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1. Introduction

A compact space is called a Rosenthal compactum if it is homeomorphic to a pointwise

compact set of first Baire class functions on a Polish space. The study of this class

arose in connexion with Banach space theory, and particularly with Banach spaces not

containing `1 [11]. We refer to the survey [7] for more information on the subject. Three

critical examples of non-metrizable Rosenthal compacta were identified in [14]: the split

interval (also known as double arrow space), the Alexandroff duplicate of the Cantor set

and the one-point compactification of the discrete set of size continuum. The two latter

spaces are not separable, but there is a natural way to supplement them with countably

many isolated points so that we obtain three separable nometrizable Rosenthal compacta

that form a basis:

Theorem 1. There exist three separable non-metrizable Rosenthal compact spaces such

that every separable non-metrizable Rosenthal compact space contains a homeomorphic

copy of one of these three.
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One can obtain a proof of this theorem either by looking at [14, proofs of Theorems 5,

6 and 9] or by using [1, Theorem 3]. The statement of [1, Theorem 3] is almost the

same as Theorem 1 except that it gives five spaces because they consider an equivalence

relation that is finer than homeomorphism, but their spaces Ŝ+(2N) and Ŝ+(2N) are

homeomorphic, and D̂(2N) is a subspace of D̂(S(2N)), so one gets a basis of three. The

main result of our paper is Theorem 3, a multidimensional generalization of Theorem 1,

that relies on the following topological index:

Definition 2. For a compact space K , the open degree of K , odeg(K ), is the least natural

number n such that there exists a countable family F of open sets such that for every

different x0, . . . , xn ∈ K there exists V0, . . . , Vn ∈ F such that xi ∈ Vi and
⋂

i Vi = ∅. If

no such number n exists, then odeg(K ) = ∞.

Theorem 3. For every natural number n > 2, there exists a finite list of separable

Rosenthal compact spaces of open degree n such that every separable Rosenthal compact

space of open degree > n contains a homeomorphic copy of one of the spaces of the list.

It is an easy exercise that odeg(K ) = 1 if and only if K is metrizable, so for n = 2,

the list of Theorem 3 is the same as in Theorem 1. For higher numbers n, the list

of compact spaces can also be explicitly described, and it is related to the list of

minimal analytic strong n-gaps found in [4]. Indeed, each compact space in the list of

Theorem 3 corresponds to a dense strong minimal analytic n-gap modulo permutations.

These compact spaces are higher-dimensional analogues of the three critical spaces of

Theorem 1, constructed using general m-adic trees m<ω instead of the dyadic tree 2<ω.

Our proof uses some of the ideas from [14] but it also introduces some new techniques in

the area, like the use of infinite games.

The paper is organized as follows: § 2 collects well-known or more or less elementary

facts on Rosenthal compacta and the property of bisequentiality. Section 3 introduces

notation and facts that we shall need about the n-adic tree, that are taken from our

previous work [2, 4, 5]. Sections 4 and 5 describe the basic compact spaces K1(P) and

K∞(Q). In § 6 we check when a space K1(P) can be homeomorphic to a subspace of a

space K1(P
′) and, using results from [4], the minimal spaces of this form are identified.

Section 7 studies the open degree, and another related degree. It is proven in [3] that, for

this other notion of degree, every separable Rosenthal compact space of degree n contains

one of two basic spaces. The differences with the results of this paper are discussed.

Theorem 3 is finally proven in § 8, and § 10 computes the minimal spaces for n = 2, 3, 5
as illustration. Section 9 contains some further results like:

Theorem 4. If K is a non-scattered Rosenthal compact space, then either K contains a

homeomorphic copy of the Cantor set or a homeomorphic copy of the split interval.

Theorem 5. If a Rosenthal compactum maps continuously onto the split interval, then it

contains a copy of the split interval.

Some problems are proposed in § 11.

https://doi.org/10.1017/S1474748016000335 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748016000335


Compact spaces of the first Baire class that have open finite degree 1175

2. Rosenthal and bisequential compact spaces

Rosenthal showed that Rosenthal compact spaces are sequentially compact and have

countable tightness [13]. This was improved by Bourgain et al. [6] that showed that these

are Fréchet–Urysohn spaces (every point in the closure of a set A is the limit of a sequence

in A). This was further improved by Pol to the property of bisequentiality [12]. If K is a

topological space, a sequence {An : n < ω} of subsets of K is said to converge to a point

x ∈ K if for every neighborhood W of x there exists n0 such that An ⊂ W for all n > n0.

Definition 6. A compact space K is bisequential if for every ultrafilter U on K that

converges to a point x ∈ K there exists a sequence of sets A1, A2, . . . ∈ U that converges

to x .

Theorem 7 (Pol). Every separable Rosenthal compactum is bisequential.

