Gilford, & M. Shelly, (eds.), Multistage inventory control models and techniques Stanford, CA:
Stanford University Press, pp. 1–31.

19. Johnson, E.L. (1968). On (s, S) policies. Management Science, 15(1): 80–101.
20. Porteus, E. (2002). Foundations of stochastic inventory theory. Stanford, CA: Stanford University Press.
21. Resnick, S.I. (1992). Adventures in stochastic processes. Boston: Birkhauser.
22. Scarf, H. (1960). The optimality of (S, s) policies in the dynamic inventory problem. In K. Arrow,

S. Karlin, & P. Suppes, (eds.), Mathematical Methods in the Social Sciences, Stanford, CA: Stanford
University Press.

23. Schäl, M. (1993). Average optimality in dynamic programming with general state space. Mathematics

of Operations Research, 18(1): 163–172.
24. Simchi-Levi, D., Chen, X., & Bramel, J. (2005). The Logic of Logistics: Theory, Algorithms, and

Applications for Logistics and Supply Chain Management. New York: Springer-Verlag.
25. Veinott, A.F. (1966). On the optimality of (s, S) inventory policies: new condition and a new proof.

SIAM Journal on Applied Mathematics, 14(5): 1067–1083.
26. Veinott, A.F. & Wagner, H.M. (1965). Computing optimal (s, S) policies. Management Science, 11(5):

525–552.
27. Zabel, E. (1962). A note on the optimality of (s, S) policies in inventory theory. Management Science,

9(1): 123–125.
28. Zheng, Y. (1991). A simple proof for optimality of (s, S) policies in infinite-horizon inventory systems.

Journal of Applied Probability, 28(4): 802–810.
29. Zipkin, P.H. (2000). Foundations of inventory management. New York: McGraw-Hill.

APPENDIX A. PROOFS TO SECTION 2

Proof of Lemma 2.2: Since E[h(x − D)] → +∞ as x → −∞,

lim sup
x→−∞

h(x) = +∞. (A.1)

To see this note that if lim supx→−∞ h(x) < +∞, then there exist real numbers M1, M2 > 0
such that h(x) ≤ M1 for x ≤ −M2. Since D is a nonnegative random variable, E[h(x − D)] ≤ M1

for x ≤ −M2 and lim supx→−∞ E[h(x − D)] ≤ M1 < +∞. This contradicts the assumption that
E[h(x − D)] → +∞ as x → −∞.

Since the function h is convex, the function E[h(x − D)] is convex. Therefore, in view of (2.6),
the function E[hα(x − D)] is convex for all α ∈ [0, 1]. Since every convex function is quasiconvex,
the function E[hα(x − D)] is quasiconvex for all α ∈ [0, 1].

Since the function h is convex on X, it is continuous. Therefore, (A.1) implies limx→−∞ h(x) =
+∞. As explained in Feinberg and Liang [12, Equations (2.3), (4.1)], the convexity of the function
h imply that 1 + limx→−∞ h(x)/c̄x < 1.

Consider α∗ ∈ [max{1 + limx→−∞ h(x)/c̄x, 0}, 1). For α ∈ (α∗, 1], since the function hα(x) =
c̄x(h(x)/c̄x + 1 − α) tends to +∞ as x → −∞,

lim
x→−∞E[hα(x − D)] = +∞, α ∈ (α∗, 1]. (A.2)

Therefore, the convexity of the function E[hα(x − D)] implies that limx→−∞ E[hα(x − D)] >
K + infx∈X E[hα(x − D)] for all α ∈ (α∗, 1]. Hence, Assumption 1 holds with α∗ ∈ [max{1 +
limx→−∞ h(x)/c̄x, 0}, 1). In view of (A.2), the convexity of the function E[hα(x − D)] implies
that Assumption 4 holds for all α ∈ (α∗, 1]. �

Proof of Lemma 2.3: It is straightforward that Assumption 1 implies Assumption 3 for α ∈ (α∗, 1).
In addition, since E[hα(x − D)] → E[h(x − D)] as α ↑ 1 for all x ∈ X, the quasiconvexity of the
function E[hα(x − D)] implies that the function E[h(x − D)] is quasiconvex. Since infx∈X E[h(x −
D)] < +∞ and E[h(x − D)] = E[hα(x − D)] − (1 − α)c̄x → +∞ as x → −∞ for each α ∈ (α∗, 1),
Assumption 3 holds for α = 1. �
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APPENDIX B. PROOFS TO SECTION 3

