
1. Introduction

We propose that information processing capacity limits in
humans and higher animals should be defined not in terms
of the number of items but in terms of the complexity of re-
lations that can be processed in parallel. We will try to show
that relational complexity covaries systematically with pro-
cessing load in human problem solving, with age differ-
ences in children’s understanding of concepts and capacity
differences between higher animal species. Relational com-
plexity is not the only factor that influences difficulty; do-
main expertise, skill with problem-solving heuristics, mem-
ory availability, and perceptuomotor factors are also

important, but relational complexity can help explain some
established findings in a wide range of literature. We will
also explore processing limits in neural net models of cog-
nition. We begin with a brief review of previous approaches
to working memory and then present our own formulation.

1.1. Processing capacity and working memory

Processing capacity has often been treated as “working
memory capacity,” which is defined as information stored
for later processing (Hitch 1980). Capacity limits have been
defined in terms of the number of items or units of infor-
mation (Miller 1956). The storage and processing functions

BEHAVIORAL AND BRAIN SCIENCES (1998) 21, 803–865
Printed in the United States of America

© 1998 Cambridge University Press 0140-525X/98 $12.50 803

Processing capacity defined 
by relational complexity: Implications
for comparative, developmental, 
and cognitive psychology

Graeme S. Halford
Department of Psychology, University of Queensland, Brisbane, 
Queensland 4072, Australia
gsh@psy.uq.oz.au.
www.psy.uq.edu.au/people/Department/gsh/index.html

William H. Wilson
Department of Computer Science & Engineering, University of New South
Wales, Sydney, New South Wales, Australia
billw@cse.unsw.edu.au
www.cse.unsw.edu.au/~billw

Steven Phillips
Information Science Division, Electrotechnical Laboratory, 
Tsukuba 305, Japan
stevep@etl.go.jp
www.etl.go.jp/etl/ninchi/stevep@etl.go.jp/welcome.html

Abstract: Working memory limits are best defined in terms of the complexity of the relations that can be processed in parallel. Com-
plexity is defined as the number of related dimensions or sources of variation. A unary relation has one argument and one source of vari-
ation; its argument can be instantiated in only one way at a time. A binary relation has two arguments, two sources of variation, and two
instantiations, and so on. Dimensionality is related to the number of chunks, because both attributes on dimensions and chunks are in-
dependent units of information of arbitrary size. Studies of working memory limits suggest that there is a soft limit corresponding to the
parallel processing of one quaternary relation. More complex concepts are processed by “segmentation” or “conceptual chunking.” In
segmentation, tasks are broken into components that do not exceed processing capacity and can be processed serially. In conceptual
chunking, representations are “collapsed” to reduce their dimensionality and hence their processing load, but at the cost of making some
relational information inaccessible. Neural net models of relational representations show that relations with more arguments have a
higher computational cost that coincides with experimental findings on higher processing loads in humans. Relational complexity is re-
lated to processing load in reasoning and sentence comprehension and can distinguish between the capacities of higher species. The
complexity of relations processed by children increases with age. Implications for neural net models and theories of cognition and cog-
nitive development are discussed.

Keywords: capacity limits; chunking; cognitive development; comparative psychology; complexity; neural nets; relations; representa-
tions; resources; working memory

https://doi.org/10.1017/S0140525X98231761 Published online by Cambridge University Press

https://doi.org/10.1017/S0140525X98231761


of working memory are partly distinct, however, because
short-term storage of information does not necessarily in-
terfere with concurrent processing (Baddeley 1986; 1990;
Baddeley & Hitch 1974; Halford 1993; Halford et al. 1984;
1994; Klapp et al. 1983). For this reason, Baddeley (1986)
postulated three systems, a visuospatial scratchpad, a
phonological loop, and a central executive. The first system
is concerned with the storage of visual – imaginal informa-
tion, the second with short-term serial recall or “memory
span” tasks; actual processing is the function of the central
executive.

The distinction between information stored for later pro-
cessing and information that is actually being processed can
be illustrated by the task of mentally adding 79 and 86. The
storage of a partial result for later processing in this task is
legitimately called “working memory,” but it is distinct from
the actual processing, in which information constrains a de-
cision. For example, when we ask “what number results
from adding 9 to 6?” we are not merely storing the addends
but are using them to carry out a computation; they con-
strain our decision.

Working memory capacity has also been defined in terms
of limits on activation (Anderson et al. 1996; Just et al.
1996), but this does not provide a general metric for pro-

cessing complexity. Just et al. (1996) assess complexity in
terms of the number of new goals generated, and Case
(1985; 1992) uses a similar metric based on the number of
embedded goals in a control structure. As will be explained
in section 6.1.3, the relational complexity metric can sub-
sume the levels of embedding metric and applies more
widely. Working memory capacity in children has been as-
sessed using tests that combine processing and storage
(Case 1985; 1992; Pascual-Leone 1970), but this makes it
difficult to determine whether successful prediction is due
to the processing or the storage components of working
memory. Anderson et al. (1996) assess processing complex-
ity in terms of the number of symbols in an equation, but this
may not reflect the difficulty of the underlying processes and
does not provide a metric applicable to other types of tasks.

Storage complexity can be measured relatively directly as
the number of items or chunks stored in memory span tests.
The computational complexity of algorithms can also be
measured (Garey & Johnson 1979; Tsotsos 1990), but (as
will be discussed in sect. 5) it is not clear that this can be
translated into a metric for processing complexity in human
cognition. The problem can, however, be approached in the
following way. Any cognitive process can be expressed as a
function that transforms input(s) to output(s). The capacity
to perform the transformation corresponds to the capacity
to compute this function. A function is a special case of a re-
lation (see sect. 2.3.2), so relational complexity is a poten-
tial measure of processing demands. With processing ca-
pacity defined in this way, the limiting factor is not merely
the number of items or the amount of information but the
relations between entities. This was first realised from a 
review of the empirical cognition literature (discussed in
sects. 3 and 6). However, two approaches to modeling
higher cognitive processes in neural nets (Halford et al.
1994; Shastri & Ajjanagadde 1993a) have independently
identified a limitation consistent with this one.

We are concerned with capacity in higher cognitive pro-
cesses, including reasoning, memory operations, and lan-
guage comprehension. Processes such as vision, which are
performed by modules, have higher processing capacity but
are specialised for particular types of input, such as retinal
or cochlear input (Fodor 1983; Fodor & Pylyshyn 1988).
Modular processes do not impose measurable processing
demands (as defined in sect. 2.1), and are not associated
with individual differences in intelligence (Anderson 1992).
Modular processes cannot be greatly modified by higher
cognitive processes, so thought cannot be used to “repro-
gram” the visual system. By contrast, higher cognitive pro-
cesses can be modified “online,” and the way in which a task
is performed can be influenced strategically without re-
learning (Clark & Karmiloff-Smith 1993). We have at-
tempted to provide a principled account of higher cognitive
processes by identifying them with the properties of rela-
tional knowledge, defined in section 2.2, and we propose
that the processing limitations we are considering apply to
cognitive functions having these properties.

2. Relations and processing demand

The way in which relational complexity influences process-
ing load can be illustrated by the difficulty of the following
sentence:

“The boy the girl the man saw met slept.” (1)
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The problem here does not reside solely with storage of ei-
ther the original sentence or the results of partial process-
ing; it also reflects the amount of information about which
decisions must be made. This sentence entails an integrated
structure (discussed in sect. 6.1.4) that requires boy, girl,
and man to be assigned to roles corresponding to subjects
of three verbs and objects of two verbs. Strategies are not
generally available to English speakers for serial processing
of centre-embedded clauses, and the relative lack of se-
mantic cues or syntactic case markers means people receive
little help in deciding which nouns fill which case roles. The
result is that we have to decide who saw, who met, and who
slept as well as to identify the objects of “saw” and “met” all
together, because we cannot positively identify subjects or
objects of any of the verbs until we understand the whole
sentence. Sentences with this type of reduced relative
clause are known to impose high resource demands (Just &
Carpenter 1992; Kimball 1973).

Another example is provided by Sweller (1993), who an-
alysed the following problem: Suppose five days after the
day before yesterday is Friday. What day of the week is to-
morrow? Despite our expertise in reasoning about days of
the week, this problem is frustratingly difficult. The reason
is that, especially in the first sentence, numerous elements
are related to each other and cannot be considered mean-
ingfully in isolation. These relations have to be at least par-
tially processed in order to segment the statement into sub-
problems that can be processed serially. The processing
load is felt most keenly when we try to plan this procedure.

The processing load imposed by interacting components
of a task can be captured with the concept of relational com-
plexity. We will begin by considering relations between dif-
ferent numbers of factors. At a low level of complexity, con-
sider a case in which a cognitive process is constrained by a
single factor; for example, our choice of restaurant might
depend on the amount of money we have. We can express
this as a binary relation, between money and restaurant
choice, that is, a set of ordered pairs, in which each amount
of money is associated with a particular restaurant (or with
a subset of restaurants). The money–restaurant relation
could be modified by another factor, such as importance:
The more important the occasion, the more expensive our
choice of restaurant, though importance might have more
influence when we have plenty of money than when we
have little. Here we have an interaction between two de-
termining factors. This situation can be represented as a
ternary relation, comprising a set of ordered triples in which
each amount of money and each level of importance is as-
sociated with a restaurant. These variables could in turn in-
teract with a third factor, such as hunger, which might make
us profligate, but only when we are not really poor. We now
have an interaction between three determining factors.
This can be expressed as a quaternary relation, comprising
a set of ordered quadruples, in which each amount of
money, level of importance, and state of hunger is associ-
ated with a restaurant choice.

It is clear that the problem becomes more complex as the
number of interacting factors increases. This complexity
can be measured by the dimensionality of the relation, or
the number of variables related. Problems that entail a bi-
nary relation are simpler than those that entail a ternary re-
lation, which are simpler than those that entail a quaternary
relation, and so on. The idea of relational complexity is anal-
ogous to the number of factors in an experimental design.

An experimental design can be thought of as a set of rela-
tions between independent and dependent variables. A
one-way experimental design is equivalent to a binary rela-
tion between one independent and one dependent vari-
able. A two-way experimental design is equivalent to a
ternary relation between one dependent and two indepen-
dent variables. Experimental designs with more factors per-
mit more complex interactions, but at the cost of more ob-
servations (participants). This is analogous to the processing
load imposed by problems of high relational complexity.
[See also multiple book review of Chow: Statistical Signif-
icance BBS 21(2) 1998.]

The complexity of a relation may be defined by the num-
ber of arguments. A binary relation has two arguments: for
example, the binary relation “bigger-than” has two argu-
ments, a larger and a smaller entity. A ternary relation has
three arguments: for example, “love-triangle” is a ternary
relation and has arguments comprising three people, two of
whom love a third. Quaternary relations have four argu-
ments, and so on. Each argument can be instantiated in
more than one way. For example, each argument of “big-
ger-than” can be instantiated in an infinity of ways, such as
bigger-than(horse, mouse) . . . bigger-than(whale, dolphin)
. . . and so on. Consequently, each argument provides a
source of variation, or a dimension, and thereby makes a
contribution to the complexity of the relation. Our next step
is to link relational complexity to the concepts of demand (or
load) and resources, which commonly have been used to ac-
count for performance limitations in cognitive psychology.

2.1. Processing complexity

Processing complexity might depend on the strategy used
by the person in a particular set of circumstances; different
people use different strategies, and even the same person
may use different strategies at different times. The optimal
cognitive strategy for human subjects may not correspond
to the one that is best theoretically, or to any algorithm that
would be used in artificial intelligence, because human cog-
nition operates in ways that are very different in some re-
spects from theoretically optimal algorithms. Strategies can
be constrained to some extent by experimental procedures,
but, if this cannot be done with confidence, then the strat-
egy used must be determined by empirical investigation (a
point to which we will return in sect. 6). Measures of pro-
cessing complexity accordingly must be specific to the ac-
tual cognitive process used.

The complexity of a cognitive process is the number of in-
teracting variables that must be represented in parallel to
implement that process. Processing complexity also can
vary over time within one task, hence the critical value is the
complexity of the most complex step. Tasks can vary in the
number of steps they require, but this does not necessarily
affect processing load because a task with many steps might
impose only a low demand for resources at any one time
(e.g., counting peas in a box). Processing demand can be
high when steps are embedded in a hierarchical structure,
but this entails higher order relations and relational com-
plexity is also high (discussed in sect. 2.2.5).

The processing complexity of a task is the number of in-
teracting variables that must be represented in parallel to
perform the most complex process involved in the task, us-
ing the least demanding strategy available to humans for
that task.
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Processing demand is the effect exerted by task com-
plexity on a performer and it reflects the requisite cognitive
resources. The core proposal of this target article is that de-
mand is a function of relational complexity. That is, the
more interacting variables to be processed in parallel, the
higher the demand. “Demand” is synonymous with “load”
and “effort,” and the three terms tend to be used inter-
changeably in the psychological literature. This is the psy-
chological counterpart of computational cost, which will be
discussed in section 5. Demand can be manipulated exper-
imentally, with other aspects of the task controlled; a num-
ber of examples will be considered in section 6.

The resources allocated to a task vary as a function of de-
mand and performance. More resources must be allocated
to higher demand tasks to maintain performance. The
methodology for dealing with demand and resources is now
highly developed, and has been reviewed by Gopher (1994)
and Halford (1993, Ch. 3). The resources used can be mea-
sured by physiological arousal indicators (Kahneman 1973),
by brain imaging techniques (Carpenter & Just 1996), by the
subjective feeling of effort assessed through self-report, and
by decrements in competing tasks (Navon & Gopher 1980).
The resources invested by an individual in a given task will
vary over time as a function of the conditions of performance.

Processing capacity is the limit of the available resources.
It will vary across individuals and may change over the life
span (discussed in sect. 6.3). Within a short time frame, pro-
cessing capacity is essentially constant, but it can be influ-
enced by factors such as physiological state, diurnal
rhythms, and drugs.

To put this argument on a more formal basis, we will con-
sider the nature of relational knowledge.

2.2. Relational knowledge

Given that processing complexity can be related to the
number of arguments in a relation, characterizing the na-
ture of relational knowledge becomes important for a the-
ory of processing capacity. Phillips, Halford, and Wilson
(1995; submitted) have argued, on the basis of the work of
Codd (1990), that essential properties of higher cognitive
processes, including data structures such as lists and trees,
can be captured by a model based on processing relations.
Our explanation for capacity limitations in higher cognitive
processes depends on the complexity of neural net models
of relational knowledge (which are considered in sect. 4).
Hence, we must specify the properties that relational
knowledge must have for a neural net model to be consid-
ered adequate. For our present purposes, it will be appro-
priate to say that relational knowledge consists of relational
schemas, which we will now define.

2.2.1. Relational schemas. Relational schemas are cognitive
representations that include elements and relations between ele-
ments, and that represent situations or activities in the world. In
general, an n-ary relation R is a subset of the Cartesian product of
n sets: S1 3 S2 3 . . . 3 Sn. Thus if (a1, a2 . . . an) [ R we say that
r(a1, a2 . . . an) holds; for example, (cat, mouse) [ larger-than signi-
fies larger-than (cat, mouse). An n-ary relation comprises a set of n-
tuples, where each “tuple” is a relational instance. We shall refer to
R and “larger-than” as relation-symbols. Tuples such as (a1, a2 . . .
an) and (cat, mouse) we call “relational instances.” It may not be
clear, whether, for example, (cat, mouse) is being considered as an
instance of the relation “larger-than” or the relation “chases.” For
this reason, we frequently use the term “relational instance” for an

expression of the form r(a1, a2 . . . an) or larger-than(cat, mouse).
Strictly speaking, r(a1, a2 . . . an), larger-than(cat, mouse), and larger-
than(mouse, cat) are propositions (see sect. 2.2.2). Thus, we use the
term “relational instance” to refer both to the tuple and to the tuple
labeled with the relation symbol. This is not an uncommon practice
in cognitive science. When it would be unclear whether r(a1, a2 . . .
an) is being considered as a proposition or a relational instance, we
shall refer, for example, to “the relational instance r(a1, a2 . . . an).”

2.2.1.1. Representation of a relation. The representation of
a relation requires a symbol to specify the relation R, a represen-
tation of the arguments a1, a2 . . . an, and a set of bindings between
symbol and arguments that maintain the truth of the relation. The
binding must constrain the fillers for each argument role, so that
appropriate members of the Cartesian product are bound. For ex-
ample, in bigger-than(–, –), it is conventional for the entity in the
first argument position to be bigger than the argument in the sec-
ond argument position. Thus, bigger-than(cat, mouse) and bigger-
than(mountain, molehill) should be bound, but not bigger-
than(mouse, cat). The symbol and arguments must retain their
identity in the binding. That is, they must not be fused into a whole
in which the components cannot be identified.

Representations of relations are valid when they conform to the
structural correspondence principle, according to which the rela-
tions in the representation must correspond to relations in the
world. Formally, a relational schema comprising elements Es and
relations Rs corresponds to an aspect of the world with elements
Ew and relations Rw if there exists a function f that assigns each
member of ES in the schema to a member of Ew in the world, in
such a way that, for any rs(e

s
1, es

2, . . . es
n) in the schema (rs [ Rs, es

i
[ Es), there is an rw(ew

1, ew
2, . . . ew

n) in the world [rw [ Rw, ew
i 5 f

(es
i)]. These criteria have been specified in more detail by Halford

and Wilson (1980) and by Holland et al. (1986), and their neural
net implementation has been specified by Halford et al. (1994).
Structural correspondence is a soft constraint, and in some cogni-
tive models it can be overridden by other constraints if they are of
sufficient strength (see, e.g., Hummel & Holyoak 1997). Learning
and induction processes, however, will tend to bring relational
schemas into correspondence with the aspect of the world they
represent (Holland et al. 1986). This can be done by reducing the
strength of representations with inappropriate bindings.

2.2.1.2. Representation of a relational instance such as 
r(a1, a2, . . ., an), which requires a binding between the relation sym-
bol r and the fillers ai, each bound to one argument role. Thus big-
ger-than(whale, dolphin) is a relational instance, whereas the big-
ger-than relation includes this instance plus appropriate others,
such as bigger-than(cat, mouse) or bigger-than(mountain, molehill).

A relational instance in isolation can be represented by speci-
fying the relation symbol r plus each of the role-filler bindings.
The relational instance loves(John, Mary) requires a representa-
tion of “loves” plus a binding of John to the lover role and Mary to
the loved role. We can write this as follows.

loves 1 lover.John 1 loved.Mary

Here the period signifies the role-filler binding and the plus
sign serves to concatenate the bindings to the relation symbol.
This is not sufficient to represent a relation (as distinct from rela-
tional instances), because ambiguity occurs as soon as more than
one relational instance is represented. Suppose we now add the
instance loves(Tom, Wendy), represented as follows.

loves 1 lover.Tom 1 loved.Wendy

When we put the representations of both relational instances
together we have the following.

loves 1 lover.John 1 loved.Mary 1 loves 1 lover.Tom 
1 loved.Wendy

This represents the fact that John and Tom are lovers and that
Mary and Wendy are loved, but it does not distinguish between

Halford et al.: Relational complexity
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John loving Mary and John loving Wendy and is similarly ambigu-
ous with respect to Tom.

The ambiguity can be removed by indicating that John and
Mary belong to one instance of “loves” and Tom and Wendy to an-
other. One possibility is to index each instance with a unique iden-
tifier. This in effect separates (or brackets) the “location” of the
representation of each instance. For example, the loves relation
could be represented as follows.

1.(loves 1 lover.John 1 loved.Mary) 1
2.(loves 1 lover.Tom 1 loved.Wendy)

One implication of this method is that, in general, the index
does not indicate its contents (the index “1” does not indicate that
John and Mary are involved). Thus, potentially all instances must
be processed to determine the filler for a given role (in the worst
case, one may have to search all instances to find the one in which
John is the lover of Mary).

An alternative approach is to define each relational instance as
a unique n-tuple. This can be done by representing bindings be-
tween the relation symbol and the fillers for each argument, such
as the following.

loves.John.Mary 1 loves.Tom.Wendy

This representation is based on symbol–argument–argument
bindings, each of which comprises an intact relational instance to-
gether with the symbol for the relation (“loves” in this case). The
binding between a symbol and its arguments represents the link
specified by the relational instance. Thus, representing the tuple
loves.John.Mary identifies this relational instance unambiguously,
and directly represents the link, identified as “loves,” between
John and Mary.

2.2.1.3. Relations and working memory. Working memory
has often been associated with storage of items of information, as in
span tasks, which entail storing strings of items. Therefore, it might
appear that working memory would store relational instances, that
is, interconnected sets of items, rather than relations. In some cases
this would be sufficient. For example, to understand “John loves
Mary” we need only represent relational instance loves(John,
Mary). In some cases, however, working memory calls for variables.
Consider, for example, reasoning about velocity, defined as V 5 s/t
(where s is distance and t is time). We know that if we cover the same
distance in half the time, velocity is doubled, even though we know
no specific values. Thus we are reasoning about the interaction of
three variables, velocity, distance, and time, and we are dealing with
a ternary relation, rather than a relational instance.

2.2.2. Proposition. A proposition is defined as the smallest unit
of knowledge that can have a truth value. If the proposition is true,
then there will be a corresponding relational instance. For exam-
ple, the proposition bigger-than(cat, mouse) is an instance of the
bigger-than relation. However a proposition need not be true, and
a proposition that is false is not a relational instance: bigger-
than(mouse, cat) is false and is not an instance of bigger-than as
defined above.

True propositions and false propositions correspond to differ-
ent subsets of the Cartesian product. The relation . is a subset of
S1 3 S2: the subset {(a, b) u a [ S1, b [ S2 and a . b}. Consider
the false proposition .(mouse, cat). The pair (mouse, cat) is not a
part of the relation . (there are no cases of mice being bigger than
cats), but the proposition .(mouse, cat) is representable, because
(mouse, cat) [ S1 3 S2. Hence, false propositions can be repre-
sented and correspond to subsets of the Cartesian product. Learn-
ing and induction will tend to weaken representations of false
propositions and will tend to incorporate semantic constraints.
Thus a proposition such as owns(car, Tom) will tend to be ex-
cluded. However, false propositions do occur in real cognitive pro-
cesses, and provision must be made for them to be represented.

2.2.3. Truth value. The truth value of a proposition can be as-
sessed by matching against semantic memory using a mechanism

described in section 4.2.1. Truth value can be represented as a
higher order relational instance, for example, false[bark(cats)],
meaning that it is false that cats bark. There is a psychological bias
to represent true propositions. For example, in mental models the-
ory (Johnson-Laird et al. 1992) only true contingencies are repre-
sented to reduce load on working memory. [See also multiple book
review of Johnson-Laird and Byrne: Deduction. BBS 16(2) 1993.]

Quantifiers are not explicitly represented in relational schemas
or in mental models, but the closest psychological property is
strength. A strong proposition is one that has a high probability of
being true (propositions such as “dogs are bigger than cats,” which
have no definite truth value, in the sense that they are not univer-
sally either true or false1).

2.2.4. Symbolization. “Symbolization” means that a link be-
tween the arguments of a relation or relational instance is explic-
itly symbolized (e.g., one link between “whale” and “dolphin” is
explicitly symbolized by “bigger-than”). The link is one of the re-
quirements for identifying a relational instance, which is in turn
necessary for a relational instance to be an argument in another
relation, thereby forming higher order relations. It also allows us
to distinguish between a number of different links between the
same argument sequence.

2.2.5. Higher order relations and hierarchical structures.
Higher order relations have relational instances as arguments,
whereas first-order relations have entities as arguments. Higher
order relations can represent connectives, for example, im-
plies[.(a,b),,(b,a)] or and[dog(Fido),pet (Fido)]. Higher order
relations can be used to represent hierarchical structures, for ex-
ample, cause[shout-at(John, Tom), hit(Tom,John)].

The repeated variable constraint operates with hierarchical
structures. In cause[shout-at(x,y),hit(y,x)], x and y must be bound
to the same entities in both cases. For example, cause[shout-
at(John,Tom), hit(Tom,John)] has the required structure, but
cause[shout-at(John,Tom), hit(John, Tom)] does not. The re-
peated variable constraint is implemented by ensuring that the
first relational instance is in structural correspondence with
cause[shout-at(x,y),hit(y,x)]. Notice that a mapping that conforms
to the structural correspondence principle (in sect. 2.2.1.1) can be
formed between them, whereas for the second relational instance
such a mapping would be inconsistent (John and Tom must each
be mapped to both x and y).

2.2.6. Omnidirectional access. “Omnidirectional access” means
that, given all but one of the components of a relational instance,
we can access (i.e., retrieve) the remaining component. For ex-
ample, given the relational instance mother-of(woman, child), and
given mother-of(woman, ?) we can access “child,” whereas, given
mother-of(?, child) we can access “woman,” and, given ?(woman,
child) we can access “mother-of.”

Omnidirectional access is also potentially true of relations. A re-
lational instance r(a1, a2, . . ., an) contains n 1 1 objects, the rela-
tion symbol and the n arguments. Given any n components, we can
retrieve one or more candidates for the n 1 1st component. When
more than one relational instance is represented, however, the an-
swers obtained will not always be unique. For example, given the
relation “mother-of,” the query mother-of(woman, ?) may yield
child, toddler, infant, baby, teenager, and so on. Access might not
be equally efficient in each direction. For example, arithmetic ad-
dition corresponds to the ternary relation 1{ . . . (3, 2, 5), . . . , (5,
4, 9) . . . }. It might be easier to access a sum given two addends,
that is, 1(3, 2, ?), than to access an addend given the sum and the
other addend, that is, 1(3, ?, 5), but access in both directions is pos-
sible. Having learned our addition tables we can perform subtrac-
tion, but perhaps not as efficiently as addition. (Another example
from the psychological literature is discussed in sect. 6.2.5.1.)

2.2.7. Role representation. “Role representation” means that
relational knowledge requires representing argument roles or
slots, independent of specific instances. Thus bigger-than(— ,—)
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requires the representation of roles for a larger and a smaller en-
tity. Roles must be distinguishable, but they need not be repre-
sented explicitly; the role an argument fills can be identified by its
position relative to the other arguments. Thus, in
“loves.John.Mary” (discussed in sect. 2.2.1.2), we know that John
is in the lover role by his position in the binding.2 The argument
positions in a proposition correspond to the sets indicated by their
position in the Cartesian product space. Given the relational in-
stance r(a1, a2, . . ., an) for a relational R that is a subset of S1 3 S2
3 . . . Sn, each ai corresponds to a given Si.

2.2.8. Operations on relations. Operations on relations are
adapted from those defined in the theory of relational databases
(Codd 1990) and they include select, project, and join, plus the
usual set operators, intersection, union, and difference (Phillips et
al. 1995). These operations permit information stored in relational
knowledge structures to be accessed and manipulated in flexible
and powerful ways. The select and project operations together
permit access to any element within a relation. Informally, if one
thinks of a relation as a table, in which rows correspond to rela-
tional instances and column names correspond to role names, then
select and project return rows and columns of a table, respectively.
The join operation corresponds to combining two tables at a spec-
ified pair(s) of columns.

The operators are best described by example; suppose the fol-
lowing relation: Taller 5 {(John, Mary),(Mary, Tom)}, where
Taller is a subset of Person 3 Person. Formally, a select operation
parametrized with condition C takes a relation R and returns a
new relation R9 such that all instances of R9 satisfy C. For exam-
ple, select,Person1, John. Taller r {(John, Mary)}, returns a single-
instance binary relation with John at role Person1. A project op-
eration parametrized with attribute (role) name(s) A takes a
relation R and returns only arguments at attribute A for each in-
stance in R, for example, project

,Person2.
Taller r {(Mary),

(Tom)} (i.e., a unary relation with two instances). Taken together,
select and project provide omnidirectional access to all relational
elements. For example, the query “who is taller than Mary” is re-
alised as: project,Person1.(select,Person25Mary. Taller) r
{(John)}, which we write as Taller(-, Mary) r John, for short.

There are a number of different join operators that take two re-
lations and return a new relation. The outer (or natural) join is
analogous to the Cartesian product. It returns a relation contain-
ing every unique pairwise combination of instances from the ar-
gument relations. In this way it permits the construction of higher
“-arity” relations; the outer join of two unary relations is a binary
relation. Of more interest for our purposes is the equijoin opera-
tor, which joins only instances that have the same arguments at the
specified roles. It provides a way of implementing transitive in-
ference.

For example, equijoin,Person2, Person1. (Taller, Taller) r (John,
Mary, Tom)} is an equijoin of the relation Taller with itself along
roles Person2 and Person1. Projecting onto the first and third po-
sitions of the resulting relation results in {(John, Tom)} (i.e., the
inference “John is taller than Tom”). Finally, insofar as relations
are sets, the standard set operators intersect, union, and difference
apply in the usual way.

2.2.9. Decomposability of relations. “Decomposability of re-
lations” means that relations can be composed of simpler relations.
A decomposable relation is one that can be written as a conjunct
of instances of relations of lower “-arities.” For example, the
ternary relation monotonically-larger(a, b, c) can be decomposed
into .(a, b) & .(b, c) & .(a, c). This is discussed in more detail
in Appendix A. Relations can be decomposed using operators se-
lect and project, defined in section 2.2.8.

2.2.10. Relational systematicity. “Relational systematicity”
means that certain relations imply other relations. For example,
.(a, b) r (b, a), whereas sells(seller, buyer, object) buys(buyer,
seller, object). Implication can be handled as a higher order rela-
tion as noted in section 2.2.5.

2.2.11. Attribute. An attribute is a relation with one argument.
An attribute value is an instance of a unary relation [e.g., ripe(ap-
ple23) indicates that apple23 satisfies the unary relation ripe].

2.2.12. Analogy, planning, and modifiability. Analogy is a
structure-preserving map between a base or source and a target,
and representation of relations is at the core of analogies (Gentner
1983; Gick & Holyoak 1983; Holyoak & Thagard 1989). Planning
is the main process in strategy development and entails the orga-
nization of a sequence of actions to achieve a goal. Planning has
been explicitly modeled by VanLehn and Brown (1980), Greeno
et al. (1984), and Halford et al. (1995). The development of the
strategy is guided by a concept or mental model of the task, which
entails representing relations between components of the task.

Higher cognitive processes can be modified “online” without the
necessity of learning all over again. A performance that distin-
guishes between higher and lower animal species is the ability to ac-
quire the reversal learning set; that is, having learned to choose A in
preference to B, the animal must switch to B without relearning
(Bitterman 1960; 1975). If the animal learns the exclusion relation
between A and B (i.e., one and only one of A and B is correct), the
reversal can be effected by changing the mapping of the stimuli into
the relational schema, so the stimulus that was formerly mapped to
the positive element of the schema is remapped to the negative el-
ement, and vice versa (Halford 1993). Clark and Karmiloff-Smith
(1993) have pointed out that modifiability is a criterial attribute of
human cognition. Relational representations can achieve this by
switching between relations, because when a relation is changed
mappings between input and output change. For example, the bi-
nary operation of arithmetical addition, a ternary relation, entails a
set of mappings between addends and sum { . . . (3, 2 r 5) . . . (4, 7
r 11) . . }. Multiplication entails a different set of mappings { . . . (3,
2 r 6) . . . (4,7 r 28). . .}. A switch to a different relation activates a
different set of mappings and modifies the performance.

Relational knowledge is symbolic, content-independent, flexi-
ble, and modifiable and can serve the functions of higher cogni-
tive processes. Our next step is to consider the psychological prop-
erties associated with different levels of relational complexity.

2.3. Psychological interpretations of orders 
of relational complexity

Each level of relational complexity, from unary to quaternary, cor-
responds to a distinct category of cognitive tasks. Empirical indi-
cators for each level will be considered in section 6.

A unary relation has relational instances r(x) that can be inter-
preted as propositions with one argument, as variable-constant
bindings, or as zero-variate functions. A proposition with one ar-
gument can represent a state, such as happy(John), an action, such
as ran(Tom), an attribute, such as big(dog), or class membership,
such as dog(Fido).

Binary relations have relational instances r(x, y) that can some-
times be interpreted as univariate functions; f(a) 5 b is a special
case of a binary relation, in which the mappings are unique; it is a
set of ordered pairs, (a, b), such that for each a there is precisely
one b such that (a, b) [ f. A unary operator is a special case of a
univariate function; for example, the unary operator change-sign
comprises the set of ordered pairs {(x, 2x)}.

Ternary relations have relational instances r(x, y, z) that can be
bivariate functions and binary operations. A bivariate function is a
special case of a ternary relation. It is a set of ordered triples (a, b,
c) such that for each (a, b) there is precisely one c such that (a, b,
c) [ f. A binary operation is a special case of a bivariate function;
a binary operation on a set S is a function from the set S 3 S of or-
dered pairs of elements of S into S, that is, S 3 S r S. For exam-
ple, the binary operation of arithmetic addition consists of the set
of ordered pairs of {. . , (3, 2, 5) . . . (5, 3, 8) . . . }; that is, {(x, y, z)
u x 1 y 5 z, x, y, z (say) natural numbers}.

With a ternary relation, it is possible to seek x such that r(x, y,
z) is a relational instance given y, z, and similarly for y given x, z ,
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or z given x, y. It thus becomes possible to compute the effects on
x of variations in y, z and so on. This emergence of three-way com-
parisons in ternary relations is analogous to the emergence of in-
teractions in two-way experimental designs.

Quaternary relations have relational instances of the form r(w,
x, y, z). Proportion, a/b 5 c/d, is a quaternary relation and entails
relations between the four terms, a, b, c, d. Given any three terms,
plus the knowledge that proportion is entailed, we can predict the
remaining term, or, given all of a, b, c, d, we can decide whether
proportion is entailed (a case of omnidirectional access; see sect.
2.2.6). With a quaternary relation, all the comparisons that are
possible with ternary relations can be made, as well as four-way
comparisons; the effect on w of variations in x, y, z, the effects on
x of variations in w, y, z, and so on.

Quaternary relations also encompass trivariate functions and
ternary operations. A trivariate function is a special case of a qua-
ternary relation. It is a set of ordered quadruples (a, b, c, d) such
that for each (a, b, c) there is precisely one D such that (a, b, c, d)
[ f. Compositions of binary operations, such as a(b 1 c) 5 d, cor-
respond to quaternary relations.

Regarding dimensionality of relations, each argument xi of R (x1
. . . xn) for an n-ary relation R can be instantiated in more than one
way and therefore represents a source of variation, or dimension.
An n-ary relation may be thought of as a set of points in n-dimen-
sional space and can represent interaction between n variables.
The number of arguments, n, corresponds to the number of di-
mensions in the space defined by the relation. This is the basis for
our proposed complexity metric. The relation symbol can be pre-
dicted in principle from the arguments; for example, given ?(3, 2,
5), where ? is known to be an arithmetic operation, we know the
operation must be addition, whereas given *(?, 2, 6) we know the
first multiplicand must be 3, and so on. Prediction of the relation
symbol may depend on constraints, such as knowing the relevant
domain, as in this example, in which it depended on knowing that
the domain was arithmetic operations. A suitable set of relational
instances must be available, and in the worst case all relational in-
stances must be known. Because the relation symbol can be pre-
dicted, at least in principle, from the arguments, there are only n
independent sources of variation in an n-ary relation, and the
number of dimensions equals the number of arguments.

Algorithms that embody these properties will be discussed in
section 4. However, our next step is to define processing capacity
in terms of relational complexity.

3. Processing capacity

The amount of information that can be processed in parallel
has long been recognized as a critically important datum in
cognitive psychology. The most notable attempt to estimate
this parameter was made by Miller (1956), who suggested
that human capacity was limited to a small number of chunks.

3.1. Chunks

Miller’s (1956) concept of a chunk may be defined as a unit
of information of arbitrary size, so a digit, an alphabetic
character, and an English word may all constitute one
chunk, although they vary in information content. The para-
dox is that the limitation seems to be not in the amount of
information but in the number of independent units.

3.2. Chunks and dimensions

There is some correspondence between the properties of
chunks and the properties of dimensions. Each chunk is a
separate signal and fills a separate slot in a message. Attrib-
utes or values on different dimensions are at least partly in-

dependent of each other, by definition (even nonorthogonal
dimensions must convey some independent information, or
they are redundant).3 Thus chunks, as with dimensions, rep-
resent units of information that are at least partly indepen-
dent. Their similarity is illustrated by the proposition
played(John, cricket, oval, Sunday), which has four roles or
slots corresponding to player, game, location, and day. It
seems equally appropriate to regard each filler of these roles
as a different chunk or as a value on a different dimension.

The amount of information (in the information theoretic
sense; Attneave 1959) conveyed by a chunk depends on the
number of alternatives for that slot. For example, “cat” con-
veys Log22 5 1 bit of information if there are two equally
likely alternatives (e.g., cat or dog). If there are 32 (equally
likely) alternatives, however, then the chunk “cat” conveys
Log232 5 5 bits. An attribute on a dimension also repre-
sents varying amounts of information, depending on the
number of alternative values on that dimension. Hence the
amount of information conveyed by a chunk or dimension
is arbitrary; both chunks and dimensions are independent
units of information of arbitrary size.

3.3. Number of dimensions processed in parallel

Given the link between dimensions and chunks, the num-
ber of dimensions that can be processed in parallel can be
estimated by determining the number of chunks that can
be processed in parallel. Miller (1956) proposed that ap-
proximately seven chunks were processed in parallel, but
difficulties have arisen with his empirical database (Badde-
ley 1986; Halford et al. 1988; Schweickert & Boruff 1986).

More recent research has revised Miller’s estimate down-
ward. Broadbent (1975) examined temporal patterns in re-
call from semantic memory and found that items tended to
be recalled in groups of approximately three. He suggested
that the “magical number seven” proposed by Miller might
have reflected the combined output of two systems, each
with a capacity of three or four items. Fisher (1984) studied
visual scanning and found a modal value of four items
processed in parallel, with a range of three to five. Halford
et al. (1988) assessed the capacity of primary memory, or
the information that is currently active (James 1890) at four
or five items. A number of other studies reviewed by
Schneider and Detweiler (1987) also indicate that approxi-
mately four chunks are processed in parallel. Given the
identification of chunks with dimensions in section 3.2, this
implies that approximately four dimensions can be pro-
cessed in parallel and that humans should be limited to 
processing quaternary relations in parallel. Most studies
show a range of values, indicating that this should be a soft
limit. Neural net models of relations agree in predicting a
soft limit, as will be discussed in section 5.

An attempt has been made to assess the number of di-
mensions that can be processed in parallel using interpre-
tation of interactions, because the factors in an interaction
cannot be interpreted meaningfully alone; hence there is a
constraint to process them in parallel (Halford et al. 1994).
An interaction between N factors corresponds to a relation
between N independent variables and the dependent vari-
able, as discussed in section 2, so the ability to process four
dimensions implies, prima facie, an understanding of three-
way interactions. Academic staff and graduate students who
were experienced in interpreting statistical interactions
were asked what was the most complex interaction they
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could interpret unambiguously and with confidence, ignor-
ing scale effects and nonlinearity. Ten answered two-way,
fourteen three-way, and six four-way. The variations in esti-
mates probably reflect errors resulting from imprecision of
the test, but the mode is three-way, suggesting that four di-
mensions are processed. Although no single study is defin-
itive, there is a degree of consensus across studies employ-
ing a wide range of methodologies that approximately four
dimensions can be processed in parallel.

If it is possible to process two relations in parallel but in-
dependently, then the sum of their processing demands
would be less than for a single relation with the same num-
ber of arguments. If we consider a k-ary relation R on a set
S with s members, then each component xi in a tuple (x1, x2
. . . xk) [ R might be filled in s ways: The number of possi-
ble tuples is sk. Therefore, the number of tuples is 2s2 for
two binary relations but s4 for a quaternary relation. When
we consider neural net representation of relations based on
symbol – argument – argument bindings (in sect. 4.1.1.2),
the number of binding units is of nk+1, where n is the num-
ber of elements of each vector, and a similar argument ap-
plies. The limit will accordingly be reached more quickly
with a single relation than with two relations having the
same total number of arguments. Notice also that more
links are defined in a quaternary relation than in two binary
relations. Thus R(a,b,c,d) defines links between six pairs,
a–b, a–c . . . b–c . . . c–d, whereas R(a, b) and R(c, d) col-
lectively define links between only two pairs, a–b and c–d.

It is unlikely, however, that two or more relations can be
processed in parallel and independently in the central ex-
ecutive, or within any one system, because they would have
to be coordinated to avoid conflict. They could be coordi-
nated by integration into a higher order relation, but this
implies that they are effectively being processed as a single
relation. Another method would be to superimpose two or
more relations; this can be done in the neural net models
(to be discussed in sect. 4.1.1.2). For example, the relational
instances mother-of(mare, foal), loves(mare, foal), feeds
(mare, foal) can all be superimposed. Notice, however, that
superimposing relational instances in this way does not in-
crease the number of dimensions being processed (there
are only two arguments in this example). When we consider
neural net implementations in section 4.1.1, it will be ap-
parent that such superposition adds little computational
cost. Superimposed relational instances can be treated as a
whole, but they can also be processed separately, using the
retrieval process described in section 4.2.1. On the other
hand, the relation between them cannot be defined by su-
perposition (e.g., “mother-of,” “loves,” and “feeds” can be
fused into a whole equivalent to some kind of composite
motherhood concept, or they can be processed as separate
relational instances, but no relation is defined between the
relational instances).

If four dimensions can be processed in parallel, the next
question concerns how more complex concepts are
processed. Many concepts are more complex than quater-
nary relations, so we must have some means of dealing with
these concepts without exceeding our processing capacity.

3.4. Using capacity efficiently

We propose two mechanisms for reducing processing loads
imposed by complex concepts. These are conceptual
chunking and segmentation.

3.4.1. Conceptual chunking. Conceptual chunking is the re-
coding of concepts into fewer dimensions. In the limiting,
and most typical, case, concepts are recoded into a single di-
mension. In a mnemonic chunk, items function as a unit (e.g.,
c, a, t becomes a chunk if the three letters form a single word
“cat”). Similarly, elements that are formed into a conceptual
chunk function as a whole in a relational structure, and rela-
tions between items within the chunk cannot be accessed.

We can illustrate conceptual chunking using the concept
of velocity, defined as V 5 s/t (where s is distance and t is
time). The relation between velocity, distance, and time is
three dimensional, but velocity can be expressed as a single-
dimension, such as the position of a pointer on a dial; ve-
locity(60 km/h). In this single-dimensional representation,
no relation is defined between velocity, distance, and time.
If we want to compute, say, the way velocity varies as dis-
tance increases and time decreases, we must return to the
three-dimensional representation. Thus conceptual chunks
save processing capacity, but the cost is that some relations
become temporarily inaccessible. There is also a psycho-
logical factor that limits chunking, because experience is re-
quired in which there is a constant mapping of elements
into chunks (Logan 1979). Chunking is a form of learning,
which takes place over time.