The following fact noticed in [9] for Rosenthal compacta, can be obtained as an

application of bisequentiality:

Lemma 8. Let K be a bisequential compact space. Suppose that we have a sequence

{xk}k<ω ⊂ K that clusters at x and, for every k, a sequence Ak = {xkp}p<ω ⊂ K that

clusters at xk . Then there exist infinite sets N , Nk ⊂ ω for each k, such that the sets

{{xkp : p ∈ Nk} : k ∈ N } converge to x.

Proof. Let

F = {Z ⊂ K : |{k < ω : |{p ∈ ω : xkp 6∈ Z | = ω}| < ω}.

This is a filter that clusters at the point x . By compactness, there exists an ultrafilter U
that contains F and converges to x . Using bisequentiality we find a sequence {Zn : n < ω}

of elements of U that converges to x . The sets K \ Zn do not belong to F , hence

Mn := |{k < ω : |{p ∈ ω : xkp ∈ Zn}| = ω}| = ω.

Choose inductively k1 < k2 < k3 < · · · such that kn ∈ Mn for every n. We take N =
{k1, k2, . . .} and Nkn = {p ∈ ω : xkn p ∈ Zn}.

Notice that the above implies in particular that every bisequential space is

Fréchet–Urysohn, and therefore sequentially compact as well. The topology in a

bisequential space is strongly determined by the behavior of convergent sequences. In

particular, we have the following useful fact, that we shall frequently need:

Lemma 9. Let K and K̃ be bisequential spaces, D a dense subset K , and φ : D −→ K̃ a

function. Then,

(1) either there exists a continuous function 8 : K −→ K̃ that extends φ,

(2) or there exist two sequences {dn} and {d ′n} in D that converge to the same point,

such that {φ(dn)} and {φ(d ′n)} converge to two different points of K̃ .

Proof. Suppose that (2) does not hold. For every x ∈ K choose a sequence (dk) ⊂ D that

converges to x and such that (φ(dk)) is convergent, and then define 8(x) = limk φ(dk).
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Since bisequential spaces are Fréchet–Urysohn and sequentially compact, such a sequence

dk always exist. Moreover, by the failure of (2), the value 8(x) does not depend on the

choice of the sequence (dk). It remains to show that 8 is continuous. It is enough to

check that it preserves limits of convergent sequences. So pick (xk) that converges to x
in K , 8(xk) converges to some x̃ ∈ K̃ , and we want to check that x̃ = 8(x). For every

k let (dkp)p be a sequence that converges to xk and φ(dkp)p converges to 8(xk). Using

Lemma 8 twice, once in K and once in K̃ we get a sequence of the form (dkp[k]) that

converges to x , and such that (φ(dkp[k]) converges to x̃ . This implies that 8(x) = x̃ .

Here is another application of bisequentiality concerning scattered spaces. K (α) denotes

the αth Cantor–Bendixson derivative of K .

Theorem 10. Let K be a scattered bisequential compactum and α < ω1 such that K (α)
6= ∅.

Then there exists a countable closed subset L ⊂ K such that L(α) 6= ∅.

Proof. By picking a neighborhood of a point in the αth level that isolates it in its level,

we can suppose that K (α)
= {∞} is a singleton. We shall proceed by induction on α, the

initial case being trivial. We consider a sequence {xn} ⊂ K of different points belonging to

K (βn) \ K (βn+1) where βn = β if α = β + 1 is successor, or limn βn = α if α is limit. By the

inductive hypothesis, we can find countable compact sets Ln of height βn with L(βn)
n =

{xn}. Let L =
⋃

n Ln . We can consider F0 a filter on K generated by all subsets A ⊂ L for

which Ln \ A
(βn)
= ∅ for all but finitely many n’s. It is clear that F0 clusters at∞. Let F

be an ultrafilter that contains this filter and converges to ∞. By bisequentiality we can

find a sequence of sets L ⊃ F1 ⊃ F2 ⊃ · · · in F that converges to ∞. Each Fi has the

property that Fi ∩ Ln
(βn)
6= ∅ for infinitely many n’s, or otherwise L \ Fi ∈ F0 that would

contradict that Fi ∈ F . Inductively, choose n[1] < n[2] < · · · such that Fi ∩ Ln[i]
(βn[i])

6=

∅. The closed set L̃ = {∞}∪
⋃

i Fi ∩ Ln[i] is the one we are looking for.

Finally, another well-known fact on Rosenthal compacta.

Lemma 11. Let K be a separable Rosenthal compact space, and D ⊂ K a countable dense

subset of K . Then there exists a countable family D̃ of continuous functions on ωω whose

pointwise closure consists of first Baire class functions on ωω, and a bijection φ : D −→ D̃
that extends to a homeomorphism between the closures.