Proof of Lemma 3.3: In view of (3.1), for x ≤ y and t = 1, 2, . . .

vt,α(x) + c̄x = min

{
min
a≥0

{K + Gt−1,α(x + a)}, Gt−1,α(x)

}
≤ min
a≥0

{K + Gt−1,α(x + a)}

≤ K + min
a≥y−x

Gt−1,α(x + a) = K + min
a≥0

Gt−1,α(y + a)

≤ K + min

{
min
a≥0

{K + Gt−1,α(y + a)}, Gt−1,α(y)

}
= K + vt,α(y) + c̄y,

where the second inequality follows from y − x ≥ 0. Furthermore, (3.2) and the same arguments
imply (3.6).

In view of (3.3), for x ≤ y and t = 1, 2, . . .

Gt,α(y) − Gt,α(x) = E[hα(y − D)] − E[hα(x − D)]

+ αE[vt,α(y − D) + c̄(y − D) − vt,α(x − D) − c̄(x − D)]

≥ E[hα(y − D)] − E[hα(x − D)] − αK,

where the inequality follows from (3.5). Furthermore, (3.4) and the same arguments imply (3.8). �

Proof of Lemma 3.4: In view of (3.9), S∗
α ≥ xmin

α . Since limx→+∞ E[hα(x − D)] = +∞ and
Assumption 3 holds, |S∗

α| < +∞ and for x > S∗
α

E[hα(x − D)] ≥ E[hα(S∗
α − D)] ≥ K + E[hα(xmin

α − D)]. (B.1)

Consider x∗ ∈ X. Let the function G := Gt,α, t = 1, 2, . . ., or G := Gα and a∗ be an optimal action

defined by (3.1) or (3.2) for x∗. Then consider the following two cases: (i) x∗ ≤ xmin
α ; and (ii)

x∗ > xmin
α .

(i) Lemma 3.3 and (B.1) imply that for x > S∗
α ≥ xmin

α

G(x) − G(xmin
α ) ≥ E[hα(x − D)] − E[hα(xmin

α − D)] − αK ≥ K − αK > 0. (B.2)

Therefore, for x > S∗
α ≥ xmin

α

G(x) > G(xmin
α ) ≥ min

x∈X

G(x). (B.3)

Then, for x∗ ≤ xmin
α , (B.3) implies that a∗ ∈ [0, S∗

α − x∗].
(ii) For xmin

α ≤ x < y

G(y) − G(x) + K ≥ E[hα(y − D)] − E[hα(x − D)] − αK + K > 0, (B.4)

where the first inequality follows from Lemma 3.3 and the second one holds because the function
E[hα(x − D)] is nondecreasing on [xmin

α , +∞) and K − αK > 0. For x∗ > xmin
α , it follows from

(B.4) that G(x∗) < G(y) + K for all y > x∗, which implies that a∗ = 0. Therefore, cases (i) and
(ii) imply that a∗ ∈ [0, max{S∗

α − x∗, 0}]. �
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Proof of Lemma 3.8: In view of (3.13), for x ≤ y and t = 1, 2, . . .

v̄t,α(x) = min

{
min
a≥0

{K + Ḡt−1,α(x + a)}, Ḡt−1,α(x)

}
≤ min
a≥0

{K + Ḡt−1,α(x + a)}

≤ K + min
a≥y−x

Ḡt−1,α(x + a) = K + min
a≥0

Ḡt−1,α(y + a)

≤ K + min

{
min
a≥0

{K + Ḡt−1,α(y + a)}, Ḡt−1,α(y)

}
= K + v̄t,α(y),

where the second inequality follows from y − x ≥ 0. Furthermore, (3.14) and the same arguments
imply (3.23).

In view of (3.15), for x ≤ y and t = 1, 2, . . .