Chunked concepts can be combined with further di-
mensions to represent higher level concepts, so accelera-
tion can be defined as A 5 (V2 2 V1)/t. Acceleration also
can be chunked, and then force (F) can be defined as F 5
MA (where M 5 mass). In this way we can bootstrap our
way to higher and higher level concepts without ever ex-
ceeding four dimensions processed in parallel. A major
function of expertise is to provide ways of chunking that
permit the important features of concepts to be repre-
sented without imposing excessive processing demands.

When a role has only one possible filler, it can be chunked
without loss, and the number of dimensions is reduced ac-
cordingly. Consider, for example, the relation mother-of{(Jenny,
Tom),(Jenny, Mary),(Jenny, Jill)}. The mother role is always
filled by Jenny, so the representation can be collapsed to the
unary relation Jenny-mother-of({(Tom),(Mary), (Jill)}.

The general principles of chunking are: (1) a chunk func-
tions as a single entity, relation-symbol or argument, in a re-
lation; (2) no relations can be represented between items
within a chunk; and (3) relations between the chunk and
other items, or other chunks, can be represented. In order
to assess processing capacity, chunking can be inhibited by
using novel structures for which chunks have not been
learned. This does not preclude using familiar domains. For
example, in testing transitivity, size relations between un-
known persons can be used (e.g., John . Tom, Tom . Pe-
ter). Size relations are a familiar domain, but the specific or-
derings (John, Tom, Peter, etc.) will not have been
prelearned as chunks.

3.4.2. Segmentation. “Segmentation” is breaking tasks
into steps that do not exceed processing capacity and that
are processed serially. Examples include algorithms for
arithmetic operations, counting, and ordering tasks. Arith-
metic algorithms such as multidigit addition generally have
to be taught, but there is some degree of autonomy in ac-
quisition of counting and ordering algorithms. It is not pos-
sible to determine the precise number of elements in a
large set solely by parallel processing, so we use the serial
procedure of counting objects one (or, at most, a few) at a
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time. Children have some understanding of the principles
of counting, and this guides the development of their strate-
gies (Greeno et al. 1984). People’s concept of an ordered set
can provide a mental model for an ordering algorithm (Hal-
ford et al. 1995). [See also Schusterman: “Language and
Counting in Animals,” BBS 11(4) 1988; Geary: “Sexual Se-
lection and Sex Differences in Mathmatical Abilities,” BBS
19(2) 1996.]

The development of counting and ordering strategies il-
lustrates the principle that autonomous development of se-
rial processing strategies requires planning, which depends
on representing relations (VanLehn & Brown 1980). If pro-
cessing limitations prevent the structure of the task being
represented, then a strategy cannot be developed without
didactic help, which can be available for only a small subset
of the cognitive tasks we perform. Thus the “self-program-
ming” property of higher cognitive processes depends on
the ability to represent relations.

3.4.3. Effective complexity determined by reduction tech-
nique. Because complexity can be reduced by conceptual
chunking and segmentation, the number of arguments of a
relation does not immediately translate into effective com-
plexity. Also, simply increasing the number of arguments by
conjunction does not necessarily contribute to the com-
plexity of the resulting relation. The important point re-
garding relational complexity concerns the nature of the
interaction between the relational elements. Effective re-
lational complexity can be determined using a reduction
technique.

More specifically, the effective complexity of a relation is
the minimal dimensionality to which a relation can be re-
duced without loss of information. Thus, if a ternary rela-
tion can be reduced to two binary relations without loss of
information, then effective relational complexity is binary,
not ternary. One can determine whether a relation can be
reduced to a combination of lower order relations by a pro-
cedure of decomposing and recombining. If the resulting
relation is the same as before, then the relation can be de-
composed into lower order relations without loss of infor-
mation. Psychologically, effective relational complexity is
the minimal dimensionality to which a relation can be re-
duced using decomposition and recombination procedures
available to human performers.

For example, suppose the following three facts:
(1) John played tennis at the school.
(2) John played soccer at the park.
(3) Mark played soccer at the park.
Intuitively, it would appear that this domain consists of a

ternary relation over person, game, and location. That is,
played(person, game, location) 5 {(John, tennis, school),
(John, soccer, park), (Mark, soccer, park)}. Thus, at first we
may claim that the relational complexity of this domain is
ternary. However, this ternary relation can be decomposed
into two binary relations by splitting the ternary relation
along the game attribute. The resulting relations are:
played(person, game) 5 {(John, tennis), (John, soccer),
(Mark, soccer)}; and Is-played-at(game, location) 5 {(ten-
nis, school), (soccer, park)}. Now, recombining these two bi-
nary relations by joining them along the common attribute
Game results in the original ternary relation played(person,
game, location) containing exactly the same elements.
Hence the ternary relation is decomposable into two binary
relations, and effective relational complexity is binary.

Now suppose that the domain has changed to include a
new fact: (4) Mark played soccer at the school. We will see
that including this fact changes the relational complexity of
the domain. The ternary relation played consists of ele-
ments (John, tennis, school), (John, soccer, park), (Mark,
soccer, park), and (Mark, soccer, school). Splitting this re-
lation along the game attribute results in the two binary re-
lations: played(person, game) 5 {(John, tennis), (John, soc-
cer), (Mark, soccer)} and is-played-at(game, location) 5
{(tennis, school), (soccer, park), (soccer, school)}. Recom-
bining these two relations results in the new triple: (John,
soccer, school), formed by joining pairs (John, soccer) and
(soccer, school). This triple, however, is not an element of
the ternary relation played(person, game, location) before
decomposing and is not recorded in any of the four facts for
the new domain. Therefore, decomposing and recombin-
ing along the Game attribute have not recovered the origi-
nal relation; hence there has been a loss of information.

The same procedure applied to the Person and Location
attributes also results in triples, (John, tennis, park) and
(John, soccer, school), respectively, that are not elements of
the ternary relation played(person, game, location). There-
fore, this new domain cannot be decomposed into two
binary relations, so its effective relational complexity is
ternary. One possible rejoinder to this sort of analysis is to
claim that all relations can be decomposed into binary rela-
tions simply by creating a unique symbol for each element
(tuple) of the higher order relation. Under this scheme, the
above-mentioned domain could be decomposed into the
single binary relation: involved(event, participant) 5 {(JTS,
John), (JTS, tennis), (JTS, school), (JSP, John) . . . }, where
JTS is a unique symbol for the event “John played tennis at
the school,” etc. However, a general encoding scheme re-
quires processing the original ternary relation [e.g., (John,
tennis, school) r JST]. Decomposition becomes effective
only once the creation process is complete. Less general en-
coding schemes are possible using only binary relations
[e.g., ( John, tennis) r JT], but such schemes are inadequate
for relations containing both (John, tennis, school) and
(John, tennis, park). Furthermore, it is implausible that ap-
propriate encoding strategies are immediately available for
novel cognitive tasks.

To relate this example to the analysis of variance analogy,
notice that, with facts 1 – 3, location is predicted solely by
game (tennis at school, soccer in the park) independently of
person. When fact 4 is added, person and game jointly pre-
dict location, and there are three interacting variables.

The reduction checking technique can also be applied to
higher order relations. For example, intuitively one might
expect that the relational complexity of transitive inferences
(e.g., John is taller than Mary, and Mary is taller than Sue,
so John is also taller than Sue) is binary, because such in-
ferences operate over binary relations. However, transitive
inference is not simply a collection of binary relations. Tran-
sitive inferences have the structure “(A R B) and (B R C);
therefore (A R C),” where R is some binary relation and A,
B, and C are variables ranging over the arguments of R.
Transitive inference involves a constraint between two
premises and a conclusion, and it is an example of system-
aticity, as defined in section 2.2.10. Reduction analysis
shows that the structure of transitive inference is ternary;
the structure cannot be reduced to a collection of binary re-
lations without loss of information.

Transitive inference can be schematized as a higher or-
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der ternary relation over binary relational instances. That is,
transitive inference(P1, P2, C) 5 {(aRb, bRc, aRc), (aRb,
bRd, aRd), (aRc, cRd, aRd), (bRc, cRd, bRd)}, where P1,
P2, and C are the first and second premises, and conse-
quent attribute names, respectively, and a, b, c, and d are
symbols (place holders) to which elements of specific rela-
tional instances are aligned. Using the reduction checking
technique, we show that transitive inference cannot be de-
composed into binary relations.

Suppose we choose to split the relation along the P2 at-
tribute, which results in the two binary relations and(P1,
P2) 5 {(aRb, bRc), (aRb, bRd), (aRc, cRd), (bRc, cRd)} and
implies(P2,C) 5 {(bRc, aRc), (bRd, aRd), (cRd, aRd), (cRd,
bRd)}. Rejoining these two relations along attribute P2 re-
sults in two ternary relational instances, (aRc, cRd, bRd)
and (bRc, cRd, aRd), which were not present in the origi-
nal relation. (That is, it is not logically valid to conclude that,
for example, Tom is taller than Mark given that John is taller
than Bob, and Bob is taller than Mark, if we do not know
the relationship between Tom and John or Bob.) Similarly,
splitting and rejoining on attributes P1 and C results in ad-
ditional relational instances not present in the original rela-
tion. Thus, transitive inference is not, in general, decom-
posable into binary relations.

Indecomposable relations are ultimately significant be-
cause if a relation is indecomposable then subjects cannot
recode the problem by decomposing (ternary) relations
into simpler (binary) relations. A case of an indecomposable
relation is given in section 6.2.4.3. Even when decomposi-
tion is theoretically possible, participants might lack the re-
quired strategies (algorithms), and the need to cope with
more relational instances (of a lower -arity) might impose
loads of its own (e.g., if higher order relations are involved;
see sect. 6.1.3).

3.5. Effects of processing overload

A participant who cannot construct a representation of
the dimensionality required for a task has three options.

(1) The concept can be chunked to a lower dimensional
representation. This will be possible only if appropriate
chunks have been learned or can be constructed, and it re-
sults in loss of access to relations between chunked entities.

(2) The task can be segmented into smaller steps that
are performed serially, but this requires a strategy, au-
tonomous planning of which depends on the participant’s
ability to represent relations in the task.

(3) The participant can default to a lower level repre-
sentation. This is analogous to performing an experiment
with, say, a three-way design, then analysing the data by a
series of two-way ANOVAs. Just as the analysis would lead
to recovery of most of the relevant data in the experiment
(all main effects and two-way interactions would be recov-
ered4), the performance would probably be correct in most
respects. However, just as the hypothetical experimenter
would miss the three-way interactions, our hypothetical
performer could not reason about high-level relations in the
task.

3.6. Capacity and content

It is important to consider whether processing capacity is a
function of content. As was indicated in section 1.1, the ca-
pacity limitations we have defined do not apply to modular

processes such as vision; they apply to higher cognitive fun-
tions, which entail processing explicit relational knowledge,
defined in section 2.2. However, it is still reasonable to ask
whether complexity might be influenced by content. We
suggest that complexity effects of content variations can be
attributed to processes such as conceptual chunking, seg-
mentation, and the use of higher order relations. Relations
in a familiar domain can be more readily chunked, or higher
order relations may be known that allow the structure to be
represented hierarchically, as illustrated in section 2.2.5. It
can then be segmented by processing one level of the hier-
archy at a time, as described in section 4.2.5.

An example of content effects is discussed in section
6.1.4, but here we will consider two examples of the way re-
lational complexity can be applied to different task contents
and formats. Andrews and Halford (in press) tested young
children’s ability to order colored blocks using premises
such as “red above green” and “green above blue.” In the
construction condition, the children simply built towers
with green above blue, then red above green, and so on. In
the prediction condition, children had to say in advance
which of two blocks, red or blue, would be higher in the
tower. The construction condition was easier, apparently
because of its concrete, “hands-on” nature. Notice, how-
ever, that in the construction task relations can be processed
one at a time: Children can first place green on blue, then
red on green, etc. By contrast, in prediction they must men-
tally integrate two relations “red above green” and “green
above blue” to yield “red above blue.” When the number of
relations that had to be considered in a single decision was
manipulated, with format controlled, it was found that this
factor accounted for most of the variance in the task, and
there was no significant residual effect of construction–pre-
diction. Thus, format was completely subsumed under re-
lational complexity.

The relational complexity metric has been applied suc-
cessfully to a wide variety of tasks, of which those discussed
in section 6 are samples. It was applied successfully to chil-
dren’s mathematics by English and Halford (1995). Con-
sider, for example, the following relations between rational
numbers: 1/2 5 3/6, 1/2 , 4/6, 1/3 , 3/6, and 5/7 . 5/8.

Proportion is a notoriously difficult concept for children
learning mathematics, and there seems to be some uncer-
tainty regarding this issue. However, as this example illus-
trates, proportions entail a quaternary relation, the vari-
ables being the two numerators and two denominators. The
task is hence likely to be difficult because four dimensions
must be processed. This simply illustrates that relational
complexity has proved a very serviceable metric for con-
ceptual complexity, in tasks as varied as proportion and or-
dering blocks.

4. Algorithmic design

The essence of the model is defined at the mathematical (compu-
tational) level and is designed to account for observed capacity
limitations of higher cognitive processes. Research on neural net
representation of relations, however, has uncovered limitations at
least broadly consistent with those observed from psychological
data. Integrating the psychological and neural net research on this
question has the potential to deepen our understanding of the is-
sue and to produce more refined questions for future research.
This section considers how relations can be represented in neural
nets; section 5 develops the argument that computational cost is a
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function of relational complexity. Thus the underlying reason for
limitations in processing capacity can be found in requirements
for processing relations in neural nets. (If the reader does not wish
to consider neural net modeling, however, at least in a first read-
ing, then it is still possible to follow the paper by skipping to sec-
tion 6.) The representation of relations in neural nets is currently
the subject of extensive research, but even models that differ in
architecture are in reasonable agreement about the nature of ca-
pacity limitations.

4.1. Neural net models.

Neural net models of relational knowledge can be categorized in
two ways, namely, type of binding and type of architecture. The
models of Hummel and Holyoak (1997), Plate (1995), Shastri
and Ajjanagadde (1993a), and Smolensky (1990) use role-filler
bindings, whereas the model of Halford et al. (1994) uses sym-
bol–argument–argument bindings (defined in sect. 2.2.1.2). Ar-
chitectures can be divided mainly into models based on a product
operation, either tensor product (Halford et al. 1994; Smolensky
1990) or circular convolution (Plate 1995) and models based on
synchronous oscillation (Hummel & Holyoak 1997; Shastri & Aj-
janagadde 1993a). Other networks exist that learn to represent re-
lations, for example, the recursive autoassociative memory (Pol-
lack 1988) and BoltzCONS (Touretsky 1990). However, the large
number of training examples needed to learn appropriate repre-
sentations makes them unsuitable for models of working memory,
so they are not considered here.

4.1.1. Tensor and convolution models. Tensor and convolution
models represent bindings by performing some type of product
operation on vectors representing bound entities. Tensor and
convolution models can use either role-filler bindings or symbol–
argument–argument bindings.

4.1.1.1. Role-filler bindings. In the model of Smolensky (1990)
the role-filler binding is represented by the outer product of role
and filler vectors, whereas in the model of Plate (1995) it is rep-
resented by the circular convolution of the vectors. Thus
loves(John, Mary) can be represented in essence by tr 5 vrole1 J
vJohn 1 vrole2 J vMary or by vr 5 vrole1 * vJohn 1 vrole2 * vMary,
where J and * represent tensor product and circular convolution,
respectively, and tr and vr represent the relation symbol r in the
tensor and convolution models, respectively. A tensor product net
that can represent a role-filler binding is shown in Figure 1A, with
an arithmetic example given in Figure 1B. In these models all vec-
tors representing roles are superimposed on a single set of units,
and vectors representing fillers are superimposed on another set
of units. A circular convolution of the vectors in Figure 1B is
shown in Figure 1F. A circular convolution is like a compression
(technically a projection) of the tensor product matrix, computed
by adding along the curved lines as shown. (For a lucid explana-
tion of circular convolution see Plate 1995.) The elements within
the matrix are the binding units, and their activations are com-
puted in one shot, rather than by incremental adjustment over tri-
als as occurs in learning algorithms. Hence the matrix represents
a dynamic binding in the sense that it represents the currently ac-
tivated representation, rather than a product of past learning.

With circular convolution the number of elements remains
constant (as illustrated in Fig. 1F); for example, the number of el-
ements in each of vrole1 and vJohn is the same as the number in
vrole1 * vJohn, whereas the tensor product of vectors with n and m
elements contains nm elements (as illustrated in Fig. 1A,B). The
implications of this for computational cost will be discussed in sec-
tion 5.2.3.

Retrieval from circular convolution representations is noisy
(Plate, in press) and requires a clean-up memory, whereas tensor
product representations produce an unambiguous output pro-
vided that all the vectors form an orthonormal basis (that is, they
form a basis for the vector space they span, their lengths are 1, and

the inner products of distinct vectors are all 0). Though orthonor-
mal vectors are convenient, they do not allow cross talk (interfer-
ence between similar representations, or similar tasks) to be mod-
eled. This can be done using sparse random vectors, in which
similar entities share some units (Wilson et al. 1995). Then the
possibility of confusion and cross talk arises.

4.1.1.2. Symbol–argument–argument bindings. Symbol–argu-
ment–argument bindings were illustrated in section 2.2.1.2. With
this type of model, a relational instance is effectively represented
by computing the outer product of symbol and argument vectors
(Halford et al. 1994). A collection of relational instances can be su-
perimposed on the same representation by adding the outer prod-
ucts. Thus, representations of loves(John, Mary) can be repre-
sented as Vloves J VJohn J VMary, and loves(Tom, Wendy) can be
represented as Vloves J VTom J VWendy. These representations
can be superimposed by summing the outer products, yielding
Vloves J VJohn J VMary 1 Vloves J VTom J VWendy.

The resulting sum of outer products is referred to as a tensor.
Thus the relational instance r(a1, a2 . . . an) would be represented
in a tensor product space as VR J V1 J V2J . . . J Vn, where VR
represents alternative relation symbols including r, and vi (I . 0)
represents concepts appropriate to the ith argument position. A
unary relational instance r(a) can be represented in a rank two ten-
sor product space VR J V1. A binary relational instance r(a1, a2)
can be represented in a rank three tensor product VR J V1 J V2.
The net shown in Figure 1A represents a unary relation by this

Halford et al.: Relational complexity

BEHAVIORAL AND BRAIN SCIENCES (1998) 21:6 813

Figure 1. Neural net capable of tensor product representation
of role-filler binding or unary relation (A) and as arithmetic ex-
ample (B). Binary relation shown as a tensor product net (C) and
as an arithmetic example (D). Ternary relation is chunked to a bi-
nary relation R(a, b/c) in E (with symbol vector omitted for sim-
plicity). A circular convolution calculated from the tensor product
in B is shown in F. The circular convolution is computed by adding
along the curved lines and is [0.50 0.71 0.50] ? [20.5 0.71 20.50]
5 [20.25 20.25 0.00]. The shadings in C are to make the spatial
layout clear and do not represent levels of activation.

https://doi.org/10.1017/S0140525X98231761 Published online by Cambridge University Press

https://doi.org/10.1017/S0140525X98231761


method if one vector represents the relation symbol and the other
vector represents the argument, and similarly for the arithmetical
example shown in Figure 1B. Binary relations are illustrated by
this method in Figure 1C,D. The arithmetic examples of outer
products shown in Figures 1B,D show that each element in the
matrix (rank two outer product) is the product of a component
from each of the symbol and argument vectors. Arguments to a re-
lation may also be regarded as role-fillers, and “argument” and
“filler” are used interchangeably in this context depending on
whether symbol–argument–argument or role-filler models are be-
ing considered.

Tensor product implementations of relations from unary to
quaternary are shown schematically in Figure 2. In each case there
is a vector representing the relation symbol and a vector repre-
senting each argument. A ternary relational instance r(a1, a2, a3)
can be represented in a rank four tensor product space VR J V1
J V2 J V3. Notice that the example in Figure 2 represents arith-
metic addition and multiplication, which, as was noted earlier, are
ternary relations, superimposed on the same tensor product. If
two addends (multiplicands) are entered in the argument units
(using the retrieval procedure described in sect. 4.2.1), and the
vector representing addition (multiplication) is entered in the
symbol units, the output represents the sum (product). Changing
the symbol vector changes the relation that is implemented and is
an example of modifiability as discussed in section 2.2.12. Our
simulations have shown that addition and multiplication can be su-

perimposed in this way on a rank 4 tensor product without inter-
ference. A quaternary relational instance r(a1, a2, a3, a4) is repre-
sented in a rank five tensor product VR J V1 J V2 J V3 J V4,
the example in Figure 2 being a composition of two binary oper-
ations.

In symbol–argument–argument models, roles are determined
positionally, a type of coding also used in language. This implies
that roles do not have to be explicitly represented and that role-
filler bindings are unnecessary. The role to which an argument is
assigned is defined by its position in the representation. In the ten-
sor product implementation, roles are not represented by vectors,
but separate sets of units are used for each argument vector. A pro-
cedure is required to ensure structural correspondence, so that ar-
guments are represented on the correct set of units. The criteria
for valid representation mentioned in section 2.2.1.1 are sufficient
to ensure this.

To illustrate how roles need not be explicit if arguments are de-
fined relative to each other, consider an instance of the ternary re-
lation arithmetic addition, 1(3, 5, 8). Now, suppose we want to su-
perimpose another instance 1(2, 4, 6). This can be done using
tensor product representations of symbol–argument–argument
bindings as mentioned above. Were we to misalign the represen-
tations by superimposing 1(2, 6, 4) on 1(3, 5, 8), that is, inter-
changing the second and third arguments, the error would be de-
tected by the tests for structural correspondence (in sect. 2.2.1.1).
Thus a valid relational representation can be established without
roles being explicitly represented. The arguments are assigned to
the correct role position by ensuring that they are correctly related
to each other (in the current example this means that they are in
the correct order).

4.1.2. Synchronous oscillation models. In synchronous oscilla-
tion models, units representing a role oscillate in phase with units
representing the filler bound to that role and out of phase with
units representing other roles and fillers. The relational instance
loves(John, Mary) would be represented by units representing the
agent role of loves oscillating in synchrony with units representing
John, while units representing the patient role of loves oscillated
in synchrony with units representing Mary (see Fig. 3). However,
units representing the agent role (filler) would oscillate out of syn-
chrony with units representing the patient role (filler). The model
of Shastri and Ajjanagadde (1993a) utilises synchronous oscilla-
tion for role-filler binding, but much of its power comes from ad-
ditional nodes and connections. The analogy model of Hummel
and Holyoak (1997) uses synchronous oscillation to perform map-
pings between analogs, but much of its power also comes from
other systems, including a distributed semantic memory repre-
sentation.

Relational instances can be superimposed on the representa-
tion, as illustrated in Figure 3. Thus kisses(John, Mary) and
marry(John, Mary) can be superimposed on the representation of
loves(John, Mary), by having corresponding roles of all relational
instances oscillate in synchrony. Notice that no additional phases
are required for the superimposed instances, and this is analogous
to tensor product representations of symbol–argument–argument
bindings discussed in section 4.1.1.2, where relational instances
can be superimposed on the same set of vector spaces. Foreshad-
owing a point to be made in section 5.1, Shastri and Ajjanagadde
(1993a) have shown that the major limitation is in the number of
distinct phases, rather than the amount of information repre-
sented in each phase. This corresponds to the limitation in human
processing capacity, which is defined by the number of arguments
a relation has, rather than by total information processed.

4.1.3. Comparison of models. Tensor product and synchronous
oscillation models appear to be equally capable of representing
higher cognitive processes, and the similarity of their properties is
at first sight somewhat surprising. However, Tesar and Smolensky
(1994) have proposed that the architectures are formally reducible
to one another, the primary difference being that tensor product
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models use spatial role vectors whereas synchronous oscillation
models use temporal role vectors. Another possible explanation is
that their similar properties are due to additional features de-
signed to give them the power to simulate higher cognitive pro-
cesses. As we will see, the similarity of their properties extends to
the processing capacity limitations inherent in them.

It is important that, in order to account for working memory, a
model must deal with relations. As was noted in section 2.2.1.2,
the representation of relations by role-filler bindings requires that
each relational instance be stored separately or be uniquely iden-
tified. We will now develop this point further by considering a
ternary relation, the binary operation of addition. There are three
roles, corresponding to the two addends and the sum, which we
will represent as a1, a2, and s. Using the role-filler approach, we
could bind numbers to each role, thus:

a1.2 a2.3 s.5
a1.4 a2.5 s.9
a1.3 a2.4 s.7
a1.5 a2.2 s.7, and so on.

Were we to represent all addition facts in this way, then every
number would be bound to every role because any number can
serve as first or second addend or as sum. If all these role-filler
bindings are entered into the same representation (e.g., by adding
the resulting vectors, as in the models discussed above), and with-
out specific identification of the tuples, then we cannot recover
role-filler bindings or relational instances. If we ask, “What num-
ber is bound to the first addend role?” the answer is, “Every num-
ber,” and the same is true for the other two roles. Furthermore,
we have stored only role-filler bindings rather than relational in-
stances, so there are no links between addends and sum. Thus
even the fact that a1.2 and a2.3 are associated with s.5 is not rep-
resented, so it is not possible to access a component of the in-
stance, given the remaining component. Thus we cannot ask, “If
the addends are 2 and 3, what is the sum?” Suppose, for example,
we were to identify first addend roles that are bound to 2. We can-

not then determine which of these cases have 3 bound to the sec-
ond addend role, because no link has been stored between first
and second addends. We cannot retrieve the sum, given the first
and second addends, for the same reason.

The solution of identifying each relational instance also has its
problems, first because individual identification of every relational
instance is implausible when the number of instances is very large.
A relational instance such as 2 1 3 5 5 is identified by its content
(e.g., 2 1 3 5 ?; ? 1 3 5 5) rather than by an index, such as a con-
text vector, that identifies the relational instance.5 It is implausi-
ble that every addition fact we know is individually identified. Sec-
ond, notice also that, even were instance identification to be used,
every role-filler binding in a relational instance would require the
same identifier. Thus, if we identify this instance as add(2, 3), we
must bind the identifier to all three role-filler bindings, thus:

add(2, 3): (add2, 3).a1.2 (add2, 3).a2.3 (add2, 3).s.5

In other words, the context in which the three role-filler bind-
ings are learned/memorized must be sufficiently stable to result
in the same identification vector across all three role-filler pairs.
Notice also that this representation bears a close resemblance to
symbol–argument–argument bindings. Furthermore, the identi-
fier increases the computational cost of the representation, and
appears to require an additional rank in the outer product (i.e.,
rank three rather than rank two, as in Smolensky’s 1990 model).

Contrast this with representations based on symbol–argument–
argument bindings. Omitting the relation symbol (as with role-
filler bindings), we would represent the same facts as follows:

2.3.5
4.5.9
3.5.8, and so on.

The computational cost is high for one relational instance (a
ternary relation requires a rank 4 tensor, including the relation
symbol vector), but there is no increase in cost for further rela-
tional instances because they can be superimposed, the tuples are
inherently identified by the bindings, the links between addends
and sums are represented, and the other properties of relational
knowledge are implemented, as explained in section 4.2. Thus, the
initial cost of symbol–argument–argument bindings is high, but
their power is considerable.

Although the synchronous oscillation models of Shastri and 
Ajjanagadde (1993) and the tensor product symbol–argument–
argument binding model of Halford et al. (1994) are very differ-
ent, they have a common property that is important to capacity
limitations. They both map dimensions of the relations (as defined
in sect. 2.3) to separate dimensions of the representation. In the
synchronous oscillation model each argument is assigned to a 
separate phase in the oscillation (as illustrated in Fig. 3). In the
symbol–argument–argument binding model each argument is 
assigned to a separate vector space (illustrated in Fig. 1C,D). This
means that the dimensions of the relation are mapped directly 
into phases of oscillation or into vector spaces. The role-filler mod-
els based on tensor products6 (Smolensky 1990) or circular con-
volution (Plate, in press) do not have this property, because all
roles are superimposed, as are all fillers (see sect. 4.1.1.1). As 
we will see in section 5, models that map dimensions of the rela-
tion to dimensions of the representation imply similar capacity
limitations.7

4.2. Modeling relational knowledge

The manner in which these models implement the properties of
relational knowledge defined in section 2.2 will now be consid-
ered. The role-filler model of Smolensky (1990), based on tensor
products, handles the storage and retrieval of relational instances,
but in its original form it does not appear to incorporate the other
features of relational knowledge. The symbol–argument binding
model (Halford et al. 1994) was based on Smolensky’s tensor prod-
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Figure 3. Synchronous oscillation representations of relational
instances love(John, Mary), kiss(John, Mary), and marry(John,
Mary).
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uct formalism, but with modifications and extensions to handle all
features of relational knowledge. The circular convolution model
of Plate (in press) handles storage and retrieval of relational in-
stances and gives a good account of similarity, but it does not ap-
pear to handle conceptual chunking (see sect. 4.2.4), nor does it
provide a general solution to systematicity (see sect. 4.2.9). Role-
filler binding models based on synchronous oscillation (Hummel
& Holyoak, in press; Shastri & Ajjanagadde 1993a; 1993b) appear
to have been designed to incorporate the properties of relational
knowledge discussed in section 2.2. We will emphasise those mod-
els that have been designed to implement the properties of rela-
tional knowledge.

4.2.1. Retrieval of information. Information stored in a tensor
memory can be retrieved by representing a question as a tensor
product and computing the inner product (dot product) of the
question and memory tensors. The query is a partial relational in-
stance and can be expressed as an outer product with one entity
deleted. For example, given r(a1, a2, a3) stored as part of the rank
four tensor Tpqrs in the tensor product VR J V1 J V2 J V3, then,
say, a3 can be retrieved by computing the generalized inner prod-
uct vr J va1 J va2 J _ ?T, where vr is the vector representing the
relation symbol r, va1 is the vector representing the argument a1,
and va2 is the vector representing the argument a2. Generalized
inner products are described in Appendix B: the underscore sig-
nifies the component of the tensor that is “retrieved” by comput-
ing this generalized inner product. Effectively, the query r(a1, a2,
?) has been used as input to the tensor memory, and a3 has been
obtained as output. The details of how this generalized inner
product may be computed are contained in Appendix B, where it
is listed as operation (3). An analogous procedure is specified for
synchronous oscillation models by Shastri and Ajjanagadde (1993a,
sect. 4.3).

4.2.2. Truth value. The truth value of a proposition can be assessed
by matching against memory, in what is essentially a recognition
process. The proposition bark(cats) can be represented by a rank
two tensor product, which can be matched against semantic mem-
ory by computing a generalized inner product (dot product) of the
tensor with the representations in semantic memory (Humphreys
et al. 1989). The relational instance bark(cats) is treated as a query
by representing it as the tensor vbark J vcats as shown above, and
the dot product of this tensor and tensor representations in mem-
ory is computed, as described in section 4.2.1 (the procedure cor-
responds to operation (0) in Appendix B). This can be done in par-
allel for superimposed memories. If the product is nonzero, the
proposition is recognized. Thus bark(cats) and bark(dogs) would
produce zero and nonzero dot products respectively, so the latter
is recognized, whereas the former is not. Note the following ex-
ample.

vbark J vcats ? (vbark J vdogs 1 . . .  1 vsing J vbirds) 5 0 but
vbark J vdogs ? (vbark Jvdogs 1 . . . 1 vsing Jvbirds) . 0

The procedure defined by Shastri and Ajjanagadde (1993a, sect.
4.4) provides a way of assessing the truth value of a proposition in
synchronous oscillation models.

4.2.3. Relation symbols. Relation symbols are represented as sep-
arate vectors in the vector space VR. In synchronous oscillation
models, the symbol can be represented as a unit firing in a sepa-
rate phase in the oscillation or by an additional node connected to
role and filler nodes.

4.2.4. Conceptual chunking. Conceptual chunking serves to re-
duce the rank of a tensor product representation of a relation. It
can be implemented by convolution, concatenation (illustrated in
Fig. 1E), or superposition (in which vectors representing argu-
ments are added), or by defining a special function that associates
an outer product to a single vector. The outer product represen-
tation of r(a, b, c) can be reduced to r(a, b/c), by concatenating or

convolving vectors b and c into a single vector. Features of b and
c can still influence the computation of the relation with a because
activation can be propagated from units in b and c to a (Fig. 1E),
but the representation functions as a binary relation, and neither
the relation between b and c nor the three-way relation between
a, b, and c is directly accessible.

Unchunking can be achieved by differentiating vectors into
other vectors. Algorithms for this have been defined in the STAR
analogical reasoning model (Halford et al. 1994; 1995; 1996). In
general, lower rank representations can be differentiated, yielding
more complex relations. For example, in Figure 2E, if the vector
representing b/c were differentiated into separate vectors repre-
senting b and c, and if all four vectors including the relation-symbol
vector (not shown) were then appropriately interconnected, as for
a rank four tensor product, a ternary relation could be represented.

A chunked representation is wholistic in that features are rep-
resented but are not differentiated into dimensions. Many con-
cepts are wholistic initially and progress to dimensional represen-
tation (Smith 1989). This is like unchunking in that it entails
differentiation of a vector into two or more vectors and represen-
tation of the relation between them.

It is unclear how Plate’s (1995) circular convolution model
would handle conceptual chunking, at least without significant ad-
ditions. Chunking involves a compression of a relational instance
into an unstructured whole, so the relations between components
become inaccessible. The circular convolution, however, is al-
ready a compression (a projection of the tensor product), and it is
not clear how a further compression that incorporates the psy-
chological properties of conceptual chunking could be achieved.
A further problem is that circular convolution relies on compo-
nent vectors randomly generated from a Gaussian or uniform dis-
tribution. This has the effect that there is no similarity (as mea-
sured by the dot product) between chunked and unchunked
representations. Thus, for example, features from b and c would
not, and in general could not, influence computation of the rela-
tion with a in R(a, b/c).

Hummel and Holyoak (1997) represent the equivalent of a
chunk in a synchronous oscillation model by having units that rep-
resent part or all of a proposition. For example loves(John, Mary)
can be represented as features, as roles and fillers, or as an intact
proposition. In the latter case, it can be an argument to a propo-
sition such as knows[Sam, loves(John-Mary)].

4.2.5. Higher order relations and hierarchical structures. Higher
order relations and hierarchical structures can be modeled by rep-
resenting higher order relational instances with chunked lower or-
der relational instances as arguments. Consider this relational in-
stance.

cause[shout-at(John, Tom), hit(Tom, John)].

The relational instance shout-at(John, Tom), normally repre-
sented as a rank three outer product in our model, is chunked into
a single vector shout-at1, as described in section 4.2.4, and
hit(Tom, John) is chunked similarly as hit1. The higher order re-
lation cause(shout-at1, hit1) is then represented as a rank three
outer product.

The repeated variable constraint requires that fillers be bound
to the correct roles, as was pointed out in section 2.2.5. The STAR
analogy model (Halford et al. 1996) can achieve this by ensuring
that hierarchical structures are in correspondence. Consider the
following relational instances.

cause[shout-at(John, Tom), hit(Tom, John)]
cause[shout-at(Mary, Wendy), hit(Wendy, Mary)]

These would be represented as chunked relational instances, as
described above. The model maps one level of the hierarchy at a
time, then moves to another, usually lower, level and recursively
matches corresponding arguments of source and target. Thus the
model would first map cause(shout-at1, hit1) to cause(shout-at2,
hit2). It would then unchunk shout-at1 and shout-at2 and map
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shout-at(John, Tom) to shout-at(Mary, Wendy). The model has a
bias to maintain the mappings of John to Mary and Tom to Wendy
when processing other parts of the structure. It would map
hit(Tom, John) to hit(Wendy, Mary), in keeping with previous
mappings, thereby maintaining structural consistency. It would
also compute a goodness-of-mapping score that reflects degree of
structural correspondence. The score would be higher for this
mapping than for the inconsistent mapping below.

cause[shout-at(John, Tom), hit(Tom, John)]
cause[shout-at(Mary, Wendy), hit(Mary, Wendy)]

The model enforces the repeated variable constraint as a con-
sequence of maintaining structural consistency. Because the per-
son bound to the agent role of “shout-at” is bound to the object
role of “hit” in the source, this constraint is maintained in the tar-
get because of biases in the algorithm to ensure structural corre-
spondence between base and target. Shastri and Ajjanagadde
(1993a, sect. 4.5) provide a synchronous activation-based mecha-
nism that enforces the repeated variable constraint.

4.2.6. Omnidirectional access. Omnidirectional access is imple-
mented by the retrieval process described in section 4.2.1 because
a query can be composed of a relational instance with any com-
ponent missing. Thus a ternary relation represented as vR J v1 J
v2 J v3 can be queried by any of the following means.

vR J v1 J v2 J _ ? vR J v1 J v2 J v3 5 v3
vR J v1 J _ J v3 ? vR J v1 J v2 J v3 5 v2
vR J _ J v2 J v3 ? vR J v1 J v2 J v3 5 v1
_J v1 J v2 J v3 ? vR J v1 J v2 J v3 5 vR

The procedure for answering wh-queries specified by Shastri
and Ajjanagadde (1993a, sect. 4.7) essentially embodies the om-
nidirectional access property.

4.2.7. Role representation. The role that an argument fills can be
indicated by its position relative to other arguments, as discussed
in section 2.2.7, and its implementation in symbol–argument–
argument bindings is described in section 4.1.1.2. The synchro-
nous oscillation model of Shastri and Ajjanagadde (1993a) uses
role-filler bindings as described in section 4.1.2.

4.2.8. Decomposability of relations. The relation represented can
be decomposed into the derived relations by replacing the vector
in any role with a special vector, namely, the sum of all the basis
vectors used to represent fillers on that axis of the tensor. Thus a
representation of the ternary relation R(x, y, z) can be reduced to
representation of R3 5 (x, y) by entering this special vector on the
units representing z. Such “collapsing” of a representation to a
lower rank has been used in models of memory (Humphreys et al.
1989) and of analogical reasoning (Halford et al. 1994).

In the tensor product representation of an n-ary relation with
instances r(a1, a2 . . . an), the effect of variations in any proper sub-
set of {a1, a2 . . . an} on the remaining argument(s) can be com-
puted. For example, suppose that one wishes to use the fixed value
b in the final role (the an role) and consider the induced (n 2 1)ary
relation Ran 5 b 5 {(a1, a2 . . . an-1) | (a1, a2 . . . b) P R}. This ef-
fect can be achieved by clamping the value in the an role of the
tensor network to be b. This can, of course, be done with any role,
not just the an role, and can be iterated so that, eventually, any de-
sired set of roles is fixed in this way. For synchronous oscillation
models, the representation of partially instantiated relations given
by Shastri and Ajjanagadde (1993a, sect. 3.1) effectively decom-
poses relations in an analogous manner.

4.2.9. Relational systematicity. Relational systematicity can be
handled by using higher order relations, as described in section
4.2.5. For example, implies[.(a, b),,(b, a)] can be represented
by the tensor product of vectors representing implies and chunked
representations of .(a, b) and ,(b, a). Systematicity is achieved
in the synchronous oscillation model of Shastri and Ajjanagadde

(1993a, sect. 4.2) by connections that ensure that corresponding
arguments oscillate in synchrony, for example, that the first role
representation in .(a, b) oscillates in synchrony with the second
role-representation in ,(b,a).

The circular convolution model of Plate (1995) incorporates
systematicity, but there is some doubt regarding the generality of
the procedure used. To allow the model to recognize the struc-
tural similarity between “Spot bit Jane, causing Jane to flee from
Spot” and “Felix bit Mort, causing Mort to flee from Felix” (by
contrast with the superficially similar, but structurally dissimilar,
“Rover bit Fred, causing Rover to flee from Fred”), Plate used
contextualized representations. These entailed adding the prop-
erty “flee-from” to the representation of Spot, Felix, and Rover
and the property “bite-object” to the representation of Jane, Mort,
and Fred. This handles some structurally similar higher order re-
lational instances but depends on representing dogs as entities
people flee from and people as entities dogs bite. This approach
lacks plausibility in relational instances such as “Jane smiled at
John, causing John to like Jane” because it is implausible that smil-
ing should be part of the representation of Jane (she may not al-
ways smile, even at John) or that liking should be part of the rep-
resentation of John (he may not always like people). The circular
convolution model appears to require additional means of repre-
senting structure in order to handle systematicity, and the com-
putational cost of these additions is unknown.

4.2.10. Dimensionality of relations. The dimensionality of a rela-
tion was defined in section 2.3 as the number of arguments. In
symbol–argument–argument tensor product representations, a
separate vector is used for the relation symbol and for each argu-
ment, so rank is one more than dimensionality. We have used the
convention of specifying number of arguments by n, and we will
use the convention of specifying ranks by k. Therefore, in this type
of model, k 5 n 1 1. The components of a representation are the
relation symbol and the argument representations, so the number
of components 5 k. Furthermore, if k 2 1 components are known,
there is at least some potential to predict the kth component 
(illustrated in sect. 2.3), so dimensionality 5 k 2 1 5 n. Even if
relations are represented by formalisms other than tensor prod-
ucts, symbol and arguments must be represented independently
of each other, or be individually identified, so that they retain their
identity when linked (bound) to other components. Note also that,
in the context of neural net models, the dimensionality of a rela-
tional concept should not be confused with the number of ele-
ments in a vector, which is also sometimes referred to using the
term “dimension.” As was noted in section 4.1.3, the models of
Halford et al. (1994) and Shastri and Ajjanagadde (1993a) map di-
mensions of relations directly into dimensions of representations,
whereas other models do not.

4.2.11. Analogy, planning, and modifiability. Analogy can be suc-
cessfully modeled using the tensor product representations of re-
lations outlined in section 4.1 (Halford et al. 1994; 1995; 1996). A
sophisticated model of analogy based on synchronous oscillation
has been presented by Hummel and Holyoak (1997).

With symbol–argument–argument models based on tensor
products, relations can be modified online by changing the rela-
tion symbol, which selects a new set of relational instances. Rela-
tional instances are stored as outer products of symbol and argu-
ment vectors, and outer products are summed to form a tensor.
We will illustrate with arithmetic addition and multiplication. Ad-
dition would be stored as vadd J v2 J v3 J v5 1 vadd J v3 J v6
J v9 1 . . . , and multiplication would be stored as vmult J v2 J
v3 J v6 1 vmult J v3 J v6 J v18 1 . . . . Changing the symbol
vector from vadd to vmult selects a new set of relational instances
and changes the mappings between addends and sum or product.

4.2.12. Strength. Strength can be represented by multiplying the
outer product representing the relational instance by a scalar, be-
fore adding it to the tensor. Typically the scalar would have a value
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between 0 and 1 indicating how frequently the relational instance
is found to be true; for example, bigger-than(dog, cat) would have
a scalar a little bit less than 1 to take account of the small minor-
ity of dogs (e.g., chihuahuas) that are smaller than cats.