Proof. Suppose that K is a compact set of first Baire class functions on the Polish space

X . There is a finer Polish topology on X for which all the functions in D are continuous,

cf. [8, 13A]. Find a continuous surjection π : ωω −→ X from ωω onto X with this new

Polish topology. Just take D̃ = { f ◦π : f ∈ D} and φ( f ) = f ◦π .

3. The m-adic tree

We consider a natural number as an ordinal, that equals its set of predecessors

m = {0, 1, . . . ,m− 1}. Thus, m×m = {0, 1, . . . ,m− 1}× {0, 1, . . . ,m− 1} denotes the

Cartesian product.

The m-adic tree is the set m<ω of finite sequences of numbers from m = {0, 1, . . . ,m− 1}.
The set mω is the set of infinite sequences of numbers from m, and m6ω

= m<ω
∪mω.
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The length of s ∈ m6ω, denoted as |s|, is the cardinality of its domain. Given s =
(s0, . . . , sp) ∈ m<ω and t = (t0, t1, . . .) in m6ω, we can construct the concatenation s_t =
(s0, . . . , sp, t0, t1, . . .). We write s 6 t if there exists r ∈ m6ω such that t = s_r . When

r = (i) is a sequence with a single number, we write s_i instead of s_(i) for short. For any

s, t ∈ m6ω, we denote by s ∧ t the largest r such that r 6 t and r 6 s. If r = s ∧ t 6∈ {s, t}
then there exist two different i, j ∈ m such that r_i 6 s and r_ j 6 t . In that case, we

define the incidence as inc(s, t) = (i, j). If we have i ∈ m such that s_i 6 t , then we

define inc(t, s) = (i, i). The well order ≺ on n<ω is given by s ≺ t if either |s| < |t |, or

|s| = |t | = p and n ps0+ n p−1s1+ · · · < n pt0+ n p−1t1+ · · ·.
We are going to follow the approach in [2] to study the first-move combinatorics of m<ω.

A set A ⊂ m<ω will be said to be meet-closed if t ∧ s ∈ A whenever t ∈ A and s ∈ A. The

meet-closure of A is 〈〈A〉〉 = {s ∧ t : s, t ∈ A} is the least meet-closed set that contains A.

For A, B ⊂ m<ω, a bijection f : A −→ B is a first-move equivalence if it is the

restriction of a bijection f : 〈〈A〉〉 −→ 〈〈B〉〉 such that for every t, s ∈ 〈〈A〉〉

(1) f (t ∧ s) = f (t)∧ f (s).

(2) f (t) ≺ f (s) if and only if t ≺ s.

(3) If i ∈ n is such that t_i 6 s, then f (t)_i 6 f (s).

For the third condition, we can also write that inc(s, t) = inc( f (s), f (t)) for all s, t . The

sets A and B are called first-move-equivalent if there is a first-move equivalence between

them. In this case, we write A ≈ B. There are several equivalence classes for this relation

that we will use at some point:

A set A ⊂ m<ω is a first-move subtree if A ≈ m<ω.

An (i, j) comb is a subset A ⊂ m<ω such that

A ≈ {( j), (i i j), (i i i i j), (i i i i i i j), . . .}.

An (i, j, k, l)-double comb is a subset A ⊂ m<ω such that

A ≈ {( j), (i ikk j), (i ikkiikk j), . . .} ∪ {(i il), (i ikkiil), (i ikkiikkiil), . . .}

Notice that an (i, j, k, l)-comb is a union of an (i, j)-comb and a (k, l)-comb lying on the

same branch. An (u, v)-split (i, j, k, l)-double comb is a subset A ⊂ m<ω such that

A ≈ {(u j), (uii j), (uiii i j), . . .} ∪ {(vl), (vkkl), (vkkkkl), . . .}.

This is now the union of an (i, j)-comb and a (k, l)-comb lying on different branches. Let

us also say that a function f : A −→ B is a first-move embedding if it is a first-move

equivalence between A and the range f (A).
The following theorem is related to Milliken’s partition theorem for trees [10], cf. [15,

chapter 6]. A proof of it can be found in [2] based on [5]:

Theorem 12. Fix a set A0 ⊂ n<ω, and a partition {A ⊂ n<ω : A ≈ A0} = P1 ∪ · · · ∪ Pk
into finitely many sets with the property of Baire. Then there exists a first-move subtree

T ⊂ n<ω such that the family {A ⊂ T : A ≈ A0} is contained in a single piece of the

partition.
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Here, the property of Baire means that the sets Pi belong to the σ -algebra generated

by the open sets and the meager sets of 2n<ω , endowed with the product topology that

makes it homeomorphic to the Cantor set.

Let i, j ∈ m, x ∈ mω, and {s0, s1, . . .} ⊂ m6ω. We say that {s0, s1, . . .} is an (i, j)-
sequence over x if the two following conditions hold:

(1) limn→∞ |sn
∧ x | = ∞;

(2) inc(x, sn) = (i, j) for all n.