Ḡt,α(y) − Ḡt,α(x) = E[hα(y − D)] − E[hα(x − D)] + αE[v̄t,α(y − D) − v̄t,α(x − D)]

≤ E[hα(y − D)] − E[hα(x − D)] + αK,

where the inequality follows from (3.22). Furthermore, (3.16) and the same arguments imply (3.25).
�

Proof of Lemma 3.9: The proof is by induction on t. For t = 0, (3.27) holds because v̄0,α(x) = 0,

x ∈ X, and (3.26) follows from Ḡ0,α(x) = E[hα(x − D)], x ∈ X, and |xmin
α | < +∞, which is true

in view of Assumption 3. To complete the induction arguments, assume that (3.26) holds for
t = k ∈ {0, 1, 2, . . .}. Then for x ≤ y ≤ xmin

α

v̄k+1,α(x) = min

{
Ḡk,α(x), min

a≥0
{K + Ḡk,α(x + a)}

}

= min

{
Ḡk,α(x), min

a≥0
{K + Ḡk,α(x + a)}

}

≥ min

{
Ḡk,α(y), min

0≤a<y−x
{K + Ḡk,α(x + a)}, min

a≥y−x
{K + Ḡk,α(x + a)}

}

≥ min

{
Ḡk,α(y), K + Ḡk,α(y), min

a≥0
{K + Ḡk,α(y + a)}

}

≥ min

{
Ḡk,α(y), min

a≥0
{K + Ḡk,α(y + a)}

}
= v̄k+1,α(y),

where the first and last equalities follow from (3.13), the first two inequalities follow from (3.26),
and the last inequality follows from K > 0. Thus, (3.27) holds for t = k + 1. In addition, for x ≤
y ≤ xmin

α

Ḡk+1,α(y) − Ḡk+1,α(x)

= E[hα(y − D)] − E[hα(x − D)] + αE[v̄k+1,α(y − D) − v̄k+1,α(x − D)] ≤ 0,

where the equality follows from (3.15) and the inequality holds because the function E[hα(x − D)]
is nonincreasing on (−∞, xmin

α ] and (3.27).
Since v̄t,α → v̄α as t → +∞, (3.27) implies (3.28). In addition, for x ≤ y ≤ xmin

α

Ḡα(y) − Ḡα(x) = E[hα(y − D)] − E[hα(x − D)] + αE[v̄α(y − D) − v̄α(x − D)] ≤ 0,

where the equality follows from (3.16) and the inequality holds since the function E[hα(x − D)] is
nonincreasing on (−∞, xmin

α ] and (3.28). �
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Proof of Lemma 3.11: We first prove that

v̄α(x) − c̄x = ṽα(x) ≥ vα(x) ≥ 0, x ∈ X. (B.5)

Note that vα(x) ≥ 0 for all x ∈ X, because all costs in the original inventory model are nonnegative.
Theorem 3.10(i), (3.17), and (3.18) imply that for N = 1, 2, . . .

ṽN,α(x) = ṽφ
N

N,α(x), x ∈ X, (B.6)

where the policy φN is the (st,α, St,α)t=0,1,2,...,N−1 policy defined in Theorem 3.10(i). Therefore,

ṽN,α(x) = ṽφ
N

N,α(x) = E
φN

x

[
N−1∑
t=0

c(xt, at) − αN c̄xN

]

= vφ
N

N,α(x) − αN c̄Eφ
N

x [xN ] ≥ vN,α(x) − αN c̄ max{x, S∗
α}, x ∈ X,

(B.7)

where the last inequality holds because vφ
N

N,α(x) ≥ vN,α(x), x ∈ X, and for all N = 1, 2, . . .

Theorem 3.10 (iii) implies that E
φN

x [xN ] ≤ max{x, S∗
α}. Hence,

v̄α(x) − c̄x = ṽα(x) = lim
N→+∞

ṽN,α(x) ≥ lim
N→+∞

vN,α(x) = vα(x) ≥ 0,

where the first two equalities follow from (3.19), the first inequality follows from (B.7) and
limN→+∞ αN c̄ max{x, S∗

α} = 0 for each x ∈ X. Therefore, (B.5) holds.
To prove Lemma 3.11, it remains to prove that vα(x) ≥ ṽα(x), x ∈ X. Observe that for t =

0, 1, 2, . . . and π ∈ Π

xt ≥ x0 − St and E
π
x0 [xt] ≥ x0 − tE[D],

where St is defined in (4.6). Then for N = 1, 2, . . .

ṽN,α(x) ≤ ṽπN,α(x) = E
π
x

[
N−1∑
t=0

c(xt, at) − αN c̄xN

]
= vπN,α(x) − αN c̄Eπx [xN ]

≤ vπN,α(x) − αN c̄(x − NE[D]), x ∈ X.