4.2.13. Operations on relations. Operations on relations can be
implemented using tensors. For completeness we provide one
tensor implementation for each of the relational operators. The
simplest implementation assumes local (with all unit values 0 ex-
cept for a single unit with value 1) argument vector representa-
tions. Relaxing this assumption introduces other properties, such
as cross talk, but at the expense of not implementing exact ana-
logues of relational operators. Under the local vector assumption,
then, the set operators union, intersection, and difference are im-
plemented by pairwise addition, multiplication, and subtraction
(respectively) of binding units with the same index. The upper
limit on activation eliminates multiple occurrences of the same el-
ement (consistent with set union), and the lower limit prevents
subtraction of nonexisting elements (consistent with difference).

The select operator retrieves relational instances satisfying con-
dition C. Insofar as C is an arbitrary Boolean expression, the select
operator is very general and powerful. For our purposes, however,
we consider a restricted version, in which C has the form of a con-
junction of filler-role pairs: (a1, A1) ` . . . ` (am, Am) (i.e., select
with filler a1 at role A1 and filler a2 at role A2, etc.). The corre-
sponding tensor implementation is to compute the outer product
of the fillers a1 to am at the specified tensor axes A1 to Am, re-
spectively. Axes with unspecified fillers use a special filler vector I
5 (1 . . . 1). Thus, the rank of the tensor (TC) representing the con-
dition C is the same as the rank of the tensor (TR) representing re-
lation R. Next, we perform a pairwise multiplication TC ? TR, result-
ing in a tensor (Ts) representing the selected relational instances.

The project operator returns the relation between components
at the specified roles. The equivalent tensor operation is summa-
tion onto the corresponding axes. Formally, given a relation R with
attributes (roles) A1 . . . Ak and a corresponding tensor T with axes
labeled A1 . . . Ak, then projectA R, is implemented as S

,A1 . . .

Ak.2A, where A is the list of projected attributes (or tensor axes)
and ,A1, . . . ,Ak . 2 A is the difference of the two lists (i.e., sum
onto the axes not in the list of projected attributes). The rank 
of the resulting tensor is the same as the -arity of the projected 
relation.

Often one wants to cue a k-ary relational memory with k 2 1
components to retrieve the target at the kth role. At the relational
level, the target is retrieved by successive application of the select
and project operators. The select operator retrieves an instance(s)
containing all k 2 1 components at the specified roles, and the re-
trieved instance(s) is applied to the project operator, which returns
the target at the nth role. At the tensor level, this combination of
select and project is realised by taking the inner product of the
k 2 1 components with the tensor, resulting in a vector repre-
senting the retrieved target(s). This tensor operation is specified
in section 4.2.1.

The outer join of two relations is simply the outer product of
the corresponding tensors. The equijoin, however, is more com-
plicated; it requires joining only those instances that share a com-
mon argument at the specified roles. Suppose the relation Taller
5 {(John, Mary), (John, Bob), (Mary, Tom)} and its correspond-
ing tensor T 5 vJohn J vMary 1 vJohn J vBob 1 vMary J vTom (the
relation symbol is not part of the join operation). One way of im-
plementing the equijoin of the Taller relation with itself is to, first,
cue the tensor T, with a possible argument at the Person1 role
(e.g., vMary

. T). This results in the vector vTom. Then, cue the ten-
sor again, but at the Person2 role (i.e., T . vMary). This results in
the vector vJohn. Provided one maintains the cue vector vMary and
the two retrieved vectors vJohn and vTom, one can construct the
tensor representing the equijoin as vJohn J vMary J vTom. Other
instances are retrieved in the same manner by cueing with differ-
ent fillers at the joined roles and adding the result to the tensor
representing the equijoin.

To summarise section 4, the properties of relational knowledge
can be incorporated in neural net models based either on symbol
–argument–argument bindings using tensor products or on role-
filler bindings using synchronous oscillation. Representing these
properties effectively depends on a number of additional features,
but the basic properties of the representations are important. De-
spite their differences, both types of model have the property that
the dimensions of a relation, the symbol and arguments (fillers),
are mapped into dimensions of the representation, either vector
spaces or phases of oscillation. This means that components of the
relation are represented as intact entities, which retain their iden-
tity in the binding, and this is a major factor in the computational
cost of representing relations.

5. Relational complexity and processing load 

So far we have been considering properties of human cognitive
functioning, with the aim of accounting for processing capacity
limitations observed from psychological data. We have defined
cognitive complexity intuitively in terms of the number of inter-
acting variables represented in parallel and have conceptualized it
in terms of the number of arguments in a relation. However, we
wish to explain processing capacity limitations, and two ap-
proaches to neural net modeling of relational knowledge have in-
dependently identified possible explanations (Halford et al. 1994;
Shastri & Ajjanagadde 1993a). To explain how processing loads are
imposed by relations, we must consider computational complex-
ity, which refers to the amount of computation required to per-
form a task.

Complexity analysis at the computational level is a very general,
potentially algorithm-independent method of determining the in-
herent difficulty of a particular problem. The classic results from
computer science have been to identify two very broad classes of
problems, called P and NP. In the most general terms, the com-
plexity of the former is a polynomial function of some measure of
the input, whereas for the latter it is an exponential (or worse)
function. Intuitively, an NP-complete problem is intractable, in
the sense that the time required by any known algorithm to solve
the problem grows explosively with the size of the problem (the
n). NP-complete problems can be approached in a number of
ways, including using an approximate/heuristic algorithm, avoid-
ing large instances of the problem, or considering only subclasses
of the problem. An algorithm-independent analysis is performed
by showing that the problem can be transformed in polynomial
time to another problem of known complexity. The power of this
method was demonstrated by Tsotsos (1990) with respect to vi-
sion, by showing that certain problems in vision transform to NP-
complete problems.

Whereas analysis at this level has been successful with vision, it
does not seem to capture processing capacity limitations in cogni-
tive tasks such as reasoning and language. The paradox is that, al-
though aspects of vision are intractable by this analysis (Tsotsos
1990), vision tasks do not appear to impose the kinds of demands
defined in section 2.1, which have been observed in higher cogni-
tion processes. The computationally complex tasks of vision appear
to be performed without measurable processing demands of the
kind discussed in sect. 2.1, the standard explanation being that the
visual system is a module with high capacity for specialised input.
By contrast, many computationally simple tasks in higher cognition
impose high processing demands. Ordinary arithmetic, for exam-
ple, requires relatively little computation, but imposes a high cog-
nitive demand on the human performer; even such computation-
ally simple tasks as transitive inference problems, in which for
example .(a, b) and .(b, c) have to be integrated into monotoni-
cally-larger(a, b, c) impose a measurable processing load on adult
humans. Tsotsos (1990) has shown that visual search is inherently
complex because of the combinatorial explosion that occurs as the
number of elements to be searched increases. No such combinato-
rial explosion occurs in ordinary arithmetic operations or transitive
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inferences. We must seek the explanation for observed processing
demands of such tasks in the architectures employed in higher cog-
nitive processes, for which algorithmic complexity is more relevant.

Algorithmic complexity analysis considers how many steps are
required, or how much space is required to compute a given prob-
lem for a given algorithm. In the former case, complexity depends
on the function that links the number of computational steps re-
quired to the size (or length) of the input. A linear time algorithm
will complete in Q(n) steps (i.e., of the order of n steps), where n
is size of problem (e.g., number of inputs)8. A polynomial-time al-
gorithm will complete in Q[p(n)] steps for some polynomial p(n).9
An exponential-time algorithm will complete in Q[cp(n)] steps, so
the number of steps grows explosively with size of input. Problem
complexity is the least of the complexities of all algorithms to solve
the problem.

Both synchronous oscillation and tensor product/convolution
models predict limitations on the complexity of relational schemas
that can be activated in parallel, although the bases of the limita-
tions are somewhat different. We will examine both types of model
in an attempt to find explanations for the limitations observed in
the psychological data reviewed in section 3.3.

5.1. Synchronous oscillation models

Synchronous oscillation models are limited by the number of dis-
tinct oscillations. This is determined by the ratio of the period of
oscillation to the window of synchrony (which is related to the du-
ration of peak and is approximately the maximal temporal spacing
between peaks that are recognized as in phase). This ratio is esti-
mated by Shastri and Ajjanagadde (1993a) to be about five, and by
Hummel and Holyoak (1997) to be four to six (to illustrate, notice
that in Fig. 3 approximately five distinct oscillations would be pos-
sible). Given the criteria for relational knowledge set forth in sec-
tion 2.2, five distinct entities would permit quaternary relations (a
relation symbol and four arguments) to be represented without
cross talk. However, Shastri and Ajjanagadde suggest that up to 10
entities could be related with cross talk. Psychological data dis-
cussed in section 3.3 appear to correspond to Shastri and Ajjana-
gadde’s prediction of capacity without cross talk, possibly because
performance criteria used in experiments (e.g., low error rates to
facilitate analysis of latencies) would tend to preclude cross talk.
However, as was noted in section 4.1.2, the power of models by
Shastri and Ajjanagadde and by Hummel and Holyoak depends
on additional features, and there does not appear to be any way of
calculating the cost of these using computational complexity theory.

5.2. Tensor product models

Tensor product models entail a computational cost in space and
time. We will consider tensor product representations of relations
using symbol–argument–argument bindings as proposed in sec-
tion 4.1.1.2, focusing on the process of accessing the kth compo-
nent of a relation, given the k 2 1 other components, as described
in sections 2.2.6 and 4.2.6. Then we will consider role-filler bind-
ings, first based on tensor products to facilitate comparison and
because existing circular convolution models do not appear to in-
corporate all properties of relational knowledge (as was noted in
sect. 4.2). Next we will consider circular convolution models inso-
far as they can be directly compared with tensor product models.
Computational cost can be considered from either a parallel or a
sequential processor point of view, but the former is more appro-
priate to emphasise here.

5.2.1. Complexity for symbol–argument–argument bindings.
We will consider time complexity and then space complexity for
the symbol–argument–argument binding models.

5.2.1.1. Time complexity. In the parallel processing model, one as-
sumes that there is a processor for each unit of the vectors repre-

senting symbol and argument(s), a processor for each binding
unit, and some addition units, to be described below. To access the
kth component of a relational instance, given arguments a1 . . .
ak21, it is necessary to propagate the component values to all the
relevant binding units (one step); each binding unit then multi-
plies its binding memory contents with the values propagated for
the k 21 arguments; this requires k 2 1 multiplications. Then, it
is necessary to add all these products. How long this takes depends
on the rank of the tensor and on the length of the vectors; let us
suppose all vectors are of length n (so that there are nk binding
units in the tensor network). It will be necessary to add up nk 2 1

products to form each component of the symbol output. This is
done by the addition units referred to above. The most rapid way
to add many items with many processors is to cascade the addi-
tions (see Fig. 4 for a binary cascade adder).

This arrangement adds 23 items in three steps. In general, m
items can be added together in ceiling[logb(m)] steps, where b is
the fan-in of the adders (two in the diagram). If we assume enough
processors in the addition unit pool, then the addition step requires
ceiling[logb(nk 2 1)] 5 ceiling[(k 2 1)logb(n)] steps, for a total of

k 1 ceiling [(k 2 1)logb(n)] (2)

steps. If b is made large enough, then the second term can be
made small, though it is always at least one.

Neurons may have on the order of 10,000 input connections,
but, because not all connections may be appropriate to the com-
putation, 10,000 should probably be regarded as the upper limit.
A two-level cascade of 10,000-to-1 adders permits addition of 100
million binding units, so we could approximate the second term
by the constant 2. Thus at most k 1 2 steps are required to access
a missing component of a relational instance.

Similar computations for a sequential implementation to access
the kth component of a relational instance, given arguments a1 
. . . ak-1 yields the expression (2k 2 1)nk for the number of steps.
The important finding, however, is that with full parallel imple-
mentation the tensor product representation is not expensive in
terms of time (number of steps), but its spatial complexity is quite
large, as shown below.

5.2.1.2. Space complexity. The basic requirement is for the nk

binding units of the rank k tensor and the kn input/output units. In
addition to this, in a parallel implementation there would be a need
for cascade adders for each side of the tensor network. Assuming
that a two-stage cascade is adequate [i.e., that b2 $ nk 2 1, so that
b $ n(k 2 1)/2], each cascade would use at most b 1 1 adders, and
there would be n cascades per side (one for each component) and
k sides: at most nk(b 1 1) adders in all. The nk binding units dom-
inate the space complexity, providing of course that b is not larger
than necessary, that is, not significantly larger than n(k 2 1)/2.
Therefore, the limiting factor with this representation is the 
number of binding units, which increases exponentially with di-
mensionality.

The representation of a single relational instance is quite ex-
pensive in terms of space, requiring nk units to represent that in-
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stance, but all combinatorially possible other relational instances
can then be represented in the same tensor. (Here n is the length
of the vectors, and k is the number of vectors, i.e., one more than
the number of arguments). Thus superposition does not incur ad-
ditional computational cost.

To achieve dynamic binding, the binding units must be inter-
preted as activations, as was noted in section 4.1.1.1, and activa-
tions demand processing resources (Just & Carpenter 1992).
Hence the rank of relations will be limited by resources available,
that is, by capacity as defined in section 2.1.

This is a soft limit, because tensor product representations have
the property of graceful degradation (Wilson & Halford 1994).
More recent simulations in our laboratory have extended this find-
ing to tensor product networks of ranks up to seven. For example,
a rank five tensor of side 16 (i.e., n 5 16, k 5 5), with up to 93.75%
of the binding units deleted, reliably distinguished stored facts (re-
lational instances) from nonfacts. Such a tensor has the same num-
ber of active binding units as an intact rank four tensor with side
16. Our results suggest that the robustness depends on the ratio
of number of facts stored to number of binding units: the lower
the ratio, the more robust the network. Provided that the value of
n, the number of components in each representation vector, is rea-
sonably large (32 was typically adequate in our simulations, for
tensors of rank three and up, and up to 4,000 facts stored), it ap-
pears to be possible to simulate a rank k 1 1 tensor with the num-
ber of binding units available to an (intact) rank k tensor, for k 5
2–6 (at least). Another way of looking at this is to say that the ap-
parently very regimented architecture of a tensor product network
is not necessary in order to achieve acceptable memory perfor-
mance: 85% or more of the binding units can be removed (i.e.,
caused to have zero output) with impunity.

5.2.2. Complexity for the role-filler method. Relations can be rep-
resented using role-filler bindings, as explained in section 4.1.1.1,
provided that relational instances are identified. We will assume
this is done using a separate set of units, because of the implausi-
bility of an identifying code. Smolensky (1990) used tensor prod-
ucts, and Plate (1994, Appendix I) used circular convolution. For
the purposes of direct comparison with section 5.2.1, we calculate
the time and space complexity of accessing relations using the ten-
sor product. Again, we consider the case of accessing the kth ar-
gument of a k-ary relation given k 2 1 arguments.

5.2.2.1. Time complexity. Given that the complex cue has al-
ready been composed, then the role-filler method has two major
steps: (1) determining the tensor (representing the relational in-
stance) with the highest similarity (dot product) to the complex
cue and (2) retrieving the target from that tensor.

Assuming k roles and n fillers, then each relational instance re-
quires nk binding units. Furthermore, because each relational in-
stance is represented by a separate set of units, the dot product of
the cue with each instance can be performed in parallel. There-
fore, the time to compute the highest match is: one step to prop-
agate the activations of each cue unit to each tensor unit plus one
step to multiply cue and tensor elements (pairwise multiplication
step of the dot product) and at most two steps to sum the activa-
tions of each multiplication (summation step of the dot product),
assuming a fan-in of at most 10,000 units as for the symbol–argu-
ment method. Theoretically, a winner-take-all network can com-
pute the highest match in one step assuming exponential functions
and complete interconnection between competing units (Yuille &
Geiger 1995). However, with limited fan-in, at most 10,000 rela-
tional instances can be compared in parallel. Once the winning
tensor is determined, it must be reinstantiated into working mem-
ory so that the target component can be retrieved. We will assume
that this takes one step. In all, at most six steps are required, for
relations of less than 10,000 instances.

The time required to access the target component is: one step
to propagate the target’s role activations to the binding units, one
step to multiply the role and tensor activations, plus one step to

sum activations (since we can assume that the number of roles will
be small). The total time for the role filler is nine steps.

Although the time complexity is independent of the number of
roles, we have not considered the time to compose the cue, which
is necessarily Q(k) steps, because each of the k 2 1 arguments in
the cue must be presented serially over the same group of bind-
ing units. The time complexity for composing the cue in the sym-
bol–argument method depends on whether the cue arguments
are presented to each separate group of units in parallel or in se-
ries. The total time to compose the cue and retrieve the target is
k steps (parallel cues) or 2k 2 2 steps (serial cues). Either way, the
time for both methods is low (i.e., linear in k).

5.2.2.2 Space complexity. Each relation is represented as the
sum of outer products of role and filler vectors. This requires a
rank two tensor with n possible fillers by k possible roles. Hence
the number of units required to represent any one relational in-
stance is nk. Under the assumption that each relational instance
is stored on a separate group of units, the total number of units
needed to store the entire relation is uRunk, where uRu is the num-
ber of instances in the relation. In addition, we require nk units
to compute the complex cue, and uRu winner-take-all units to com-
pute the winning instance. Finally, we need nk units to store the
retrieved instance, and n units for the retrieved argument. In to-
tal, there are uRunk 1 nk 1 uRu 1 nk 1 n 5 (uRu 1 2)nk 1 n units
[i.e., Q(uRunk)]. Clearly, the space complexity depends on the
growth in number of instances as a function of n and k. In the
worst case (uRu 5 nk – all possible instances), the space complex-
ity is Q(knk+1). In the best case (uRu 5 1 – all one-instance rela-
tions), the space complexity is Q(nk). Average case depends on
knowing how many instances are likely to be in any one relation.
Under the condition that working memory can store at most Q,
then tasks requiring storage of more instances would force a ser-
ial strategy. Under this scenario, the savings in space are traded
for an increase in time.

5.2.3. Role-filler models using circular convolution. As was noted
in section 4.2.9, Plate’s (in press) circular convolution model does
not appear at present to incorporate all properties of relational
knowledge, and the computational cost of the additional features
required cannot be estimated. Nevertheless, we will examine time
and space complexity of circular convolution models for the in-
sights that can be obtained.

The time complexity for circular convolution is the same as for
the role-filler tensor method discussed in section 5.2.2.1. Assum-
ing appropriately connected units for implementing circular con-
volution, each role-filler convolution requires one step to propa-
gate activation for each argument, with the remaining processing
requiring only a constant number of steps. Thus, the time com-
plexity is still Q(k).

Space complexity for circular convolution models is more diffi-
cult to determine. Plate (1994) used 840 unique role-filler combi-
nations superimposed over 512 units. Thus, circular convolution
permits more role-filler pairs than there are units. However, this
method assumes a clean-up memory that does not appear to have
been implemented as a neural net. To avoid ambiguity, each rela-
tional instance must be represented on a different set of units (un-
less we assume an implausible label attached to each relational in-
stance). The required clean-up memory has essentially the same
form as the tensor product implementation of role-filler bindings,
the complexity of which is discussed in section 5.2.2. In the worst
case, when most relational instances must be stored, complexity
of the role-filler representation is worse than that for symbol–ar-
gument–argument representations. Plate’s (1994) circular convo-
lution model has achieved interesting results, and the approach
has much potential, but its restricted ability to implement the
properties of relational knowledge and the requirements of the
clean-up memory mean that in the context of working memory
theory the savings in computational cost might be more apparent
than real.
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5.2.4. Neural net limits on relational complexity. Although there
are still some unresolved issues in neural net representation of re-
lations, it is strongly indicated that the limit is in the number of di-
mensions, or number of entities related, rather than in the total
amount of information. Shastri and Ajjanagadde (1993a) showed
that synchronous oscillation models can represent quite large
amounts of information in parallel, but only a small number of dis-
tinct entities can be related (the authors present many complex
cases of reasoning without more than three distinct entities being
represented in parallel). Tensor product symbol–argument–argu-
ment models also imply a limit in the number of distinct entities,
rather than in the amount of information. In these models com-
putational cost is polynomial in vector size but exponential in the
number of dimensions, so the amount of information that can be
represented by a single vector is not significantly limited, but the
number of vectors that can be bound in one representation of a
relation is limited. Both types of neural net models are consistent
with psychological data in implying that the limit is in the number
of distinct entities that can be related in parallel.

It is natural to ask why these two models share this limitation.
The probable reason is that the synchronous oscillation models
and tensor product symbol–argument–argument models have
been designed to model higher cognitive processes comprehen-
sively and consequently incorporate the properties of relational
knowledge defined in section 2.2. The computational cost is at-
tributable to dimensions of relations being mapped to dimensions
of representations, either vector spaces or phases of oscillation, as
noted in sections 4.1.3 and 4.2.13. Thus the computational costs
that we have observed are not inherent in specific architectures
but are inherent in processing relational knowledge. The more ad-
equately a model incorporates the features of relational knowl-
edge, the more clearly it entails these costs.

Tensor product role-filler binding models (Smolensky 1990) in-
corporate some but not all the properties of relational knowledge,
and their computational cost depends on both number of argu-
ments and number of instances stored. Importantly, in general
these models do not map dimensions of relations to dimensions of
representations, so their computational cost is less clearly related
to dimensionality of relations. These models are efficient with few
relational instances, but their cost relative to symbol–argu-
ment–argument binding models increases when many instances
are stored. Circular convolution models (Plate 1995) appear at
first sight to avoid computational costs in space because vector size
is constant in the number of entities related. It is not clear, how-
ever, that circular convolution models incorporate all properties of
relational knowledge, and the cost of the additional features re-
quired is unknown. Furthermore, they produce ambiguous out-
put and depend on clean-up memories that store every relational
instance. This incurs a major computational cost that depends on
the number of arguments and on the number of instances stored
but in the worst case can exceed the computational cost of symbol
–argument–argument bindings.

Synchronous oscillation models suggest that about five entities
can be processed in parallel, and this would permit one quaternary
relation to be represented (symbol and four arguments). The em-
pirical literature reviewed in section 3.3 indicates that quaternary re-
lations are processed in parallel, so there does not appear to be a ma-
jor disagreement here. Shastri and Ajjanagadde (1993a) suggest that
up to 10 entities can be related, with cross talk. Our model agrees
to the extent that it implies a soft limit on processing capacity, with
performance degrading gracefully as processing load increases.

The ability to process relations more complex than quaternary,
though with increased error, may be important in creativity, where
early ideas are often imprecise and difficult to communicate. Cre-
ative thought also probably requires processing of complex rela-
tions, because it entails integrating known relations and produc-
ing new relations that we do not yet know how to chunk or
segment. It is possible that processing of relations of high dimen-
sionality is important in creativity, but the increased risk of error
would make confirmation and explicitness essential.

6. Empirical evidence

Processing load should be a function of relational complexity,
which should limit the complexity of tasks that can be performed
when chunking or segmentation are inhibited, either by task struc-
ture (e.g., nondecomposable relations) or by experimental manip-
ulation. Performance predictions depend on analyses of the rela-
tions processed, and these analyses in turn have to be confirmed
empirically. Therefore, testing the theory entails three steps.

(1) Develop a process model of the task, and empirically ver-
ify the model. This can entail an extensive program of developing
and testing models.

(2) Analyse relations that must be processed. When possible,
apply the reduction technique outlined in section 3.4.3 to deter-
mine effective relational complexity. If the task entails steps per-
formed serially, the relevant step is the one in which the largest
number of relations is processed (i.e., the peak load). Chunking
and segmentation must be controlled (see sect. 3.4.1). When an-
alysing tasks, it is useful to think of the number of interacting vari-
ables that are processed in parallel in a given step. Features that
remain constant do not contribute to complexity, because they can
be readily chunked.

(3) Test predictions derived from step 2 by manipulating rela-
tional complexity, with other factors controlled. It is necessary to
manipulate the information that must be processed in parallel in
order to make a decision. This sometimes entails preventing ser-
ial processing (an example is given in sect. 6.1.4).

6.1. Complexity and processing load

Our purpose in this section is to show how relational complexity
analysis can be applied to tasks that are already well understood
and for which reasonably well-validated process models exist. We
adopt a “breadth first” approach, with the aim of showing that re-
lational complexity is applicable to a wide range of phenomena in
higher cognition and, therefore, offers worthwhile generality.

6.1.1. Transitive inference. Transitive inference has been shown
to be a ternary relation by the reduction technique described in
section 3.4.3. This is consistent with a number of well-substanti-
ated models (Sternberg 1980; Trabasso 1975) showing that transi-
tive inferences are made by integrating the premise elements into
an ordered triple. For example, the premises “Tom is smarter than
John, John is smarter than Stan” can be integrated into the ternary
relational instance monotonically-smarter(Tom, John, Stan). May-
bery et al. (1986) showed that premise integration, which entails
a ternary relational instance, should impose a higher processing
load than premise coding, which entails binary relational in-
stances, such as smarter-than(Tom, Stan). The middle term can be
ignored once integration has occurred, so generating a conclusion
entails only a binary relational instance smarter(Tom, Stan). Pre-
vious models predicted that processing of negatives (e.g., “John is
not as tall as Tom”) would increase processing load, but these
models had not predicted the processing load of premise integra-
tion because it occurs in every form of the task, and the models
were oriented toward accounting for task differences.

Maybery et al. (1986) tested the prediction that premise inte-
gration would impose a high processing load by using a sentence
verification format for transitive inference with adult participants.
Segmented presentation was used, so the second premise did not
appear until the participant indicated that the first premise had
been encoded. When the participant indicated that the second
premise had been encoded and the premises had been integrated,
a target appeared to which the participant responded by pressing
one of two buttons indicating whether the target was consistent
with the premises. Probe reaction time, saying “beep” to a tone,
was used to assess information processing loads. The control task
required verification of separate premises without integration, for
example, “Tom is smarter than John, Peter is smarter than Stan.”
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Experimental and control tasks were very closely matched in other
respects.

Relational complexity theory predicts that there should be sig-
nificantly longer probe reaction time when the probe occurs while
the second premise is being processed than during processing of
the first premise or the target but that there should be no such ef-
fect with the matched nonintegration control task. Maybery et al.
(1986) found a significant probe position by integration/noninte-
gration interaction of this form and showed that alternative expla-
nations based on response interference and similar processes
could not account for the effects. Processing negatives, previously
thought to impose high demands, imposed less load than premise
integration.

6.1.2. Verifying relations. The prediction that binary relations im-
pose higher processing loads than unary relations is supported by
letter-match data. Posner and Boies (1971) showed that in the let-
ter-match task processing load, as indicated by a probe reaction
time secondary task, was greater when the second letter was pre-
sented. Coding of one letter is equivalent to a unary relation; for
example, letter(c), representing that the stimulus is the letter “c.”
When the second letter is presented it also must be encoded, but
then a binary relation such as same(c, c), or different(c, k), must
be represented. The theory accounts for the higher load observed
in the comparison task, because coding requires a unary relation,
whereas comparison requires a binary relation. Dimensionality
does not preclude other factors, such as memory retrieval, con-
tributing to difficulty, as suggested by the finding that name match
is harder than physical match (Posner & Boies 1971).

6.1.3. The Tower of Hanoi. The Tower of Hanoi (TOH) puzzle is
another task for which there are well-validated process models,
and it is a good example of a task that entails planning, which de-
pends on relational knowledge. TOH comprises three pegs and a
variable number of discs. The discs are placed initially on peg A
with the largest on the bottom, the next largest above it, and so on.
The goal is to move all discs from peg A to peg C, without moving
more than one disc at a time, or placing a larger on a smaller disc.

Complexity in TOH depends on the levels of embedding of the
goal hierarchy, a metric that has been commonly used to assess
complexity (Just et al. 1996). The more difficult moves require
more levels of embedding of subgoals in the goal hierarchy. How-
ever, the goal hierarchy metric can be subsumed under the rela-
tional complexity metric because, as is shown in Table 1, moves
with more subgoals entail relations with more dimensions of com-
plexity. The first and every fourth move thereafter are shown, be-
cause it is only these that require planning (VanLehn 1991).

Consider a two-disc puzzle. To shift disc 2 from A to C, it is nec-
essary first to shift disc 1 from A to B. The main goal is to shift 2
to C (2C), and the subgoal is to shift 1 to B (1B). The goal hierar-
chy therefore is 2C 1B, and has two levels (see Table 1). However,
the task can be expressed as a relation:

Prior[shift(2, C), shift(1, B)]

Shift is a relation, so shifting 2 to C can be expressed as shift(2,
C). Similarly for shifting 1 to B. The essence of the goal hierarchy
is to perform a set of moves in order to perform another move.
This can be expressed as the higher order relation “Prior”, the ar-
guments of which are shift; that is Prior[shift2(—, —),shift1(—,
—)]. As with other relations, complexity is a function of the num-
ber of dimensions or roles to be filled (four in this example), so the
task is prima facie four dimensional.

Now consider the more complex three-disc puzzle. To shift 3 to
C, it is first necessary to shift 2 to B, in order to do which it is nec-
essary to shift 1 to C (Table 1). There are now three levels of goals,
and the corresponding relations are also more complex.

Prior{shift(3, C), Prior[shift (2, B), shift(1, C)]}

There are now six roles, so the task is six dimensional. By simi-
lar argument, the first move on the four-disc puzzle entails four
levels of goals, and can be expressed by the relation:

Prior(shift(4, C), Prior(shift(3, B), {Prior[shift2, C), shift(1,B)]})

This is eight dimensional. Thus number of embedded subgoals
corresponds to relational complexity, as Table 1 shows. Concep-
tual chunking and segmentation can be used to reduce complex-
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Table 1. Tower of Hanoi moves which require planning, showing goal(s) and dimensions

Dimensions

Problem/move Current state Move New state Goal(s)a All New

2 disc
1 12,—,— 1 to B 2,1,— 2C 1B 4 4
3 disc
1 123,—,— 1 to C 23,—,1 3C 2B 1C 6 6
5 —,12, 3 1 to A 1,2,3 2C 1A
4 disc
1 1234,—,— 1 to B 234,1,— 4C 3B 2C 1B 8 8
5 4, 3,12 1 to A 14,3,2 4C 2B 1A 6 4
9 —,123,4 1 to C —,23,14 3C 2A 1C 6 6

13 12,—, 34 1 to B 2,1, 34 2C 1B 4 4
5 disc
1 12345,—,— 1 to C 2345,—,1 5C 4B 3C 2B 1C 8 8
5 45,12,3 1 to A 145,2,3 5C 4B 2C 1A 8 4
9 5,4,123 1 to B 5,14,23 5C 3B 2A 1B 8 6

13 125,34, — 1 to C 25,34,1 5C 2B 1C 6 4
17 —,1234,5 1 to A 1,234,5 4C 3A 2C 1A 8 6
21 3,4,125 1 to B 3,14,25 4C 2A 1B 6 4
25 123,—,45 1 to C 23,—,145 3C 2B 1C 6 4
29 —,12,345 1 to A 1,2,345 2C 1A 4 2

aNew goals are underscored.
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ity, as with other relational tasks. The first move of the three-disc
puzzle can be simplified by chunking discs 1 and 2.

Prior[shift(3, C), shift (1/2, B/C)]

Shift(1/2, B/C) can be unchunked thus.

Prior[shift(2, B), shift(1, C)]

Hence conceptual chunking and segmentation allow the task to
be divided into two four-dimensional subtasks. This captures the
recursive subgoaling strategy that underlies successful perfor-
mance (VanLehn 1991), and a conceptual chunk of this kind is
called a “pyramid.”

Just et al. (1996) have shown that processing resources are re-
lated to the number of new goals that have to be generated for a
move. Planning requires only representation of new goals, so the
relations that correspond to new goals provide a more realistic es-
timate of the dimensionality of a move. These are shown in Table
1 by underscoring the new goals at each step. When number of
goals is reduced, relational complexity is reduced correspondingly.

Our estimate that humans are limited to processing approxi-
mately four dimensions in parallel implies that humans would nor-
mally process no more than one goal and one subgoal in a single
move. That is, they would process one relation of the form
Prior[shift(2, C), shift(1, A)] or Prior[shift(3, C), shift (1/2, B/C)].
This is consistent with protocol information (VanLehn 1991, Ap-
pendix, pp. 42–47). A number of predictions based on this analy-
sis have been tested, with positive results (Loveday 1995).

The relational complexity metric subsumes the metric based on
levels of embedding of a goal hierarchy, because number of levels
of embedding can be mapped directly into relational complexity.
However, relational complexity also applies to tasks that do not en-
tail subgoals, including tasks for which decisions can be made in a
single step; it therefore has greater generality. Just as important,
relational analysis gives insights into the kind of decisions that are
made to construct the goal hierarchy. For example, it enables us
to determine how much information is likely to be processed in
one step when a decision is made that, in order to move 3 to C, 1
and 2 must be moved to B. Notice that the TOH can be performed
without processing steps more complex than a quaternary rela-
tion. Relational complexity also has the advantage that there is ex-
tensive developmental data, to be reviewed in section 6.2, indi-
cating ages at which children can typically process each level of
complexity. This allows predictions to be made about typical suc-
cesses of children on specific decisions within the TOH task.

6.1.4. Sentence comprehension. Sentences with reduced relative
clauses (i.e., without syntactic markers), with a centre-embedded
structure, and without semantic cues, make it difficult for most
English speakers to identify cases without parsing the whole sen-
tence. We assume that participants normally segment sentences
into constituents, which are processed serially as far as possible.
In all our modeling, in this and other contexts, we have found it a
fruitful assumption that participants tend to minimize processing
demand, implying that they never process more information in
parallel than necessary. This type of structure tends to preclude
serial processing, however, thereby preventing the processing load
from being reduced by segmentation. This logic has been used by
Just and Carpenter (1992) and by Henderson (1994) to test pro-
cessing load predictions from the theory of Shastri and Ajjana-
gadde (1993a). An example of such a sentence was mentioned in
section 2.

The boy the girl the man saw met slept. (1)

The subjects and objects of the verbs cannot be identified in-
dividually (Kimball 1973), and such sentences are associated with
high processing loads (Just & Carpenter 1992). Because such sen-
tences tend to inhibit serial processing, they can be used to explore
our capacity to process relations in parallel. The meaning of the
sentence can be expressed in the following propositions.

slept(boy)
met(girl, boy)
saw(man, girl)

There are five roles to be filled, corresponding to subject and ob-
ject of the verbs.

slept(Subject1)
met(Subject2, Object2)
saw(Subject3, Object3)

The sentence can be parsed by applying a set of rules (not neces-
sarily the only possible set) shown in Appendix C, which collec-
tively constrain a unique parsing, shown as P10. Given that serial
processing is effectively inhibited, parsing the sentence amounts
to finding an assignment of noun phrases to roles that fits a set of
constraints that correspond to the rules. There are five roles that
must be filled, so the task is five-dimensional, and beyond the ca-
pacity of most adults, with even exceptional individuals finding it
at the limit of their powers.

Andrews and Halford (1994) tested these predictions using
center-embedded and right-branching sentences, with reversible
content (e.g., “The cow followed the horse”) or nonreversible con-
tent (e.g., “The boy patted the puppy”). Nonreversible sentences
reduce the need for parallel processing (e.g., boy can be assigned
directly to the subject role and puppy to the object role), whereas
in reversible sentences there are no semantic constraints to assist
with identification of subject and object. This again illustrates the
point made in section 3.6 that effects of content can operate
through the complexity of relations that have to be processed in
parallel.

Examples of centre-embedded sentences of each dimensional-
ity, together with the corresponding propositions, follow (centre-
embedded and right-branching structures are not distinguishable
with one-dimensional sentences):

One-dimensional:

“The dog ran.” Ran (dog)

Two-dimensional (ignoring initial clause in parentheses, which
is used to make the center-embedded structure meaningful, was
the same for all two-dimensional sentences, and can be processed
before the remainder of the sentence):

“{The boy saw) the dog that the cat chased.” Chase (cat, dog)

Three-dimensional:

“The emu that the kangaroo passed slept.”
Sleep(emu)
Passed (kangaroo, emu)

Four-dimensional:

“The baker that the fireman introduced the doctor to died.”
Die(baker)
Introduce-to(fireman, doctor, baker)

Five-dimensional:

“The clown that the teacher that the actor liked watched laughed.”
Like(actor, teacher)
Watch (teacher, clown)
Laugh(clown)

Participants rated sentences for ease of comprehension, with con-
tent controlled. Rated difficulty increased monotonically with di-
mensionality, but this was modified by an interaction with surface
form, so dimensionality had a significantly stronger effect with
centre-embedded structure. Dimensionality was also modified by
reversibility, but not as strongly as by center-embedded/right-
branching structure. The difficulty ratings strongly reflect the
number of bindings that had to be processed in parallel. Partici-
pants also indicated whether they found a sentence to be incom-
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prehensible. Only four- and five-dimensional sentences were
judged to be incomprehensible, and 88% of such judgments ap-
plied to five-dimensional sentences. Among these, 96% were ap-
plied to center-embedded sentences. Reversibility did not affect
comprehensibility.

These results suggest that, when serial processing is inhibited
by a center-embedded structure, people have difficulty assigning
words to more than four case roles. The fact that the same limita-
tion does not occur with right-branching sentences supports the
dimensionality interpretation in preference to an alternative ex-
planation in terms of the repeated variable constraint, because this
would apply equally to right-branching sentences.

6.2. Relational complexity and cognitive development

The theory also predicts that children’s performance will be
poorer when relational complexity is greater. Furthermore, if chil-
dren’s processing capacity, or the efficiency with which they use
their available capacity, develops (Case 1985; Halford 1993), they
should be able to represent concepts of higher relational com-
plexity with increasing age.

6.2.1. Infancy. Content-specific representations appear to be pos-
sible in infancy. Baillargeon (1987a; 1987b) has shown that 4–5-
month-olds can represent attributes and position of vanished ob-
jects, at least within the immediate spatiotemporal frame. They
dishabituate when a rotating drawbridge moves through the space
that should have been occupied by a hidden object, suggesting
that they can represent its position in the apparatus in front of
them. They are also sensitive to attributes such as height and com-
pressibility of the vanished object. Such performances are consis-
tent with representation of the object in the immediate spa-
tiotemporal frame. There is no evidence that semantically
interpretable relations are represented, however, or that infer-
ences go beyond the perceptible properties of objects. For exam-
ple, there is no evidence that infants infer that an object must have
been removed if a drawbridge moves through the space that it
should have occupied.

6.2.2. Unary relations. Unary relations appear to be processed at
one year of age, as indicated by category membership (Sugarman
1982; Younger 1993) and by disappearance of the A not-B error.
This paradoxical phenomenon in infant object constancy research
(Wellman et al. 1986) can be interpreted as inability to treat hid-
ing place as a variable, reflecting lack of variable-constant binding
(a unary relation; see sect. 2.3). That is, when an infant has re-
peatedly retrieved an object from hiding place A, then continues
to search for it at A despite having just seen it hidden at B, the in-
fant is treating hiding place as a constant. To treat hiding place as
a variable requires representation of the binding between the vari-
able location and the object, that is, location(object1).

Performance on this task deteriorates as a function of delay be-
tween hiding and retrieval, and this effect is greater for younger
children (Wellman et al. 1986). This would follow from a repre-
sentation with the form of a rank two outer product of vectors rep-
resenting a variable and a constant, if we make the reasonable
assumption that the representation degrades with delay but be-
comes clearer with age, so older children can tolerate more degra-
dation before the representation becomes uninterpretable.

6.2.3. Binary relations. Binary relations such as “larger” and
“more” appear to be well understood by 2 years of age, even
though there may be some confusion as to which relation is re-
ferred to by a particular term (Halford 1982; 1993). Proportional
analogies of the form a:b::c:d are frequently based on binary rela-
tions, and there is evidence that young children can make such
analogies in familiar domains (Goswami 1992). Proportional
analogies do not require processing quaternary relations; they re-
quire processing two binary relational instances belonging to the

same relation. Because the relation is constant to both sides of the
analogy, only a single binary relation need be considered. For ex-
ample, in the analogy “mother is to baby as horse is to what?,”
(mother, baby) identifies the relation mother-of, and mother-of
and mother-of(horse, ?) identifies foal.

This point can be illustrated by comparing a proportion with an
analogy. A proportion a/b 5 c/d is a quaternary relation in that the
relation between each of a, b, c, d, and the other three entities is
defined, whereas this is not true for an analogy. Thus 8:4::27:2 is a
valid analogy in that the same relation “.” holds between 8:4 and
27:2, but it is obviously not a proportion. To illustrate this in an-
other way, we can define proportion as the quaternary relation
proportional(a, b, c, d). Now, knowing four of the elements (i.e.,
any four out of “proportional/nonproportional,” a, b, c, d), we can
determine the fifth, as discussed in section 2.3 (e.g., given 4,8,3,6
we know that this is proportional, but 4,8,3,5 is not proportional).
With the analogy 8:4::27:2, however, this is clearly not possible.
Thus a so-called proportional analogy bears only a superficial re-
semblance to a proportion and they differ markedly in relational
complexity.

6.2.4. Ternary relations. A number of concepts based on ternary
relations have been associated with persistent difficulties for
young children. Transitivity and class inclusion are the best known
examples. Attempts at explanation based on stages of develop-
ment or on flawed methodology leading to false negatives have
provided many insights and have yielded improved assessments,
but they still leave important sources of difficulty unexplained
(Halford 1989; 1992; 1993).

6.2.4.1. Transitivity. Transitivity has been a source of difficulty for
young children, the reasons for which not been wholly explained
(Breslow 1981; Bryant & Trabasso 1971; Halford 1982; 1989;
1992; 1993; Thayer & Collyer 1978; Trabasso 1977). We suggest
that the unrecognized factor is the processing load imposed by
premise integration, which also affects adults (see sect. 6.1.1) but
has a greater effect at younger ages (Halford et al. 1986).

Piaget’s (1950) contention that transitivity is a concrete opera-
tional task was challenged by Bryant and Trabasso (1971), who
trained children in the premises and found above-chance perfor-
mance in 3 – 4 year-olds. Subsequent work, however, suggested
that the children might have been given undue assistance in or-
dering the premise elements (i.e., given premises a , b, b , c,
etc., both children and adults typically integrate the premises into
the ordered set {a, b, c . . . }). The elimination of children who
failed to learn the premises might have biased the results, because
premises would be difficult to learn if they could not be inte-
grated. When these factors were controlled, children under 5
years no longer succeeded (Halford & Kelly 1984; Kallio 1982).
Evidence for transitive inference, in children, adults, or other an-
imals, provides evidence of processing ternary relations only if
participants are not assisted in ordering the premise elements.

More recent work (Pears & Bryant 1990) has shown that if 4-
year-olds are given premises in the form of pairs of colored blocks
stacked one above the other (e.g., red above green, green above
blue, etc.), they can infer the order of blocks in a tower (e.g., red
above blue). Andrews and Halford (in press), however, showed
that 4-year-olds’ performance is marginal at best and is influenced
by relational complexity. This work is consistent with the present
theory and with the empirical work of Halford (1984) in showing
that when children under 5 years are required to consider two bi-
nary relations in a single decision, they have very little success, but
they virtually always succeed when they can process one relation
at a time. Children older than 5 years succeed on both tasks. We
again find evidence that relational complexity affects performance
when other factors are controlled, and the effect is greater with
younger children.