If {s0, s1, . . .} ⊂ mω is an (i, j)-sequence over x , then it converges to x in the natural

product topology of mω. Notice that an (i, j)-comb is always an (i, j)-sequence over some

x ∈ mω.

Lemma 13 [4, Lemma 7]. Every infinite subset of m<ω contains an infinite (i, j)-comb

for some (i, j) ∈ m×m.

The families of sets I1, . . . , In are said to be countably separated if there exists a

countable family of sets C such that for every a1 ∈ I, . . . , an ∈ In there exist b1, . . . , bn ∈ C
such that ai \ bi is finite for all i , and

⋂
i bi = ∅.

Lemma 14 [4, Proposition 6]. Let P be a partition of m×m. For every P ∈ P, let IP be

the family of all (i, j)-combs of m<ω such that (i, j) ∈ P. The families {IP : P ∈ P} are

not countably separated.

4. The spaces K1(P)

Given a partition P of m×m, we will construct a first-countable Rosenthal compact

space K1(P). For this, we consider the Polish space XP := m<ω
∪mω

×P, where

• m<ω is considered as a countable discrete space;

• mω is considered with its product topology as the countable power of a finite discrete

space, which makes it homeomorphic to the Cantor set;

• P is considered as a finite discrete space;

• mω
×P is given the product topology;

• XP = m<ω
∪mω

×P is given the topology where each of the two sets m<ω and mω
×P

are open, and endowed with the respective topologies indicated above.

Now, for every s ∈ m<ω we consider a function fs : XP −→ {0, 1} given by

fs(t) =

 1 if t 6 s

0 otherwise
for t ∈ m<ω,

fs(y, Q) =

 1 if inc(y, s) ∈ Q

0 if inc(y, s) 6∈ Q
for (y, Q) ∈ mω

×P.

Definition 15. The compact space K1(P) is the pointwise closure of the functions {fs :

s ∈ m<ω
} in RXP .

https://doi.org/10.1017/S1474748016000335 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748016000335


Compact spaces of the first Baire class that have open finite degree 1179

In order to describe all the points of K1(P), for every (x, P) ∈ mω
×P, we consider a

new function f(x,P) : XP −→ {0, 1} given by

f(x,P)(t) =

 1 if t 6 x

0 otherwise
for t ∈ m<ω

f(x,P)(y, Q) =



1 if x = y, P = Q

0 if x = y, P 6= Q

1 if x 6= y, inc(y, x) ∈ Q

0 if x 6= y, inc(y, x) 6∈ Q

for (y, Q) ∈ mω
×P.

Proposition 16. Fix (i, j) ∈ P ∈ P.

(1) If {s0, s1, . . .} ⊂ m<ω is an (i, j)-sequence over x ∈ mω, then

lim
k

fsk = f(x,P).

(2) If {x0, x1, . . .} ⊂ mω is an (i, j)-sequence over x ∈ mω, and we choose any Pk ∈ P,

then

lim
k

f(xk ,Pk ) = f(x,P).

Proof. For statement (1), first notice that fsk (t) −→ 1 if t 6 x , and fsk (t) −→ 0 otherwise.

So fsk (t) −→ f(x,P)(t) for t ∈ m<ω. Second, notice that fsk (x, P) = 1 because inc(x, sk) =

(i, j) ∈ P, so we also have fsk (x, P) −→ f(x,P)(x, P). Third, if Q 6= P, we have fsk (x, Q) =
0 because inc(x, sk) = (i, j) 6∈ Q, so again fsk (x, Q) −→ f(x,P)(x, Q). Fourth, if we consider

(y, Q) with x 6= y, then fsk (y, Q) depends on the incidence of y and sk . But from a moment

on, this incidence coincides with that of y and x , and this makes fsk (y, Q) −→ f(x,P)(y, Q)
work again. Statement (2) is proven in a similar way. First, f(xk ,Pk )(t) is 1 if t 6 xk and 0

otherwise. Notice if t 6 x , then t 6 xk for all but finitely many k’s, and if t 66 x , then t 66
xk for all but finitely many k’s. Therefore f(xk ,Pk )(t) −→ f(x,P)(t). Second, f(xk ,Pk )(x, P) = 1
because inc(x, xk) = (i, j) ∈ P, so f(xk ,Pk )(x, P) −→ f(x,P)(x, P). Third, if Q 6= P, then

f(xk ,Pk )(x, Q) = 0 because inc(x, xk) = (i, j) 6∈ Q, so again f(xk ,Pk )(x, Q) −→ f(x,P)(x, Q).
Finally, for y 6= x , f(xk ,Pk )(y, Q) depends on inc(y, xk), but inc(y, xk) = inc(y, x) for all

but finitely many k’s.