(B.8)

Observe that limN→+∞ αN c̄(x − NE[D]) = 0 for each x ∈ X. Thus, by taking the limits as N →
+∞ of both sides of (B.8), ṽα(x) ≤ vπα(x) for all π ∈ Π, which implies that ṽα(x) ≤ vα(x), x ∈ X.
Hence, ṽα(x) = vα(x) = v̄α(x) − c̄x, x ∈ X. �

APPENDIX C. PROOFS TO SECTION 5

Proof of Lemma 5.3: (i) In view of (3.23) and Lemma 3.11, (5.2) holds because uα(x) −
uα(y) = vα(x) − vα(y) = v̄α(x) − c̄x − (v̄α(y) − c̄y) and the function uαn(x) converges
pointwise to ũ(x) as n → +∞. For x ≤ y

H(y) − H(x) = E[h(y − D)] + αE[ũ(y − D) + c̄(y − D)]

− E[h(x − D)] − αE[ũ(x − D) + c̄(x − D)]

≤ E[hα(y − D)] − E[hα(x − D)] + αK,

where the equality follows from (4.15) and the inequality follows from (5.2).
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(ii) We first show that for 1 ≥ α ≥ β > α∗

xmin
α ≥ xmin

β . (C.1)

To verify this inequality, consider 1 ≥ α ≥ β > α∗. Then, for x < xmin
β

E[hα(x − D)] − E[hα(xmin
β − D)]

= E[h(x − D)] + E[h(xmin
β − D)] + (1 − α)c̄(x − xmin

β )

> E[h(x − D)] + E[h(xmin
β − D)] + (1 − β)c̄(x − xmin

β )

= E[hβ(x − D)] − E[hβ(xmin
β − D)] > 0,

(C.2)

where the equalities follow from (2.6) and the inequality holds because 1 − α < 1 − β and
c̄(x − xmin

β ) < 0. If xmin
α < xmin

β , then (C.2) with x = xmin
α implies that

E[hα(xmin
α − D)] − E[hα(xmin

β − D)] > 0. (C.3)

However, the definition of xmin
α in (2.8) implies that E[hα(xmin

α − D)] − E[hα(xmin
β − D)] ≤

0, which contradicts (C.3). Therefore, (C.1) holds.
Now, we prove that xmin

α ↑ xmin
1 as α ↑ 1. Consider a fixed discount factor β ∈ (α∗, 1).

In view of (C.1), since xmin
β ≤ xmin

α ≤ xmin
1 for all α ∈ (β, 1) and |xmin

β |, |xmin
1 | < +∞, the

monotone convergence theorem implies that there exists xmin
1,∗ ∈ [xmin

β , xmin
1 ] such that xmin

α ↑ xmin
1,∗

as α ↑ 1. In addition, for α ∈ (β, 1)

0 ≤ E[h1(x
min
α − D)] − E[h1(x

min
1 − D)]

= E[hα(xmin
α − D)] − (1 − α)c̄(xmin

α − E[D]) − E[h1(x
min
1 − D)]

≤ E[hα(xmin
1 − D)] − (1 − α)c̄(xmin

α − E[D]) − E[h1(x
min
1 − D)]

= (1 − α)c̄(xmin
1 − xmin

α ) ≤ (1 − α)c̄(xmin
1 − xmin

β ),

(C.4)

where the first two inequalities follow from the definition of xmin
1 and xmin

α in (2.8), the first equality
holds because E[h1(x

min
α − D)] = E[hα(xmin

α − D)] − (1 − α)c̄(xmin
α − E[D]), the second equality

holds because E[hα(xmin
1 − D)] − E[h1(x

min
1 − D)] = (1 − α)c̄(xmin

1 − E[D]), and the last inequal-
ity follows from xmin

β ≤ xmin
α and (1 − α)c̄ > 0 for α ∈ (β, 1). Observe that (1 − α)c̄(xmin

1 − xmin
β ) →

0 as α ↑ 1. Then (C.4) implies that limα↑1 E[h1(x
min
α − D)] − E[h1(x

min
1 − D)] = 0. Therefore, the

continuity of the function E[h1(x − D)] implies that

E[h1(x
min
1,∗ − D)] = E[h1(x

min
1 − D)]. (C.5)

Recall that xmin
1,∗ ∈ [xmin

β , xmin
1 ]. If xmin

1,∗ < xmin
1 , then Assumption 1 and (2.8) imply that

E[h1(x
min
1,∗ − D)] > E[h1(x

min
1 − D)], which contradicts (C.5). Therefore, xmin

1,∗ = xmin
1 and xmin

α ↑
xmin
1 as α ↑ 1.