6.2.4.2. Class inclusion. Class inclusion entails undertanding that
a and a’ are included in b (e.g., apples and nonapples are included
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in fruit), and therefore b . a (assuming a and a’ to be nonempty).
As with transitivity, class inclusion was regarded by Piaget (1950)
as concrete operational, and unattainable before 7–8 years of age.
There have been alternative explanations, including misapplica-
tion of the rule that a set is counted only once (Klahr & Wallace
1976; Trabasso et al. 1978; Wilkinson 1976), and misinterpretation
of the question as requiring subclass comparison (Grieve & Gar-
ton 1981; Markman & Seibert 1976; McGarrigle et al. 1978; Ship-
ley 1979). These issues have been discussed elsewhere and, al-
though some sources of false negatives have been discovered, class
inclusion presents a source of difficulty for children under age 5
years that has not been fully explained (Halford 1992; 1993; Hal-
ford & Leitch 1989; Hodkin 1987).

Class inclusion and the part–whole hierarchy are essentially
ternary relations. A class inclusion hierarchy has three compo-
nents, a superordinate class, a subclass, and a complementary class
(e.g., fruit, divided into apples and nonapples). More extended hi-
erarchies are obviously possible, but the concept of inclusion nec-
essarily entails a class and its complement being included in a su-
perordinate class. More extended hierarchies can be handled by
conceptual chunking or segmentation. For example, the inclusion
of apples, bananas, pears, and so on, in “fruit” can be handled by
chunking bananas, pears, and so on, in “nonapples.” When there
are more than two levels, they can be handled by segmenting the
hierarchy into subhierarchies and processing two levels at a time.
The models of both Hummel and Holyoak (1997) and Halford 
et al. (1996; 1997) entail this process. Chunking apples and non-
apples, however, would make the concept of inclusion inacces-
sible. Part–whole hierarchies, which cause difficulties for young
children in arithmetic word problems (Cummins et al. 1988; Hal-
ford 1993; Kintsch & Greeno 1985) are similar and comprise a
whole divided into two complementary parts.

The difficulty children have with these problems supports the
hypothesis that children under 4–5 years have difficulty with
ternary relations. Furthermore, as with transitivity, relational com-
plexity has been shown to interact with age; children under 5 years
succeed when the task requires them to consider only one binary
relation, but not when they have to integrate binary relations,
whereas older children succeed in both cases (Halford & Leitch
1989). The same finding has been made with matrix classification
(Halford 1980).

6.2.4.3. Concept of mind. Two reviews of children’s concept of
mind (Astington 1993; Halford 1993) have noted phenomena that,
although at first appearing anomalous, can be interpreted in terms
of relational complexity. Very young children seem to have diffi-
culty understanding that a person can have two representations of
an object. For example, the perceived colour of an object can be
modified by a coloured filter (the appearance–reality and perspec-
tive-taking tasks), or a person’s knowledge of an object’s where-
abouts can depend on whether he or she knows that it has been
moved since it was last seen (the false-belief task). Based on an ex-
tensive assessment of the literature, Flavell et al. (1990) have 
proposed that young children cannot handle two ways of repre-
senting an object (e.g., as both blue and white), but the authors
have not explained why young children should be limited in this
way. Some recent analyses (Frye et al. 1995; Halford 1993; 1996a)
converge on the same explanation.

The essence of the problem is that children can represent the
relation between a person’s knowledge (which we call percept)
and the properties of an object or situation. This is a binary re-
lation between percept and object attribute. However, they can-
not represent the case when this is conditional on a third vari-
able. Consider, for example, a person who sees an object as white
(without filter) and as blue (with filter). This entails represent-
ing a ternary relation between viewing condition, object, and
percept.

Seen-object2(,condition., ,object-color., ,percept.)

Instances of this relation would be as follows:

Seen-object2(no-filter, object-white, percept-white)
Seen-object2(blue-filter, object-white, percept-blue)

This is a ternary relation between the condition10, the object and
the person’s representation of the object. Young children seem un-
able to do this and seem to represent the relation between an ob-
ject and one percept only. That is, they represent either Seen-ob-
ject1(object-white, percept-white) or Seen-object1(object-blue,
percept-blue).

These are both instances of a binary relation, and either could
be represented alone by a person who could not represent ternary
relations. To represent the fact that a person can see an object in
either of two ways, however, entails conditionalising these rela-
tional instances on a third variable, which is equivalent to inte-
grating the binary relations into a ternary relation. Notice that the
ternary relation is not decomposable in the sense that it is not re-
ducible without remainder to instances of the binary relation
Seen-object1, because this relation does not represent the fact
that alternative ways of viewing the same object are conditional on
the viewing condition.

The same limitation would occur with false belief, which entails
representing the relation between an object and two different rep-
resentations of its location, one based on knowledge of where it is
and the other based on a false belief about its location. For exam-
ple, a person sees an object placed in a box, then leaves, and the
object is shifted to a basket. Young children have difficulty under-
standing that the person will believe the object to be in the box
though it is really in the basket (Wimmer & Perner 1983). This can
be expressed as the ternary relation

Find-object(,known-event.,,actual-location., ,believed-
location.)

instances of which are as follows:

Find-object(,saw-moved., ,obj-in-basket., ,believe-obj-
in-basket.)

Find-object(,not-seen-moved., ,obj-in-basket., ,believe-
obj-in-box.).

The somewhat paradoxical difficulty that young children have
with appearance–reality, perspective-taking, and false belief can
be interpreted in these terms: they readily understand any of the
component binary relations, yet they cannot “put the situation to-
gether” and integrate two object–percept relations into a single
representation (note that this is analogous to transitivity, which en-
tails integrating two binary-relational premises into a ternary rela-
tion; see sect. 6.1.1). Young children’s apparently anomalous per-
formance in the concept-of-mind tasks is perfectly consistent with
their performance on other tasks that entail ternary relations.
There is evidence that processing capacity is a factor in children’s
concept of mind (Davis & Pratt 1995; Frye et al. 1995), but the
predictions offer scope for more empirical work.

6.2.4.4. Contrary evidence. The most recent, and probably
strongest, challenge to the proposition that children under 5 years
have difficulty with ternary relations comes from Goswami (1995).
In experiment 1 she presented 3- and 4-year-old children with two
sets of three stacking cups. The experimenter indicated a cup
(smallest, middle, or largest) in one set, and the child had to iden-
tify the corresponding cup in the other set (smallest, middle, or
largest, respectively). Performance was high and appears to pro-
vide impressive evidence that 3–4-year-olds can process ternary
relations, but there was little attempt to analyze the processes by
which children made their discriminations.

We can perform at least a first analysis using the reported sizes
of the cups, as shown in Table 2. As with Goswami’s report, the 12
cup sizes are shown as the values 1–12, the four sets used being:
1, 5, 9; 2, 6, 10, and so on. Table 2 indicates three types of cases.
The first is where the corresponding cup can be selected on the
basis of absolute size (indicated by a “1” in Table 2). For example,
if the experimenter’s set is 1, 5, 9, and the child’s set is 2, 6, 10, and
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if the experimenter indicates cup 5, the correct choice for the
child is cup 6, because it is in the corresponding ordinal position
(middle). However, cup 6 is also closest to cup 5 in absolute size.
Hence a child who paid no attention to binary or ternary relations,
and judged on the basis of absolute size (a unary relation), would
be likely to choose cup 6, which is the correct answer. This is true
in every case where a “1” is entered in Table 2. The critical case is
Goswami’s different-size cup group in the different spatial posi-
tion condition, because it is only here that cups were neither iden-
tical nor in the same spatial position in the two sets. This case cor-
responds to the off-diagonal entries in Table 2. There are 24 of 36
cases, or 66.67%, in which the correct cup can be determined on
the basis of absolute size. There are a further eight cases, or
22.22%, in which absolute size gives two equally likely answers,
one of which is correct (indicated by “.5” in Table 2). These would
be expected to yield a further 11.11% correct answers. Thus the
expected performance, if children attend only to absolute size
without processing any relations of higher rank than unary, is 78%
correct. Furthermore, some additional correct answers could be
obtained by processing binary relations (to be discussed below).
Goswami reports 86% success for 4-year-olds and 70% success for
3-year-olds (averaging over the analogy/no-analogy treatment,
which is not relevant to our present argument). Thus these su-
perficially impressive performances provide no evidence for the
processing of ternary relations by 3-year-olds and doubtful evi-
dence for 4-year-olds.

In experiment 2 Goswami had 3- and 4-year-old children map
fractions from one set to another. For example, given three glasses
of lemonade, one-quarter full, one-half full, and full, the child
would be asked to see the correspondence between one-half glass
of lemonade and one-half box of chocolates. In the different spa-
tial position condition, the performance of 4-year-olds was 87%
correct and that of 3-year-olds 54%. Absolute size matching is not
possible in this experiment, but it is necessary to ask what success
can be achieved using binary relations. Two elements in an or-
dered set of three can be chunked, reducing the task to the binary
relation larger/smaller; for example, one-quarter might be labeled
“smaller,” whereas one-half and full are chunked as “larger” (this
is an example of the kind of chunking presented in Fig. 1E). If the
correct item is one-quarter, (p 5 .33) this leads to 100% correct.
If the correct item is either one-half or full (p 5 .67), it leads to
50%. The overall expected percentage correct is therefore .33 1
.67 3 .50 5 .67. The three-year olds are clearly not above the bi-
nary-relation baseline, and no test was made to see whether 4-
year-olds were significantly above this baseline.

Experiment 3 entailed mapping between levels of loudness,
pitch, hardness, height, and so on, which did not permit use of ab-
solute cues. There is the possibility of chunking to binary relations
as discussed above, but we will not pursue that issue here. The 4-
year-olds were again successful but, in both experiments 2 and 3,
the mean age of the 4-year-olds was 4 years 11 months, range
4.8–5.1. No data for 3-year-olds are reported on this task, so the

only evidence for mapping ternary relations is obtained from chil-
dren who are at, or very close to, 5 years old. The data actually sup-
port the proposition that ternary relations are first processed at a
median age of 5 years.

6.2.4.5. Summary of ternary relations evidence. The fundamen-
tal problem here is that cognitive development research must take
account of actual cognitive processes to be theoretically meaning-
ful (Halford 1982; 1989; 1993; Siegler 1981). The more important
evidence however comes from those studies in which relational
complexity has been varied while other factors are held constant.
It appears that tasks entailing ternary relations are consistently
found to cause difficulty for young children, even though the chil-
dren readily process binary relations. This suggests that relational
complexity is an important factor in children’s cognitive perfor-
mance, and it offers a solution to the mystery of why these tasks
have seemed unaccountably difficult.

6.2.5. Quaternary relations. Proportion (see sect. 2.3) and the 
balance scale entail quaternary relations, because they entail rela-
tions between four variables, and both have been found to be dif-
ficult for young children, but there is more extensive research on
the balance scale.

6.2.5.1. The balance scale. The balance scale entails the quater-
nary relation balance-state(Wl Dl ,Wr Dr). The task is difficult for
children under about 11 years old, and they tend to use lower rank
rules, but even adults rarely use the cross-products rule without
specific instruction (Siegler 1981; Surber & Gzesh 1984). The task
can be segmented by, for example, computing the moments on
each side and then comparing them to see which side will go down
or whether the beam will balance: Wl 3 Dl 5 Ml; Wr 3 Dr 5 Mr.
Each of these steps requires processing a ternary relation. The
comparisons entail the rules Ml 5 Mr r balance, Ml . Mr r left
side down, and Ml , Mr r right side down. Each is a comparison
of two values and is a binary relation. The task can hence be per-
formed by processing ternary relations one at a time. However,
planning this strategy means being able to represent the fact that
the moments are determined by weight and distance on each side
(see sect. 2.2.12). This entails representing the ternary relation re-
lation balance-state(Wl Dl , Wr Dr).

6.2.5.2. Neural net model of balance scale. McClelland (1995)
has shown that a three-layered net (with input, hidden, and out-
put layers of units) can be trained to indicate whether a beam will
balance, given weight and distance on left and right as input. The
model accounts for a number of important empirical observations
that challenge earlier theories of children’s balance scale perfor-
mance. However this model does not fully represent the principle
of the balance scale, and the particular way in which it differs from
the models discussed in section 4 is instructive. The fundamental
difference is that McClelland’s model does not incorporate the
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Table 2. Mapping ordered triples, based on absolute sizea

Experimenter’s set

1 5 9 2 6 10 3 7 11 4 8 12

Children’s set
1 5 9 1 1 1 1 1 1 .5 .5 1 0 0 1
2 6 10 1 1 1 1 1 1 1 1 1 .5 .5 1
3 7 11 1 .5 .5 1 1 1 1 1 1 1 1 1
4 8 12 1 0 0 1 .5 .5 1 1 1 1 1 1

a1 5 absolute size gives correct answer; .5 5 absolute size gives two answers, one of which is cor-
rect; 0 5 absolute size gives incorrect answer.
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omnidirectional access property (see sects. 2.2.6 and 4.2.6). Weight
and distance on left and right must always be inputs, and only 
one output, balance/left–down/right–down can be calculated. 
An implementation of a quaternary relation that met the specifi-
cations given in section 2.2.6 can take any subset of N 2 1 vari-
ables as input and generate the Nth variable as output. For exam-
ple, given weight and distance on the left, distance on the right,
and the fact that the beam is balanced, the implementation can
decide what weight must be on the right. This is realistic because
such tests are used in assessment (see, e.g., Surber & Gzesh 1984)
and because we would be unwilling to attribute understanding to
a child who could compute only one type of output (such as
whether the beam would balance) but could say nothing about (for
example) which weights and distances were required to produce
a given state of balance or imbalance. Thus, althouth McClelland’s
three-layered net efficiently computes a specific function of four
variables, it does not meet the criteria for relational knowledge.

6.3. Capacity development redefined

The question of whether processing capacity changes with age can
be reformulated by proposing that relational complexity of repre-
sentations would increase because representations become dif-
ferentiated into more vectors, with appropriate reconnection, as
was noted in section 4.2.4. This would not necessarily change the
total amount of information that can be processed, but it would
increase the complexity of the relations that could be represented.

6.3.1. Predictions in advance. It has not been common practice
for information processing theorists to publish predictions of de-
velopmental performance prior to obtaining data. However, if the
conceptual basis for capacity limitations advanced in this paper is
more objective than previous proposals, it should be possible to do
this. Halford (1993, Ch. 9) made a number of such predictions.
One was that 2- and 3-year-olds should be able to make balance
scale judgments based on weight or distance, but not on both. The
reason is that comparison of weights (or distances) on the two
sides of the balance entails a binary relation, and norms indicate
that this is possible at age 2 years (see sect. 6.2.3). By contrast,
Siegler (1981) found no evidence of weight or distance rules be-
fore approximately age 5 years, and Case (1985; 1992) predicts
that children will not be able to judge which side will go down un-
til age 3.5–4 years. Weight is likely to be easier initially, because
children have more experience with the downward force of
weights. With appropriate experience, however, children should
be able to make either weight or distance comparisons. This pre-
diction was confirmed by Halford and Dalton (1995).

A further prediction was that taking account of weight and dis-
tance requires integration of binary relations, which is equivalent
to at least a ternary relation, depending on the basis of the inte-
gration (see Halford 1993, pp. 413–422 for details of the predic-
tion). Hence the ability to consider both weight and distance in a
single judgment should develop at a median age of 5 years, and
should be predicted by performance on other measures of ternary
relations. This was tested by Harper (1996) using three tasks that
require ternary relations processing but are from domains other
than balance (cardinality, class inclusion, transitivity). Both pre-
dictions were confirmed.

6.3.2. Capacity and cognitive development. Halford (1993) has
suggested that the observations that gave rise to cognitive devel-
opmental stage theory (Piaget 1950) might be attributable to pro-
gressive differentiation of representations with age. In very broad
terms, Piaget’s secondary circular reactions, with minimal repre-
sentation, correspond to single vector representations, precon-
ceptual reasoning corresponds to unary relations (a binding of two
vectors), intuitive reasoning to binary relations (a binding of three
vectors), concrete operational reasoning to ternary relations (a
binding of four vectors), and formal operational reasoning to qua-
ternary relations (a binding of five vectors).

Tasks that have been considered to belong to a particular stage
tend to have a common level of relational complexity. For exam-
ple, transitivity and class-inclusion, which are considered to be
concrete operational, entail ternary relations, as was noted in sec-
tion 6.2.4. Each increase in complexity of relations that can be
processed in parallel would allow processing of a new level of
tasks. However, the fact that the theory can explain some phe-
nomena that have been attributed to stages does not mean that all
aspects of stage theory are automatically entailed. Because there
is considerable potential for misinterpretation on this point, we
will amplify implications for cognitive development theory.

It is a common assumption that theories of cognitive develop-
ment that assign a role to capacity ipso facto have no role for ex-
perience. However, nothing in this theory implies that attaining a
given level of processing capacity automatically furnishes the
mind with all concepts at that level. Defining a role for capacity in
no way diminishes the importance of learning, induction, catego-
rization, and other acquisition processes. We have proposed that
development depends on the interaction of processing capacity
and acquisition processes, so that what is acquired depends on
both experience and capacity (Halford 1971; 1980; 1995; Halford
& Fullerton 1970; Halford & Wilson 1980). Acquisition of transi-
tive inference, for example, depends on experience with relations,
but children who can process ternary relations will develop strate-
gies that are more powerful and comprehensive than those of
children who are restricted to processing one binary relation at a
time. This effect has been simulated in the model of Halford et al.
(1995).

Another common misconception is that capacity theories em-
phasize what children cannot do and imply insurmountable barri-
ers to performance. On the contrary, good complexity analyses can
actually lead to previously unrecognized capabilities, as our work
on the balance scale discussed in section 6.3.1 illustrates. Also, the
discussion of chunking and segmentation in section 3.4 shows that
capacity limitations do not constitute barriers to performance. Ul-
timately, capacity theories are about processes rather than barri-
ers. Saying that a particular group of participants process relations
of a given complexity in parallel implies that the task must be
chunked or segmented to keep within this capacity. It therefore
leads to predictions about the kinds of strategies that must be
used. Thus saying that 3-year-olds process binary relations in par-
allel implies that their strategies will differ from those of 6-year-
olds, who process ternary relations in parallel. It does not imply
that they can never process transitive inferences, or other ternary
relations tasks, any more than evidence that adults process qua-
ternary relations in parallel implies that we can never understand
force, which ultimately depends on more than four dimensions (as
discussed in sect. 3.4.1). Capacity limitations imply only inability
to perform when chunking and segmentation are inhibited, as
with center-embedded sentences discussed in section 6.1.4. Ca-
pacity theory points the way to questions that need to be investi-
gated; for example, what chunking and serial processing abilities
do children of a given age and background have in a particular do-
main, and how does this influence their performance? We can in-
vestigate new questions and reexamine old questions with this 
orientation.

The influence of relational complexity on cognitive develop-
ment does not imply that development is discontinuous, and it is
important that relational complexity theory not be confused with
traditional stage theory in this respect. Processing capacity is an
enabling factor, but development is experience-driven and con-
tinuous, so the acquisition of concepts at a given level will occur
gradually after capacity becomes sufficient. There is an unlimited
number of concepts belonging to a given level of complexity, and
acquisition of each will be a function of experience in the relevant
domain, with what is learned being influenced by capacity. Fur-
thermore, the acquisition of less complex concepts does not cease
once capacity increases to a higher level of dimensionality be-
cause there is an unlimited number of concepts at all levels, so
when a child becomes capable of processing, say, ternary relations,

Halford et al.: Relational complexity

BEHAVIORAL AND BRAIN SCIENCES (1998) 21:6 827
https://doi.org/10.1017/S0140525X98231761 Published online by Cambridge University Press

https://doi.org/10.1017/S0140525X98231761


he or she does not cease acquiring concepts based on unary or bi-
nary relations.

The ages at which each level of relational complexity is typically
attained should be seen as medians, with the proportion of chil-
dren who attain a given level increasing gradually, in accordance
with a biological growth function. The specific ages are deter-
mined empirically and are essentially normative. Thus, if it could
be shown that, say, 3-year-olds could represent ternary relations,
this would revise the age norms, but it would not in itself invali-
date the theory.

There should be correspondence between the attainment of
different concepts of the same level of complexity, provided that
domain knowledge is adequate. For example, transitivity, class in-
clusion, and other concepts requiring ternary relations, about
which there is plenty of opportunity to learn, should have the same
acquisition function, a prediction confirmed by Andrews (1996).
Capacity to process relations of a given level of complexity should
predict ability to acquire concepts at that level. Thus, the training
asymptotes for concepts at a given level of complexity are the best
data for testing the theory (this methodology has been used, for
example, by Halford 1980 and Halford & Leitch 1989).

The theory would be invalidated if relational complexity did not
predict processing demand. This can be tested in many ways, how-
ever, including some that are not developmental. Research dis-
cussed in section 6.1 illustrates how relational complexity can be
manipulated precisely, while other factors are controlled, result-
ing in clearcut effects on processing demand as indicated by ob-
jective indicators such as concurrent probe reaction time. There
is potential for using the same methodology with brain imaging
techniques.

The cognitive developmental aspect of relational complexity
grew out of levels of representational structure defined by Halford
and Wilson (1980) and is consistent with neo-Piagetian theories
(Case 1985; 1992; Chapman 1987; Pascual-Leone 1970). Consen-
sus exists here that the growth of processing capacity is an enabling
factor that has an explanatory role in cognitive development, with
the important caveat that it is not the only factor, as noted above.
The relational complexity metric might refine theories of pro-
cessing capacity by providing a clearer mathematical definition,
which should facilitate objective task analyses. It also opens up
possibilities for computational modeling of growth in capacity, by
differentiating neural nets into more dimensions, with consequent
increases in the complexity of interactions.

Although no other cognitive developmental theory has used the
metric proposed here, there is a broad parallel to the major stages
defined by Case (1985; 1992), Fischer (1980), and Piaget (1950);
the M-space levels defined by Pascual-Leone (1970); and the
number of representational schemes defined by Chapman (1987),
but there are also many differences. We will focus on the theory
of Case (1985; 1992), who proposes that cognitive development
progresses through four major stages, the sensorimotor, relational,
dimensional, and vectorial. There are four substages – operational
consolidation (preliminary), operational coordination, bifocal co-
ordination, and elaborated coordination – which recur in each ma-
jor stage. The executive processing load (equivalent to demand) is
defined as OP 1 S. OP is specific to the major stage, so there are
OPsensorimotor, OPrelational, OPdimensional, and OPvectorial, but no
quantitative value is specified for OP. One role of the present the-
ory is to fill that gap.

The substages are quantified by the demands they make on
short-term memory:

The number of goals children can maintain (and hence the
complexity of problem they can solve) is determined by the size of
their short-term memory for the particular class of operations in
question. . . . This short-term storage space (STSS) can hold 1, 2,
3, and 4 items at the preliminary, first, second, and third substage
of each period, respectively. (Case 1992, p. 32)

Notice that processing capacity, defined in terms of number of
goals, ultimately depends on short-term storage capacity, rather
than being defined in terms of information that is being processed,

as in the relational complexity metric. More important, this pro-
gression described by Case (1985; 1992) occurs recursively in each
of the major stages, so S is maximal when the highest substage is
reached, and minimal when transition is made to the next major
stage. This means that a task imposing an executive processing
load of 4 when performed at, say, the relational stage imposes a
load of 1 when performed at the dimensional stage. The metric
applies to progression within each major stage but does not tran-
scend major stages, so it is not possible to compare, for example,
the operational coordination substage of the relational stage and
the bifocal coordination substage of the vectorial stage using a
common metric (the values would be 2 and 3, respectively, but
they are on different scales). Task demands are therefore assessed
according to the major stages to which they are considered to be-
long.

However, the relational complexity metric proposed here is not
stage dependent in this way. It applies throughout the age range
and is also applicable to nonhuman primates (to be discussed in
sect. 6.4). If participants of any age perform the same task, en-
coded in the same way and using the same strategy, task demand
is the same. Processing demand may well change as expertise is
acquired, because rules can be discovered that simplify decision
making. For example, demand might be reduced in the TOH once
participants realize that the difficult decisions need only be made
on the first and every fourth step thereafter, but this can be taken
into account in the analysis of processing demands. Demand can
vary with coding (e.g., if dimensions are chunked) or as a function
of strategy (e.g., if the task is segmented into more steps, requir-
ing less information to be processed in parallel), but these factors
are not stage dependent. A well-validated model of task perfor-
mance allows processing demand to be analyzed objectively with-
out assignment to substages.

Case (1985) also proposes that total processing space is con-
stant across ages, and is flexibly allocated to operating space plus
short-term storage space, but the expected trade-off between pro-
cessing and storage does not occur (Halford et al. 1994). Perhaps
the most important difference between the present theory and
that of both Case (1985) and Pascual-Leone (1970) is that in the
present theory processing capacity is not only a matter of space
availability but is linked to the way vectors representing dimen-
sions of a task are connected together. As Figures 1 and 2 illus-
trate, processing capacity ultimately depends on connections be-
tween related entities.

This formulation also differs from Piagetian and neo-Piagetian
theories in that it does not postulate substages. This is not an over-
sight but is a natural consequence of the way the theory is formu-
lated. As was noted above, development is continuous and de-
pends on the growth of processing capacity as well as on
acquisition processes. Substages may be used for descriptive con-
venience, but they are no more necessary to account for develop-
ment than they are to account for, say, acquisition of expertise in
adulthood. This should not be misinterpreted to mean that per-
formance does not change over short periods of time. The way in
which a task such as the TOH is performed might well change rad-
ically, even over a few trials, because of changes in the encoding
of subproblems (e.g., chunking into pyramids, as noted in sect.
6.1.3). Acquisition mechanisms, including learning, induction,
and categorization, can operate over a short or a long time frame
and are modified by processing capacity only insofar as it operates
as an enabling factor.

6.4. Relational complexity and other primates

Although there is little doubt that nonhuman mammals have rep-
resentations (Gallistel 1990), only the primates appear to be able
to process explicit relational representations that meet the crite-
ria outlined in section 2.2. We will briefly review this evidence.

Premack (1983) reports that tasks requiring symbolic repre-
sentations differentiate chimpanzees and monkeys from lower
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mammals, whereas tasks based on perceptible similarity, or on in-
ferences about spatial location, do not. We propose that relational
representations subsume symbolic processes, because of the
properties of relational knowledge given in section 2.2. One of
Premack’s procedures requires chimpanzees (Pan troglodytes) to
identify the relation, given a pair of arguments, or to identify an
argument, given the relation and the other argument (omnidirec-
tional access as defined in sect. 2.2.6). In the former case, for ex-
ample, chimpanzees would be shown two objects and asked to
produce a symbol indicating whether the objects were the same
or different. They also seemed to know that a knife corresponds
to the relation between an intact and a cut object, a key to the re-
lation between a closed and an open lock, and so on. These tasks
seem to require recognition of a symbol for a binary relation; a
knife is a symbol for the relation between an intact and a cut ob-
ject (the knife functions as a relation symbol; see sect. 2.2.4 and
sect. 4.2.3).

Another task used by Premack has been analyzed in terms of
relational complexity by Holyoak and Thagard (1995). Chim-
panzees were required to choose a pair of objects that had the
same relation as a sample pair. We will call this the “relational-
match-to-sample task.” In one variant, the sample comprised two
objects that were the same (XX). The participant had to choose an-
other pair of objects that were the same (YY) in preference to a
pair that were different (CD). The task is a form of analogical rea-
soning, as Premack (1983) points out, and requires a representa-
tion of the relation between elements in the pair. The sample is
the base, and the comparison pair is the target. Following Holyoak
and Thagard (1995), we can code the sample as O-same(X, X),
where “O-same” means “same object.” The correct comparison
(target) object is represented as O-same(Y, Y). In the alternative
task, the base would be coded as O-different(X, Y) and the correct
target as O-different(C, D). Only chimpanzees, and only those
that had been language trained, could perform this task. It seems
reasonable to conclude that chimpanzees can process binary rela-
tions, albeit only after extensive experience with symbols. How-
ever, there appears to be no evidence that analogies based on bi-
nary relations can be made by lower animals.

The one-object match-to-sample task entails presenting a sam-
ple, X, and rewarding animals for choosing the comparison object
that is the same as the sample, X, in preference to the one that 
is different, Y. Chimpanzees and some monkeys can generalize 
the performance beyond examples on which they have been
trained. This requires responding to an attribute or a category la-
bel, which can be coded as a unary relation (as shown in sect. 2.3).
For example, if the sample was an apple, this can be represented
as apple(object1). If the comparison objects were an apple and an
orange, they would be represented as apple(object2), orange(ob-
ject3). The one-object match-to-sample task is an analogy based
on a unary relation: it is a mapping from apple(object1) to ap-
ple(object2). Some species of monkeys thus appear to process
unary relations.

6.5. Role of frontal lobes

In a review of the literature, Robin and Holyoak (1995) propose
that the prefrontal cortex functions as an overall system for con-
structing and maintaining relational representations that guide
thought and action. They argue that many of the functions im-
paired in those with frontal lobe lesions, including planning and
control, entail two- and three-dimensional representations, with
dynamic binding. According to this hypothesis, the species and
age differentiations discussed earlier would be attributed to the
fact that the frontal lobes evolve later and are slower to myelinate.
This formulation, together with associated empirical work, allows
relational complexity of tasks to be manipulated while other fac-
tors are controlled. These techniques have reached high levels of
refinement (see, e.g., Andrews 1996) and are now ready to be used
with brain imaging techniques. It would be predicted that tasks
requiring more complex relations to be processed in parallel

would produce more activation in the prefrontal cortex, with other
factors controlled.

7. Conclusions 

The empirical database in cognitive psychology and the cur-
rent neural net models of relational knowledge indicate that
processing capacity is limited not by amount of information
or number of items per se but by the number of indepen-
dent dimensions that can be related in parallel. Relational
complexity, defined as the number of independent sources
of variation that are related, constitutes a major factor un-
derlying the difficulty of higher cognitive processes. It is re-
lated to processing load, to differences between higher an-
imal species, and to age in children. The potential exists to
explain processing loads by modeling neural net represen-
tations of relations.

This theory provides a way of blending serial and paral-
lel processes, with serial processing being necessitated by
limitations in the complexity of structures that can be
processed in parallel. Empirical data and contemporary
neural net models of relational knowledge indicate that the
most complex structure that can be processed in parallel,
and without cross talk, is equivalent to one quaternary rela-
tion. For more complex representations, either the repre-
sentation must be chunked into fewer components (with
the result that some of the relational structure becomes
temporarily inaccessible) or the task must be segmented
into smaller components that are processed serially, or
both. Thus, the need for serial processing strategies can be
seen as a consequence of processing capacity limitations.

The theory implies that the traditional approach of defin-
ing limitations in terms of items is inappropriate for pro-
cessing capacity, although some common ground is found
with Miller’s (1956) suggestion that the limit is defined by
the number of independent components, rather than the
amount of information. The concept of a chunk is retained
but extended to include conceptual chunks, which repre-
sent compressed relational instances. The definition of ca-
pacity in terms of relational complexity, and the exploration
of possible neural net implementations, has provided a new
way of looking at many issues, one that integrates a wide-
ranging database. Regarding cognitive development, this
means that the issue is no longer simply whether capacity
changes with age but whether representations become dif-
ferentiated into higher dimensionalities, so that more com-
plex relations can be processed.

APPENDIX A. RELATIONS DERIVED BY
DECOMPOSING HIGHER RANK RELATIONS
We will consider the example monotonically-larger(a, b, c) dis-
cussed in section 2.2.9. Let us abbreviate monotonically-larger to
ML. It is interesting to look at the derived relations (projection re-
lations) ML1, ML2, and ML3. ML1(b, c) means that b . c and
there is some item x such that x . b. Similarly, ML2(a, c) means
that a . c and there is some item x such that a . x . c. Thus, each
MLi is a subrelation of the relation . (greater-than). The ternary
relation induces a number of binary relations, and in this case
ML(a, b, c) can be reconstructed from the induced relations in the
sense that ML(a, b, c) ; ML1(b, c) and ML2(a, c) and ML3(a, b).
By contrast, the ternary relation R(x, y, z) ; x . yz, where x, y, and
z are positive rational numbers, is not reconstructable; each of the
induced relations is the “trivial relation”; for example, for each pair
of numbers y and z, there exists an x such that x . yz (for exam-
ple, yz 1 1). Thus, R1(y, z) is true for all y and z, and the same is
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true for R2 and R3. R is not effectively decomposable, basically be-
cause of the presence of the binary operation yz.

APPENDIX B. RETRIEVAL FROM TENSOR
PRODUCT REPRESENTATION OF
SYMBOL – ARGUMENT – ARGUMENT BINDINGS
The outer product set of three vectors u, v, w, is a multidimensional
object like a generalized matrix with three subscripts i, j, k. The (i,
j, k)-th entry in the outer product is defined to be the product of
the corresponding entries in each vector: Tijk 5 uivjwk. This defi-
nition generalizes in a natural way to as many vectors as required.

Regarding generalized inner products, for a tensor T of a given
rank, a number of retrieval operations can be defined. For exam-
ple, with a rank four tensor T 5 Tpqrs [storing relational instances
of the form r(a1, a2, a3), say], one may wish to:

(0) Check k the validity of a particular relational instance r(a,
b, c);

(1) find the Xs such that r(X, a2, a3) is stored in the tensor;
(2) find the Xs such that r(a1, X, a3) is stored in the tensor;
(3) find the Xs such that r(a1, a2, X) is stored in the tensor; and
(4) find the Xs such that X(a1, a2, a3) is stored in the tensor.
Other retrievals are possible, such as finding the pairs X,Y such

that r(X, Y, a3) is stored in the tensor, but we shall restrict ourselves
to modes 0–4 here. Each of the five operations required is a kind
of generalized inner product. For convenience, let us define no-
tation that distinguishes between the five kinds of generalized in-
ner product.

(0) vr J va1J va2 J va3 ? T checks validity
(1) vr J _ J va2 J va3 ? T retrieves a1
(2) vr J va1 J _ J va3 ? T retrieves a2
(3) vr J va1 J va2 J _ ? T retrieves a3
(4) _ J va1 J va2 J va3 ? T retrieves r
Now we give the computation required for each kind of re-

trieval. Let rp signify the pth component of the vector vr represent-
ing r, and let (a1)q, (a2)r, and (a3)s signify, respectively, the qth, rth,
and sth components of the vectors va1, va2, and va3 representing
a1, a2, and a3.

(0) Let D 5 Spqrs rp(a1)q(a2)r(a3)sTpqrs. If D 5 1, then r(a1, a2,
a3) is stored in T. Otherwise D 5 0, and r(a1, a2, a3) is not stored
in T. For 1 – 4, let v be the vector representing the missing con-
cept X, e.g., a1 in operation 1.

(1) vq 5 Sprsrp(a2)r(a3)sTpqrs
(2) vr 5 Spqsrp(a1)q(a3)sTpqrs
(3) vs 5 Spqrrp(a1)q(a2)rTpqrs
(4) vp 5 Sqrs(a1)q(a2)r(a3)sTpqrs
Similar operations can be specified for tensors of lower and

higher ranks. For rank two, the operations reduce to matrix pre-
and/or post-multiplication by vector(s).

It might be useful to spell out the details of retrievals for a set of
binary operations represented in a rank three tensor product space,
as another example. We assume a rank three tensor Tijk [ VP J
V1 J V2 and consider the three possible “directions” of access: (1)
We know the two arguments, represented by vectors u [ V1 and v
[ V2, and we want to know the relation symbol(s) p [ VP such that
p J u J v, that is, p(u, v), is a fact “known to the tensor”; (2) we
know p and u, and we want to find the v for which p(u, v) is known;
(3) we know p and v, and we want to find out the u for which p(u,
v) is known. In fact, SjSkTijkujvk is the answer to (1), in the sense
that this expression is a vector (subscripted by i) that is the sum of
all the vectors representing symbols p such that p(u, v) is known.
Similarly, SiSjTijkpiuj is the answer to (2), and SiSkTijkpivk is the
answer to (3). Because the value of any argument can be computed
given the values of all the other arguments, variations in any di-
mension as a function of the others can be computed.

APPENDIX C. PARSING OF 
CENTRE-EMBEDDED SENTENCES
The decision process for parsing the sentence The boy the girl the
man saw met slept is shown in Figure 5. The rules used are spec-

ified below.
Combinatorial rules:
1. Subjects of distinct verbs must be distinct.
2. Objects of distinct verbs must be distinct.
Combinatorial/grammatical rule:
3. A single noun phrase cannot be both the subject and the ob-
ject of the same verb.
Case/grammatical rules:
4. NP ? TV r S\NPOBJ: SUBJ(TV) 5 NP.
5. NP1 ? S\NPOBJ r NP2: OBJ[VERB(S\NPOBJ)] 5 NP1

.

6. TV ? NP r VP: OBJ(TV) 5 NP; NP ? VP r S.
7. NP ? IV r S: SUBJ(IV) 5 NP.

In the case/grammatical rules, TV signifies transitive verb, and IV
signifies intransitive verb. The rules are context-free rules written
back to front, augmented with case assignments. Thus rule 5 could
be read: “If you find an NP1 (noun phrase) followed by an
S\NPOBJ (sentence with omitted object NP), then you have found
a (higher level) noun phrase NP2: Set the object slot of the verb
in the S\NPOBJ to be the noun phrase NP1.

The tree at the top in Figure 5 shows the combinatorial choices
for analysis of the sentence The boy the girl the man saw met slept.
Subject to rules 1–3, there are 18 combinatorial possibilities, la-
beled P1–P18.Levels are shown at right; the 3-way split at level A
shows the three-way choice of subject for the verb slept.

The split at level B for the subject of met is 2-way, because rule
1 eliminates one of the possibilities; for example, in the leftmost
subtree at level B, the SUBJ cannot be man because man has al-
ready been used as the subject of slept. At level C, similarly, there
is only one choice in each case for the subject of saw.

At level D, insofar as the subject of met has already been cho-
sen, because of rule 3, there are only two remaining choices for
the object of met. At level E, when choosing the object of saw, the
NP both must not have been chosen as the object of met (rule 2)
and must not have been chosen as the subject of saw (rule 3). The
intersection of these possibilities is sometimes just one NP, some-
times two. For example, with P16, OBJ(saw) cannot be girl be-
cause OBJ(met) is girl, and it cannot be man because SUBJ(saw)
5 man. However, with P17, P18, SUBJ(saw) 5 OBJ(met) 5 man,
so both girl and boy are possible for OBJ(saw).

Now, the case/grammatical rules.
Apply rule 4 to the man saw r SUBJ(saw) 5 man [possibilities

satisfying this: P10, P11, P12, P16, P17, P18].
Apply rule 5 to the girl the man saw r OBJ(saw) 5 girl [possi-

bilities: P10, P12, P17].
Apply rule 5 to the boy the girl the man saw met r OBJ(met)

5 boy [possibility: P10].
Apply rule 7 to the boy the girl the man saw met r SUBJ(slept)

5 boy [possibility: P10].
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Rule 6 is not used in this example sentence, but would be used in
The boy the girl met hit Tom.
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NOTES
1. More precisely, “x:dog(x) is bigger than y:cat(y)” has no truth

value because of the variables present. However, the correspond-
ing family of propositions referring to particular dogs and cats will
be true in some cases (presumably most cases) and false in others,
as when x is a Chihuahua and y is a decent-sized cat.

2. Note that the structural correspondence principle does not
imply that the person in the lover role must always be first in the
expression, but it does mean that entities in a given role must al-
ways be in the same position relative to other roles. Thus, if “John
loves Mary” is represented by loves(John, Mary) then “Peter loves
Angela” must be represented by loves(Peter, Angela), and so on.

3. A dimension, A, is independent of another dimension, B, if,
when classifying entities according to their values on dimensions
A and B, knowing the value of an entity according to dimension A
does not always determine the value of the entity according to di-
mension B.

4. This is true even though their significance could not be de-
termined.

5. Actually the problems of instance identification are even
greater than this. Not only must each relational instance be bound
to a unique context vector (i.e., the context in which the relational
instance was memorized), but each vector must be orthogonal
(dissimilar) to avoid the problem of cross-talk (role vectors bound
to fillers from different relational instances). The orthogonality re-
quirement introduces a dilemma: if we choose random dissimilar
vectors, then in general relational instances are not distinguish-
able on the basis of their contents. On the other hand, if we gen-
erate identification vectors on the basis of contents, these will no
longer be orthogonal, because many relational instances share the
components. These problems can be overcome by defining each
instance by its components and linking them together – but note
that this effectively entails adopting symbol–argument–argument
bindings.

6. In the special case, when each role is represented by a
unique local basis vector (e.g., [1 0 0]), the tensor role-filler
method also maps each relation dimension onto a separate tensor
subspace. However, role-filler methods may entail the psycholog-
ically unrealistic assumption that each relational instance can be
uniquely identified by a context independent vector.

7. This property can be linked to compositionality (Fodor &
Pylyshyn 1988) but there is no space to develop that link in this
target article.

8. The class [f(n)] is the class of functions that are asymp-
totically of the same complexity as f(n), that is, functions g(n) 
such that there is a constant C for large enough n, g(n) ⇐ C.f(n),
and there is a constant D such that, for large enough n, f(n) ⇐
D.g(n).

9. Order notation Q(.) identifies the term in n with the largest
power, so that 100n2, n2 1 10n, and 0.001n2 are considered to be
of the same order (i.e., Q(n2) – quadratic).

10. Frye et al. (1995) refer to this as a “setting condition.”
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Abstract: We present an account of processing capacity in the ACT-R the-
ory. At the symbolic level, the number of chunks in the current goal pro-
vides a measure of relational complexity. At the subsymbolic level, limits
on spreading activation, measured by the attentional parameter W, pro-
vide a theory of processing capacity, which has been applied to perfor-
mance, learning, and individual differences data.

In their target article, Halford, Wilson & Phillips propose that cog-
nitive limitations on information processing capacity should be de-
fined in terms of relational complexity. They argue that limits on
activation, as introduced by Anderson et al. (1996), do not provide
a general metric for processing complexity. In this commentary,
we argue otherwise, reviewing the ACT-R theory of processing ca-
pacity and examining how it relates to the relational complexity
theory of Halford et al. [See also Anderson: “Is Human Cognition
Adaptive?” BBS 14(3) 1991.]