Proposition 17. K1(P) is a separable Rosenthal compactum.

Proof. The functions fs for s ∈ m<ω are clearly continuous on the Polish space XP.

Combining this with Lemma 13 and Proposition 16, we get that {fs : s ∈ m<ω
} is a

countable family of continuous functions on a Polish space with the property that every

subsequence contains a further subsequence that converges in RXP . This implies that its

closure is a Rosenthal compactum [6].

Proposition 18. The function XP −→ K1(P) given by ξ 7→ fξ is a bijection. Thus,

K1(P) = {fs : s ∈ m<ω
} ∪ {f(x,P) : (x, P) ∈ mω

×P}.
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The points fs are isolated in K1(P) and the points f(x .P) are Gδ-points, so K1(P) is a

first-countable space.

Proof. It is easy to see that the function ξ 7→ fξ is one to one. In fact, notice that f(x,P) 6=
f(x,Q) if P 6= Q because f(x,P)(x, Q) = 0 but f(x,Q)(x, Q) = 1. In any other cases, if ξ 6= ξ ′

then we can find t ∈ m<ω where fξ (t) 6= fξ ′(t). Since K1(P) is a Rosenthal compactum, by

the Bourgain–Fremlin–Talagrand theorem, every point z in it is the limit of a sequence

in {fs : s ∈ m<ω
}. By Lemma 13, if this sequence is infinite, then it contains a further

subsequence of the form {fs0 , fs1 , . . .}, where {s0, s1, . . .} is an (i, j)-sequence over some

x ∈ mω, for some (i, j) ∈ P ∈ P. By Proposition 16, the limit of such sequence is z = f(x,P).
This proves that the range of the function ξ 7→ fξ is the full K1(P).

The function fs is isolated because it is the unique function in K1(P) that satisfies

fs(s) = 1, and fs(s_i) = 0 for all i ∈ m. On the other hand, f(x,P) is a Gδ-point, because

it is the only function in f ∈ K1(P) that satisfies f (x |k) = 1 for all k < ω, and moreover

f (x, P) = 1.

Finally, we observe that if T ⊂ m<ω is a first-move subtree, then the closure of

{ ft : t ∈ T } is naturally homeomorphic to the whole K1(P).

5. The spaces K∞(Q)

Now, instead of a partition P of m×m we will consider a family Q of disjoint subsets of

m = {0, 1, . . . ,m− 1}. We will construct a separable Rosenthal compact space K∞(Q)
with a non-Gδ-point. For this, we consider the Polish space XQ := m<ω

∪mω
×Q,

endowed with the same topology that we gave to XP in the previous section.

Now, for every s ∈ m<ω we consider a function gs : XQ −→ {0, 1} given by

gs(t) =

 1 if t = s

0 otherwise
for t ∈ m<ω,

gs(y, Q) =

 1 if inc(y, s) = (i, i) for some i ∈ Q

0 otherwise
for (y, Q) ∈ mω

×Q.

Definition 19. The compact space K∞(Q) is the pointwise closure of the functions {gs :

s ∈ m<ω
} in RXQ .

In order to describe this closure, we consider the function g∞ : XQ −→ {0, 1} that is

constant equal to 0, and, for every (x, P) ∈ mω
×Q, the function g(x,P) : XQ −→ {0, 1}

that takes the value 0 at all points except at (x, P), where it takes value 1.

Proposition 20. Fix i, j ∈ m, and {s0, s1, . . .} ⊂ m<ω an (i, j)-sequence over x ∈ mω

(1) If i = j ∈ P ∈ Q, then limk gsk = g(x,P).
(2) If either i 6= j or i = j 6∈ ∪Q, then limk gsk = g∞.

On the other hand, the only accumulation point of the set {g(x,P) : x ∈ mω, P ∈ Q} is g∞.
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Proof. The last statement is evident. It is also clear that any of the two cases considered

above, lim gsk (t) = 0 for t ∈ m<ω. On the other hand, gsk (y, Q) = 1 only if s_k ξ 6 y with

ξ ∈ Q. Hence, gsk (y, Q) converges to 0 unless y = x and i = j ∈ Q = P, in which case it

converges to 1.

Proposition 21. K∞(Q) is a separable Rosenthal compactum.

Proof. Similar to Proposition 17

Proposition 22. The function XQ ∪ {∞} −→ K∞(Q) given by ξ 7→ gξ is a bijection.

Thus,

K∞(Q) = {gs : s ∈ m<ω
} ∪ {g(x,P) : (x, P) ∈ mω

×Q} ∪ {g∞}.
This is a scattered space of height 3, whose Cantor–Bendixson derivatives are

K∞(Q)′ = {g(x,P) : (x, P) ∈ mω
×Q} ∪ {g∞}

K∞(Q)′′ = {g∞}.