In view of (3.28) and Lemma 3.11, (5.4) holds because uα(x) − uα(y) = vα(x) − vα(y) =
v̄α(x) − c̄x − (v̄α(y) − c̄y), the function uαn(x) converges pointwise to ũ(x) as n → +∞, and
xmin
α ↑ xmin

1 as α ↑ 1. For x ≤ y ≤ xmin
1

H(y) − H(x) = E[h(y − D)] − E[h(x − D)]

+ αE[ũ(y − D) + c̄(y − D) − ũ(x − D) − c̄(x − D)] ≤ 0,

where the equality follows from (4.15) and the inequality follows from that the function E[h(x − D)]
is nonincreasing on (−∞, xmin

1 ] and (5.4). �

Proof of Corollary 5.4: The proof of the optimality of (s, S) policies is based on the fact that
K + H(S) < H(x), if x < s, and K + H(S) ≥ H(x), if x ≥ s. Since the function H is continuous,
we have that K + H(S) = H(s). Thus both actions are optimal at the state s. �

https://doi.org/10.1017/S0269964818000335 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964818000335


464 Feinberg and Liang

APPENDIX D. PROOFS TO SECTION 6

Proof of Lemma 6.4: According to (6.3), v̄α(x) = K + Gα(Sα) = K + m̄α for x ≤ y. In view of
(3.16), (6.8), and Lemma 3.11,

K + m̄α = Gα(y) = E[hα(y − D)] + αE[v̄α(y − D)] = E[hα(y − D)] + α(K + m̄α),

which implies (6.9). �

Proof of Lemma 6.5: Observe that the second inequality in Lemma 6.5 follows from (C.1). The
following proof is by contradiction. Assume that there exist α ∈ (α∗, 1) and y ∈ Gα such that
y > xmin

α . According to (6.3), v̄α(x) = K + m̄α for x ≤ y. Therefore, (3.16) and Lemma 3.11 imply
that for x ≤ y

Gα(x) = E[hα(x − D)] + α(K + m̄α). (D.1)

The definition (2.8) of xmin
α and (D.1) imply that Gα(xmin

α ) ≤ Gα(y). According to the definition
of sα in (3.11), Gα(x) ≥ Gα(y) for x ≤ y. Therefore, Gα(xmin

α ) = Gα(y), which implies that

E[hα(xmin
α − D)] + α(K + m̄α) = Gα(xmin

α ) = Gα(y) = K + Gα(Sα)

= K + E[hα(Sα − D)] + αE[v̄α(Sα − D)] > E[hα(xmin
α − D)] + α(K + m̄α),

(D.2)

where the first equality follows from (D.1), the last equality follows from (3.16) and Lemma 3.11,
and the inequality follows from K > αK and the definition of xmin

α and m̄α. The contradiction in
(D.2) implies that y ≤ xmin

α for all y ∈ Gα. �

Proof of Lemma 6.6: According to equation (4.17), for any given β ∈ (α∗, 1), there exists a constant
b > 0 such that sα ∈ (−b, b) for all α ∈ [β, 1). In view of (4.2), since b and x∗

U are real numbers,
where x∗

U is defined in (4.10),

lim
α↑1

(1 − α)(mα − c̄b) = lim
α↑1

(1 − α)(mα + c̄x∗
U ) = w. (D.3)

Therefore, since sα > −b for all α ∈ [β, 1), (6.7) and (D.3) imply that limα↑1(1 − α)m̄α = w.
Therefore, in view of Lemma 6.4, limα↑1 E[hα(sα − D)] = w. �

APPENDIX E. PROOFS TO SECTION 7

Proof of Lemma 7.2: We first verify the validity of Assumption W∗. It is obvious that the nonneg-
ative cost function c is K-inf-compact and the transition probabilities are weakly continuous. Thus,
Assumption W∗ holds and a stationary discount cost optimal policy exists for every α ∈ [0, 1). To
verify the validity of Assumption B, we calculate the relative value function uα.