A central concept in the ACT-R production system (Anderson
1993; Anderson & Lebiere 1998) is the current goal, which rep-
resents the focus of attention. At each cycle, a production must
first match the state of the current goal before performing mem-
ory retrievals and modifying the goal state. When a goal is suc-
cessfully achieved, that goal chunk1 becomes a declarative mem-
ory fact. Chunks are composed of a number of labeled slots, each
of which holds a value which can be another chunk. Each chunk
is an instance of a particular chunk type, which defines the name
and number of slots. The mapping to relational knowledge is
therefore fairly straightforward. Chunk types correspond to rela-
tions, with slots as arguments. Chunks correspond to relational in-
stances, with slot values as fillers. The dimensionality of a relation
equals the number of slots in the corresponding chunk type. Op-
erations on relations, from basic omni-directional access to more
complex ones such as analogy, are implemented in the manipula-
tion of chunks by productions. The mechanisms to reduce the di-
mensionality of relations, chunking and segmentation, can also be
used to reduce the size of goals. A new chunk (e.g., cat) can be de-
fined as the combination of several slot values (e.g., c, a, t), then
used as a single slot value in other chunks. Segmentation consists
in performing a complex goal by pushing several smaller subgoals
on the goal stack. The quaternary limit on relational dimensional-
ity is generally compatible with the goal size in published ACT-R
models.

We just sketched the correspondence between ACT-R and the
relational account at the symbolic level. Some properties of rela-
tions, such as strength and asymmetry of access, result from sub-
symbolic activation computations in ACT-R, which control the re-
trieval of declarative chunks by productions. It is those activation
computations that provide ACT-R’s account of processing com-
plexity. The activation of a chunk, which controls its availability, is
the sum of a base-level activation, reflecting its past frequency of
use, and an associative activation, reflecting its relevance to the
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current goal. Associative activation spreads from the current goal
to declarative chunks. The associative activation of a chunk is the
sum for each activation source of its source activation times the
strength of association between the source and the chunk. The ac-
tivation sources are defined as the slot values of the current goal,
and a fixed amount of source activation W (1 by default) is divided
evenly among the sources. Therefore, as the goal becomes larger,
W will be divided among more sources and the resulting activa-
tion will be spread among more chunks, diluting the effect of the
focus. As established first by Anderson et al. (1996) and more gen-
erally in Anderson and Lebiere (1998), this dilution of activation
will result in poorer performance, that is, longer latencies and
more frequent errors. In addition to affecting performance, large
goal sizes also hinder learning, Lebiere (in preparation) estab-
lishes that a set of related chunks can be reliably learned only if
the source activation for each chunk component is higher than the
activation noise level. Therefore, given a particular noise level,
simple facts (e.g., counting) might be learned but more complex
facts (e.g., addition) might not because their components have
lower source activation. This suggests that the gradual increase in
processing capacity reported in the developmental data described
by Halford et al. could be accounted for by a continuous increase
in W. Finally, Lovett et al. (1997; in press) relate W to individual
differences. They fit a range of subject performance on working
memory tasks using a single ACT-R model, with high-performance
subjects modeled by larger W and low-performance subjects
modeled by smaller W. All those results point to W as the basic
measure of processing capacity in ACT-R.

ACT-R is not unrelated to the neural network models presented
by Halford et al. Lebiere and Anderson (1993) presented ACT-
RN, a neural network implementation of ACT-R which uses es-
sentially a positional encoding of symbol-argument-argument
bindings, with clean-up memories as in convolution models. But
we are not committed to any specific connectionist representation
since, as Halford et al. report, they have the same basic proper-
ties. Just as theoretical computer science proved the equivalence
of various computational paradigms in order to establish proofs of
complexity valid for all, ACT-R aims to provide a higher-level
definition of processing capacity independent of any lower-level
neural representation.

NOTE
1. This meaning of chunk is somewhat different from Miller’s (1956).
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Abstract: We discuss how modified dual-task approaches may be used to
verify the degree to which cognitive tasks are capacity demanding. We also
delineate some of the complexities associated with the use of the “double
easy-to-hard” paradigm for testing claim of Halford, Wilson & Phillips that
hierarchical reasoning imposes processing demands equivalent to those of
transitive reasoning.

Halford, Wilson & Phillips note that their theory would be invali-
dated if relational complexity did not predict processing demands
(sect. 6.3.2). However, carrying out tests of such predictions is by
no means straightforward. Halford et al. provide examples of var-
ious ways in which this may be done, suggesting the use of con-
current probe reaction time (sect. 6.3.2). This variant of the stan-
dard dual-task approach has certainly enjoyed extensive utility for

indexing processing resources in experimental studies with adults,
but it has seen only modest applicability to investigations of cog-
nitive development. Numerous criticisms have been leveled at
this approach, however, because dual-task deficits can frequently
be attributed to various types of concurrence costs.

Halford (1993) has also noted some of the same difficulties 
and has espoused the use of the easy-to-hard paradigm developed
by Hunt and Lansman (1982; see also Lansman & Hunt 1982). Es-
sentially, this paradigm constitutes a modified dual-task approach
where in addition to performing a secondary task and a relatively
easy version of the primary task in isolation as well as concurrently,
subjects perform a harder version of the primary task in isolation
only. The latter manipulation eliminates interpretations based on
concurrence costs.

The notable advantages of the easy-to-hard paradigm notwith-
standing, it has thus far been used in only a handful of studies for
examining capacity limitations in children. This may be partly 
owing to how labor-intensive it is to carry out this technique with
children. We have found that computerized tasks are superior in
this regard, in part because it is easier to maintain young children’s
interest throughout the administration of several different tasks
(Foley & Berch 1997). Furthermore, distinct efforts must be
made to adhere closely to the recommendations for enhancing
dual-task methodology, such as varying the modality of the stim-
uli in the primary and secondary tasks and reducing the likelihood
of interference at input.

However, even the successful use of this paradigm has limited
applicability in testing more sophisticated facts of the Halford et
al. model, in that it is designed primarily to determine whether any
single given task is capacity limited. For example, Halford et al.
claim that class inclusion and transitivity are essentially equivalent
with respect to the capacity demands they impose because they
both putatively require the processing of ternary relations (sect.
6.3.2). As it turns out, Halford (1993) has previously suggested
that one could use what he refers to as the “double easy-to-hard”
approach for this purpose. One must administer seven tasks: two
hard primary tasks presented alone, two easy primary tasks pre-
sented alone, two easy tasks presented concurrently with a sec-
ondary task, and the secondary task presented alone. There are
numerous complexities associated with this approach, such as the
need to make the level of difficulty of the easy and hard versions
of both tasks as equivalent as possible.

Attempting to use the double easy-to-hard approach raises a
number of theoretical and methodological issues that have not yet
been considered, with important implications for successful im-
plementation of this paradigm. First, in addition to meeting the
dual-task assumptions of the basic easy-to-hard paradigm, the
double easy-to-hard approach requires that an additional as-
sumption be satisfied prior to performing the critical tests that
permit one to verify whether two hard primary tasks are equiva-
lent in the processing demands they impose. Specifically, one
must determine whether the dual-task measures critical for the
double easy-to-hard correlations reflect capacity demands that
draw on one general resource pool or on multiple pools. The for-
mer assumption would be preferred, but if it proved to be incor-
rect, then application of the double easy-to-hard approach could
yield inaccurate conclusions.

We developed a method for testing this assumption in attempt-
ing to compare the processing demands of class inclusion and
transitive inference tasks, and obtained evidence that these mea-
sures tap a general resource pool (Foley 1997). We had hypothe-
sized that these tasks may not be equivalent because of differences
in dimensionality. Recall that Halford et al. define dimensionality
as the number of factors that vary independently (sects. 2.3 and
3.2). Although this definition is sufficient for the transitive infer-
ence task, it does not seem applicable to the class inclusion prob-
lem. This is because the concept of class inclusion is based on un-
derstanding that there is an inherent hierarchical relationship
between the superordinate class and both the subclass and the
complementary class, meaning that certain components of the
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problem are dependent on others. For example, if the size of 
either subset is changed, the size of the superordinate class changes.
The added complexity associated with processing this dependent
relationship may yield increased capacity demands as compared
with the resources needed for solving a transitive inference prob-
lem. Although the results did not conclusively support our position,
there was some evidence to indicate that class inclusion and transi-
tivity may not require equivalent processing demands.

In sum, we argue that modified dual-task approaches are going
to be of crucial importance in testing claims of equivalent pro-
cessing demands for cognitive tasks presumed to be at the same
level of relational complexity. Such tests are critical for validating
the theoretical model of Halford et al.

Synchronization of neural activity 
and information processing

Roman Borisyuk,a,b Galina Borisyuk,b and Yakov
Kazanovichb

aSchool of Computing, University of Plymouth, Plymouth, Devon PL4 8AA,
United Kingdom; bInstitute of Mathematical Problems in Biology of the
Russian Academy of Sciences, Pushchino, Moscow Region 142292, Russia
borisyuk@soc.plym.ac.uk; kazanov@impb.serpukhov.su

Abstract: Synchronization of neural activity in oscillatory neural networks
is a general principle of information processing in the brain at both preat-
tentional and attentional levels. This is confirmed by a model of attention
based on an oscillatory neural network with a central element and models
of feature binding and working memory based on multi-frequency oscil-
lations.

Two types of neural network models of relational knowledge are
considered in Halford et al.’s target article: (1) models based on
product operations to bind entities; and (2) oscillatory neural net-
works that use synchronization for feature binding. We would like
to demonstrate that the synchronization of neural activity can be
considered as a general principle of information processing in the
brain at both the preattentive and the attentional levels.

Oscillatory neural network models, synchronization, and at-
tention modeling. Kryukov (1991) has proposed an oscillatory
neural network with a central executive as a model of attention. In
Kryukov’s model the central executive is an oscillator, the central
oscillator (CO), which is coupled with other oscillators, the pe-
ripheral oscillators (PO) by feed-forward and feedback connec-
tions. It is presumed that the septo-hippocampal region plays the
role of the CO, while the POs are represented by cortical columns
sensible to particular features. This concept is in line with Dama-
sio’s (1989) hypothesis that the hippocampus is the top vertex of
the convergent zone pyramid and Miller’s (1991) theory about
the representation of information in the brain based on cortico-
hippocampal interplay.

Attention is realized in the network in the form of synchroniza-
tion between the CO and some POs. We have found (Kazanovich
& Borisyuk 1994) that selective attention can be associated with
the regime of partial synchronization when the attentional focus
is supposed to be formed by those POs that work synchronously
with the CO. One of the results obtained is the formulation of con-
ditions in which decreasing the interaction of the CO with the os-
cillators representing one of two stimuli that form the attentional
focus can lead not to focusing attention on the other stimulus but
to destruction of the attention focus. For some parameter values
it has been found that the CO is capable of synchronizing alter-
nately with one or the other of two groups of POs. This can be in-
terpreted as a spontaneous switching of attention which is ob-
served in some psychological experiments.

Estimations of complexity of neural dynamics. Halford et al.’s
idea of measuring the complexity of a cognitive process by the
number of interacting variables that must be represented in par-

allel seems very promising. In the last few years a number of in-
vestigations have shown that some modes of brain activity can be
characterized as low-dimensional chaos and that the complexity of
the dynamics of neural activity can be measured by the dimen-
sions of an attractor (Babloyantz 1989).

We have applied the correlation dimension to studying the
properties of the attentional model with a central oscillator. In that
context the model has been used as a generator of EEG activity.
The main result of our studies is that the correlation dimension of
the simulated EEG can be used as a measure of the complexity of
neural activity in the system. This measure is equal to the number
of groups of cortical oscillators working at different frequencies
(Borisyuk et al. 1994), an important feature of the attentional sys-
tem because it shows the diversity of stimuli that are out of the fo-
cus of attention.

Multi-frequency oscillations, feature binding, and working
memory. It is known that frequency encoding of stimuli is ham-
pered by insufficient informational capacity. For example, in the
target article the synchronous oscillation model suggests that only
about 5–10 entities can be processed in parallel due to limits in
frequency resolution. Indeed, the range of permissible frequen-
cies is not large; hence one frequency can be separated from an-
other with only limited accuracy. This implies restrictions in fre-
quency and phase encoding. The application of double-frequency
oscillations makes it possible to extend frequency encoding be-
cause the second frequency plays the role of the second variable.
Thus, two coordinates can be used for encoding instead of one.

Borisyuk et al. (1995) suggest that feature binding is organized
hierarchically: simple features of one type are bound in the pri-
mary cortex while combinations of different simple features are
derived in higher cortical areas. The main idea of this approach is
to use multi-frequency (in particular, two-frequency) envelope os-
cillations in such a way that simple features are bound at a high
frequency while low frequency synchronization is used to bind
compound features of a complex stimulus.

Halford et al.’s statement that models of associative memory al-
ways need a large number of training examples to learn appropri-
ate representations seems mistaken. A counterexample is an os-
cillatory model of the hippocampus that is able to memorize
several sequences of “lessons” and to recall the sequence related
to initial associations (Borisyuk & Hoppansteadt 1998). We think
this can be used as a working memory model suitable for relation
learning.

On the psychological reality of parallel
relational architectures: Whose knowledge
system is it anyway?

Margaret Chalmers and Brendan McGonigle
Department of Psychology, Edinburgh University, Edinburgh EH8 9QT,
Scotland, U.K. m.mcgonigle@ed.ac.uk or ejua48@ed.ac.uk
www.psy.ed.ac.uk/nis

Abstract: We argue that Halford et al.’s characterisation of relational com-
plexity offers an unadaptive principle in terms of cognitive economy, that
its relation with the empirical evidence is highly selective, and that the task
behaviours used in support of a multivector processing space are better
described by linear serial processes which do not require n-dimensional
mappings for their emergence.

Halford et al. make a commonplace claim that relations provide
knowledge which is “symbolic, content-independent, flexible and
modifiable.” The novelty in their thesis is in laying such concep-
tions directly at the feet of capacity models of working memory
and in offering a gradable construct by which the processing in the
central executive can be both characterised and measured. This is
a timely and well justified exercise in our view, but one which will
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surely fail (as others have done before) if the construct it offers is
wrong. We believe that it is wrong.

Taking its lead from a formal rather than an empirically founded
conception of what relational complexity is, Halford et al. commit
what we have argued (Chalmers & McGonigle 1998) to be the
(same) fundamental mistake as Piaget, and in so doing provide a
model for complexity which is top-heavy in computational cost
and consequentially restricted in adaptive value.

Reminiscent of the Piagetian concept of logical mother-structures,
the complexity construct described in this target article is based on
a co-present system of relations used as a template against which
cognitive level can be gauged. Implying that long-term archi-
tectures (of varying levels of dimensionality) are available to the
subject during each step of problem solution places a huge bur-
den of simultaneity on working memory. Yet the fact is that even
adult humans show normatively what appears to be a restricted
moment to moment access to relationally based understanding –
a partiality which calls not for hand-wringing but for insight. As
many have argued (e.g., Clark 1969), premise encoding during the
3–5 term series problem produces psychologically privileged rep-
resentations, whose selectivity trades off in the long term against
the computational cost of “omni-directional access” (sect. 2.2.6;
see also Clark & Thornton 1997). Unlike the characterisation of
complexity which Halford et al. appear to derive from possible re-
lational mappings, psychological representations (e.g., the linear
spatial devices) are often also interpreted as the product of unidi-
rectional serial architectures (see e.g., Potts 1972). Such repre-
sentations do not preclude the recovery of other connected or im-
plied relations (McGonigle & Chalmers 1986), but only when
considered as secondary and derivative, that is, not part of the
same working memory content. Similarly, more normative exam-
ples of sentence production (than the tortuous examples of paral-
lel parentheses Halford et al. cite (sect. 2, para. 1) would illustrate
these twin themes within natural language: directional partiality
in word order and the derivative nature of the more complex syn-
tactic forms (as in the passive).

Normative matters aside, we would argue that seriality is a use-
ful design feature, conferring inductive power and processing
economy, yet leading to the self-same examples of cognitive
achievement discussed by Halford et al. In the case of transitivity,
binary level success (A v C), can lead to success at a triadic level
(A v B v C) by the serial extension of a binary solution (McGonigle
& Chalmers 1977; 1992). Considered a ternary relation by Hal-
ford et al. (sect. 3.4.3, para. 7), the number of items (arguments)
in a transitivity test should not affect its level of solution as the at-
tribute (e.g., a size relation) is unidimensional; but when modelled
using a rule stack based production systems approach in which bi-
nary decisions were serially prioritised (Harris & McGonigle
1992), it was formally demonstrated that relational transitivity is
guaranteed by the binary choice structure in a n-term series task,
whereas triadic tests requires greater depth of serial search for
their resolution. Thus, we would argue that complexity is related
to the number of items in the decision space, not to transitivity per
se; representing transitivity as a vector in its own right thus im-
poses a dimensional load with no proven psychological reality.

For Halford et al., for whom young children and monkeys are
in any case unlikely to be capable of representing transitivity, such
results could be viewed as examples of an a priori working mem-
ory restriction (e.g., context), however, evidence from seriation
development in older children is highly instructive: Success at se-
riation emerges normatively at around the age when Halford et al.
claim young children make “genuine” transitive inferences using
ternary mappings. It could therefore be solved at this age as a se-
ries of transitive relations taking several arguments bound along a
single dimension such as size. However, on Halford et al.’s reduc-
tion argument (sect. 3.4.3, para. 7), if no information is to be “lost”
and the place of every item in the set is made fully determinate,
then a task analysis of 8 item seriation would suggest an oct-
ternary relational solution – well beyond the working memory
bounds of an adult human, let alone a seven-year-old child.

This example exposes the unnecessary burden imposed by the
parallel analysis offered by Halford et al. A task like seriation, re-
quiring the recruitment of a linear ordering architecture, could be
performed on Halford et al.’s model by parsing into “appropriate
chunks” (sect. 3.5, para. 1), by using, for example, a set of ternary
evaluations carried out serially. But if this is an option, why, given
the added information processing burdens imposed by their
model, should the agent not “go serial” at the binary level and
thereby reduce resource demands without cost to the actual or-
ganisational achievement? In classification tasks, for example, ex-
tended search through a hierarchically nested set of relations leaves
semantic differentiation fully preserved (“mother of” first, then
“loves,” “feeds,” etc.) – but at much less cost to working memory.

In short, we reject the idea that cognitive competences in evo-
lution and development can be reduced to a look-up table based
on restrictions on working memory capacity. We would argue in-
stead that, rather than loading up our working memory capacity
to the point of extinction, cognitive complexity is designed to di-
minish information processing demands through selective serial
processing.

Discontinuity and variability in relational
complexity: Cognitive and brain development

Donna Coch and Kurt W. Fischer
Department of Human Development and Psychology, Harvard University
Graduate School of Education, Cambridge, MA 02138.
cochdo@hugse1.harvard.edu kurt_fischer@harvard.edu

Abstract: Relational complexity theory has important virtues, but the present
model omits key aspects and evidence. In contrast, skill theory specifies
(1) a detailed series of developmental changes in relational complexity
from birth to age 30, (2) processes of interaction of content and structure
that produce variability in complexity, (3) the role of cortical development,
and (4) empirical criteria for complexity levels, including developmental
discontinuities. Many findings support these specifications.

The relational complexity theory outlined by Halford, Wilson &
Phillips resonates well with similar concepts in dynamic skill the-
ory (Fischer 1980), which goes beyond the “broad parallel” that
the authors acknowledge (sect. 6.3.2, para. 10). Indeed, relational
complexity defines the major cognitive developmental changes
that skill theory specifies in detail. Unary, binary, ternary, and qua-
ternary relations are reminiscent of single set, mapping, system,
and system of systems in skill theory, which describe a develop-
mental sequence of increasing complexity and connectivity among
skills. However, skill theory elaborates how these levels move be-
yond the four types, specifying an extended series of relations that
are evident in development and variability in action and thought
and which relate to cortical growth. These levels have been as-
sessed in multiple domains across wide age ranges, with specific
empirical criteria for each type of relational complexity.

The skill levels are cyclically recurring ones (substages) within
a superstructure of four tiers (reflex, sensorimotor, representa-
tional, and abstract), which involve applying the four types of re-
lations to themselves. In this way, each cycle through the four re-
lations produces movement to a higher-order version of relation.
Both the levels within a tier and the tiers themselves instantiate
the four relations, but at a different order of complexity. Each level
and tier is marked by a cluster of discontinuities in growth func-
tions for optimal performance (Fischer & Bidell 1997).

Positing such a hierarchy is more than a “descriptive conve-
nience” (sect. 6.3.2, para. 15), because it predicts and explains
changes in both development and variability as evidenced in learn-
ing and problem solving. It explains, for example, qualitative dif-
ferences between binary relations in young children and adoles-
cents (across tiers). A 4-year-old girl functioning at her upper limit
can understand interactions in which two characters (dolls or peo-
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ple) interact to form reciprocal parental roles – a binary relation
(representational mapping) that maps activities in the mother role
to those in the father role (Watson 1984). However, not until 15 to
16 years can a person understand the binary relation (abstract
mapping) involved in the motivational concept of a social lie, in
which action is motivated by honesty in relation to kindness – ly-
ing in order to protect a friend’s feelings (Lamborn et al. 1994).
Such findings demonstrate Halford et al.’s generalization that
“what is acquired depends on both experience and capacity” (sect.
6.3.2, para. 3), but more precise concepts and methods can pre-
dict such developmental changes.

Skill theory also explains how people of any age use skills from
a wide range of levels, varying from their upper limit on down. For
example, development at lower levels continues when people are
capable of higher levels. In much learning and problem solving,
people build new lower-level skills to deal with novel contexts and
issues. Global higher-level shells are used as bridges to construct
new lower-level skills, forming foundations for novel actions and
concepts (Granott et al. 1997). A person’s movement to a lower
level, elaboration of skills at that level, and subsequent gradual
construction of higher-level skills (relations) can be directly ana-
lyzed, producing a portrait of the construction (microdevelop-
ment) of a new skill.

With its empirical criteria for emergence of types of relations
(levels and tiers), skill theory has made possible the first model re-
lating cognitive development to specific changes in cortical func-
tioning (Fischer & Bidell 1997; Fischer & Rose 1996). The model
outlines how neurocognitive networks are reorganized over de-
velopmental time. The basic mechanism for building skills of
higher relational complexity is (a) learning two simpler skills or
networks, (b) mastery to allow parallel sustaining of the two, and
(c) coordinating them in a new relation through multiple steps
specified by skill/network combination rules.

As Halford et al. note (sect. 6.5), ample evidence indicates that
frontal cortex is well-suited to holding information on-line, which
is required to support coordination and increase in complexity.
The development of networks seems to involve prefrontal coordi-
nation of components to form new networks, as described by
Thatcher (1994). The development of these networks is evidenced
by changes in cortical activity and connectivity measured by EEG
power and coherence, which show growth cycles moving system-
atically through cortical regions. In research to date, the corre-
spondence between cortical growth cycles and behavioral discon-
tinuities for behavioral levels and tiers is remarkable.

One of the cortical discontinuities involves abrupt shifts in os-
cillation frequency in cortical coherence, giving the appearance of
cusp catastrophes. These oscillation shifts suggest major change in
neural network functioning and correspond closely to ages of
emergence of skill levels. Such networks consist of the same basic
components (skills or neurons) related in dynamic new ways, il-
lustrating simultaneous continuity and discontinuity in develop-
ment.

Halford et al. neglect these kinds of evidence in arguing that re-
lational complexity “does not imply that development is discon-
tinuous” (sect. 6.3.2., para. 5). Guttman sequencing of tasks and
cross-domain correlations do not provide sufficient evidence for
the reorganizations in Halford et al.’s version of relational com-
plexity theory. Discontinuities and variations in development of
behavioral complexity and cortical activity provide valuable tools
for research on relational complexity.

What is more explanatory, processing
capacity or processing speed?

Nelson Cowan
Department of Psychology, University of Missouri, Columbia, MO 65211.
psycowan@showme.missouri.edu www.missouri.edu./~psycowan/

Abstract: Halford et al. have sharpened the concept of processing capac-
ity as applied to various complex tasks. This commentary examines the ap-
parent contradiction between capacity theories and theories in which it is
processing speed, rather than capacity, that presumably limits cognitive
performance. It explains how capacity and speed often are interrelated and
suggests how one might examine whether capacity or speed is the more el-
ementary in processing.

Halford, Wilson & Phillips have sketched out a powerful and sen-
sible mechanism that predicts performance constraints, as well as
individual and developmental differences, on a wide array of cog-
nitive tasks, all based on “processing capacity defined by relational
complexity.” At the level of analysis that the authors chose in or-
der to examine the phenomena, I am enthusiastic about the theory.

In the broader view, it seems likely that Halford et al. will soon
have to confront other levels of analysis. One level lower would be
a microanalysis of performance on the tasks. The question would
be just how the capacity limit causes failures. An analogy might
help here. Suppose one learns that a restaurant has the capacity to
seat 50 people at once. A natural assumption is that the limit is in
the size of the restaurant. However, that might not be the case. In-
stead, perhaps the kitchen is unable to serve more than 50 people
without intolerable delays, and only enough tables were installed
to match the kitchen’s capability rather than exceeding it. In that
case, the supposed capacity limit is actually a speed limit when
viewed at a finer level of analysis. To pursue the analogy further,
the answer might change again when viewed in even more detail.
Perhaps a limit in the size of the kitchen is the fundamental rea-
son that customers cannot be served more quickly, so that one ca-
pacity limit (in kitchen size) causes a speed limit (in serving food)
that in turn causes another capacity limit (in the available seating).

This example was selected for an important reason. A leading
contender for human processing limits is the speed of processing.
Numerous investigators have championed changes in the speed of
processing as a primary cause of processing limits (e.g., Fry & Hale
1996; Kail & Salthouse 1994; Salthouse 1996). The notion would
be that the limit in capacity can ultimately be accounted for by a
limit in speed. For example, a certain processing speed seems nec-
essary to reactivate items in working memory before they become
deactivated to the point of being inaccessible (cf. Baddeley 1986;
Kail & Park 1994; Schweickert & Boruff 1986).

The speed versus capacity issue looks at first glance like a clas-
sic chicken-and-egg problem (i.e., which came first?) but I suspect
that the issue of causal priority can eventually be resolved. One
potentially relevant type of evidence is a fine-grained analysis of
the timing of spoken recall. Results of such analyses suggest that
capacity limits may sometimes cause speed limits rather than the
reverse. Cowan (1992) tested auditory word span in 4-year-old
children, measuring the duration of each word and each inter-
word pause in the spoken responses in the span task (only for the
trials in which the response was totally correct). The response
word durations did not differ for children with lower versus higher
spans, however, there were differences in the durations of the
pauses between words in the responses (which changed little
across serial positions). Longer lists resulted in longer inter-word
pauses, suggesting that before speaking each word a child had to
select the item to be pronounced next from other items in the list.
Moreover, for lists of a fixed length, children with a lower span had
longer inter-word pauses in their responses. When children were
compared on lists at their own span length, this difference be-
tween children disappeared; speaking rates were comparable, and
more capable children just spoke for a longer total duration.

Cowan et al. (1994) obtained similar results with a develop-
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mental sample of 4- and 8-year-old children. For lists of compa-
rable lengths, 4-year-old children paused between words longer
than 8-year-old children. When the children in the two age groups
were examined on lists equal to their own span lengths, this dif-
ference in pause durations disappeared. The pattern of results is
shown in Figure 1. The importance of these findings is that the
memory load limited the speed of responding, in contrast to the a
priori expectation that speed of responding would remain fixed
across list lengths and span would be limited by how many words
could be spoken in a fixed period before memory decayed (e.g.,
Schweickert & Boruff 1986). Capacity actually determined speed.

Further research suggests that some speeds may be elementary
whereas other speeds may be derived from capacity limits. Cowan
et al. (1998) examined several measures of each of several con-
structs: (a) forward digit span, (b) interword pauses at fixed list
lengths in the span tasks to estimate the speed of retrieval from
working memory, and (c) rapid speaking tasks to estimate the pos-
sible speed of covert rehearsal (Baddeley 1986). Span turned out
to be correlated with both retrieval and rehearsal speeds (at about
.4 in each case). However, there was no correlation at all between
retrieval and rehearsal speeds. In one account of these results, re-
trieval speed would be influenced by storage capacity limitations.
It would be related to limitations in central executive processes in
the model of Baddeley (1986) and limitations in the focus of at-
tention in the framework of Cowan (1995). In contrast, rehearsal
speed would be unrelated to these factors and related instead to
phonological loop processes (Baddeley 1986) or activation outside
of the attentional focus (Cowan 1995).

This body of research is not definitive but does illustrate that
one man’s cause becomes another man’s effect (with either ca-
pacity or speed playing the role of either cause or effect), and that
more work is needed to map out the true causal paths between
such variables.
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Abstract: Relational complexity provides a metric for measuring task de-
mands, and in this respect has much in common with the cognitive com-
plexity and control theory. However, relational complexity does not ac-
count for the relative difficulty of different relational types, and appears to
underestimate the importance of changes in children’s ability to act on the
basis of their understanding.

Complexity: From formal analysis to final action. The recent,
recurrent pattern in developmental psychology has been one of
rigid debates about whether any given development occurs early
or late, and whether different developments can better be ex-
plained by domain-general or domain-specific accounts. Devel-
opmental psychology is commonly recognized as the study of
change, but without a method for ordering the changes, the phe-
nomena become as disorganized as those in the physical sciences
would be without a periodic table.

Halford’s target article represents a reply to this problem
through the consideration of complexity (see also “Cognitive 
complexity and control theory,” Zelazo & Frey 1997). Complexity
provides a means of ordering achievements within and across do-
mains. The article takes this approach a long way. It gives a well
formed definition of complexity in terms of the number of rela-
tions or dimensions that can be processed in parallel, and shows
how the definition makes unique predictions for the difficulty of
given problems. It provides a standard procedure – reduction
analysis or whether a set of relations can be decomposed and re-
combined without a loss of information – for calculating com-
plexity. It also identifies two processes, chunking and segmenta-
tion, that can alter the complexity of a problem. These processes
complicate the picture, but there is overwhelming evidence that
they occur and the theory is right to include them.

The progress offered by this approach is illustrated in one area
in which it might be least expected. A staggering amount of re-
search in developmental psychology has lately been devoted to
children’s theory of mind – that is, children’s understanding of
their own and others’ mental states (for a review, see Astington
1993). It is commonly assumed that theory of mind is a domain-
specific acquisition and hence, cannot be a function of domain-
general cognitive changes, such as changes in relational complexity.

Nonetheless, both the target article and Cognitive Complexity
and Control (CCC) theory (Frye et al. 1995) have proposed that
children’s theory of mind is in part an outcome of changes in rela-
tional complexity. The accounts agree that the 3- to 5-year change
in mental state understanding involves a specific cognitive change
that the target article identifies as the inception of ternary rela-
tions and CCC theory as embedded rules. Both argue that the un-
derstanding of someone’s false belief about a situation, for exam-
ple, requires that the child form a three-term relation. In this new
relation, the child’s own view of the situation and the other’s con-
flicting view are prefaced by a conditional that makes it possible
to select between them, while also recognizing that the two per-
spectives apply to the same thing.

This agreed-upon complexity proposal has several important
advantages over domain-specific approaches. One is that it ex-
plains why young children initially make realist mistakes. When 3-
year-olds try to make sense of false belief, they are only able to
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Figure 1 (Cowan). Inter-word pause times in responses to spo-
ken lists in a word span task. Data are from Cowan et al. (1994).
For the 4-year-olds (N 5 16), the mean span was 3.00; for the 8-
year-olds with recorded below-span data (N 5 15), the mean list
length for the displayed pause data was 3.51. The third bar is based
on all 8-year-olds in the sample (N 5 23), whose mean span was
4.02. Notice that the younger and older children’s pause durations
within the recall of span-length lists were nearly the same, but that
the older children produced shorter pauses within lists of a more
comparable length (1 below span). Error bars reflect standard 
error.
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consider two of the terms in the three-relation (see sect. 3.5).
Hence, 3-year-olds default to the more familiar judgment (Frye et
al. 1996) and make the realist error of concluding that everyone
will see the situation as it really is.

Another advantage of complexity, one that may be unique, is
that it manifests what the target article labels “omni-directional
access” (sect. 2.2.6). When children master a set of relations, there
are a number of different, equivalent problems they will be able
to solve. Consequently, it becomes possible to predict that seem-
ingly unrelated developments will have a common source. For ex-
ample, it is well established that children’s understanding of false
belief is connected to their ability to act deceptively (Wimmer &
Perner 1983) although this link could be conceptual, given belief
is involved in both. However, theory of mind has now been shown
to be related to executive function (for a review, see Zelazo et al.
1997) – that is, the development of children’s abilities to control
their own actions. Mental state understanding and control of one’s
own actions do not share an obvious conceptual link, yet their sim-
ilarity can be explained in a complexity account (Frye, in press; Ze-
lazo et al. 1997).

Despite the similarities, there are some points of disagreement
between the complexity proposals of the target article and CCC
theory. Both now indicate that a conditional (basically, an or that
selects between perspectives – the child’s and the other person’s
in false belief) forms the ternary relation that supports the acqui-
sition of theory of mind. However, the relational complexity ac-
count fails to recognize the hierarchical dependency that obtains
among dimensions in this instance (although it could in principle;
see sect. 4.2.5). For example, one cannot tell by looking at the
ternary relation, Seen-Object (,condition., ,object-colour.,
,percept.), whether one argument controls the others. In con-
trast, on the CCC account, the task is difficult precisely because it
requires a hierarchical rule structure.

Moreover, the relational complexity account does not appear to
consider the relation’s type when predicting developmental diffi-
culty. All that seems important is the complexity of the relation.
CCC theory distinguishes among relational types in addition to
structural complexity. Theory of mind involves choosing between
perspectives, ignoring a familiar one to judge from the other,
which will be simpler than combining perspectives, even though
both require ternary relations. Being able to select flexibly be-
tween dimensions occurs earlier than the feat of combining them
(Frye et al. 1995, Experiment 3). The distinction among relational
types makes it possible to explain why theory of mind appears at
about 4 years, rather than at the end of preschool when conserva-
tion and matrix classification – the classic examples of combining
dimensions – occur.

The target article also appears to underestimate other control
or performance factors, with the consequence that it neglects the
variety of variables that affects the likelihood children will actually
use their knowledge to guide action in any particular situation.
Success on problems such as the A-not-B task is not simply a mat-
ter of unary relations. There is ample evidence that children who
can master the relational complexity nonetheless commit the A-
not-B error under certain circumstances. For example, Zelazo et
al. (1998) found that 24-month-olds perseverated on a multistep,
multilocation version of the A-not-B task. Presumably these chil-
dren understood the relational complexity of the problem: adding
steps and locations does not involve adding a new dimension. Yet,
they apparently had trouble maintaining attention to the relevant
information and inhibiting a tendency to repeat a previously re-
warded response. The point is that actual action cannot be ex-
plained by logical relations and domain-specific knowledge alone.
The relational complexity approach adds a great deal to our un-
derstanding of understanding, but it under-emphasizes the im-
portance of the control processes that extend from understanding
to action.

Deep thinking in children: The case for
knowledge change in analogical development

Dedre Gentnera and Mary Jo Rattermannb

aDepartment of Psychology, Northwestern University, Evanston, IL 60208;
bDepartment of Psychology, Franklin and Marshall College, Lancaster, PA
17604. gentner@nwu.edu m_rattermann@acad.fandm.edu

Abstract: Halford, Wilson & Phillips argue that cognitive development is
driven by increases in processing capacity. We suggest that changes in re-
lational knowledge are as important or more so. We present evidence that
3-year-olds’ analogical abilities are sharply improved by teaching them re-
lational labels; over a 30-minute experimental session children gained ap-
proximately 2 years in effective performance. These results mandate cau-
tion interpreting age-related change as indicating maturational change,
and call for a deeper consideration of the role of epistemological change
in cognitive development.

In their fascinating and provocative target article, Halford et al.
present developmental and comparative evidence for the thesis
that cognitive development is driven by increases in processing ca-
pacity. We challenge this account as it applies to the development
of analogy. In Halford’s relational complexity account, children’s
ability to carry out analogical matches increases maturationally
with increasing processing capacity, from unary relations (object
matches) through binary relations, ternary relations, and finally
quaternary relations. We also have theorized a shift from objects
to relations in the development of analogy (Gentner 1988; Gentner
& Rattermann 1991; Gentner & Toupin 1986). However, we pos-
tulate a change in the depth of the relational structures that can
be matched (Gentner 1993; Gentner & Markman 1997), rather
than in the dimensionality of the relations. The sequence we pro-
pose is, first, object similarity matches (e.g., red ball/apple); then,
relations between objects (e.g., ball rolling on table/toy car rolling
on floor); and then higher-order relations between relations (e.g.,
ball’s rolling causes glass to fall/car’s rolling causes vase to fall). We
further suggest that change of knowledge, not change of process-
ing capacity, is the main driver of this evolution (Brown 1989).
This knowledge-based claim is supported by the observation that
the relational shift occurs at different ages – ranging from infancy
to adulthood – in different domains, depending on level of knowl-
edge.

A key prediction in Halford et al.’s account is that children un-
der 4–5 years cannot process ternary relations nor integrate two
binary relations. Halford et al. consider one challenge to this
claim, namely, Goswami’s (1995) studies suggesting that 3-year-
olds can map ternary relations in analogies. Their reanalysis shows
that in Goswami’s task the correct relational response was often
the best object-similarity match (based on closest absolute size),
compromising her evidence for relational processing. However,
our studies using similar methods pose a stronger challenge (Gen-
tner & Rattermann 1991). We placed object similarity in direct
competition with relational similarity (using Gentner and Toupin’s
cross-mapping technique), so that the relational match was never
supported by object similarity. We showed 3-, 4- and 5-year-olds
two triads of objects, each arranged in monotonically decreasing
size (e.g., 4 3 2 r 3 2 1) in a fanlike pattern. The child watched 
the experimenter place a sticker under an object in her set and
then searched in his own set for a sticker hidden under the corre-
sponding object. Because of the cross-mapping, matches based 
on object similarity (e.g., 3 r 3) competed against matches 
based on relational similarity (e.g., 3 r 2). The child received feed-
back on the correct answer, which was always based on relational
similarity.

The results show a strong developmental change, from 43%
correct in 3-year-olds to 82% correct in 5-year-olds. So far this pat-
tern is consistent with either a maturational or a knowledge-based
account. However, further results suggest that the difference be-
tween the 3-year-olds and the 5-year-olds lay in their knowledge
of the relevant relations: specifically, the higher-order relation of
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monotonic change that governs the two lower-order relative size
relations.

According to the knowledge-based account, increasing children’s
relational knowledge can lead to improved analogical performance.
To test this, we taught a group of 3-year-olds to use the relational la-
bels “Daddy/Mommy/Baby,” which convey the relation of monot-
onic change. When the labels were used on each trial, 3-year-olds
were 84% correct, performing comparably to the 5-year-olds in 
the original task (see Fig. 1). (Similar results were obtained with the
relational labels “big/little/tiny.”) The beneficial effects of learning
relational labels were not dependent on direct modeling. After ex-
perience with the “Daddy/Mommy/Baby” labels, 3-year-olds main-
tained much of their gain (57%) when given new stimuli on which
no labels were used. Indeed, 3-year-olds who returned four to eight
weeks after the initial session produced significantly more correct
relational responses (62%) than a control group without label expe-
rience (28%; Rattermann & Gentner, in preparation).

Why would these labels be so effective that the benefits persist
four to eight weeks later? Our explanation is that the “Daddy/
Mommy/Baby” labels act to invite a higher-order relational struc-
ture. With this structure, the relational mapping is sufficiently
deep and internally constraining that it can compete successfully
with the local object match. (Markman & Gentner [1993] found a
similar relation between relational depth and object similarity in
adults.) These striking changes in performance are a testament to
the importance of learned relational structure in children’s ana-
logical mapping, and by extension in the development of relational
reasoning in general. These findings challenge Halford’s account
of development, first, because they show that 3-year-olds can carry
out mappings based on what in his account are ternary relations;
and, second, because they establish that striking changes of per-
formance – equivalent to that of a 2-year-age gain – can occur
even over the course of one experimental session, based on the ac-
quisition of relational knowledge.

Halford has suggested that 3-year-olds succeed in our cross-
mapping task not by representing the relationship of monotonic
change across the three objects (a ternary relation that should be
beyond their capacity), but rather by chunking the three objects
into two sets – the chosen object and the other two objects – thus
permitting a simple binary relation (Halford et al. 1995). For ex-
ample, the child would process a Mommy r Mommy match by
encoding two chunks: [Mommy] vs. [Daddy and Baby]. But this
encoding seems implausible. First, it would require the children
to repeatedly rechunk the stimulus set, as the chosen object

changes on each trial. Second, in middle-object examples like the
above, a split chunk would be required. Third, it is hard to see how
such a binary encoding would result from the use of the triadic re-
lationship “Daddy/Mommy/Baby.”

Halford and his colleagues acknowledge that knowledge accre-
tion plays a role in development, but in their theory the major im-
petus is maturational change in processing capacity. Clearly, neu-
rological change influences children’s developing abilities. But as
the above results demonstrate, one needs to be cautious about in-
terpreting age-related change as resulting from capacity change.
We believe that our evidence calls for deeper consideration of the
role of epistemological change in cognitive development.

Is relational complexity a useful metric 
for cognitive development?

Usha Goswami
Institute of Child Health, University College London, London WC1N 1EH, En-
gland. u.goswami@ich.ucl.ac.uk www.ich.bpmf.ac.uk

Abstract: This commentary focusses on the evidence used by Halford et
al. to support their postulated links between relational complexity and age
differences in children’s understanding of concepts. None of their devel-
opmental claims is consistent with recent cognitive-developmental re-
search. Relational complexity must be an important variable in cognition,
but it does not provide a satisfactory metric for explaining cognitive de-
velopment.

Halford et al. have presented an elegant theory of how relational
complexity can be modelled. Their view has impressive support
from neural net applications. Their “core argument,” however, con-
cerns the applicability of their theory to human cognition (sect. 1).
This core argument must stand or fall on the basis of empirical ev-
idence. My comments will focus on the postulated links between
relational complexity and age differences in children’s understand-
ing of concepts. The key issue is whether relational complexity is a
useful metric for explaining cognitive development. I will show
that, although Halford et al. point out that a capacity approach does
not imply insurmountable barriers to performance, and although
they make a number of caveats (which limit the testability of their
theory), a survey of current research in developmental psychology
does not fit neatly into their theoretical framework.

Halford et al.’s first claim is that in infancy representation is lim-
ited to objects in the immediate spatio-temporal frame. “There is
no evidence that semantically interpretable relations are repre-
sented, however, or that inferences go beyond the perceptible
properties of objects” (sect. 6.2.1). This is not the case. Recent in-
fancy research has shown that some forms of relational reasoning
are present in the first year. For example, Baillargeon has shown
that 4- to 5-month-old infants are surprised by “impossible” phys-
ical events in situations where surprise must be based on infer-
ences about cause-effect relations that occur outside the immedi-
ate spatio-temporal frame (e.g., Baillargeon 1994; Baillargeon &
Graber 1987; Baillargeon et al. 1990). Infants can even impose an
“intentional stance” onto simple perceptual events, making as-
sumptions of agency on the basis of causal analyses of impover-
ished physical situations such as computer displays of moving cir-
cles (e.g., Gergely et al. 1995; see Goswami, 1998, for a review).
Baillargeon’s conclusion that the infants in her experiments are
engaging in a knowledge-based, conceptual analysis of the physi-
cal world is increasingly accepted in developmental psychology.