Thus, the points gs are isolated in K∞(Q), the points g(x .P) are Gδ-points, but if Q 6= ∅,

then g∞ is not a Gδ-point of K∞(Q).

Proof. It is clear that the assignment ξ 7→ gξ is one to one. The fact that this is surjective

is deduced from Proposition 20 using the same argument as in the proof of Proposition 18.

Each function gs is isolated in K∞(Q) as it is the only function such that gs(s) = 1. The

rest of points are not isolated by Proposition 20. On the other hand, it is clear that each

g(x,P) is isolated in K∞(Q)′.

6. Minimal spaces

If we have a finite set N and a surjective function f : m×m −→ N , we can associate to

it a partition P f = { f −1(i) : i ∈ N } of m×m into |N | pieces. The following definition is

taken from [4]:

Definition 23. For natural numbers m0 and m1, we say that ε : m2
0 −→ m2

1 is a reduction

map if there exists k < ω a one-to-one function e : m0 −→ mk
1 and an element x ∈ m<ω

1
such that |x | < k and for all u, v ∈ m0

(1) ε(u, v) = inc(e(u), e(v)) if u 6= v;

(2) ε(u, u) = inc(e(u), x).

Definition 24. For two surjective functions f : m2
0 −→ N0 and g : m2

1 −→ N1, we write

f ≺ g if there exists a reduction map ε : m2
0 −→ m2

1 such that f = g ◦ ε.

Lemma 25. If f ≺ g, then K1(P f ) is homeomorphic to a closed subspace of K1(Pg).

Proof. We have a reduction map ε : m2
0 −→ m2

1 such that f = g ◦ ε. Let e and x be

as in the definition of reduction map. As in the proof of [4, Lemma 11], we consider

φ : m<ω
0 −→ m<ω

1 defined as

φ(u0, . . . , uk) = e(u0)
_
· · ·

_ e(uk)
_x .
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and ψ : mω
0 −→ mω

1 defined as

ψ(u0, . . . , uk, . . .) = e(u0)
_
· · ·

_ e(uk)
_
· · · .

It is easy to see that φ and ψ are both injective and that if {sn} is an (i, j)-sequence

over x , then {φ(sn)} is an ε(i, j)-sequence over ψ(x). The map φ induces a function φ̂ :

{ft : t ∈ m<ω
0 } −→ {ft : t ∈ m<ω

1 } between the dense sets of K1(P f ) and K1(Pg), given by

φ̂(ft ) = fφ(t). We claim that this function extends to a continuous function φ̃ : K1(P f ) −→

K1(Pg). If not, by Lemma 9, we would have two sequences {fsn } and {ftn } that converge to

the same point in K1(P f ) but {fφ(sn)} and {fφ(tn)} converge to different points in K1(Pg).

By Lemma 13, we can suppose that {sn} is an (i, j)-sequence over some y, and {tn}
is a (u, v)-sequence over some z. Since {fsn } and {ftn } converge to the same point, by

Proposition 16, y = z and (i, j) and (u, v) belong to the same piece of the partition P f ,

that is f (i, j) = f (u, v). But then, {fφ(sn)} is an ε(i, j)-sequence over ψ(y) and {fφ(tn)} is

an ε(u, v)-sequence over ψ(y) = ψ(z). Since

g(ε(i, j)) = f (i, j) = f (u, v) = g(ε(u, v)),

ε(i, j) and ε(u, v) belong to the same piece of the partition Pg. Therefore, {fφ(sn)} and

{fφ(tn)} converge to the same point K1(Pg). This finishes the proof that we have a

continuous extension φ̃ : K1(P f ) −→ K1(Pg). Moreover, the above argument also proves

that φ̃(f(y, f −1(i))) = f(ψ(y),g−1(i)), so φ̃ is clearly injective.

The converse of the previous lemma is true, modulo permutations:

Lemma 26. Let g0
: m2

0 −→ N0 and g1
: m2

1 −→ N1 be two surjective functions. If

K1(Pg0) is homeomorphic to a subspace of K1(Pg1), then there exists an injective

σ : N0 −→ N1 such that1 σ ◦ g0
≺ g1.

Proof. Let φ : K1(Pg0) −→ K1(Pg1) be a homeomorphic embedding. Let us call {f0
t : t ∈

m<ω
0 } and {f1

t : t ∈ m<ω
1 } the respective dense sets, and {f1

(x,P) : x ∈ mω
1 , P ∈ Pg1} the other

points of K1(Pg1).