Let us calculate the value functions vα for α ∈ [0, 1). Since there is only one action at n =
0, 1, . . . , the infinite-horizon value function

vα(n) =
∞∑
i=0

z
(1)
n+iα

i, n = 0, 1, . . . . (E.1)

Therefore, for n = 0, (E.1) implies

vα(0) =

∞∑
i=0

z
(1)
i αi = z0 +

∞∑
i=1

(zi − zi−1)α
i +

∞∑
i=0

αi

=
∞∑
i=0

ziα
i − α

∞∑
i=0

ziα
i +

1

1 − α
= f(α) +

1

1 − α
,

(E.2)
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where the second equality follows from (7.3), the third equality is straightforward, and the last
equality follows from (7.4). Furthermore, (E.1) implies that for n = 1, 2, . . .

vα(n) =
∞∑
i=0

(zn+i − zn+i−1 + 1)αi = (1 − α)
∞∑
i=0

zn+iα
i − zn−1 +

1

1 − α
. (E.3)

There are only two stationary policies for this problem: ϕ1 with ϕ1(−1) = as and ϕ2 with

ϕ2(−1) = ac. Observe that vϕ
1

α (−1) = 1/(1 − α) and vϕ
2

α (−1) = 1 + αvα(0) = 1/(1 − α) + αf(α),
where f(α) > 0. Therefore,

vα(−1) = min

{
1

1 − α
,

1

1 − α
+ αf(α)

}
=

1

1 − α
. (E.4)

Formulae (E.2) and (E.4) imply

vα(−2) = αvα(−1) =
α

1 − α
≤ vα(−1) ≤ vα(0). (E.5)

In view of (E.3) and (E.5), for n = 1, 2, . . .

vα(n) ≥ −1 +
1

1 − α
= vα(−2), (E.6)

where the inequality follows from zn ∈ {0, 1}, n = 0, 1, . . . . (E.5) and (E.6) imply

mα := inf
x∈X

vα(x) = vα(−2) =
α

1 − α
, (E.7)

Thus, (E.2)–(E.5) and (E.7) imply (7.5).

Note that w∗ ≤ wϕ
(∞)

(−1) = 1 < ∞. Then to complete the proof of the validity of Assump-
tion B, we need to prove that supα∈[0,1) uα(n) < ∞ for n ∈ X. Since 0 ≤ zn ≤ 1, n = 0, 1, . . .,

(7.5) implies that 0 ≤ uα(n) ≤ 1 + (1 − α)
∑∞
i=0 αi = 2 for n ∈ X and α ∈ [0, 1). This completes

the proof. �

Proof of Lemma 7.3: (i) For all α ∈ [0, 1)

|ūα(x) − ūα(y)| = |v̄α(x) − v̄α(y)| = |vα(x) − vα(y) + c̄(x − y)|
= |uα(x) − uα(y) + c̄(x − y)| ≤ |uα(x) − uα(y)| + c̄|x − y|,

(E.8)

where the first equality follows from (6.2), the second one follows from Lemma 3.11, and the third
one follows from (4.1).

Consider ε > 0. For each β ∈ (α∗, 1), since the family of functions {uα}α∈[β,1) is equicon-
tinuous (see Theorem 4.6), there exists δ > 0 such that |uα(x) − uα(y)| < ε/2 for all |x − y| < δ
and α ∈ [β, 1). Therefore, for |x − y| < δ1 := min{δ, ε/2c̄}, c̄|x − y| < ε/2 and (E.8) implies that
|ūα(x) − ūα(y)| ≤ ε for |x − y| < δ1 and α ∈ [β, 1). Thus, the family of functions {ūα}α∈[β,1) is
equicontinuous.

(ii) Consider x ∈ X. For all α ∈ (α∗, 1)

ūα(x) − uα(x) ≤ |ūα(x) − uα(x)|
= |v̄α(x) − vα(x) − (m̄α − mα)| = |c̄x − (m̄α − mα)|
≤ c̄|x| + |m̄α − mα| ≤ c̄(|x| + |sα| + |x∗

U |) ≤ c̄(|x| + b + |x∗
U |),

(E.9)

where the last two inequalities follow from (6.7) and Theorem 6.1, respectively.
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According to Theorem 4.1, since Assumption B holds, supα∈(α∗,1) uα(x) < +∞. Therefore,
(E.9) implies that

sup
α∈(α∗,1)

ūα(x) ≤ c̄(|x| + b + |x∗
U |) + sup

α∈(α∗,1)
uα(x) < +∞, x ∈ X.

�

Proof of Lemma 7.4: Consider any given β ∈ (α∗, 1) and s1 defined in (6.1). According to (4.17),
there exists b > 0 such that sα ∈ [−b, b] for all α ∈ [β, 1). The proof of this lemma consists of the
following steps: (i) we show that if x < s1, then limα↑1 ūα(x) = K; (ii) we show that (7.7) holds for
x ∈ [s1, +∞) except at most countably infinite many points x ∈ D (see the definition of the set D
in (E.11)) using Lebesgue’s dominated convergence theorem; and (iii) we show that the continuity
of the limiting function of every convergent sequence {ūαn}n=1,2,... implies that (7.7) holds for
x ∈ D and establish the continuity of the function ū.