Halford et al.’s second claim is that the disappearance of well-
documented phenomena in infancy such as the A-not-B search er-
ror can be explained by their theory. They suggest that the A-not-
B error should be understood in terms of “an inability to treat
hiding place as a variable” (sect. 6.2.2). They argue that persever-
ative searching at location A occurs because infants treat hiding
place as a constant. Yet similar perseverative errors are made when
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Figure 1 (Gentner). Proportion correct relational responses for
different ages on a cross-mapped analogy task with relational
lables (solid line) and without them (dashed lines).
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infants attempt to crawl around a barrier to reach their mothers
(McKenzie & Bigelow 1986; Rieser et al. 1982). In a few trials, the
same infants learn to correct these errors. This would not be pre-
dicted by Halford et al.’s theory, but it is easily explained within a
cognitive-developmental framework that accounts for persevera-
tive errors in terms of a difficulty in inhibiting prepotent motor
tendencies. Recent analyses suggest that the A-not-B error re-
flects a deficit in gaining control of one’s motor behaviour, allow-
ing behaviour to reflect knowledge of the fact that hiding place is
a variable (e.g., Diamond 1988).

Halford et al.’s third claim concerns children’s supposed diffi-
culty with ternary relations (sect. 6.2.4). Most space is devoted to
this difficulty, which is said to explain children’s failure in Piaget-
ian tasks such as class inclusion and transitivity as well as their dif-
ficulties with appearance–reality tasks and theory of mind tasks. I
have discussed various problems with this explanation of perfor-
mance in Piagetian tasks elsewhere (Goswami 1996). The exten-
sion of relational complexity theory to appearance-reality and the-
ory of mind tasks is novel (and ambitious). The example discussed
by Halford et al. concerns children’s apparent inability to under-
stand that objects placed behind coloured filters only appear to
change colour. Halford et al. argue that this difficulty is explained
by children’s inability to represent ternary relations. Although
children can represent the relation between a person’s knowledge
and the properties of an object/situation, they cannot represent
the fact that this is conditional on a third variable such as the pres-
ence or absence of a coloured filter.

Recent developmental research suggests that the problem does
not lie with conditional understanding, but with the format of the
traditional appearance-reality task. For example, Cutting (1996)
tested children’s understanding of the appearance-reality distinc-
tion indirectly, by using tasks in which 3-year-old children were
shown (for example) two crayons, one green and one yellow. The
yellow crayon was placed under a blue filter and the green crayon
under a clear filter, so that both crayons appeared to be identical
shades of green. The children were asked “Which crayon can I use
to draw green grass?” Over 80% of the children answered cor-
rectly. Furthermore, following experience with natural examples
of the appearance-reality distinction in their nursery schools (e.g.,
making sunglasses with coloured tissue paper), 3-year-olds im-
proved in the traditional appearance-reality tasks as well. Thus an
inability to represent ternary relations at 3 years cannot explain
failure in appearance reality tasks.

Finally, Halford et al. provide a critique of some of my own
data showing that ternary relations can be processed earlier than
a median age of 5 years if familiar relations are used (sect.
6.2.4.4; see also Goswami et al. in press; Goswami 1996, for 
other evidence not discussed by Halford and Phillips). They ar-
gue that the impressive levels of performance found by Goswami
(1995) can be explained in terms of binary relational mappings
if certain assumptions about chunking strategies are made. Of
course, the counterargument is that it is more parsimonious to
assume that these levels of performance reflect successful
ternary relational mappings, but such a debate has no resolution.
This highlights the key problem with Halford et al.’s analyses of
cognitive developmental research, which is that there is no in-
dependent test of whether a child is solving a given task on the
basis of relational mappings at the postulated level of complex-
ity. Although failure in a given task is assumed to prove an in-
ability to use ternary relational mappings, there is no indepen-
dent positive test of whether children are using ternary relational
mappings.

This flaw places Halford et al.’s concluding arguments con-
cerning cognitive development on very shaky ground. They note
that “the fundamental problem here is that cognitive development
research must take account of actual cognitive processes to be the-
oretically meaningful” (sect. 6.2.4.5). The present commentary
takes the opposite view. Theories about potential cognitive pro-
cesses are only meaningful if they take account of actual results in
cognitive development research.

Why is capacity limited? Missing dynamics
and developmental controversies

Richard A. Heath and Brett K. Hayes
Department of Psychology, University of Newcastle, Callaghan, NSW 2308,
Australia. {heath,hayes}@psychology.newcastle.edu.au
psychology.newcastle.edu.au/~heath
psychology.newcastle.edu.au/~hayes

Abstract: The discovery of a quaternary complexity limitation to mature
cognitive operations raises important theoretical issues. We propose that
cognitive limitations arise naturally in a complex dynamic information pro-
cessing system, and consider problems such as the distinction between
parallel and serial processes and the representativeness of the empirical
data base used by Halford et al. to support their relational complexity
scheme.

Halford et al. provide a convincing argument that constraints on
the simultaneous processing of relations generate developmental
limitations in human cognition. Their preferred mathematical
representation is tensor calculus, an extension of associative mem-
ory models (Humphreys et al. 1989). However, their target article
is somewhat dismissive of alternative models based on synchro-
nised oscillations and it is unclear whether either model can be
evaluated experimentally, since no model fitting is attempted.

Cognitive dynamics, learning, and the parallel-serial process-
ing distinction. Halford et al.’s model is descriptive rather than ex-
planatory because there is no mechanism for explaining cognitive
limitations. Furthermore, no explicit learning mechanisms are
presented, there being a general disregard of the underlying cog-
nitive dynamics. Complexity-theoretic research, based on cellular
automata, suggests that optimal performance for an evolving cog-
nitive system occurs when the number of parallel operations is
small, perhaps four (Heath, in press). This result, arising naturally
from dynamic considerations, is consistent with the representa-
tional limitations expressed in the target article.

An advantage of dynamic developmental models is the rela-
tively stable stagelike behaviour emerging from this interaction.
Such models, previously used in motor development (Thelen &
Ulrich 1991), also explain developmental change in cognitive tasks
involving memory, reasoning, and problem solving (Howe & Ra-
binowitz 1994; van der Mass & Molenaar 1992; van Geert 1994),
the key focus of Halford et al.’s model.

Cognitive dynamics resolve the dilemma that cognitive devel-
opmental change within an individual appears abrupt, whereas
“the acquisitions of concepts . . . will occur gradually after capac-
ity becomes sufficient” (sect. 6.3.2). In van Geert’s (1994) dynamic
model, continuous parameter changes generate qualitative
changes in cognitive behaviour as bifurcations, which allow chil-
dren to progress from binary to ternary relationships, for example.
Since the relationship between the number and magnitude of the
transitions in an evolving fractal system is governed by a power
law, only a small number of transitions of major cognitive signifi-
cance will occur within a lifetime (van Geert 1994, p. 137). This
alternative explanation of the resource limitations in cognitive de-
velopment is appealing. Using van Geert’s idea that cognitive
change can be represented by connected growers with varying
(carrying) capacity, Halford et al.’s representational scheme might
be enhanced by using nonlinear dynamical concepts. For example
van Leeuwen et al. (1997) showed how a coupled nonlinear sys-
tem accounts for synchronised and hierarchically self-organised
cognitive activity.

In much of Halford et al.’s discussion, learning processes play a
minor role. The tensor idea can be extended to support an adap-
tive process in both space and time (Heath 1991) using an update
rule similar to that employed in associative memory models. Per-
formance constraints result from the interplay between the sta-
bility and plasticity of the memory update process, using parame-
ters estimated from serial position data (Health & Fulham 1988).

The definitions of capacity in various sections (sects. 2.1, 3.3)
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depend critically on whether performance decrements are ob-
served when the number of simultaneous tasks increases. Al-
though indirect evidence of such limitations is obtained using a
probe reaction time task (sect. 6.1.1), considerable ingenuity is re-
quired to dissociate parallel and serial information processing
mechanisms experimentally (Townsend 1990).

The developmental data base. Halford et al. avoid any strong
predictions regarding the ages at which each relational complex-
ity level is attained. Nevertheless, some of their developmental
claims ignore evidence indicating the attainment of higher levels
of relational complexity at a much earlier point in development
than that proposed by their model. Binary relations involving the
relative position of two or more objects are encoded by infants as
young as 4!s months of age (Needham & Baillargeon 1993) and are
used to infer physical support relationships between these objects
(Baillargeon et al. 1995). By 6 months, infants discriminate be-
tween causal and noncausal physical events, even when the spatio-
temporal properties of these events are equivalent (Leslie &
Keeble 1987). Even more problematic for the theory, by 18
months, infants can predict the intentions and motor behaviour of
an adult who is observed solving a block construction task (Melt-
zoff 1996). This demonstrates the early development of an un-
derstanding that people can have at least two representations of
an object, the current observable state and a future altered state.
In Halford et al.’s terms this involves a ternary relation and should
not be evident until 3–4 years. Taken together, such findings re-
fute the claim that in infant cognition “there is no evidence that
semantically interpretable relations are represented, however, or
that inferences go beyond the perceptible properties of objects”
(sect. 6.2.1).

More generally, it is disappointing that Halford et al. provide so
little detail concerning the mechanisms producing age changes in
relational representation complexity. They suggest (sects. 2.6.3,
4.2.4) that with age there is an increase in vectorial differentiation
of representations. No specifics are given, however, about the pro-
cesses triggering such differentiation during development. This
represents a limitation of the model, because competing dynamic
approaches (e.g., van der Maas & Molenaar 1992; van Geert 1994)
make explicit the processes by which stable stagelike behaviour
patterns are disrupted by organismic and/or environmental events
and restabilise into strategies that enable the child to deal with
more complex processing tasks.

Another curious omission is any reference to the considerable
body of evidence for an exponential decline across the lifespan in
the processing time in both simple visuo-spatial tasks (Kail 1991)
and in more complex problems involving memory and analogical
reasoning (Kail & Park 1992). We are skeptical that such age
changes in processing speed can explain all of the cognitive devel-
opmental phenomena described by Halford et al., but this robust
body of data deserves discussion in any relational complexity model.

Conclusion. Although Halford et al. have provided those inter-
ested in capacity limitations with a solid representational frame-
work for their investigations, there is insufficient consideration of
alternative viewpoints, a lack of appreciation of the role played by
dynamical processes, and an underrepresentation of some critical
empirical phenomena. Despite these reservations, the target arti-
cle contains an interesting compendium of ideas to focus and ad-
vance our knowledge of cognitive developmental processes.

Is multi-tasking complex?

W. Bentley MacLeod
Department of Economics and The Law School, University of Southern
California, Los Angeles, CA 90089-0253. wmacleod@usc.edu

Abstract: In a simple economic decision problem with multi-tasking the
dimensionality of the problem is neither a necessary nor a sufficient mea-
sure of complexity. Rather, dimension is good measure of complexity when

there is an aggregate resource constraint that creates an interaction be-
tween the different activities, resulting in a problem with high algorithmic
complexity.

Introduction. Halford et al. argue that the complexity of a task
or problem depends on the dimensionality of the problem. As an
economist, I shall approach this from the point of view of a man-
ager deciding how to allocate resources for several tasks. A simple
example shows that while dimensionality is both suggestive and
useful, its relevance depends on the computational complexity of
the problem, which in this example depends on whether there is
an aggregate resource constraint. (See MacLeod, 1996, for a dis-
cussion of this model and further references to the economics lit-
erature addressing the implications of cognitive limitations for de-
cision making.)

Consider a manager who must determine the extent of re-
sources yi $ 0 to be allocated to activity i [ {1, . . N}. For sim-
plicity, suppose that the total benefit from the manager’s decision
is given by:

(1)

where ui ∈ {u], u}, bi ∈ {b], b} are random variables that can 
take the high or low value with equal probability (u] . u . 0 and

b] . b . 0), while d(yi) 5 {0, if yi 5 0
k, if not.

denotes a fixed cost if

positive resources are allocated to this activity. Let V = {u], u}N 3
{b], b}N denote the space of possible parameter values. The para-
meters ui represents the benefit from allocating resources to this
activity, while bi is a measure of the costs. For example, the ben-
efit might be saving a building that is on fire, while the costs are
given by the danger involved. Both the benefit and the cost are
likely to change from period to period, requiring the manager to
determine a plan for each new situation. The manager’s optimal
response is to make a resource allocation decision as a function of
the activities and is defined by:

(2)

One can put this model into the framework of the Halford et al.’s
target article by defining the relationship:

(3)

Representation. For this simple model the state space defined
by the parameters {u, b} [ V has size 22N, and hence grows very
quickly with the dimension. However Halford et al. point out in
the target article that dimension rather than size is the crucial is-
sue. If one drops the size criteria, then exactly what do we mean
by dimension? For example, one can embed V into the real line
by letting

(4)

and then define the optimal response by R̄(x) 5 R(u,b). In that
case the response R̄ depends only upon a one dimensional real
number x. However, the optimal response function R̄ is now highly
nonlinear, and is itself very complex.

The functions in the target article are maps to responses from
the space of words/sentences, hence from a finite collection. What
is not clear is whether ternary relations are more complex than bi-
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nary ones because of dimensionality or because ternary relations
use longer strings as inputs? Halford et al. discuss this problem in
section 3.4, and state that “it is implausible that appropriate en-
coding strategies are immediately available for novel cognitive
tasks” (sect. 3.4.3). In the target article, the input strings are char-
acters separated by commas, with the number of dimensions equal
to the number of commas plus 1. What makes dimension impor-
tant here does not seem to be dimension per se, but some aspect
of the computational problem faced by the decision maker.

Interaction. In the simple resource allocation model, the opti-
mal rule is defined by:

(5)

This is an illustration of the concept of segmentation discussed in
the target article. In this case, each activity can be considered in-
dependently of the other. In particular, if C represents the cost of
computing the appropriate response for this activity, then the to-
tal cost of computing the optimal allocation is N?C. Thus, even
though the size of the state space is increasing exponentially in N,
the computational costs are linear in N.

Now suppose that the total amount of resources is finite, so 
that

(6)

If we let l be the Lagrange multiplier associated with this con-
straint, then those activities receiving the a positive level of re-
sources have output given by:

yi(l) 5 (ui 2 l)/bi. (7)

However, due to the fixed cost of allocating a positive level of
resources to an activity, for each l one must determine which ac-
tivities receive resources. The problem is made more difficult by
the fact that due to variations in both u and b, there is no unique
way to order the productivity of the tasks as l varies. There are a
number of algorithms that one can use to solve this problem, how-
ever, all of them are significantly more complex than the case with-
out the resource constraint because the resources allocated to a
task depend on the parameters for the other tasks. One algorithm
would iterate on l, starting at zero, and search for the maximum
value of B. For each l one first computes the payoff:

Bi(l) 5 uiyi(l) 2 biyi
2(l)/2 2 d(yi(l)), (8)

and sort the Bi’s from highest to lowest, which takes O(n log n) 
using the best technique. One would then select the m tasks 
such that om

j=1yi(j)(l) # Y, and Bj(i)(l) $ 0, where i(j) is the index
as a function of rank j. The maximum value for l is ū, and given
that the problem is nonconvex, the solution is found by search for
the best payoff using this algorithm as l varies on [0,ū]. Thus in
general the time complexity of this problem is at least a higher or-
der polynomial function of n, the dimension.

This simple example illustrates the point that although these
two problems have exactly the same representation and objec-
tives, the addition of the aggregate resource constraint (6) makes
the problem significantly more difficult. The problem of algorith-
mic complexity is discussed in section 5 of the target article. (In
that section Halford et al. state incorrectly that NP-complete
problems are of exponential complexity, whereas this is in fact an
open question. It is suspected that they are of exponential com-
plexity with the current upper bound given by O(2p(n)), where
p(n) is a polynomial function of the size, n, of the problem.) Hal-
ford et al. point out that the use of parallel processing can solve
the time complexity, but only at the expense of space complexity.

The simple economic example illustrates that thinking in terms
of an overall aggregate budget constraint may be a useful way to
think about the problem. If one supposes that each computation
requires resources, any increases in real time speed via parallel

processing would require a corresponding increase in current re-
sources. Hence parallel processing does reduce the resource con-
straint, but is simply a way to reallocate resources to be used in the
future. In the simple economic example, parallel processing
would correspond to computing the value of B(l) for many dif-
ferent values of l simultaneously. What makes the economic
model complex is not the number of ingredients but the way the
resource constraint requires trading off decisions along several di-
mensions.

Finally, I had great difficulty in following the model of section
4.2, which seemed to hold the core of the argument, and one that
I have attempted to explore with this stylized economic model. Es-
sentially, the complexity of a problem instance depends not so
much upon the dimension per se, but upon the need to relate sev-
eral different elements, with the complexity rising with the num-
ber of interrelationships that need to be explored. I am sympa-
thetic to the intuition presented in the target article, but would
have been able to follow the argument more easily with a more de-
tailed presentation of one of the mathematical models, along with
some theorems on the algorithmic complexity of the proposed
mechanisms.

Is it processing capacity that is 
being defined?

David Navon
The Laboratory for Perception and Attention, Department of Psychology,
University of Haifa, Haifa 31905, Israel. dnavon@psy.haifa.ac.il

Abstract: Halford et al. are not redefining capacity in the sense of limit
on resources but in the sense of limits on what resources can do. Further-
more, the necessity of using resource theory as a theoretical frame is ques-
tionable.

What is it that determines task demands on working memory? I
share Halford et al.’s frustration with the traditional analysis in
terms of the information metric. The alternative suggested by Hal-
ford et al. is not unreasonable, but I would like to comment on the
level at which that was done.

It is one thing to point out that the relevant factor is the num-
ber of independent sources of variation that are related, or to tie
that conclusion to the empirical observation that human adults
cannot process without segmentation a relation that has more than
four arguments. It is another thing to claim that processing ca-
pacity is defined by relational complexity. There appear to be two
problems with that argument.

Capacity of output limit? Although the word “capacity” has
been used by psychologists in various senses, it has acquired a
more circumscribed sense in resource theory – as a scientific term
denoting the limit on resources. Halford et al. accept this defini-
tion (sect. 2.1), but they do not seem to have assimilated it into
their analysis.

The term “resources” is used in cognitive psychology to refer to
provisions for, or internal inputs to, processing (e.g., Gopher 1986;
Kahneman 1973; Navon 1984; Navon & Gopher 1979; 1980;
Navon & Miller 1998; Norman & Bobrow 1975; Wickens 1984).
Theorists typically regard resources as pools of multipurpose
units, analogous to gallons of fuel, workers in a factory, or storage
location. Such pools have been defined in resource theory as hav-
ing several properties: aggregate nature, exclusive usage of units,
distributability, effectiveness, and scarcity (see Navon 1985). In
other words, each resource unit can potentially serve different
users, can actually be allotted at any time to any given user inde-
pendently of the allottment of any other unit, can serve only one
user at a time, contributes to the output in a cumulative manner,
and comes from a limited pool.

Within this context the term “capacity” has a definite meaning
– the limit on resources (viz., the total number of units of internal
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input that may be expended on mental work) rather than the limit
on work (viz., output that those units of internal input can pro-
duce). By analogy, the limit on the resources of a shoe factory is
better expressed in terms of, say, labor hours than in terms of shoes
produced. Likewise, the capacity of a library is better expressed in
terms of meters of shelf space than in terms of number of books
stored. Actually measuring capacity would be a little hard to do in
psychology unless we had a better idea of what the mental re-
sources were. We might settle for characterizing work, namely
processing complexity, in the most general way we can, and then
specifying the limit in terms of work – that is, on output limit
rather than a processing capacity limit.

This is often a formidable problem, and not only in psychology.
How, for example, would one succinctly specify maximal work or
maximal production in a shoe factory, if it produced all kinds of
shoes? For the same reason, it would clearly be unsatisfactory to
characterize the output limit of working memory in terms of, say,
the maximum number of digits making up a mental arithmetic
task, or the maximum number of items that can be recalled in a
digit span task. This is probably why people were excited by the
notion of chunks and hoped to gain much from the measure of in-
formation. Four decades after George Miller published his classic
article (Miller 1956), we are somewhat disenchanted with chunks
and bits. But the lesson could be a little more general: it may not
be a good idea to develop too much hope with respect to any such
measure of processing complexity.

This may also be true of measures of relational complexity. How
many independent sources of variation are there in memory scan?
What is the relational complexity of a digit span task, and how does
it grow when the number of digits is increased from 3 to 7? What
is the relational complexity of a dual-task situation, and how can it
be related to the complexities of the component tasks? How can
the confusability between the tasks (which certainly affects per-
formance) be captured by a measure of relational complexity? I
wish Halford et al. lots of luck in trying to answer these questions,
but I suspect it would not be easier to find a common denomina-
tor for all the shoes produced in that mental factory called working
memory than it would be to learn more about its laborers and about
the extent to which their production depends on their number.

Is processing resource limited? And here is the second reason
I would hesitate to use the term “processing capacity”: At present
we do not know enough about those laborers. Empirical effects of
load or task interference are too often described using a theory-
laden jargon, even when the data do not afford evidence that se-
lectively supports the theory. Typically the description is in terms
of resources and capacity. If the concept of mental resources is not
taken for granted – and there is some reason for not taking it for
granted (cf. Navon 1984; 1985) – then the use of the terms “men-
tal resources” and “processing capacity” – at least in conjunction
– must imply that there is empirical evidence supporting some
version of resource theory rather than any of its competitors (for
one, models of outcome conflict, Navon & Miller 1987; 1998).

Is there a good reason for Halford et al. to do that? They pre-
sent neural net models that account for limits on processing con-
cepts with high relational complexity. The relevant question is
then whether these models assume that processing is resource
limited.

In general, it is doubtful that neural nets satisfy the defining
properties of resources: (1) Neural net units evolve to perma-
nently subserve the specific function(s) they do subserve. (2) The
contribution of each unit is special in a way (e.g., its specific con-
nections to other units, its vector of gains on emanating connec-
tions, possibly its transfer function). (3) The units operate in a con-
certed manner, thus contributing synergistically rather than
cumulatively (more the way different body organs contribute to
accomplishing a certain biological function than the way oxygen
molecules do). (4) Although the overall number of units must be
limited, the fact that they are function-dedicated prevents local
scarcity, in the sense of a unit being temporarily unable to serve
one function because at the time it serves another one. (5) It seems

more likely that two functions that are both served by some units
will interfere with each other due to crosstalk, the extent of which
depends on the overlap in units.

Even if the use of the notion of resources in the context of
neural nets were appropriate, however, this would fall short of
convincing me that processing is resource limited. It is not clear
that we have to take neural nets for granted any more than we do
resource theory. Whether human information processing is best
captured by neural net modelling is still an open question. One
could imagine an information processing system in which pro-
cessing provisions were never scarce but outcome conflict was
prevalent. What would the term “capacity” denote then?

Chaotic dimensionality of hand movements
define processing capacity by relational
complexity

Danko Nikolic
Department of Psychology, University of Oklahoma, Norman, OK 73019.
dnikolic@ou.edu
www.ou.edu/class/psy2503/danko/danko.html

Abstract: Measurements of the dimensionality of chaotic attractors ob-
tained on behavioral data represent the task complexity and also could be
hypothesized to reflect the number of synchronized neural groups in-
volved in the generation of the data. The changes in dimensionality for dif-
ferent experimental conditions suggest that limited processing capacity,
task complexity, demand, and synchrony in neural firing might be closely
related.

Results on chaotic dimensionality of hand movements sup-
port processing capacity definition by relational complexity.
The chaotic dimensionality of a signal is determined by a method
that includes two steps: (1) reconstructing the chaotic attractor or
phase space, and (2) determining the dimensionality of the re-
constructed attractor. Such an analysis provides us with the “di-
mension” of a data set. The dimension provides information about
the minimal number of first-order differential equations (or active
degrees of freedom) that are necessary to generate the signal, and
therefore represents a measure of the complexity of the process
that generated that data. In addition, it will be assumed that the
number of dimensions is a rough estimate of the number of syn-
chronous neural groups involved in the process. In other words,
each differential equation that generates the motor movements
corresponds to one synchronous neural group. The larger the
complexity of the motor movements, the larger the number of 
synchronous neural groups involved. Any change in dimension-
ality can therefore be interpreted as a change in the number of
synchronous neural groups used to carry out the task. With these
two interpretations of the attractor’s dimension in mind (com-
plexity and number of synchronized neural groups), the results ob-
tained on repetitive hand movements provide support for several
fundamental assumptions underlying Halford, Wilson & Phillips’s
theory.

First, it has been found that repetitive movements (i.e., swing-
ing a stick) actually result from a low-dimensional chaotic attrac-
tor (Mitra et al. 1997) whose dimensionality does not seem to be
larger than 5, a range similar to that proposed by Halford et al. 
and estimated by others (Hummel & Holyoak 1997; Lebedev
1980; Shastri & Ajjanagadde 1993a). This finding suggests that the
small variations in hand movements are not noise but come from
a deterministic system. Therefore, any change in the dimension-
ality might reflect a change in the complexity of the processes un-
derlying the hand movements.

When participants were asked to produce a simple repetitive
swinging-like movement with either a heavy or light stick, the
swinging of the heavy stick was judged to be a much easier task
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(Riley 1997). Mitra et al. (1997) found that more difficult tasks
(the lighter stick) have larger dimensionality (dL 5 4) than the eas-
ier task (dL 5 3). This finding suggests that a more difficult task
involves more complex processing and probably a larger number
of synchronized neural groups. This finding seems to be in line
with Halford et al.’s assumption that the processing effort (de-
mand) and processing complexity are related (where complexity
is defined as the number of variables interacting in parallel that
were attributed to the synchronous neural groups).

Another finding supports Halford et al.’s proposal that one way
to overcome the large dimensionality/complexity of the task is
through a form of learning called “conceptual chunking.” Such
learning results in a decrease in the complexity of a concept’s rep-
resentation, and consequently in involvement of a smaller num-
ber of synchronized groups in processing. An experiment by Mi-
tra et al. (1998) somewhat supports this assumption. They had
participants practice a relatively difficult swinging task that showed
performance improvement over time. The improvement in per-
formance was accompanied by a decrease in the complexity of the
movements. Although there was not an obvious decrease in the
number of low dimensional active degrees of freedom (the method
did not allow for measurement of dimensionality more precise than
an integer), there was a substantial decrease in the high dimen-
sional component (or “noise”). Although the high dimensional
chaos was abundant at the beginning of training, it nearly vanished
at the end. This is an empirical example of how the complexity of
behavior decreases with practice/learning. Furthermore, the more
speculative interpretation suggests that the number of synchro-
nized neural groups involved in the task might have decreased as
well.

These results concur with Halford et al.’s hypothesis that the
limited processing capacity (maximal number of variables), the
task complexity (requisite number of variables), and the difficulty
of the task (effort), are closely related. Finally, if the obtained
number of active degrees of freedom is interpreted as the num-
ber of synchronous neural groups involved, then their hypothesis
about the mechanism underlying limited processing capacity
would also be supported (see Nikolic, in press, for similar conclu-
sions). Hence, the decrease in processing complexity, possibly
caused by the decrease in the number of synchronous neural
groups necessary to carry out the task, might be the mechanism
by which the brain copes with the complexity of computational
tasks. This would mean that through learning and practice the
neural network restructures in such a way that the processing of
the task requires fewer synchronous neural groups. As a conse-
quence, part of the limited processing capacity is free for pro-
cessing of additional information (Nikolic, in press). The same
mechanism might underlie both simple skill acquisition and
higher cognitive processes.

To appraise developmental difficulty 
or mental demand, relational complexity 
is not enough

Juan Pascual-Leone
Department of Psychology, York University, Toronto, Ontario M3J 1P3,
Canada. juanpl@yorku.ca

Abstract: Two assertions of Halford et al. are critiqued: their claim of 
priority in relational complexity analysis and the sufficiency for cognitive
development of their relational-complexity analysis of tasks. Critical dis-
cussion of concrete task analyses (i.e., the relational complexity of pro-
portionality problems, of balance scale problems, and the Tower of 
Hanoi) serves, by way of counterexamples, to highlight problems in their
method.

Halford et al. make three general claims in this important target
article. The first concerns the adequacy of their tensor-product

method for computational modelling of cognitive developmental
processes. Elsewhere (Pascual-Leone 1994) I have discussed the
psychological limitations of this method, although I recognize its
heuristic interest. The second claim concerns the sufficiency of
the Halford et al.’s developmental method of task analysis, that is,
evaluation of a task’s mental demand via objective (ideal ob-
server’s) estimations of its relational complexity. The third claim is
that authors are the first to propose the method of relational com-
plexity analysis in developmental psychology. Not so: Nassefat
(1963) and, independently, de Ribaupierre & Pascual-Leone
(1979); Pascual-Leone (1970); Pascual-Leone & Goodman (1979);
Pascual-Leone & Smith (1969) were the first developmental 
researchers to quantify complexity by means of a form of dimen-
sional analysis: the highest number of schemes – task relevant di-
mensions of variation – that subjects must consider simultane-
ously to solve the task. In their effort to formalize the method,
Halford et al. have made a number of oversimplifications, which
hinder their ability to assess task complexity in mental processing
– what I call mental demand. This commentary illustrates some of
these problems.

Here is the main problem: Halford et al. believe (sect. 2.3) that
their “objective” relational complexity estimate equals mental de-
mand, so they assert that a human adult can process, within one
mental act, at most a four-argument relation. Strict tests of this
claim require paradigms in which, within the same task and using
the same executive processes, one has multiple homogeneous
classes (scales) of items, with each class varying the relational com-
plexity of items by one unit (1, 2, 3, 4, . . . , 7, 8), relative to the
previous class. Then, with items randomly ordered within the test,
normal subjects of various ages would be examined. With this de-
sign, Halford’s model makes a clear prediction: at 11 years of age
(when processing a relation with 4 arguments becomes possible)
the performance level of subjects will reach an asymptote – that
is, older subjects should not perform any better. This is the para-
digm of M-capacity measurement that I initiated (Pascual-Leone
1970; Pascual-Leone & Baillargeon 1994). Using this paradigm,
we have found repeatedly that the asymptote predicted by Hal-
ford’s model does not materialize (e.g., Pascual-Leone & Good-
man 1979). Our results are consistent with developmental find-
ings about fluid intelligence and Piagetian formal operations (de
Ribaupierre & Pascual-Leone 1979), which do not reach asymp-
tote until late adolescence.

Halford’s error reflects a basic flow in this task analytical meth-
ods: confusion between an observer’s perspective (i.e., objective
analysis from without) and an organismic perspective looking at
processes from within (Pascual-Leone 1978; 1994). Halford et al.’s
own examples illustrate this error. According to them (sects. 2.3
and 3.6), a proportionality relation such as 4/12 5 32/96, or a/b 5
c/d, has the relational complexity of 4: P(a, b, c, d). This cannot be
so, however, if by complexity they mean “effective complexity” as
defined by this new science. Gell-Mann (1994, p. 96), one of its
architects, defines the “effective complexity of an entity, relative
to a complex adaptive system that is observing it and constructing
a schema, as the length of a concise description of the entity’s reg-
ularities identified in the schema.” A scheme or schema for pro-
portionality must contain all essential, internal and external func-
tional relations (all the regularities) that proportionality prescribes
for terms in the argument set ka, b, c, dl. Thus the two ratios (a/b
and c/d) whose equality makes the proportion valid are part of the
complexity count. After reducing redundancy, the relational com-
plexity in proportionality should be equal to 4 (number of argu-
ments) plus 2 (one for the proportionality operator P and another
for at least one of the two internal ratio-functors f ). In principle,
the relational complexity of proportionality is equivalent to 6 units,
as shown by its mental-structure formula: P(f1

L(a,b),{f2}L(c,d)). In
this formula the brackets around the functor f2 should be inter-
preted psychologically as meaning that f2 is part of the same struc-
tural chunk L as f1, and so does not increase the attentional de-
mand. Surprisingly, Halford et al. (sect. 2.3) assign to proportionality
the structure P(a,b,c,d), with a complexity count of 4; they also
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give the same structural complexity to the much simpler proposi-
tional structure (sect. 3.2) “played(John, cricket,oval,Sunday)” –
John played cricket at the Oval on Sunday – which, unlike pro-
portionality, requires no internal functors.

This confusion of two very different relational structures shows
a fault in Halford et al.’s task-analyzing method. But this is just one
counterexample; there are several others. The Piagetian balance-
scale task (sect. 6.2.5.1) is another one: the authors adopt a simple
structure like P(a,b,c,d), that is, Balance (W1,D1,W2,D2), when
the internal functional relations that tie together weights and dis-
tances within each arm demand the complex structure just dis-
cussed: Balance(f1

L(W1,D1),{f2}L(W2,D2)), with a mental demand
of 6. Pascual-Leone (1994) has discussed Halford’s problems with
this task in detail. De Ribaupierre and Pascual-Leone (1979) give
detailed organismic task analyses of the balance showing other fac-
tors. They also show, theoretically and empirically, that most oth-
ers Piagetian formal-operational tasks have a mental demand
greater than 4.

Halford et al.’s analyses of the Tower of Hanoi also have method-
ological problems (sect. 6.1.3; Table 1), for example the 4-disc
game (see Table 1). In Move 1, goal sequence 4C 3B 1C 2C 1B
(notice that in Table 1, goal 1C has been omitted!) has for the au-
thors a dimensionality of 10 (in Table 1 they write 8 because goal
1C is missing) – well beyond the maximum complexity of 4 pre-
scribed by their model. They justify this frequently found anom-
aly – that is, tasks being solvable even when their analysis predicts
excessive dimensionality – by claiming that chunking and seg-
mentation reduce (de Ribaupierre & Pascual-Leone 1979) com-
plexity. But since the theory has no explicit rules constraining their
occurrence, chunking and segmentation turn into theoretical
loopholes for explaining away empirical anomalies. Pascual-Leone
and Goodman (1979) show how rules for constraining the occur-
rence of chunking (L learning) in task analysis can be formulated.

Chunks, bindings, STAR, and Holographic
Reduced Representations

Tony A. Plate
School of Mathematical and Computing Sciences, Victoria University,
Wellington 6001, New Zealand. tony.plate@vuw.ac.nz
www.mcs.vuw.ac.nz/~tap

Abstract: Much of Halford et al.’s discussion of vector models for repre-
senting relations concerns the perceived inadequacies of alternative meth-
ods with respect to chunking, binding, systematicity, and resource re-
quirements. Vector-based models for storing relations are in their infancy,
however, and the relative merits of different schemes are not so clearly in
favor of their STAR scheme as Halford et al. portray.

Halford, Wilson & Phillips make three strong claims about the
processing and representation of relational knowledge in the hu-
man brain and in neural network models. First, information pro-
cessing capacity is more restricted by the complexity of relations
that can be processed in parallel than by capacity for short-term
storage. Second, in vector-based models, relations are better rep-
resented as predicate-argument bindings than role-filler bindings.
Third, these bindings are best computed as tensor products. Hal-
ford et al.’s goal of producing a vector-based neural-network
model of relational processing that incorporates capacity limits is
thoroughly worthwhile and the model they propose has many in-
teresting properties. Apart from a slight lack of clarity about the
relationship between tensor-product representations for relations
and such diverse phenomena as parsing center-embedded sen-
tences and solving word puzzles, my main disagreements are with
the second and third claims, which lie at increasingly deep levels
of implementation detail.

In Halford et al.’s story there is an unwavering path leading from
the first through the second to the third claim, constrained by the

inadequacies of alternative methods with respect to chunking, bind-
ing, systematicity, and resource requirements. However, vector-
based models for storing relations are in their infancy, and the rel-
ative merits of different schemes are not so clearly in favor of their
STAR scheme as Halford et al. portray. I will formulate my dis-
cussion as a defense of holographic reduced representations
(HRRs) (Plate 1994; 1995) against Halford et al.’s charges, al-
though in many cases the defenses also apply to related methods
such as Smolensky’s (1990) role-filler tensor product representa-
tions and Kanerva’s (1996) binary spattercodes.

Chunks. Chunking is one of the most important issues in any
model that aspires to process hierarchical relational structure.
Such a model must be able to form modest-sized chunks of infor-
mation that can be presented to its processing machinery. In sym-
bolic architectures “cons” cells or records can be viewed as
chunks, and pointers serve to record relationships among chunks.
In neural networks, chunking is less straightforward because there
are no addresses to point to. Neural network chunking techniques
are potentially more powerful, however, because a chunk can give
some indication of its contents,1 as Hinton (1990) suggested in his
proposal for “reduced representations.”

Chunking is intimately bound up with HRRs. Contrary to Hal-
ford et al.’s claim in section 4.2, HRRs easily handle conceptual
chunking and satisfy the three general principles of chunking
listed in section 3.4.1. Every vector in an HRR model is already a
chunk and no further compression (as sought by Halford et al. in
sect. 4.2.4) is necessary. For example, the HRR L15love1loveagt
*john 1 loveobj*mary represents the relational instance loves
(John, Mary) and is also a chunk that can be used as a filler in other
relational instances such as knows(Sam,loves(John, Mary)) repre-
sented by L25know1knowagt*Sam1knowobj*L1. An important
property of the HRR scheme is that there is only one unitary rep-
resentation for a relational instance (as opposed to the nonunitary
representation, which is the collection of representations for the
components), which serves both as a chunk and records relational
structure. In contrast, in the STAR model there are two possible
unitary representations for a relational instance: the tensor prod-
uct version and the chunked version.2 This is not a fatal flaw, but
it does seem to be a case of multiplying entities without necessity.

The claim in section 4.2.4 that HRRs rely on randomly gener-
ated component vectors is not exactly correct: the component vec-
tors merely have to have elements whose statistics are those of a
Gaussian distribution, an important difference that allows similar
objects to be represented by similar vectors. Chunked represen-
tations are easily made similar to their components by adding the
components directly into the chunk, as in L1’5love1john1
mary1loveagt*john1loveobj*mary.

Systematicity. Halford et al. point out that HRRs do not provide
a complete solution to systematicity (sect. 4.2.9). This is neither
surprising nor a significant drawback – contextualized representa-
tions3 were only intended to support an estimation of the degree
of systematicity present. In general, detecting whether systematic-
ity is possible is equivalent to solving the graph-isomorphism prob-
lem, for which no polynomial-time algorithm is known (Garey &
Johnson 1979). Thus, it would be very surprising if any polynomial
time algorithm operating on fixed width vectors (such the dot-
product of HRRs, or some tensor operation in STAR) were able
to detect systematicity in general. It is a bonus that the degree of
systematicity between small structures represented in contextual-
ized HRRs can be estimated using a vector dot-product. As re-
gards the general case, even uncontextualized HRRs do repre-
sent the structural information required to make a decision about
whether systematicity is present. What is missing is a computational
process that can act on that information. Given the computational
complexity of detecting systematicity, this process must involve se-
quential computations in addition to parallel vector operations.

Role-filler and predicate-argument bindings. Halford et al. are
right in claiming that role-filler binding schemes are susceptible
to confusion if vectors representing relations are added in mem-
ory. However, this is a minor problem. There is no compelling 
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reason why relation vectors must be added. This allows a very 
simple solution: keep relation vectors separate in an associative
content-addressable memory. There is no shortage of associative-
memory models which can store a few or many items, for exam-
ple, the memories described in Baum et al. (1988) and in Kanerva 
(1988).

There is considerable room for discussion of the computational
and psychological implications of different types of bindings. One
consequence of predicate-argument bindings is that there is no
explicit representation of roles, which makes it difficult to repre-
sent similarity between roles of different relations, as we might
want to do for the relations (X buys Y from Z) and (U sells V to W).
Another consequence is that roles must be known at storage and
recall time, which may not always occur. Furthermore, access
based on one missing argument requires a different computation
depending on which argument is missing, which seems cumber-
some. In addition, recall based on more than one missing argu-
ment is difficult. Finally, dealing with relations having optional or
symmetric roles also seems troublesome. The two schemes result
in quite different patterns of similarity among relations: the simi-
larity of two relations with role-filler bindings is the average of the
similarities of their arguments, but with predicate-argument bind-
ings it is the product of the similarities of their arguments. The two
schemes are not mutually exclusive – it would be possible to use
both together and thus combine their respective advantages.

A role-filler binding scheme could lead to resource bounds sim-
ilar to the ones that Halford et al. identify. If looking up a relation
in content-addressable memory is what is involved in making a sin-
gle decision, then the number of independent pieces of informa-
tion that could influence a decision would be the same as the size
of chunks, that is, the number of role-filler bindings that can be
reliably superimposed in the same vector. This explanation leads
to a soft bound on processing capacity rather than the hard bound
implied by predicate-argument binding. This capacity would also
depend on the similarity of the particular pieces of information in-
volved – one can reliably superimpose more dissimilar items than
similar ones.

The issues regarding the relative merits of role-filler versus
predicate-arguments bindings are largely orthogonal to those 
regarding the vector operations for implementing the bindings: 
either type of binding can be implemented with different vector 
operations (Halford et al. discuss only tensor products and convo-
lution but there are other possibilities; see Plate [1994] and Kan-
erva [1996]).

Resource requirements. Halford et al. cite the requirement of
a clean-up memory as a major computational cost unique to
HRRs. However, the space complexity of the clean-up memory is
linear in the number of entities and relations stored, which is
hardly unreasonable. Suitable fast auto-associative memories are
easily implemented in neural architectures. The simplest scheme
uses a “grandmother cell” to store each item (Baum et al. 1988):
one item is encoding in the incoming and outgoing weights of a
cell and retrieval involves a winner-take-all competition over the
grandmother cells. In any case, a realistic implementation of the
STAR model will almost certainly need to be equipped with a
clean-up memory to clean up the results of processing nonorthog-
onal vectors for items and chunks. Realistic implementations de-
mand nonorthogonal vectors for two reasons. The first is based on
simple capacity considerations: denser, nonorthogonal represen-
tations must be used if thousands of different possible items (say
of the order of number of nouns in the English language) are to
be represented. It is unreasonable to suppose that a rank-4 tensor
might be formed over vectors 10,000 elements wide, for it would
require 1016 bits of storage. The second reason is that represent-
ing similarity among items (e.g., that John is more similar to Bob
than Flying-Saucer) requires nonorthogonal vectors and is essen-
tial for reasoning and generalization.

Halford et al.’s “worst case” situation for a clean-up memory
where the majority of instances in a relation are stored (sect. 5.2.3)
will not occur when there are even a moderate number of items.