Theorem 12 applied to a singleton A0 means that whenever we divide m<ω into two

pieces there exists a first-move subtree contained in one of the pieces. Thus, by passing

to a first-move subtree, we can suppose that

(case 1) either {φ(f0
t ) : t ∈ m<ω

0 } ⊂ {f
1
t : t ∈ m<ω

1 }

(case 2) or {φ(f0
t ) : t ∈ m<ω

0 } ⊂ {f
1
(x,P) : x ∈ mω

1 , P ∈ Pg1}.

Let us consider first case 1. If we fix (i, j), then the (i, j)-combs A of m<ω
0 can be

partitioned into m2
1+ 1 many Borel pieces, depending on whether {φ(f0

t : t ∈ A} is a

(u, v)-comb for some u, v ∈ m1, or it is not a comb at all. By Theorem 12, after passing

to a first-move subtree, we can suppose that all (i, j)-combs lie in the same piece of this

partition. The piece cannot be that of non-combs because of Lemma 13. After repeated

application of this argument, we can suppose that for every (i, j) ∈ m2
0 there exists β(i, j)

1σ ◦ g0 is not surjective, but we view it as a surjection onto its range.
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such that if {f0
t : t ∈ A} is an (i, j)-comb, then {φ(f0

t ) : t ∈ A} is a β(i, j)-comb. The

fact that φ is a homeomorphic embedding, combined with Proposition 16, implies that

g0(i0, j0) = g0(i1, j1) if and only if g1β(i0, j0) = g1β(i1, j1). Therefore, we have a

well-defined injective function σ : N0 −→ N1 such that σ(g0(i, j)) = g1(β(i, j)) for every

(i, j). In the language of [4] that would translate into the fact that 0σ◦g0 6 0g1 , so by

[4, Lemma 11], we obtain that σ ◦ g0
≺ g1. The second case,

{φ(f0
t ) : t ∈ 2<ω} ⊂ {f1

(x,P) : x ∈ mω
1 , P ∈ Pg1},

will be reduced to the first case, because we will find a new φ′ that will satisfy the first

option. Let φ(f0
t ) = f1

(xt ,Pt )
. We distinguish two further cases now:

(1) For every t ∈ m<ω
0 and for every i ∈ m0 there exists r > t_i such that {xt ∧ xs : s >

r} is finite. Under this assumption, we can construct inductively a first-move subtree

T such that {xt ∧ xs : s ∈ T } is finite for every t ∈ T . Then, we can define φ′(f0
t ) =

f1
xt |kt

where kt < ω is larger than |xt ∧ xs | for all s ∈ T \ {t}. Using Proposition 16 and

Lemma 9, we see that the map φ(t) 7→ φ′(t) for t ∈ T induces a homeomorphism

between closures, so t 7→ φ′(t) is a new homeomorphic embedding that falls into

the previous case, that is:

{φ′(f0
t ) : t ∈ T } ⊂ {f1

t : t ∈ m<ω
1 }.

(2) There exist t ∈ m<ω
0 and i ∈ m0 such that for all r > t_i , the set {xt ∧ xs : s > r}

is infinite. In this case, it is possible to construct inductively a first-move subtree

T ⊂ m<ω
0 rooted at t_i such that the map s 7→ xt ∧ xs is injective on T . Then,

using Proposition 16 in combination with Lemma 13, we see that the only possible

limits of subsequences of {φ′(f0
t ) : t ∈ T } lie in the finite set {f1

(xt ,P) : P ∈ Pg1}.

This is impossible because φ is a homeomorphic embedding and {f0
t : t ∈ T } has

uncountably many cluster points.

Lemma 27. For every surjective g : m2
1 −→ N1 and for every n0 < |N1|, there exist N0 ⊂

N1 of cardinality n0 and a surjective f : m2
0 −→ N0 such that f ≺ g.

Proof. Consider

M = {p ∈ N1 : ∃i 6= j : g(i, j) = p}.
We distinguish two cases. The first case is that |M | 6 n0. Without loss of generality, we

can suppose that M is of the form M = {0, 1, . . . , ξ}. For i ∈ M , find ui , vi ∈ m1, ui 6=

vi such g(ui , vi ) = i . For i ∈ n0 \M , find wi ∈ m1 such that g(wi , wi ) = i . We consider

m0 = n0 = N0 and the reduction map ε : m2
0 −→ m2

1 induced by:

• x = (v0, . . . , vξ );

• e(i) = (v0, . . . , vi−1, ui , 0, 0, . . . , 0) for i ∈ M ;

• e(i) = (v0, . . . , vξ , wi ), for i ∈ m0 \M .