(i) For x < s1, according to Theorem 6.1, there exists α̂ > β such that x < sα for all α ∈ [α̂, 1).
Then (7.6) implies that ūα(x) = K for all α ∈ [α̂, 1). Therefore,

lim
α↑1

ūα(x) = K, x < s1. (E.10)

(ii) Recall the renewal counting process N(·) defined in (4.5) and Sn defined in (4.6). Consider
the sets

Dn := {x ∈ R : distribution function P (Sn ≤ x) is discontinuous}.

Therefore, each set Dn, n = 0, 1, . . ., is at most countably infinite. Let

D = {s1} ∪ {x > s1 : x = s1 + y, y ∈ ∪+∞
n=0Dn} and C = [s1, +∞)\D. (E.11)

Hence, D is also at most countably infinite. In addition, P (Sn ≤ x − s1) is continuous at
x − s1 and for n = 0, 1, . . . and x ∈ C

lim
α↑1

P (Sn ≤ x − sα) = P (Sn ≤ x − s1). (E.12)

Then we will show that (7.7) holds for x ∈ C. Consider x ∈ C. According to Theorem 6.1,
there exists α̂ > β such that sα < x for all α ∈ [α̂, 1). Therefore, in view of (3.16), (6.2),
(6.4), and (7.6), for all α ∈ [α̂, 1)

ūα(x) =
(
E[hα(x − D)] − (1 − α)m̄α

)
+ αE[ūα(x − D)]. (E.13)

Using the same arguments as in (4.27) and ūα(x − SN(x−sα)+1) = K, which follows from
(7.6), (E.13) implies that

ūα(x) = E

⎡
⎣N(x−sα)+1∑

j=1

αj−1(h̃α(x − Sj−1) − (1 − α)m̄α)

⎤
⎦ + E[αN(x−sα)+1K], (E.14)

where h̃α(x) := E[hα(x − D)], x ∈ X. Then it suffices to prove that the two expectations in
(E.14) converge as the discount factor α ↑ 1. We start with the second one in (E.14). For
α ∈ [β, 1)

1 ≥ E[αN(x−sα)+1] ≥ E[αN(x+b)+1] ≥ αE[N(x+b)+1], (E.15)

where the first inequality follows from α < 1, the second one follows from sα ≥ −b and α < 1,
and the last one follows from Jensen’s inequality. Since P (D > 0) > 0, E[N(x + b) + 1] <
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+∞, which implies that limα↑1 αE[N(x+b)+1] → 1. In view of (E.15),

lim
α↑1

E[αN(x−sα)+1K] = K. (E.16)

Now we show that the first expectation in (E.14) converges as the discount factor α ↑ 1.
Note that the first expectation in (E.14) can be written as

E

⎡
⎣N(x−sα)+1∑

j=1

αj−1(h̃α(x − Sj−1) − (1 − α)m̄α)

⎤
⎦

=

+∞∑
i=0

i+1∑
j=1

αj−1
E[(h̃α(x − Sj−1) − (1 − α)m̄α)1{N(x−sα)=i}]

=

+∞∑
j=0

+∞∑
i=j

αjE[(h̃α(x − Sj) − (1 − α)m̄α)1{N(x−sα)=i}]

=

+∞∑
j=0

αjE[(h̃α(x − Sj) − (1 − α)m̄α)1{N(x−sα)≥j}]

=

+∞∑
j=0

αjE[(h̃α(x − Sj) − (1 − α)m̄α)1{Sj≤x−sα}],

(E.17)

where the first and the third equalities are straightforward, the second one changes the order
of summation, and its validity follows from the nonnegativity of h(·) and the finiteness of
ūα(x), and the last one holds because {N(t) ≥ n} = {Sn ≤ t}.
Then we construct a finite upper bound of the sum in (E.17). Since the function h̃α(x) is
quasiconvex and sα > −b, for j = 0, 1, . . .

αjE[h̃α(x − Sj)1{Sj≤x−sα}] ≤ E[hα(x − D)] + E[hα(−b − D)] < +∞. (E.18)

Since P (D > 0) > 0, there exists a constant ΔD > 0 such that P (D > ΔD) > 0. Let

D̃ =

{
0 if D < ΔD,

ΔD otherwise.