Consider populating the space of rank 4 tensors where there are
1,000 possibilities for the predicate name and each of the three ar-
guments. Even after storing one instance per second for 100 years,
only 3.15% of the relational space would be filled (and this is a
gross overestimate – Simon [1974]) quotes an estimate of 5 to 10
seconds to store a chunk in long-term memory). In fact, for stor-
ing sparse relations a HRR scheme with a clean-up memory is far
more economical than a STAR scheme because the HRR scheme
only requires resources proportional to the actual number of re-
lational instances stored, whereas the STAR scheme requires re-
sources proportional to the total number of possible relational in-
stances.

NOTES:
1. A pointer usually gives no indication of what it points to; it must be

dereferenced to find out anything about the contents. A simple example
of the idea of having a pointer say something about its contents can be seen
in some LISP architectures where a pointer indicates the type of the ob-
ject, integer, cons-cell, and so on, that it points to.

2. Halford et al.’s two proposals for implementing chunking appear to
be representationally inadequate. The first in which items are chunked by
concatenating vectors (illustrated in Fig. 1E), can result in confused argu-
ment bindings: the result of superimposing the tensors for the two unary
relations p(a/b) and p(d/e) (i.e., p 3 c(a,b) 1 p 3 c(d,e), where c(x,y), a
function which concatenates the vectors x and y end-to-end) is indistin-
guishable from the superposition of the vectors for the relations p(a/e) and
p(d/b) (p 3 c(a,e) 1 p 3 c(d,e)). The second proposal, in which items are
chunked by convolving vectors, loses the order of components within the
chunk: p(a/b) has the same tensor product as p(b/a). This is because con-
volution is commutative: a*b 5 b*a. Both these objections to Halford et
al.’s proposals are minor because there are other operations which have
the required properties, for example, the noncommutative variants of con-
volution discussed in Plate (1995).

3. Halford et al. describe contextualization incorrectly: what contextual
features are added depends on the situation, so in one situation features
for smiling might be added to the representation for Jane, but in another
features for frowning might be added. This does not change the general
representation of Jane, only the representation in a particular situation.
One of the motivations for the particular implementation of contextual-
ization was that over the long term, if Jane was consistently frowning, the
frowning feature might become part of her representation. However, this
would not prevent the smiling feature being added in some particular sit-
uation.

Can we measure working memory without
contamination from knowledge held in long-
term memory?

John Sweller
School of Education Studies, University of New South Wales, Sydney 2052,
Australia. j.sweller@unsu.edu.au

Abstract: The metric devised by Halford, Wilson & Phillips may have con-
siderable potential in distinguishing between the working memory de-
mands of different tasks but may be less effective in distinguishing work-
ing memory capacity between individuals. Despite the strengths of the
metric, determining whether an effect is caused by relational complexity
or by differential levels of expertise is currently problematic.

Working memory measures can be used to distinguish between
both (a), tasks that impose different working memory demands
and (b), individuals or classes of individuals who differ in working
memory capacity. I will discuss these two aspects of Halford, Wil-
son & Phillips’s important target article.

Measuring task demands. Halford et al.’s metric provides a
promising a priori measure of cognitive load imposed by various
tasks. My research group has used a similar, though less detailed
and sophisticated, structure (e.g., Tindall-Ford et al. 1997), but we
do run into a common problem that is of general theoretical and
practical interest: unless one knows for a particular individual

Commentary/Halford et al: Relational complexity

BEHAVIORAL AND BRAIN SCIENCES (1998) 21:6 845
https://doi.org/10.1017/S0140525X98231761 Published online by Cambridge University Press

https://doi.org/10.1017/S0140525X98231761


what relational dimensions have been chunked (what interacting
elements have been formed into schemas), one does not know
what relational dimensions one is dealing with.

Consider someone solving distance/rate/time problems of the
sort discussed in section 3.4.1. Halford et al. indicate that this re-
lation is three dimensional. In fact, there are more than three di-
mensions for novices who must define distance, rate and time be-
fore dealing with the problem and, as Halford et al. point out,
fewer than three dimensions for experts. What constitutes a di-
mension will depend on the level of expertise of the person who
is solving the problem, making it difficult to determine problem
dimensionality.

How does expertise develop on these problems? We know from
the work on chess (e.g., Chase & Simon 1973) that chess experts
do not generate moves based on the rules of chess but rather learn
to recognise tens of thousands of configurations (by chunking the
pieces that make up each configuration) and learning the best
moves associated with each configuration. Similarly, expertise in
learning to use equations such as V 5 s/t develops by people learn-
ing to recognise that for a particular combination of givens and
goal (e.g., V and t known, find s), a particular procedure needs to
be followed and that procedure changes when the combination of
givens and goal changes (e.g., Sweller et al. 1983). The givens, goal
and solution, are chunked into a single entity but separated (seg-
mented?) from other entities with a different combination of
givens and goal.

First, I am not sure that any relations become inaccessible by
this procedure (sect. 3.4.1), but more important, I am not sure
how to measure relational complexity. I think that on this analysis
expertise consists of the development of large numbers of unary,
or perhaps binary, relations. If so, that would fit with an increased
working memory capacity available to experts. It would neverthe-
less leave us with a major empirical problem of having to deter-
mine the precise level of expertise before we could assign a level
of relational complexity to a problem.

An indication of the difficulty of relating logical problem solv-
ing structures to working memory demands comes from Kotovsky
et al. (1985) who showed that Tower of Hanoi isomorphs (all of
which have an identical logical structure) can vary in difficulty by
a factor of 16 depending on the cover story. The differences are
due to automated knowledge held in long-term memory. Iso-
morphs that tap into previous experience are very easy whereas
those that do not can be inordinately difficult. All have the same
relational complexity.

Similarly, whereas the days of the week problem described in
section 2 of Halford et al. is difficult, the isomorphic problem:
Suppose adding 5 to a particular number and then subtracting 2,
gives you 10. What is 1 more than the original number?, is sub-
stantially easier (x 1 5 2 2 5 10, where x is the original number).
We have highly automated schemas for dealing with mathemati-
cal entities. We have not needed to learn such procedures for days
of the week.

It is reasonable to assume that relational complexity affects task
difficulty in the manner outlined by Halford et al., but consider-
able work may be needed to determine what constitutes a relation
for a given combination of learners and materials and to distin-
guish between relational complexity and other effects. Of course,
the difficulty of dealing with the effects on working memory of
schemas or chunks held in long-term memory is hardly unique to
relational complexity theory. Halford et al.’s work has increased
the sophistication of the metric available to us to measure differ-
ences in task demands; as such, it is potentially very valuable.

Measuring individual differences. Halford et al. suggest that
young children’s working memory capacity increases with age and
that relational complexity theory can be used to measure the
changes (sects. 6.2 and 6.3). I have doubts. Because expertise is an
individual-difference factor, it is a much more serious contami-
nant when considering other individual difference factors such as
working memory size than when distinguishing between the

memory demands of tasks. I doubt there is any current reliable
procedure that can disentangle the effects of schemas and chunks
held in long-term memory from an individual’s working-memory
size.

How do we know that older children have not acquired more
automated knowledge than younger children for any experimen-
tal materials used and that all differences are due solely to this fac-
tor? If, as is surely the case, children of different ages differ in the
extent to which they are familiar with names such as John, Tom,
and Peter, and with the concept of ordering three people accord-
ing to size, should they not differ in their ability to deal with the
logic of size relations? Age differences may be due entirely to dif-
ferential familiarity with the entities and procedures used rather
than to differential ability to deal with relational complexity. In
short, how can our experimental design isolate logical structures
and their consequences for working memory from knowledge
held in long-term memory?

Relational complexity, the central executive,
and prefrontal cortex

James A. Waltz, Barbara J. Knowlton, and Keith J. Holyoak
Department of Psychology, University of California, Los Angeles, 
Los Angeles, CA 90095-1563. waltz@psych.ucla.edu
knowlton@lifesci.ucla.edu holyoak@lifesci.ucla.edu

Abstract: Halford et al.’s analysis of relational complexity provides a pos-
sible framework for characterizing the symbolic functions of the prefrontal
cortex. Studies of prefrontal patients have revealed that their performance
is selectively impaired on tasks that require integration of two binary rela-
tions (i.e., tasks that Halford et al.’s analysis would identify as three-
dimensional). Analyses of relational complexity show promise of helping
to understand the neural substrate of thinking.

Halford et al. have provided an extremely useful analysis of the
cognitive and computational requirements for the representation
and manipulation of explicit relational knowledge. Although nu-
merous studies have established a role for working memory in rea-
soning, the precise actions of components of working memory in
higher-level cognition have not been specified. One of the bene-
fits of developing a theoretical taxonomy of relational complexity
is that it could clarify the functions of the central executive com-
ponent of working memory in humans and other primates. Work-
ing memory (Baddeley 1992) involves both the active mainte-
nance of information and its processing, with the executive being
responsible for control of processing. A wide range of evidence
implicates the dorsolateral prefrontal cortex as a critical part of
the neural substrate of working memory (e.g., Cohen et al. 1997;
D’Esposito et al. 1996; Shallice & Burgess 1991). In humans, le-
sions to dorsolateral prefrontal cortex impair performance on a
wide variety of tasks that have been identified with executive pro-
cessing and fluid intelligence, including memory monitoring,
management of dual tasks, rule application, and planning se-
quences of moves in problem solving. Yet, although much has
been learned about what tasks require executive processing and
what brain structures subserve working memory, it has been far
from clear how executive processing should be characterized.
What exactly is the kind of “work” performed by working memory?

One possibility, as Halford et al. note, is that executive process-
ing involves the formation and active manipulation of relational
knowledge. Based on a review of the human and other primate lit-
erature on frontal functions, Robin and Holyoak (1995) argued
that the major functions of the prefrontal cortex can be under-
stood as aspects of an overall system for reasoning with and learn-
ing about explicit relational concepts. In particular, the prefrontal
cortex may be required for dynamic binding of fillers to relational
roles. A theory such as the one outlined by Halford et al., which
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defines cognitive complexity in terms of the number and types of
mental elements that must be simultaneously manipulated in cog-
nitive processing, provides a framework for characterizing the
work done by those components of working memory that involve
prefrontal cortex. Executive control will be required in complex
planning and problem solving because these intrinsically involve
high levels of relational complexity. As Halford et al. note in their
analysis of the Tower of Hanoi problem, complexity measures
based on levels of embedding in a goal hierarchy can be subsumed
as special cases of variation in relational complexity. Contextual el-
ements that need to be considered in combination with other el-
ements will increase relational complexity, as will conditional con-
tingencies based on multiple elements, especially when these are
difficult to chunk due to their temporal or spatial separation. Ab-
stract concepts will also have relatively high dimensionality, and
hence be more dependent on prefrontal functions. Prefrontal cor-
tex will be critical in dynamically binding fillers to roles. Within
any mammalian species, tasks requiring the highest complexity
level attainable by the species will be maximally dependent on
frontal functions. Once complex relations are chunked and stored
in long-term memory, and appropriate task segmentations and
specific role-filler bindings have been learned, frontal involve-
ment will be sharply reduced.

Halford et al. point out the potential for testing these claims us-
ing neuroimaging techniques coupled with tasks in which rela-
tional complexity is systematically varied. We have applied similar
logic in recent neuropsychological studies comparing patients
with widespread prefrontal damage to patients with nonfrontal le-
sions (in anterior temporal cortex) and to normal controls. One
reasoning task we have used (Waltz et al., in press) is transitive in-
ference, which Halford et al. discuss in detail. The problems we
presented to subjects involved between two and four propositions,
each stating a “taller than” relation between two individuals; the
subjects’ task was to arrange cards corresponding to the individu-
als in descending order of their heights. In the less complex ver-
sion, the pairs introduced the names in order of height (e.g., Bob
taller than Fred; Fred taller than Sam). The correct ordering
could therefore be achieved using a chaining strategy that pro-
ceeds one link at a time: to build a link, only one relation – that
between the name currently at the end of the chain and its suc-
cessor – need be considered. In terms of Halford et al.’s analysis,
this order-restricted version of transitive inference can be per-
formed by considering one binary relation at a time, and hence is
two dimensional. In the more complex version of the task, the
pairs were introduced in a scrambled order (e.g., Fred taller than
Sam; Bob taller than Fred) so that the item currently at the end
of the chain was not in the subsequent pair, making the chaining
strategy inapplicable. The subject would therefore need to con-
sider two binary relations simultaneously to determine the overall
ordering, making the task three-dimensional according to Halford
et al.’s analysis (i.e., the complexity of unrestricted transitive in-
ference).

Our results provided striking support for the hypothesis that
prefrontal cortex is necessary for complex relational reasoning. On
the simpler two-dimensional version of transitive inference, all
groups achieved accuracy levels above 80% and did not differ sta-
tistically from one another. The prefrontal patients were able to
solve transitive inference problems when as many as five names
had to be ordered, as long as the names were introduced in order
of height. But on the more complex three-dimensional version of
the task, the performance of the prefrontal patients was cata-
strophically impaired: their accuracy was reduced to chance level,
whereas temporal patients and normal controls continued to
achieve over 80% correct. Importantly, the simple and complex
problems were equated in terms of number of number of propo-
sitions and number of names to be ordered. In keeping with Hal-
ford et al.’s analysis and Robin and Holyoak’s (1995) hypothesis,
the relevant metric for predicting sensitivity to prefrontal damage
appears to be number of independent dimensions of variation that

have to be considered simultaneously, rather than a simple count
of the number of problem elements.

We obtained very similar results when we manipulated com-
plexity in variants of the Raven’s matrices task, with problems sim-
ilar to geometric analogies (Waltz et al., in press). As in the case of
transitive inference, the performance of prefrontal patients was
selectively and catastrophically impaired on a version of the ma-
trix task requiring integration of two binary relations (i.e., a three-
dimensional version). These deficits on the more complex forms
of the transitive-inference and matrix tasks cannot be attributed
to some overall difficulty factor, as the frontal patients outper-
formed the temporal patients on a number of tests that required
semantic or episodic memory. Such double dissociations indicate
that frontal impairment is selectively found on tasks requiring dy-
namic binding of at least two binary relations in working memory.

Our findings support the hypothesis that prefrontal cortex is
necessary for managing high levels of relational complexity, which
for adult humans corresponds to what Halford et al. consider to
be three-dimensional (or higher) representations. Although the
neuropsychological evidence lends support to their computational-
level analysis of relational complexity, it does not decide between
alternative algorithmic accounts of how relations might be repre-
sented in a neural code, such as tensor products or neural syn-
chrony (but see Holyoak & Hummel, in press, and Hummel &
Holyoak, 1997, for computational arguments in favor of the latter
approach). It should, however, be possible to use current tech-
niques of cognitive neuroscience to address issues such as testing
alternative metrics of complexity, teasing apart domain-specific
and domain-general aspects of relational representations, and dis-
tinguishing the neural substrates of relational versus nonrelational
knowledge. It will be fruitful to identify additional tasks that allow
relational complexity to be systematically varied, and to use both
neuropsychological and neuroimaging techniques to determine
their neural basis. Whether Halford et al.’s metric of complexity is
ultimately supported by behavioral and neural evidence, it is this
kind of theoretical work that is needed to guide empirical investi-
gations of the brain basis for thinking.

And if the developmental data doesn’t 
quite fit . . .

Barlow Wright
Department of Experimental Psychology, University of Oxford, Oxford OX1
3UD, England. barlow.wright@psy.ox.ac.uk

Abstract: Halford et al. seek to provide a framework that unifies distinct
developmental phenomena. However, in pursuit of this goal, they sidestep
crucial aspects of some well-known developmental benchmarks (most no-
tably Transitive Inference and Object Concept), and they do not ac-
knowledge “repeated” or “direct” experience as possibly being more fun-
damental than relational complexity, instead, ascribe all experience a
secondary role.

Problems with crucial developmental phenomena. Halford et
al. claim (sect. 6.3.2) that if we were to find the chronological
frame of the emergence of some specific ability to be different
from that given in the theory, this would not invalidate the theory,
which would simply need to be realigned to the new age. This
claim is not necessarily correct. Realigning would be difficult to
justify if both ages were shown to clearly index distinct phenom-
ena, as there would be no concrete reason to choose one age or
another. This scenario is a reality in respect to Transitive Inference
and Object Concept, respectively.

Transitive inference reoccurs throughout the target article (e.g.,
sects. 2.2.8, 3.6, 5., 6.1.1, 6.2.4.1, and 6.3.2). The floor in the age
at which transitive inference first emerges appears to be 4 years,
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with 3-year-olds incapable of solving such tasks (Halford 1984).
When we ensure that children need to reason deductively in or-
der to correctly solve for transitive questions (Wright 1996), tasks
become more challenging for the over-fours.

Wright (1998a) found that the age at which this “logical” tran-
sitive inference ability emerges is nearer 7 and 4. Markovits et al.
(1995) replicated the Pears and Bryant experiment (cited in the
target article), controlling for height cues, and again determined
that children under around 7 years of age do not possess true
transitivity. These experiments not only give differing results to
the standard story but also contribute actively to an explanation
of experiments that have led to lower age estimates for the emer-
gence of the transitive inference ability. This is in terms of the
utility of nonlogical absolute cues to correct solutions together
with a general memory effect (Wright 1998b). It would therefore
seem that the age from which children are able to solve transitive
inference tasks, through the use of genuinely deductive strategies
is nearer 7 than 4, with the Pears and Bryant results still indexing
the beginning of a transitive ability but not that supposed to be of
interest.

Halford et al. guard indirectly against possible problems that
could stem from the finding that the age for transitive reasoning
differs from the one they advance by giving a secondary role to
“experience.” However, they do not allow for the finding that
there are two distinct types of transitive inference, with the wrong
one currently being widely viewed as the only one (Halford &
Kelly 1984). A theory that does not recognize these as distinct and
does not itself give an account of both abilities is weakened.

A similar conclusion can be reached in respect to the object
concept, which is also cited in support of the theory (sects. 6.2.1
and 6.2.2). To again present a single account, the authors needed
to argue against the validity of the Baillargeon paradigm. How-
ever, although there are potential problems with it, they dismiss
this kind of experiment too readily. Baillargeon (1986) provides an
experiment that does seem to call for the conclusion that 6-month-
olds do understand “meaning” over-and-above being able to dis-
criminate between two types of event (later extended to younger
infants).

Halford et al. also do not appear to have given enough credence
to the possibility, raised by many studies, that the difference be-
tween the Piagetian task and the Baillargeon task may simply be
that in the former infants must coordinate their manual motor ap-
paratus between the two hiding places; whereas in the latter they
need only co-ordinate their visual motor apparatus. Thus, the prob-
lem here might be related more to differential motor-planning or
motor-control than to differential conceptual understanding.

The dismissal of the Baillargeon paradigm as irrelevant to ob-
ject permanence is therefore premature; with this fact bringing
about a situation analogous to that discussed for transitivity –
there being two not one distinct Object Concept phenomena and
the theory being unable either to discriminate between them or
invalidate one of them.

What role does experience play? Halford et al. discuss impli-
cations for developmental psychology. Cognitive development is
seen as children gaining a new mode of processing at certain
points in time, becoming newly capable of handling an additional
dimension in parallel with those already available. Experience al-
lows them to capitalise on this new mode, such that they can now
acquire new concepts that demand this increased capacity.

However, Halford et al. do not offer a credible account of how
and why new modes of processing become apparent in the first
place. Perhaps experience rather than relational complexity
should be assigned the primary role in the theory here, and viewed
as acting recursively upon a cognitive system that, in a way right
from the start, has always been capable of supporting complex
modes of processing up to some limit.

For example, repeated experience with identical binary prob-
lems would give rise to more and more efficient binary processes
until ternary processing is born, with quaternary processing being

born in much the same way. We might further theorise that this
occurs as a result of processing sequential binary steps closer and
closer together in time (increased automaticity) until they are es-
sentially processed in parallel. At this point the new mode of pro-
cessing is born. On this view cognitive development ultimately
arises out of repeated experience.

Experience almost certainly plays another more “direct” role,
allowing new concepts to be formed without the need for primi-
tives of fewer dimensions. Thus, to use the example of force (sect.
3.4.1), this concept can be (and probably is) created without the
need to first understand “acceleration” or “velocity” (sect. 6.3.1
embraces this assertion).

In summary, Halford et al. find a need to link the theory directly
to currently accepted developmental phenomena; but if multiple
forms of those phenomena are a fact, then these cannot be relied
on for unambiguous support unless the theory can discriminate
each instantiation. Halford et al. also cite relational complexity as
the primary cause of cognitive development, when this, itself,
would seem likely to arise out of repeated experience. Direct ex-
perience almost certainly also allows the construction of concepts
that, theoretically, require higher level dimensionality, without
first acquiring related concepts of lower dimensionality. Hence,
although the theory allows the integration of a great many inde-
pendent cognitive domains of discourse, in its current form, it
does not offer an adequate account of cognitive growth.

Authors’ Response

Relational complexity metric is effective
when assessments are based on actual
cognitive processes

Graeme Halford,a William H. Wilson,b and Steven Phillipsc

aDepartment of Psychology; University of Queensland, Brisbane,
Queensland, 4072 Australia; bSchool of Computer Science and Engineering,
University of New South Wales, Sydney, New South Wales, 2052 Australia;
cCognitive Science Section, Electrotechnical Laboratory, Tsukuba, 305,
Japan. gsh@psy.uq.edu.au
www.psy.uq.edu.au/people/department/gsh billw@cse.unsw.edu.au;
www.cse.unsw.edu.au/~billw stevep@etl.go.jp
www.etl.go.jp/etl/ninchi/stevep@etl.go.jp/welcome.html

Abstract: The core issue of our target article concerns how relational com-
plexity should be assessed. We propose that assessments must be based on
actual cognitive processes used in performing each step of a task. Com-
plexity comparisons are important for the orderly interpretation of re-
search findings. The links between relational complexity theory and sev-
eral other formulations, as well as its implications for neural functioning,
connectionist models, the roles of knowledge, and individual and devel-
opmental differences, are considered.

R1. Introduction

The target article proposed that relational complexity, de-
fined as the number of arguments of a relation, provides the
best measure of complexity in higher cognitive processes.
The relational complexity metric per se does not seem to
have been challenged in most of the commentaries, but
they do raise many other issues, which we will consider in
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turn. First, to avoid misconceptions, we would like to briefly
summarise our position, placing particular emphasis on
what we are not attempting to explain.

It is important to emphasise that performance on cogni-
tive tasks depends on a number of factors, including famil-
iarity with the task, domain knowledge, availability of ap-
propriate strategies, storage and retrieval of relevant
information, and so on. We fully accept the importance of
these factors, and much of our work in other contexts has
been devoted to them. (See, for example, work on learning,
Halford 1995, induction, Halford et al., in press, and strat-
egy development (Halford et al. 1995). However in the 
target article we are concerned with observed effects of
complexity on higher cognition. There are many cognitive
phenomena that require a complexity metric for their ex-
planation. We propose that these phenomena can be ac-
counted for by the complexity of relations that have to be
processed in a single decision.

We also wish to re-emphasise that the capacity limita-
tions we defined in the target article apply in cases where a
cognitive process operates on a representation of relations
in the task. This representation should have the properties
of relational knowledge defined in section 2.2. Associative
processes and modular processes that are specialised for
processing a limited range of inputs do not have these prop-
erties (Anderson 1992; Halford 1996b; 1996c; Leslie &
Keeble 1987; Phillips et al. 1995) and therefore are not ex-
pected to show the same complexity effects.

R2. How complexity should be analysed

Sweller confirms that he has found in empirical work that
the number of interacting variables processed by a per-
former is a good measure of task demand. Relational com-
plexity subsumes number of interacting variables because,
as noted in sections 2 and 2.3, each argument of a rela-
tion effectively functions as a variable, and an n-ary relation
is a set of points in an n-dimensional space. Sweller has also
found that analysis of complexity depends on what dimen-
sions are chunked, and this depends on expertise.

We agree, and in section 2.1 we make the more general
point that complexity depends on the cognitive processes
that are being employed. The processes employed by a par-
ticular person in performing a task undoubtedly depend on
expertise, age, problem presentation, goals, and so forth. All
of these factors affect the way a task is chunked and/or seg-
mented. We said in section 6 that analysis of relational 
complexity depends on having a process model of the way
the task is performed. The process model will need to be
verified independently to make predictions based on com-
plexity testable. Some of the commentaries indicate that
the implications of these requirements have not been fully
recognised.

Formal similarity of tasks does not guarantee that pro-
cesses are similar, so Sweller’s statement that isomorphic
tasks have the same relational complexity is incorrect. This
can be illustrated by contrasting two isomorphic tasks, one
based on days and the other based on numbers: one, Sup-
pose 5 days after the day before yesterday is Friday. What
day of the week is tomorrow? and two, x 1 5 2 2 2 1 5 6.
If we number the days of the week consecutively, so that
Sunday is 1 and Friday is 6, these problems are isomorphs,

but they differ markedly in difficulty. At first sight this
might seem to imply that relational complexity cannot ac-
count for the difficulty, but in fact the tasks differ substan-
tially in the relations that are processed. The arithmetic task
is easily segmented: we can perform 5 2 2 5 3, which is a
ternary relation (binary operation); similarly for 3 2 1 5 2.
Now we have x 1 2 5 6. Subtracting 2 from both sides in-
volves simply cancelling the 2 and performing 6 2 2 5 4,
another ternary relation, so x 5 4. Mapping this into the
word problem, tomorrow is Wednesday. The arithmetic
problem can be solved by a series of steps that require, at
most, ternary relations. Because we have already learned
the steps and know how to apply to them to equations of
this kind, the planning process imposes a negligible load. By
contrast, success in the word problem depends on devising
a strategy that segments the problem into a series of man-
ageable steps. This is difficult to do, however, in part be-
cause planning a suitable strategy depends on first repre-
senting the structure of the task as a whole. It is the
planning process that imposes high processing loads in this
case, not performance of the individual steps. For example,
to translate the days problem into the isomorphic arith-
metic problem requires recognition of the correspondence
between the two structures. The load imposed by planning
some other strategies might not be as high, but it is still sub-
stantial.

The crucial point therefore is that relational complexity
analysis has a good chance of accounting for task difficulty
when it is applied to the processes used. Sweller is right
that determining these processes can involve a lot of work,
but this is not a burden imposed specifically by our model.
It is inherent in any genuine attempt to analyse cognitive
complexity. On the positive side, it is a task for which cog-
nitive psychology and cognitive science are now well
equipped. There is a rich array of techniques for theoreti-
cal modeling and empirical analysis. Perhaps most impor-
tant of all, clear and coherent accounts of cognitive pro-
cesses are a major benefit in themselves, and it might not
be unreasonable to suggest that they should be the ultimate
goal of our research. Because complexity is a major factor
effecting performance, albeit by no means the only factor,
having a precise way of defining complexity can be of con-
siderable benefit in our efforts to understand cognitive pro-
cesses.

Chalmers & McGonigle attribute many ideas to us that
form no part of our theory. One example is that, in common
with both Wright and Goswami, they suggest that our con-
ception of relational complexity is not empirically founded,
which is simply untrue. In fact we have examined an exten-
sive data base in arriving at our conclusions (see, for exam-
ple, the references cited by Halford 1982; 1993), and this
data base includes the transitivity of choice paradigm on
which Chalmers & McGonigle’s position is based. Chalmers
& McGonigle also attribute to us the assumption that peo-
ple adopt representations that maximise the amount of in-
formation processed in parallel. They apparently missed
our statement in section 6.1.4:

We assume that participants normally segment sentences into
constituents which are processed serially as far as possible. In
all our modeling, in this and other contexts, we have found it a
fruitful assumption that participants tend to minimise process-
ing demand, implying that they never process more informa-
tion in parallel than necessary.
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Perhaps because these commentators missed this point,
they mistakenly suggest that we regard multiply centre-em-
bedded sentences as the norm. On the contrary, we stated
that the interest in these sentences is that they constrain
participants to process more of the sentence in parallel.
This enables processing limitations to be observed. This
logic has also been used by Henderson (1994) and Just and
Carpenter (1992), whom we cited in section 6.1.4.

R3. Why tasks impose loads

Although it is obvious that people will tend to minimise pro-
cessing loads, high loads are imposed by the nature of some
tasks. The reason is that where sources of information in-
teract, they must be considered jointly. This principle is
routinely applied when we analyse effective task complex-
ity. It can be illustrated using analysis of variance: interact-
ing factors cannot be interpreted singly, because the effect
of any factor is modified by the others. All factors that en-
ter into a particular interaction must be interpreted jointly.
This principle provides an objective criterion for complex-
ity and has been the basis for our analyses. Premise inte-
gration in transitive inference (discussed in sect. 6.1.1) il-
lustrates the point. Premises such as “John is smarter than
Stan, Tom is smarter than John” interact in that the inter-
pretation of one premise is influenced by the other. There-
fore, each premise contains some ambiguity when
processed alone, but the ambiguity is removed when they
are considered jointly. Notice first that “John is smarter
than Stan” assigns John to first or second position, whereas
“Tom is smarter than John” assigns John to either second or
third position. However, when considered jointly, the two
premises assign John uniquely to second position. Tom and
Stan are then unambiguously assigned to first and third po-
sition, respectively. Because neither premise can be fully in-
terpreted in isolation, there is a limit to segmentation. Re-
lational complexity theory predicts that the need to
consider premises jointly will impose a processing load,
which has been verified empirically (Maybery et al. 1986).

The most immediate implication of this is that tasks can-
not always be segmented into steps that are performed se-
rially. Ability to segment depends on a number of factors,
including task structure, conditions of performance, and ex-
pertise. The analysis above would be consistent with the ex-
pertise of most people in an industrial society aged between
roughly 5 years and late adulthood. It would apply where
the premises have to be integrated mentally after a single
presentation, as occurs in many experiments with human
participants. However, there are other conditions that make
segmentation easier. For example, we could present
premises one at a time and let children order blocks. Thus,
given a . b, the child can place ab, then when given b . c
they can concatenate c yielding abc, and so on. By this pro-
cedure, they never have to consider more than one relation
in any decision (Halford 1984). Consequently, the process-
ing load is less, and performance of children is much better
(Andrews & Halford, in press). We routinely use tasks that
have this property as control procedures in our experimen-
tal studies of transitivity. Thus segmentation can be influ-
enced by task conditions, but is also constrained by struc-
ture that is inherent in the task.

Chalmers & McGonigle contend that premise integra-
tion is unnecessary in transitive inference tasks and that

processing is serial. To support their claim they rely on a
paradigm derived from the work of Bryant and Trabasso
(1971). Participants are systematically trained on pairwise
comparisons (e.g., A versus B, B versus C, etc.) then tested
on untrained pairs (e.g., A versus C). Transitivity of choice
has been demonstrated in species from pigeons to humans.
Having been trained, usually over many trials, on A1B2
(i.e., to select A rather than B) and B1C2, and so on, they
show a transitive bias when presented with non-adjacent
pairs, choosing B in preference to D, and so forth. However,
the transitive bias is reduced when triads such as BCD are
presented. This would not be expected if participants con-
structed an ordered array (A,B,C,D,E), because they would
have stored the ordinal position of all elements. Harris &
McGonigle (1994) claim that performance of primates is
consistent with production rules that select items near one
end of the series and avoid items at the other end. Children
perform this paradigm in essentially the same way
(Chalmers & McGonigle 1984). Wynne (1995) has shown
that pigeon data are well explained by associative learning
models that do not entail processing relations at all. These
models do not entail representation of the relations in the
task (e.g., they do not entail representation of the relation
between A and B, B and C, etc.), there is nothing equiva-
lent to a transitivity principle, no ordered array is con-
structed, and performance depends solely on relative
strengths of item preferences, which are acquired by learn-
ing. Therefore this research shows that at least some ver-
sion of the transitivity of choice task can be performed with-
out a cognitive representation of relations between task
elements; that is, without processing structure. In fact it can
be performed by much lower level cognitive processes.

The processes used in this paradigm reflect task de-
mands. The paradigm shows that if the task can be per-
formed using serial processes that impose low demands on
capacity, then most participants will perform it that way.
Chalmers & McGonigle then ask why these low demand
serial processes are not used all the time. The answer is that
they suffice for only a very restricted range of tasks. The
transitivity of choice task cannot be adopted as a paradigm
for all human cognition. Many cognitive tasks require more
information to be processed in parallel and more elaborate
cognitive representations. Even transitive inference re-
quires this when premises have to be integrated mentally
after a single presentation, as we saw above. Furthermore,
there is strong evidence that ordered arrays are constructed
under some conditions, even by young children. Andrews
& Halford (in press) presented young children with
premises coded as pairs of coloured blocks, with A above B,
B above C, . . , D above E. They were asked to infer the rel-
ative position of B and D, then to place C. If children had
constructed an ordered array, it would be easy to insert C
between B and D. The proportion of correct placements of
C, given that BD had been placed correctly, increased from
42% at age 4 years to 95% at age 6 years. This is added to
several other lines of evidence suggesting that integration
of premises to form an ordered array not only occurs, but is
a cognitive achievement that is related to age.

Chalmers & McGonigle’s contention that mental inte-
gration of information to form reasonably complex rela-
tional representations is an unnecessary burden simply re-
flects their reliance on tasks that make low demands. The
transitive choice paradigm can be accounted for either by
associative learning models or models that postulate pref-

Response/Halford et al.: Relational complexity

850 BEHAVIORAL AND BRAIN SCIENCES (1998) 21:6

https://doi.org/10.1017/S0140525X98231761 Published online by Cambridge University Press

https://doi.org/10.1017/S0140525X98231761


erence for certain stimuli. It does not require relational pro-
cessing that would conform to the principles of relational
knowledge that we defined in section 2.2. Furthermore,
McGonigle and Jones (1978) found that discriminating the
middle item was more difficult than transitivity of choice.
“Middle” is a ternary relation, though it can be chunked to
binary in some circumstances, as we will consider below. Ei-
ther way it is more complex than the associative processes
entailed in transitivity of choice, and the finding that it is
harder is clearly consistent with our position, but Chalmers
& McGonigle do not acknowledge this. Criteria that distin-
guish between associative and relational knowledge have
been defined by Halford et al. (1998). We think it is unlikely
that the very restricted processes advocated by Chalmers &
McGonigle would meet these criteria.

Chalmers & McGonigle are incorrect when they sug-
gest that eight-item seriation requires an oct-ternary rela-
tion. To make this error they must have missed a major
component of our argument (e.g., in sect. 2.1), which is that
processing load is determined by the complexity of relations
processed in a given step, not simply by the total amount of
information contained in the task. We regard it as funda-
mental that processing load depends on the amount of in-
formation processed in any given step, not on the total
amount of information in the task. Our reduction technique
for defining relational complexity of a concept in section
3.4.3 (which they cite to support their claim) means that
forming an eight-item series requires ternary (not oct-
ternary) relations to be processed in a single decision. The
point can be made more simply by considering seriation of
five items. Suppose premises A . B, A . C, A . D, A . E,
B . C, B . D, B . E, C . E, D . E are presented in ran-
dom order (noting that premises do not necessarily have to
be restricted to adjacent items, nor do they have to be pre-
sented in any particular order). Given premise A . C, the
string AC can be formed. If A . B is presented, possible
strings are ABC and ACB. We need premise B . C to de-
cide that the correct order is ABC; that is, A . B and B . C
jointly determine that the order is ABC. The task can be
performed by a series of steps, the most complex of which
entails dealing with ordered three-tuples. That is, it only re-
quires processing ternary relations.

It might be asked which is the most appropriate or most
valid test of transitive inference? Our contention is that any
of the tests is capable of providing information about capa-
bilities of humans and other animals, but the less demand-
ing tasks do not demonstrate complete mastery of the con-
cept. Given a low demand task, such as transitivity of
choice, participants utilise low-level cognitive strategies.
This simply says that performers are rational in the sense of
Anderson (1990) because they use the least demanding
strategy that suffices for the task at hand. However, we
would be unwilling to concede that participants who could
perform no other strategy had mastered transitivity. This
contention might be unwelcome to those who want to at-
tribute transitivity to very young children or nonhuman an-
imals, who show no evidence of using the more demanding
strategies. It would not be appropriate to dismiss perfor-
mances based on tendencies to select specific stimuli, as in
the associative learning model of Wynne (1995) or the pro-
duction rules of Harris and McGonigle (1994). We are glad
to acknowledge that the careful and ingenious research
conducted in that paradigm has yielded valuable knowledge
of the cognitive processes utilised there by a wide range of

participants. There is no reason, however, to accept those
models as comprehensive accounts of human reasoning.
Even relatively simple reasoning tasks can be demonstrated
easily to require more complex processes, as our example
with transitivity above illustrates. It also seems reasonable
to suggest that ability to mentally integrate premises, form-
ing mental representations of the relations in a task, is a
landmark cognitive achievement. In the case of transitive
inference, it is this that we contend requires processing
ternary relations.

The foregoing discussion should demonstrate the error
in Wright’s commentary when he contends that the rela-
tional complexity metric cannot handle more than one ver-
sion of a task. The theory does not imply that there is one
correct version of a task. There are many ways of assessing
even simple cognitive functions such as transitive infer-
ence, and probably at least as great a variety of cognitive
processes that can be employed. Complexity is assessed on
the basis of the processes employed. This is not a problem
because techniques for determining strategies have ap-
peared in abundance over the last few decades. Let us note
in passing that one reason why transitive inference is useful
for complexity analyses is that we have well validated
process models. Indeed, transitive inference research is ar-
guably a great, though unrecognised, success story in cog-
nitive psychology. Furthermore, complexity of processes
employed is constrained by the fact that sources of infor-
mation that interact must be interpreted jointly.

This point was evidently missed by Pascual-Leone
when he contended, incorrectly, that “since the theory has
no explicit rules constraining their occurrence, chunking
and segmentation turn into theoretical loopholes for ex-
plaining away empirical anomalies.” In fact general princi-
ples of chunking were given in section 3.4.1, the reduction
technique outlined in section 3.4.3 provides an objective
way to determine the effective relational complexity of
tasks, and principles for complexity analysis were given in
section 6. However, the principle that sources of infor-
mation cannot be processed serially when they interact is
the core of our method. It is first necessary, as we have
noted all along, to have a clear model of how a task is per-
formed. Given this, we have consistently found it useful to
analyse the number of interacting variables in a given deci-
sion. Using this technique we have predicted complexity ef-
fects before they were observed in the balance scale, hy-
pothesis testing, and concept of mind (Halford 1993). We
also have been able to analyse tasks as diverse as classifica-
tion, Tower of Hanoi, knights and knaves (Rips 1989), and
Raven’s matrices. We also have found very good correspon-
dences across domains.

Pascual-Leone’s position does not appear to have any
comparable way of removing subjectivity from complexity
analyses. We consider that explicit computational models
are a more objective way to determine the nature and com-
plexity of processes used in a task. For example, the demon-
stration that a particular task can be performed by a typical
three-layered net is a good indication that it is basically as-
sociative and does not require representation of explicit re-
lations. Thus the demonstration by Quinn and Johnson
(1997) that prototype formation can be achieved by a three-
layered net suggests that it does not require relational pro-
cessing.

Pascual-Leone argues that complexity estimates for
proportion a/b5c/d must include the ratios a/b and c/d and
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also suggests that we do not allow for these ratios. We con-
tend that both arguments can be refuted. Our position is
that whether the ratios must be included depends on
whether they are processed by the performer. Despite his
suggestion to the contrary, we do take this into account.
Processing of proportion can be simplified by first comput-
ing a/b 5 x and c/d 5 y, then comparing x and y. Thus, if
asked whether 4/8512/24, one could compute 4/8 5 .5 and
12/24 5 .5 and conclude the expression is true. This seg-
ments proportion into two ternary relations performed in
succession. Notice, however, that to plan this procedure, or
to understand why it is valid, the structure of proportion
must be represented. A proportion is truly a quaternary re-
lation and is defined by links between four variables. It is
defined in four-dimensional space, not six-dimensional
space, as contended by Pascual-Leone. Note that Pascual-
Leone’s position implies that from age 15 years humans can
process seven dimensions in parallel. Pascual-Leone does
not seem to offer any evidence that this is so, nor does he
consider its theoretical consequences. What kind of cogni-
tive processes could be performed by a system that was pro-
cessing seven dimensions in parallel? This seems to be quite
unexplored territory.

Pascual-Leone misrepresents our position in at least
two other ways. He incorrectly puts us in opposition to the
view that effective complexity is defined relative to an adap-
tive system and can be represented by a concise description
of the regularities in the task. Our position is quite closely
related to this view and also to contributions such as that of
Leeuwenberg (1969), who was early in his recognition of
the potential for defining psychological complexity in this
way. Leeuwenberg’s metric was explicitly applied in some
of our earlier work (Halford & MacDonald 1977). Because
we define complexity by the space in which a cognitive
process is operating, our position seems quite consistent
with the one that Pascual-Leone wants to put in opposition
to it. His claim that in section 3.2 we assigned “played(John,
cricket,oval,Sunday)” to an effective complexity of four is
also incorrect. That relational instance is simply a list, and
its relational complexity as defined by the reduction tech-
nique in section 3.4.3 is indeterminate.

R4. Links to other formulations

We agree with Anderson et al. that there are points of 
contact between relational complexity theory and ACT-R.
In particular, we agree that the name for a production could
be used to represent the symbol (name) of a relation, and
the slots of a production can correspond to the arguments
of a relation. However, a means of binding the relation sym-
bol and arguments would still be required, and it is not clear
how that would be done in a production. We also agree that
ACT-RN uses separate memories in a way that is analogous
to our use of different sets of units in a tensor product to
represent arguments of a relation. There is partial corre-
spondence between the roles for activation in the two mod-
els. In ACT-R, activation is the main cause of capacity lim-
itations. In relational complexity theory, the demand for
activation increases with the rank of a tensor product (see
sect. 5.2.1.2). However, it is not the only factor that limits
complexity in our model, because number of arguments
corresponds to the rank of a tensor, which constrains the
number of connections between units.

Although the points of contact offer interesting potential,

considerable work is still needed to achieve a genuine inte-
gration, and neither relational complexity nor any compa-
rable metric is incorporated into ACT-R as it stands. One of
the clearest differences is that in ACT-R complexity is as-
sessed by the number of symbols (Anderson et al. 1996),
whereas in our model it is based on the dimensionality of
the decision space. The difference can be simply illustrated
by contrasting the following sets of problems in both of
which participants must solve for x:

Set 1: x 1 4 5 7; x 1 3 5 7; x 1 4 5 8; x 1 3 5 8
Set 2: x 1 1 5 7; x 1 1 5 8; x 1 1 5 5; x 1 1 5 6

A count of the number of symbols, following Anderson
et al. (1996), yields 5 for both sets. However, the relational
complexity of the first set is 3 (because there are three di-
mensions of variation) but for the second set relational com-
plexity is 2 (two dimensions of variation). It seems intu-
itively likely that set 2 would also be easier. As we noted
above, there are no simple ways to arrive at a valid assess-
ment of the dimensionality of the cognitive processes per-
formed in a task, and counting the number of symbols is not
adequate.

Incorporation of the relational complexity metric into a
model with the power and generality of ACT-R would be a
very exciting development. However, considerable work is
required to accomplish this. One of many benefits would be
that ability to estimate the amount of information that hu-
mans processed in parallel should provide a useful con-
straint on ACT-R, just as it has on models of analogy (Hal-
ford et al. 1995; Hummel & Holyoak 1997).

MacLeod addresses the problem of the optimum allo-
cation of resources to a set of activities (or tasks), given that
each activity has costs and benefits. We should note that this
is not the core question addressed by the target article,
which is concerned with assessment of cognitive complex-
ity, even in single tasks. MacLeod’s approach may be pro-
ductive as a theory of dual task performance, perhaps by ex-
tension of the work of Navon and Gopher (1979), who also
applied economics theory to the resource problem in psy-
chology. MacLeod’s model of resource allocation, like the
commentaries by Anderson et al. and Cowan, provides an
interesting source of hypotheses for the cause of complex-
ity at a lower level of analysis. We also note that our posi-
tion is quite unequivocal on several of the points raised by
MacLeod. We have proposed that the complexity of a task
depends on the arity of a relation processed in parallel.
This is related to dimensionality because, as we pointed out
in section 2.3, an n-ary relation is a set of points in n-di-
mensional space and can represent an interaction between n
variables. Therefore, complexity is related to dimensionality,
not to the length of the input string. Furthermore, com-
plexity effects occur because computational cost is a func-
tion of the number of dimensions processed in parallel. We
agree that a high dimensional problem can be mapped into
fewer dimensions. This is the essence of chunking, dis-
cussed in section 3.4.1, though it should be recalled that we
specified limits to this process.

We do not agree that complexity is a direct result of re-
source limitations, though resources that are available affect
our ability to deal with complexity. This discrepancy seems
to arise because the problem addressed by MacLeod –
optimum allocation of resources to activities – is not the
problem addressed by us. As discussed in an earlier section
of this reply, complexity effects arise because when dimen-
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sions of a task interact they need to be processed jointly and
this increases processing load. Therefore, processing load
results from constraints that are inherent in the process be-
ing performed, not from resource limitations per se.

In relation to NP-completeness, NP stands for nondeter-
ministic polynomial time problem. Similarly, P stands for the
class of problems solvable by a polynomial-time algorithm.
Problems in NP have a structure such that any hypothesis
can be checked in polynomial time, but the total number of
hypotheses is exponential in the size of the problem.

MacLeod is, of course, correct in pointing out that no one
has yet proved that P and NP are distinct. It is possible that
there are as yet unknown algorithms to solve NP-complete
problems in polynomial time, just as more efficient algo-
rithms have been discovered from time to time for various
tasks such as sorting. However, at present there is no known
efficient (polynomial time) algorithm for such problems, so
the time (or space) required to compute a solution is expo-
nential in the size of the problem.

MacLeod indicates he would have preferred “a more
detailed presentation of one of the mathematical models,
along with some theorems on the algorithmic complexity of
the proposed mechanisms.” We will be gratified if our for-
mulation opens up opportunities for further theoretical de-
velopment, but the aim of the target article was to find a
complexity metric that would be broadly applicable to psy-
chological tasks, taking account of the real problems of con-
ducting psychological research. In sections 5.2.1.1 and
5.2.1.2 we offered analyses of the algorithmic complexities
of the basic processes of tensor product network opera-
tions. The tasks in which we currently are most interested
are those that can be completed in a few such operations,
and the processes in which we are most interested are the
simplest ones for performing such tasks.

R5. Frontal lobe impairment

Our suggestion in section 6.5, based on the review by
Robin and Holyoak (1994), that processing explicit rela-
tions might be a major function of the frontal lobes has now
received some empirical support. The commentary by
Waltz et al. reviews several empirical studies, including
their own ongoing research, indicating that patients with
damage to the dorsolateral prefrontal cortex show selective
impairment in processing complex relations. Patients with
damage to the anterior temporal lobes showed no such im-
pairment. The possibility that relational complexity offers
a new way of defining the functions of a major region of the
frontal lobes is clearly quite exciting. The techniques de-
veloped in our laboratory, discussed in the previous sec-
tion, for manipulating complexity while holding other fac-
tors constant, should have considerable utility in testing
this hypothesis. Relational complexity measures also can
be used to assess deterioration due to other causes, in-
cluding ageing.

R6. Cause or effect: Speed versus capacity

The complex issue of whether speed or capacity is the
causal factor influencing performance in complex tasks has
been well elucidated by Cowan. He presents some inter-
esting evidence that tends to favour capacity as cause. On
the other hand, there is very extensive developmental work

by Kail (1991) that indicates a general processing speed fac-
tor that increases with age. We have reviewed this work
elsewhere (Halford 1993, pp. 119–22). We think both
speed and capacity hypotheses will remain viable for the
foreseeable future and we can envisage mechanisms that
are appropriate to either.

Assuming that a cognitive phenomenon can be modelled
by a neural net with a settling phase, it is reasonable to ex-
pect that a network that is closer to its capacity limit will
take longer to settle. For example, if more items are super-
imposed on a fixed set of units, the items become less dis-
criminable. Discriminability can be increased by increasing
the number of units, which is one measure of capacity in a
net. A net with higher capacity will therefore have a shorter
decision time. Some distributed memory theories appear to
model this effect fairly directly (McNicol & Stewart 1980;
Murdock 1983). In these models memory items are repre-
sented as vectors that are superimposed on a set of units.
Recognition time increases linearly with number of items,
thereby predicting the set size effect in memory scanning
(Sternberg 1975). The implication is that more items im-
pose higher demands on the available capacity, which
increases decision time.

Although Cowan’s example is orthogonal to the rela-
tional complexity metric (a list treated as a unary relation is
still unary regardless of its length), Cowan’s data may be in-
terpretable in terms of this model. If we assume that inter-
word pauses in Cowan’s experiments represent decision
time, then pauses would increase with list length if retrieval
from longer lists imposes higher demand on available ca-
pacity. Pause time also would increase with lower capacity.
If we assume participants with lower span have less capac-
ity in some sense, then the longer pauses observed by
Cowan with lower span participants can be explained. Al-
though this argument is speculative, our model may be con-
sistent with Cowan’s data. It also suggests a testable hy-
pothesis. This is that participants with a lower relational
complexity limit, as defined by the measures developed by
Andrews and Halford (in preparation) should have longer
inter-word pauses.

In case of the symbol-argument tensor modeling, trans-
mission speed could affect capacity in the following way:
Suppose role units R1 and R2 and binding units for com-
puting the appropriate relations. Post synaptic activation is
only possible when all presynaptic activations from the var-
ious role units occur with the same presynaptic activation
window (w). Suppose the distances from R1 and R2 to the
binding units are D1 and D2, respectively, and transmission
speed is s. A signal sent from unit R1 at time t will arrive at
the binding unit at time t1D1/s. A signal sent from unit R2
at time t1d will arrive at the binding units at time
t1d1D2/s, assuming a difference d between signal trans-
mission from units R1 and R2. Therefore, the binding unit
will be active when d1(D12D2)/s , w. Clearly, the faster
the transmission speed the more likely the two signals will
arrive within the activation window of the binding unit, per-
mitting the representation of the binary relation, or other
higher arity relations.

In the case of processing capacity (number of units),
higher ranked tensor units may simply not be connected to
represent higher arity relations. From Thatcher (1994),
note that although total number of units remains relatively
constant through the first decade, connectivity does not,
possibly suggesting the establishment of progressively
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higher order connections within the cortex. These two ex-
amples are meant as illustrations. Although we cannot de-
cide the issue at present, relational complexity does not lead
to a conceptual dead-end at finer levels of analysis. Rather,
it suggests more detailed hypotheses to be tested by future
experiments.

R7. Complexity versus interference

Navon is concerned with the longstanding issue of
whether performance is a function of outcome conflict
rather than resource limitations. We have pointed out else-
where (Halford 1993, Ch. 3) that the easy-to-hard para-
digm (Hunt & Lansman 1982) avoids the interpretational
difficulties associated with dual task deficit methodologies.
This is because the hard version of the primary task is never
performed concurrently with a dual task, so the variance it
shares with the predictor, which is taken as evidence of a
resource limitation, cannot reflect outcome conflict.
Berch & Foley acknowledge that the easy-to-hard para-
digm (Hunt & Lansman 1982) is an effective way to test
hypotheses about capacity limitations, but point out that it
is methodologically complex. We agree that this is so, but
their excellent work (Foley 1997; Foley & Berch 1997) has
demonstrated that it is effective for this purpose. The ef-
fort of using the easy-to-hard paradigm, though significant,
is worthwhile.

In general, there have been many advances in method-
ology since Navon (1984) made his claim that resource lim-
itations were difficult to distinguish from outcome conflict.
These include experiments (e.g., Andrews & Halford, in
press; Maybery et al. 1986) where both input and output are
tightly controlled while the complexity of the intervening
processes are manipulated. It seems very unlikely that the
effects of relational complexity, some of which are very
large, that have been demonstrated in these studies could
be attributed to outcome conflict. Outcome conflict only
applies at best to the dual task interference paradigm. How-
ever, the target article goes well beyond this paradigm and
is primarily concerned with complexity-based limitations.
Even if outcome conflict were a viable explanation in some
studies, the number and diversity of complexity effects is so
great that it is very implausible that they could all be ex-
plained by outcome conflict.

The question of relational tasks performed concurrently,
raised by Navon, was addressed in section 3.3. Neural net
models of the type we used to implement our theory are ca-
pable in principle of dealing with similarity effects. In par-
ticular, the shortcomings that Navon sees as applying to
neural network models with respect to resource conflict are
not relevant to complexity-based limitations. The complex-
ity of the memory scanning task that is raised by Navon is
addressed by Halford et al. (1988) and referred to in sec-
tion 3.3 of the target article. An unordered string of digits
is not relational and can be represented by a set of super-
imposed vectors, as noted in the previous section. An or-
dered string of items in short term memory is a binary task,
assuming that the person’s strategy is to store the list as
position-item pairs; {(position1,item1), (position2,item2), . . }.
There is no growth in relational complexity as the number
of digits is increased, though there may be an increased load
on working memory if the items are held in an active state.
Criteria for this were discussed by Halford et al. (1988).

R8. Connectionist models of relations

We agree with Plate that there is considerable scope for
further connectionist proposals for relational processing.
Note that, as Plate’s holographic reduced representations
(HRRs) are projections of tensor product nets (in the math-
ematical sense of “projection”), it is not surprising that sys-
tems based on these two approaches share some proper-
ties. We also agree that role-filler binding methods, suitably
augmented with content-addressable memory, are suffi-
cient to represent and access relational information. How-
ever, we do not agree that HRRs implement what we in-
tended by the term conceptual chunking. Rather, chunking
entails loss of information through dimension reduction,
not noise reduction through compression. Furthermore, in
light of the double dissociation reported by Waltz et al.,
there is now a neurologic reason to favour symbol-argu-
ment over role-filler binding methods: symbol-argument
bindings used different ranked tensors (i.e., different unit
types) for different arity relations, whereas role-filler meth-
ods use the same tensor units. The former seems more con-
sistent with the existence of a region in the brain, the dor-
solateral prefrontal cortex, that is specialised for processing
high arity relations.

Plate argues that HRRs do, in fact, implement chunking.
Although HRRs satisfy our principles (1) and (3) in section
3.4.1, they do not satisfy principle (2). Plate states that
“every vector in an HRR model is already a chunk and no
further compression . . . is necessary.” In this case, there is
no sense in which one can have both a chunked and an
unchunked representation of the same concept. Thus, ei-
ther satisfying principle (2) “no relations can be repre-
sented between items within a chunk” implies not being
able to represent relations, or more likely, because HRRs
represent relations, they cannot satisfy principle (2).

The difference is that with an appropriate (learned)
chunking strategy chunks identify unique equivalence
classes of concepts. In our v 5 s/t example, the chunk “60”
represents a class of relational instances: Div(60,1);
Div(120,2), and so on. A chunked version of the corre-
sponding rank two tensor representing the relations may be
the vector determined by actually calculating the velocity.
In Plate’s method, by contrast, these equivalence classes
occur by accidental collisions between vectors, at the mercy
of the statistics of vector generation and manipulation. Of
course, it would be possible to augment HRRs with a
chunking mechanism and represent both the chunked and
unchunked representations as HRRs. However, Plate’s
HRR model, as we understand it, does not currently do this.

R9. Symbol-argument versus role-filler binding

Waltz et al. provide further experimental support for our
relational complexity metric, but remarked that the data are
neutral on the issue of algorithms (e.g., whether relational
information is computed by tensor product or synchronous
activation). We are excited by these findings, but suggest
there is also some room for interpretation at the algorith-
mic level of analysis.

The double dissociation between the prefrontal cortex
(integration of two binary relations) and the anterior tem-
poral lobe (single binary relation) suggests different under-
lying neural architectures for relations of different arities.
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It has been noted elsewhere (Phillips & Halford 1997) that
the tensor symbol-argument binding method, but not the
role-filler method (which includes Plate’s HRRs), permits
such double dissociations. For the symbol-argument
method, binary and ternary relations require distinct unit
types; for example, rank 2 tensor units multiply two incom-
ing sources of activation, compared with three sources for
the rank 3 units. By contrast, role-filler methods, and for
that matter synchronous activation, use the same type of
unit regardless of arity. With role-filler methods, it may be
the case that additional units must be recruited for higher
arity relations. However, this would only demonstrate a dis-
sociation, not a double dissociation, because first and sec-
ond positions are shared by both relation types.

However, because we do not know exactly what part of
the integration process the prefrontal cortex is responsible
for, this interpretation is at best suggestive. We agree with
Waltz et al. in that much more work at the neurologic level
is required before definitive claims can be made about
neural mechanisms.

R10. Relational complexity and chaotic attractors

Three commentaries, those by Heath & Hayes, Nikolic,
and Borisyuk et al., have drawn attention to some possi-
ble correspondence between relational complexity and dy-
namic systems theory. Both formalisms are characterised
by a common limitation, in that the range of dimensional-
ities is low, from one to four. The basis for this common
limitation is well worth further exploration. At the present
time the correspondence, although intriguing, is difficult
to interpret. Nikolic finds the same limitation in motor
processes that we find in higher cognitive processes. It
may be, as Heath & Hayes suggest, that the limitation is 
a general property of neural processes. However, at pre-
sent it is difficult to determine whether these common 
limitations are coincidental or represent a genuine under-
lying phenomenon. The potential importance of corre-
spondence between relational complexity and dynamic
systems theory is great enough, however, to warrant more
extensive investigation.

An integrated treatment could be very productive for an-
other reason, which is that the approaches have comple-
mentary advantages. Dynamic systems theory has elegant
ways of predicting discontinuities, whereas relational com-
plexity theory is more closely tied to observable phenom-
ena. The levels of complexity defined in the target article
have been identified through detailed analyses of tasks
across a wide range of domains, and complexities have been
manipulated precisely while holding other factors constant.
If these levels of complexity are found to correspond to di-
mensionalities of chaotic attractors, the methodology of re-
lational complexity theory would seem to open up a lot of
opportunities for empirical testing of dynamic systems
models of cognitive processes.

R11. Knowledge and higher-order relations

A number of commentators, including Wright and Gentner
& Ratterman, claim that we give priority to capacity rather
than knowledge as an explanatory factor. In fact, we con-

sider that they interact. See, for example, Halford (1993, 
p. 272), Postulate 1.0: “Cognitive development depends on
the interaction of learning and induction processes with
growth in the capacity to represent concepts.” To the extent
that these factors interact, neither can be given priority. In
statistical analysis an interaction cannot be decomposed to
determine the relative importance of the constituent fac-
tors. Similarly, where knowledge and processing capacity
interact to determine performance of a task, it is meaning-
less to ask which factor is more important.

In empirical research either factor may have a larger ef-
fect in a specific study, depending on how it is designed. A
popular design is to use tasks that are well within the ca-
pacity of the participants, but that demand knowledge that
has only been partially mastered by the sample selected.
For example, studies of analogical reasoning in young chil-
dren frequently use A:B<C:D analogies, which require bi-
nary relations to be mapped, and capacity to process binary
relations appears to develop at a median age of 2 years.
However, relations such as melting snow are used
(Goswami & Brown 1989), which children of 3 to 4 years
are just beginning to understand. Such studies typically
show that knowledge has a large effect, and they are inher-
ently incapable of showing an effect of capacity. Alterna-
tively, one could use tasks in which children have thor-
oughly mastered the prerequisite knowledge, either by
selecting familiar materials or by using extensive training
(Halford 1980). One can then manipulate the capacity re-
quirements of the task from, for example, binary to ternary
with 4- to 6-year-old children. In these circumstances, com-
plexity produces a large effect on performance (Andrews &
Halford, in press). Neither type of study shows any general
priority for knowledge or capacity. The overall picture is
that knowledge and capacity both have effects and, not sur-
prisingly, investigators design their studies to reveal the fac-
tors they want to investigate.

Gentner & Ratterman make the more specific claim
that analogical reasoning in children depends on higher-
order relations, which in turn depend on knowledge. Our
response to this is that we have fully acknowledged the im-
portance of higher-order relations. For example, in section
6.1.3 we analysed the Tower of Hanoi in terms of the
higher-order relation “prior”; Prior(shift(2,C), shift(1,B)).
In this context more complex tasks entail deeper structures,
with more levels of embedding of higher-order relations.
Gentner & Ratterman postulate that depth of relational
structures is more important than their dimensionality.
However, we showed that these tasks also entail higher di-
mensionality. Therefore, some of the effects that Gentner
& Ratterman attribute to depth of structure can equally be
attributed to dimensionality. This issue is amenable to test,
at least in principle, because depth of structure can be sep-
arated from dimensionality in certain cases. Thus, we can
have a deep structure in which each level comprises a unary
relation; for example, R3(R2(R1(A))). Depth is three be-
cause there are three levels of relations. Dimensionality de-
pends, as usual, on the number of variables. If A is the only
variable dimensionality is one. However, if any or all of
R3,R2,R1 is a variable, dimensionality may be as high as
four. In other cases depth may be 1 and dimensionality 4,
for example; R(a,b,c,d). The implication is that higher-
order relations are important, but dimensionality is the more
general criterion of complexity, and can be applied to struc-
tures of any depth.
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R12. Individual differences

Sweller suggests that the theory is less useful for assessing
individual differences in processing capacity. In fact, we are
developing a test for complexity of relations that can be
processed in parallel, and results so far are very encourag-
ing. Andrews (1996) tested children aged 4 to 8 years in
transitivity, hierarchical classification, cardinality, compre-
hension of relative clause sentences, hypothesis testing, and
class inclusion. Relational complexity was manipulated
within each domain. All tasks loaded on a single factor and
factor scores were correlated with age (r 5 .80), fluid intel-
ligence (r 5 .79), and working memory (r 5 .66). This re-
sult was replicated (Andrews & Halford, in preparation)
with a slightly different set of domains in 1997.

Sweller also contends that age differences that we at-
tribute to capacity are indistinguishable from differences
due to expertise. However, proponents of this rather com-
mon view do not appear to have considered the type of ex-
perimental design we have used. First, we have used pro-
cedures and materials that are highly familiar to the
children, and in some studies we have trained them to as-
ymptote on all components of the task (Halford 1980; Hal-
ford & Leitch 1989; Halford & Wilson 1980). The typical re-
sult of these studies is that the younger children completely
master all aspects of the procedure. Complexity is manipu-
lated, but procedure and materials are tightly controlled.
The result has invariably been that complexity has had a
large effect on performance, especially with younger chil-
dren. It might now be argued that there might have been
some undetectable residual difference in expertise. It
seems common to argue that this knowledge explanation
must be the right one, even though the nature of the ex-
pertise differences is unspecified. It should be obvious that
such an argument makes the knowledge explanation
untestable. It also fails to take account of evidence, using
the easy-to-hard paradigm, that some of the tasks in ques-
tion are in fact capacity limited (Foley & Berch 1997; Hal-
ford & Leitch 1989; Halford et al. 1986).

Ultimately the strongest argument against the view that
“knowledge explains all cognitive development, therefore
there is no role for capacity” is that complexity has very real
and very powerful effects on performance of young chil-
dren. If these effects are entirely attributable to lack of
knowledge, why can they not be removed by adequate ex-
perience or training? In the tasks where we have identified
complexity effects, training has an effect only at or above
the age at which capacity becomes sufficient for task de-
mands (Halford 1980; Halford & Leitch 1989; Halford &
Wilson 1980). At some point it is clearly incumbent on pro-
ponents of the knowledge only view to demonstrate that
knowledge does account for these effects.

R12.1. Developmental issues. Many of the issues con-
sidered in earlier sections have important developmental
implications. In the following sections we will deal with
those specific developmental issues not considered earlier.

R13. Comparison with other developmental
theories

Pascual-Leone disagrees with relational complexity the-
ory but also attempts to identify it with his position by

equating schemes with dimensions: “the highest number
of schemes – task relevant dimensions of variation – that
subjects must consider simultaneously to solve the task.”
However, his position would need major transformations
before it could be considered equivalent to relational
complexity theory. Pascual-Leone’s contention that our
model predicts a performance asymptote at age 11 years
is incorrect for several reasons. It fails to take account of
the fact that capacity is a soft limit, and that 11 years is 
a median age, some children achieving capacity to pro-
cess ternary relations later than this. Most important, it
fails to recognise that capacity is an enabling factor and
that attainment of any cognitive function depends on de-
veloping the relevant knowledge, including procedural
knowledge or strategies. Any attempt to dismiss this as
hypothesis-saving would have to explain away our exten-
sive studies of learning, especially the self-modifying pro-
duction system model of strategy development (Halford
et al. 1995).

Coch & Fischer, like Pascual-Leone, emphasise the
similarity between our position and theirs. However, to the
extent that Pascual-Leone’s and Fischer’s theories are sim-
ilar to relational complexity theory, they must be similar to
each other, although neither commentary seems to claim
this. As with Anderson’s ACT-R theory, discussed earlier,
we welcome these comparisons, and we see some potential
for constructive integration. We were, of course, well aware
of the theories by Fischer and Pascual-Leone when our
model was being formulated, and though we have already
acknowledged some similarities, we believe it is clear that
the differences are very real. We would like to note in pass-
ing that Chapman’s (1987) formulation is possibly the clos-
est to relational complexity theory of all the developmental
theories, but even here the differences greatly outweigh the
similarities. Many of the differences between relational
complexity theory and Case’s (1985; 1992) position, out-
lined in section 6.3.2, would apply to Fischer’s skill theory.
To consider some other instances: Does Fischer’s skill the-
ory make the predictions, discussed above, that Chalmers
& McGonigle, Goswami, Gentner & Ratterman, or
Heath & Hayes find so controversial? Does skill theory
conform to the criteria for relational knowledge in section
2.2, and can it be implemented by the neural net architec-
tures in section 4? We see no grounds for believing that ei-
ther Fischer’s skill theory or Case’s model offer general con-
ceptual complexity metrics as they stand, but it may well be
an interesting undertaking to build such a metric, possibly
based on relational complexity, into those models.

R14. Capacity in cognitive development

In the last two decades it has been fashionable to dismiss
theories that postulate a role for capacity in cognitive de-
velopment on a number of grounds, some of which appear
in the commentaries. One is that capacity limitations in
young children are inconsistent with a number of observed
cases of precocious development. This argument is some-
times linked to another view, which is widespread though
not often stated explicitly, that capacity theories are pes-
simistic because they imply limits to young children’s capa-
bilities. A third argument is simply that knowledge acquisi-
tion is “preferable” to capacity as an explanation of cognitive
development. We suggest that existence of capacity limita-
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tions is not inconsistent, either with observed precocities or
a major role for knowledge in cognitive development.

In order to clarify these issues, it will be helpful to first
shift our orientation from “what is done” to “how it is done.”
It then becomes clearer that the definition of processing ca-
pacity limitations is no more pessimistic about children
than it is about adults. We have argued that adults typically
process a maximum of four dimensions in parallel. This
does not imply that adult cognition is limited, nor does it
imply that adults cannot understand complex concepts. Our
position is fully consistent with the observation that adults
understand a lot of concepts that entail more than four di-
mensions. It implies that structures of more than four di-
mensions are processed by segmentation and conceptual
chunking. This provides insights into the way cognitive pro-
cesses operate by indicating which processes can be per-
formed in parallel and which must be serial.

The definition of capacity limitations can be equally pro-
ductive in cognitive development once certain inhibiting
misconceptions are cleared away. It does not say that chil-
dren cannot perform certain tasks, any more than it says
adults cannot understand the concept of acceleration be-
cause it is based on more than four dimensions. Further-
more, as noted in section 6.3.1, relational complexity theory
actually predicts some previously unrecognised capabilities
of young children. It also makes a lot of predictions about
how young children must be performing tasks, and it is clear
that neither Goswami nor Wright has recognised this.
Goswami says our caveats limit the testability of our theory.
Although it may mean that the theory is not amenable to
some of the more simplistic tests, it generates a lot of highly
testable predictions, a few of which are indicated in the tar-
get article or in this response.

R15. Capacity versus precocity: How versus what

Ever since the early 1970s the plausibility of capacity as an
explanatory factor in cognitive development has been ap-
parently undermined by a stream of data indicating preco-
cious intellectual performance by infants and young chil-
dren. This work has generated much excitement and is even
regarded by some people as the raison d’etre of cognitive
development research. Contrary to the claims of Wright
that we dismiss these data, we have no reason to doubt that
children perform as reported in these studies. Further-
more, contrary to the suggestion by Goswami that we have
not taken into account actual results in cognitive develop-
ment research, we not only knew about those studies, but
have given them very serious consideration. Contrary to the
claim by Chalmers & McGonigle that our position is not
empirically based, if any studies of precocious intellectual
performance had posed a real challenge to our claims, we
certainly would have abandoned or modified them.

The conflict between capacity theory and demonstra-
tions of precocity is more apparent than real, and it is 
maintained by two deficiencies in the field. The first is our
ignorance of the processes entailed in many of these per-
formances, particularly when they are first discovered, and
the second is a tendency to interpret children’s perfor-
mances by attributing complex processes, comparable to
those used by adults, to them. We will illustrate.

Wynn (1992) showed that infants recognise the effect of
adding objects to and subtracting objects from a display

(i.e., 1 1 1 5 2, 2 2 1 5 1, 1 1 1 Þ 3). It has been shown
(Wynn 1995) that this can be accounted for by an innate ac-
cumulator mechanism that we share with other species.
This work provides an important basis for development of
children’s understanding of number, though, of course, in-
fants’ number comprehension is very different from that
which occurs in middle childhood (Wynn 1995). Suppose,
however, that we had been ignorant of the cognitive pro-
cesses entailed in infants’ number performance. It could
then have been argued that because infants can perform ad-
dition/subtraction, they process ternary relations at 5
months, which is wildly inconsistent with our norms of 5
years. The absurdity of such a claim would be easily recog-
nised because we have reasonably good insights into the ba-
sis of infants’ number knowledge. But how would these data
have been interpreted if we had had none of these insights?
Psychologists could have used our own understanding of
addition as a model of infants’ performance. We suggest
that this is what tends to happen when we do not know the
cognitive basis for precocious performances. In those cases
it often seems reasonable to make very optimistic assump-
tions about the processes infants and young children use.
This creates an apparent disconfirmation of capacity limi-
tation, though in fact the case for disconfirmation has not
been made.

Perhaps the most famous instance of precocious perfor-
mance seeming to disconfirm a developmental theory is
Bryant and Trabasso’s (1971) demonstration of transitive in-
ference in 3- and 4-year olds. As noted in relation to
Chalmers & McGonigle’s commentary, some of these
tasks require only primitive, nonrelational processes. How-
ever, although Chalmers & McGonigle argue enthusiasti-
cally that it is performed by primitive cognitive processes,
they are unwilling to acknowledge a very important impli-
cation of this, which is that the task is not performed by, and
is not a measure of, processing ternary relations. The effect
is to provide a misleading and confused picture of what hap-
pens in cognitive development.

We pointed out in section 6.2.4.4 that Goswami (1995)
had over-interpreted her data as indicating ternary rela-
tional processing when they only require unary or binary re-
lations, because of the widespread failure to analyse cogni-
tive processes entailed in tasks. The same kind of failure
appears again in Goswami’s commentary. She cites work by
Cutting (1996, cited by Goswami) in which 3-year olds are
shown a green crayon and a yellow crayon covered with a
blue filter, so both look green. Children recognise that the
green crayon is better for drawing green grass. Although we
have no reason to doubt the finding, at least on the basis of
her description in the commentary, it does not appear to re-
quire processing of ternary relations. The yellow crayon
provides one cue for yellow and (when covered with the
blue filter) one for green. The green crayon provides two
cues for green. Analysing the task in terms of our model in
section 6.2.4.3, it does not entail having a cognitive repre-
sentation of a ternary relation, in which the link between
object-attributes and percept is conditional on a third vari-
able, the viewing condition. Rather the percept depends on
a single variable, degree-of-greenness. Therefore, the claim
that the observation contradicts the relational complexity
metric is another case of failing to consider the processes
entailed in a task. It has been a persistent error in cognitive
development research. Relational complexity analysis, in-
sofar as it can be made on the basis of the brief description,
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indicates that the cutting task is structurally simpler and
should be performed earlier than theory of mind tasks, pre-
cisely what appears to have been observed. Therefore the
data should probably be interpreted as support for rela-
tional complexity theory.

In section 6.2.4.4 we showed that tasks that Goswami
claims show 3- and 4-year olds process ternary relations
(Goswami 1995) could have been performed by unary or bi-
nary relations. Goswami does not contest our demonstra-
tion, but wants ternary relations to be the default explana-
tion and attempts to justify this by invoking parsimony. This
seems to interpret parsimonious as simplistic. The range of
phenomena that can be explained by the relational com-
plexity metric, on the basis of a fairly small number of prin-
ciples, may mean that it is the more parsimonious explana-
tion. Either way, parsimony cannot be used to escape the
obligation to provide evidence. This study is presented as
though it were a major disconfirmation of our hypothesis,
whereas in fact the data are perfectly consistent with our
position. An interesting side issue is that Goswami claims
her participants processed ternary relations earlier than 5
years because familiar relations were used. The title of the
paper (Goswami 1995) specifically attributes the success to
the analogy of Goldilocks and the three bears. We are in
complete agreement with the importance of familiar, inter-
esting materials when assessing children; in fact, we have used
the same analog in our laboratory (Rees 1994). However, we
have noticed a tendency to claim that child-appropriate for-
mats overcome all difficulties, without supporting evidence.
Goswami’s claims are another instance of this because the
three bears analog did not improve performance (Goswami
1995, p. 883). Despite this, the alternative interpretation
that children’s impressive performances should be attrib-
uted to use of simple relations was not considered.

Gentner & Ratterman argue that it is implausible that
children could code an ordered three-tuple by chunking
into binary relations. We think this underestimates the de-
gree to which chunking is routinely employed by both chil-
dren and adults. In tasks that entail complex relations, it is
normal to chunk components that are not needed for the
current decision. These chunks are then unpacked to make
further decisions, though, of course, chunked and unchunked
relations cannot be processed in the same decision. In this
way complex tasks are decomposed into a series of simpler
tasks that are performed successively. Furthermore, the
chunking process would be facilitated by the visual presen-
tation used by Gentner & Ratterman, because a child can
scan the display and identify element(s) about which a de-
cision must be made, chunking the rest. The chunks can
then be unpacked to enable further decisions to be made.
An ordered three-tuple of the sort used by Gentner & Rat-
terman can be chunked into binary relational instances first
versus rest (A,B/C), middle versus rest (B,A/C), and last
versus rest (A/B,C). Chunking in this way would lead to a
success rate of approximately 67% correct, which seems
consistent with what 3- and 4-year olds can do in mapping
ternary relations without additional support. In general,
this kind of chunking can be used provided the relations be-
tween chunked terms do not need to be processed in the
same decision as the rest of the relation. For example,
chunking A,B,C into A,B/C, we can process A versus B/C
in one decision, then unpack B/C to process B versus C. We
cannot do this if relations between all three entities must be
processed in one decision. Therefore, as noted in sections

3.4.1 and 6, testing the theory requires careful design to en-
sure that relational complexity cannot be reduced by
chunking and segmentation.

R16. Infancy

Three commentaries – Goswami, Heath & Hayes, and
Wright – suggest that we have not taken account of the
large body of literature that indicates impressive cognitive
performances in infants. In fact, this literature was consid-
ered extensively in developing our position, and we have
written some reviews of it (e.g., Halford 1993). However,
neither the commentaries nor the papers cited in them pro-
vide sufficient evidence that our criteria for relational pro-
cessing were met. The problem is that, as illustrated above,
when the cognitive processes used in a task are unknown
we tend to interpret them in the most adult-like way, and
this interpretation has often not been supported by fuller
investigation. We appreciate the importance of innate cog-
nitive mechanisms for quantification and identification of
causes, but we should not assume without evidence that
they have the same conceptual structure as later concepts.
We cannot review this literature thoroughly here, but we
will consider some representative cases.

Heath & Hayes suggest that the ingenious work of
Leslie and Keeble (1987) showing that 6-month-old infants
recognise cause demonstrates that they understand binary
relations. To us adults cause is, at least prima facie, a binary
relation, cause(a,b). Heath & Hayes then make the com-
mon error described above of attributing adult cognition to
infants: to adults cause is a binary relation, infants recog-
nise cause, therefore, infants appreciate binary relations.
In fact, Leslie and Keeble themselves suggest that cause
could be recognised by a modular process that is essentially
perceptual (see Leslie & Keeble 1987, pp. 283–86). Are we
engaging in hypothesis-saving by dismissing recognition of
cause as a module? Demonstrably no. In section 2.2.1 we
said that relational schemas represent the structure of as-
pects of the world, and in section 2.2.12 we said they pro-
vide a basis for planning and for analogical mapping, and
can be modified on-line. The kind of module that Leslie
and Keeble postulate can do none of these things, and
there seems no reason to believe it would have any of the
other properties of relational knowledge defined in section
2.2. In fact, Leslie and Keeble themselves state: “A modu-
lar process, though it may be computationally very com-
plex, nevertheless occurs in a fixed, automatic and me-
chanical way without being influenced by information or
reasoning abilities that lie outside the module” (Leslie &
Keeble 1987, p. 285). Thus, rather than their data being an
embarrassment to us, their position is quite consistent with
ours.

In this case the argument is clear because a plausible
mechanism has been specified. The mechanism involved in
infants’ understanding of vanished objects is currently more
obscure, but we contend that our position is at least as con-
sistent with the evidence as is Goswami’s. Our theory does
not entail denial of processes such as learning detours or in-
hibition of responses. We also accept that infancy research
in the last two decades has been very successful in assess-
ing competence uncontaminated by performance limita-
tions. However, our position is consistent not only with what
infants can do, but also with what they cannot. How, for ex-
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ample, does Goswami explain the failure of 10-month-olds
to discriminate number of objects on the basis of nonspa-
tial attributes (Xu & Carey 1996)? Furthermore, if infants
and young children have such sophisticated relational un-
derstanding, why do they have such difficulty with condi-
tional discrimination?

Wright states repeatedly, and incorrectly, that we dis-
miss the work of Baillargeon. On the contrary, we have long
recognised the importance of Baillargeon’s observations of
infants’ object concept (see, e.g., Halford 1989), but we do
not think it has been demonstrated to require the kind of
explicit relational knowledge that we have defined. We have
developed a theory that fits all these observations (Halford
1996b; 1996c) and generates many new predictions. We are
not asking anyone to take our arguments on trust, but we
strongly believe that they should not be dismissed because
of poorly substantiated claims that they are inconsistent
with developmental data.

R17. Why processes matter

It seems appropriate to ask whether processes matter. Af-
ter all, are we not interested in what children can do? Per-
haps process models are matters for cognitive science and
are irrelevant to cognitive development. Has cognitive de-
velopment not done well without addressing the complex
and difficult question of processes, by defining achievements
in terms of observable performances? This view has consid-
erable appeal, if only because it seems to simplify the research
task. However, it amounts to a kind of neo-behaviourism,
which was found to be unworkable in general cognition re-
search by 1960. By this argument our investigations would
go no deeper than concluding that 5-month-olds under-
stand arithmetic, that 3-year-olds, monkeys, and pigeons all
understand transitivity (even, apparently, understand it in
the same way), and so on. It also means that we would lack
objective means to determine whether two tasks measure
the same thing. This can cause difficulties if on finding that
children cannot perform a particular test we keep simplify-
ing it until we find one they can perform. The problem may
be that we are unable to decide whether the simplified test
assesses different cognitive processes than the original test.
Consequently we might decide that the new test is “right”
or “fair” and all the others are deemed to underestimate
children’s performance, oblivious to the fact that the tests
measure different cognitive processes. This fallacy can have
a seriously misleading effect on the field (Halford 1989;
1993).

One riposte to this might be that capacity theory, like
Piaget, emphasises what children cannot do. We know of
no scholarly basis for this criticism of Piaget, and we con-
sider it not valid for capacity theory either. Surely the sci-
entific investigation of cognitive development requires that
we adopt an impartial approach, recording children’s suc-
cesses and failures with equal interest, as Piaget did. Then,
and only then, will we be in a position to determine the fac-
tors that influence performance and how these change with
age. However, this has not always been the dominant ori-
entation in the cognitive development literature.

Analyses of cognitive processes increase the information
yielded by research paradigms, which can be compared on
the basis of the cognitive processes they entail. Consider,
for example, the conflicting evidence about capability for

transitive inference. Rather than arguing, as does Wright,
that one transitivity paradigm is “right” and the others
“wrong,” we suggest it is more productive to ask why, for ex-
ample, the transitivity of choice paradigm advocated by
Chalmers & McGonigle can be performed by a wider
range of participants (pigeons to university students) than
the paradigm used by Andrews and Halford (in press),
which causes great difficulty for children under a median
age of 5 years. We suggest the explanation is that the para-
digms require different cognitive processes, which make
different cognitive demands. The transitivity of choice par-
adigm can be performed by basically associative processes
(Wynne 1995; Harris & McGonigle 1994), whereas the par-
adigm used by Andrews and Halford requires a represen-
tation of relations in the task, and this imposes a load that is
a function of the complexity of relations performed in each
decision. From this and hundreds of similar comparisons,
we have carefully constructed a theory of conceptual com-
plexity, which makes a lot of testable predictions. The
essence of the theory is outlined in the target article.

There is a tendency to discount complexity effects, no
matter how large they are, because of an overriding concern
with precocity. However, there is no reason why these goals
– to discover precocious performances and to understand
the effects of complexity – need be antagonistic. It is not a
matter of emphasising what children can or cannot do, but
of recognising that we are dealing with two sides of the coin.
A thorough understanding of complexity, and of the way
both children and adults deal with it, can be a major bene-
fit in the goal of overcoming limitations.

Frye & Zelazo have demonstrated complexity effects in
the important area of concept of mind (Frye et al. 1995).
Though their work was originally independent of ours, their
effects are consistent with those predicted by Halford
(1993) and with the analysis in section 6.2.4.3. Their find-
ings are supported by work in our laboratory (Halford et al.
1998). Frye & Zelazo prefer to model these effects in terms
of the cognitive complexity and control (CCC) theory. We
have no objection to this because there may be benefits in
choosing a formalism that is best suited to a particular set
of phenomena. However, it should be borne in mind that a
hierarchically structured control process can be expressed
as an n-ary relation. This translation is analogous to the way
we defined the relational complexity of another hierarchi-
cal task, the Tower of Hanoi, in section 6.1.3. The benefit
of doing so is that relational complexity provides a metric
that is applicable to tasks with any kind of structure. This
permits complexities of tasks in different domains, and with
different surface structures, hierarchical or otherwise, to be
compared directly. The only other response we would make
is that we do not believe that, in general, we have neglected
the link between cognition and performance. We have
modelled the acquisition of performance strategies, guided
by the person’s concept of the task as well as other factors
(Halford et al. 1995).

R18. Complexity metric and interpretation 
of developmental data

Frye & Zelazo recognised an important benefit of the
complexity metric when they commented that “Develop-
mental psychology is commonly recognized as the study of
change, but without a method for ordering the changes, the

Response/Halford et al.: Relational complexity

BEHAVIORAL AND BRAIN SCIENCES (1998) 21:6 859
https://doi.org/10.1017/S0140525X98231761 Published online by Cambridge University Press

https://doi.org/10.1017/S0140525X98231761


phenomena become as disorganized as those in the physi-
cal sciences would be without a periodic table.” Many of the
arguments we have made in earlier sections illustrate the
point that without an objective procedure for analysing
complexity, the orderly interpretation of developmental
data is virtually impossible. If we cannot analyse the com-
plexity of the processes entailed in cognitive performances,
how can we decide whether the performance of infants on
quantification, cause, or representation of vanished objects
is the same as, or simpler than, that of young children? Fur-
thermore, how can we decide whether the transitive infer-
ence abilities of older children and adults surpass those of
3-year-olds, or nonhuman primates? In the past this issue
has sometimes been resolved simply by attributing the most
sophisticated cognitive processes. Without a complexity
metric developmental psychology is inevitably locked into
unresolvable debates about which test(s) provide the truest
or fairest indications of children’s abilities. Continued re-
finement of assessments is essential, of course, but given
that most investigators are well aware of this, considerable
benefits can be derived from objective assessments of the
complexity of cognitive processes that underlie demon-
strated performances.

R19. Conclusion

Complexity effects are very real in the cognition of all
higher animals, including human adults and children. A
metric is needed that permits the cognitive complexity of
tasks to be analysed in such a way that it can be manipulated
experimentally, unconfounded by other factors. Relational
complexity theory provides such a metric. It has so far
shown potential for dealing with species, age, and individual
differences. Such a wide-ranging theory inevitably makes
contact with a number of other theories. We acknowledge
some points of contact, and welcome attempts at construc-
tive integration, but we are not aware of any other theory at
present that offers the kind of general conceptual complex-
ity metric that we have proposed, applicable to tasks that can
be performed in a single processing step as well as to tasks
that entail more than one step. Complexity effects are based
on the cognitive processes actually used in performing a
task, so valid process analyses are a prerequisite to reliable
and testable assessments of complexity.

One consequence, not always recognised by commenta-
tors, is that although we accept empirically valid demon-
strations of infants’ and children’s performances, their im-
plications for our position depend on analysing the
processes they entail. That is, although we accept data
about what infants and children can do, we believe the field
needs to be equally concerned with how they do it. Lack of
interest in processes seems to have been the main feature
that has distinguished cognitive development from general
cognition research in the last three decades. Arguably, the
cognitive revolution has had much less impact on cognitive
development, and this may have been to the detriment of
the field. Claims of performances more precocious than our
norms appear to be based on assumptions about processes
used by infants and children, rather than on evidence that
they are really processing relations of a given complexity.
Where process analyses have been performed, it has gen-
erally been found that the data are quite consistent with our
suggested norms.
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