Then E[D̃] = ΔDP (D ≥ ΔD) > 0 and V ar(D̃) = Δ2
DP (D ≥ ΔD)(1 − P (D ≥ ΔD)) <

+∞. Define S̃0 = 0 and S̃n =
∑n
i=1 D̃, n = 1, 2, . . . . Therefore, P (Sn ≤ x) ≤ P (S̃n ≤ x)

for all x ∈ R and n = 0, 1, . . .. Since E[D̃] > 0, there exists N1 > 0 such that nE[D̃] > x + b
for all n ≥ N1. Let Δ(n) := nE[D̃] − (x + b) > 0. Hence, for n ≥ N1

E[1{Sn≤x−sα}] = P (Sn ≤ x − sα) ≤ P (S̃n ≤ x − sα) ≤ P (S̃n ≤ x + b)

= P (S̃n − nE[D̃] ≤ x + b − nE[D̃]) ≤ P (|S̃n − nE[D̃]| ≥ Δ(n)) ≤ V ar(D̃)

Δ2(n)
,

(E.19)

where the last inequality follows from Chebyshev’s inequality. In addition, according to
Lemma 6.6, there exists M1 > 0 such that |(1 − α)m̄α| ≤ M1 for all α ∈ [β, 1). Therefore,
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in view of (E.18) and (E.19),

+∞∑
j=0

∣∣∣αjE[(h̃α(x − Sj) − (1 − α)m̄α)1{Sj≤x−sα}]
∣∣∣

≤ (E[hα(x − D)] + E[hα(−b − D)] + M1)

+∞∑
j=0

E[1{Sj≤x−sα}]

≤ (E[hα(x − D)] + E[hα(−b − D)] + M1)(N1 +

+∞∑
j=N1

V ar(D̃)

Δ2(j)
) < +∞.

(E.20)

Then

lim
α↑1

E

⎡
⎣N(x−sα)+1∑

j=1

αj−1(h̃α(x − Sj−1) − (1 − α)m̄α)

⎤
⎦

= lim
α↑1

+∞∑
j=0

αjE[(h̃α(x − Sj) − (1 − α)m̄α)1{Sj≤x−sα}]

=

+∞∑
j=0

E[(h̃1(x − Sj) − w)1{Sj≤x−s1}] = E

⎡
⎣N(x−s1)+1∑

j=1

(h̃1(x − Sj−1) − w)

⎤
⎦ ,

(E.21)

where the first equality follows from (E.17), the second one follows from Theorem 6.1,
Lemma 6.6, (E.12), (E.20), and Lebesgue’s dominated convergence theorem, and the last
one follows from {Sj ≤ x − s1} = {N(x − s1) ≥ j}. In view of (E.14), (E.16), and (E.21),

lim
α↑1

ūα(x) = E

⎡
⎣N(x−s1)+1∑

j=1

(h̃1(x − Sj−1) − w)

⎤
⎦ + K, x ∈ C. (E.22)

Thus, (7.7) is proved for x ∈ X\D.

(iii) It remains to prove (7.7) for x ∈ D and continuity of the function ū. In view of Lemma 7.3
and Ascoli’s theorem, there exist a sequence {αn ↑ 1}n=1,2,... with α1 ≥ β and a continuous
function ū∗ such that limn→+∞ ūαn(x) = ū∗(x), x ∈ X.

Assume that (7.7) does not hold for some x ∈ D. Then there exists a sequence {γn ↑ 1}n=1,2,...

with γ1 > β such that limn→+∞ uγn(x) 	= ū∗(x). According to Lemma 7.3 and Ascoli’s theorem,
there exist a subsequence {γnk}k=1,2,... of {γn}n=1,2,... and a continuous function ū′ such that
limk→+∞ ūγnk

(x) = ū′(x), x ∈ X. Then ū′(x) 	= ū∗(x). However, ū′ and ū∗ are two continuous

functions on R that coincide outside of a countable set. This implies that ū′ = ū∗. Therefore, (7.7)
holds for x ∈ X and the continuity of the function ū follows from Ascoli’s theorem. �

Proof of Corollary 7.5: This corollary follows from Theorems 5.1, 6.1 and 7.1. �

Proof of Corollary 7.7: This corollary follows directly from Lemma 2.2. �
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