In this way, we get a function f = g ◦ ε ≺ g. Notice that all possible incidences of the

e(i)’s and x of the form (u, u) are necessarily of the form (wi , wi ) for i ∈ n0 \M . This

implies that the range of f is contained in N0. On the other hand, if i ∈ M , then f (i, i) =
g(inc(e(i), x) = g(ui , vi ) = i , and if i ∈ m0 \M , then f (i, i) = g(inc(e(i), x) = (wi , wi ) =

i , so f : m2
0 −→ N0 is onto.
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The second case is that |M | > n0. In this case we only need to deal with pairs (i, j)
with i 6= j . We will need to find suitable m0, k and x and e : m1 −→ m<k

0 so that the

induced reduction map ε has the property that the range g ◦ ε has cardinality n0. The

point x will be of the form x = ( j0, j1, . . . , jm), and the function e of the form e(r) =
( j0, . . . , jr−1, ir , 0, . . . , 0). In this way, the range of g ◦ ε is exactly the set

{g(i0, j0), g( j0, i0), g(i1, j1), g( j1, i1), . . . , g(im−1, jm−1), g( jm−1, im−1), g(im, jm)}.

Notice the exclusion of g( jm, im) from this set. It is easy to obtain integers making the

above set to have cardinality exactly n0. We can keep adding pairs (i, j) till we get a set

{g(i0, j0), g( j0, i0), . . . , g(im−1, jm−1), g( jm−1, im−1)}

of cardinality either n0 or n0− 1. If it is n0, then declare im = i0, jm = j0. If otherwise

that cardinality is n0− 1, then pick (im, jm) such that g(im, jm) is a new value.

Given a set A, we use the notation 〈A〉2 = {(i, j) ∈ A2
: i 6= j}.

We fix a natural number n. A strong-dense-type is a collection of data of the form

α = (A, B,C, D, E, ψ,P, γ ) where

(1) n = A∪ B ∪C ∪ D ∪ E is a partition of n;

(2) ψ : 〈A〉2 −→ B is a surjective function;

(3) P is a partition of C into sets of cardinality either 1 or 2;

(4) γ : D −→ B ∪ E is a function such that |γ−1(k)| > 2 for every k ∈ E ;

with the additional property that if A = ∅ then B = D = E = ∅ and all elements of P
have cardinality 2. This definition is the same as [4, Definition 19] except that we do not

allow the value∞ for ψ and γ (this is because here we are only interested in dense gaps).

We write |α| = n.

To each such set of data α, we can associate a surjective function f α : m×m −→ n,

and the corresponding partition P f α of m×m, for certain m. It is convenient to consider

a finite set M rather than a natural number m. The set M can be later identified with

m = |M | through enumeration. This set is M = A∗ ∪P ∪ D where A∗ = A if A 6= ∅, and

A∗ = {0} if A = ∅. In order to define f α : M2
−→ n we need some further notation. For

a ∈ P, let σ(a) = min(a) and τ(a) = max(a) so that a = {σ(a), τ (a)} for every a ∈ P. We

define σ(k) = k for k ∈ A∗ ∪ D, and τ(k) = γ (k) for k ∈ D. Notice that σ : M −→ n and

τ : P ∪ D −→ n. The function f = f α is defined as:

(1) f (i, i) = σ(i) for i ∈ M ;

(2) f (i, j) = ψ(i, j) for i, j ∈ A, i 6= j ;

(3) f (i, j) = σ(i) if i ∈ M \ A∗ and ( j ∈ A∗ or σ(i) < σ( j));

(4) f (i, j) = τ( j) if j ∈ M \ A∗ and (i ∈ A∗ or σ(i) > σ( j)).

Lemma 28. If n 6 |P|, then K1(P) contains a homeomorphic copy of a space of the form

K1(P f α ) for some strong-dense-type α with |α| = n.
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Proof. By Lemmas 25 and 27, K1(P) contains K1(P f ) for some surjective f : m2
−→ n.

It follows from the results of [4], that there exists

α = (A, B,C, D, E, ψ,P, γ )
with |α| = n such that f α ≺ f .

7. The open degree

In this section, we study the open degree odeg(K ) of Definition 2, and we compute

odeg(K1(P)) and odeg(K∞(Q)). A first observation is that, by a standard compactness

argument, one can substitute points by compact sets.

Lemma 29. If odeg(K ) 6 n, then there exists a countable family F of open sets such that

for every pairwise disjoint compact subsets L0, . . . , Ln ⊂ K there exists V0, . . . , Vn ∈ F
such that L i ⊂ Vi and

⋂
i Vi = ∅.

Proof. Start with a countable family F of open sets that satisfies the definition of

odeg(K ), meaning that for every different x0, . . . , xn ∈ K there exists V0, . . . , Vn ∈ F such

that xi ∈ Vi and
⋂

i Vi = ∅. We can suppose that F is closed under finite unions and

intersections. With this additional assumption, we see that the family F now satisfies

the condition stated in the lemma. We proceed by induction on p = |{i < n : |L i | > 1}|.
The case p = 0 is clear. If we are in the case p, we are given L1, . . . , Ln where

|L i | = 1 for i > p, and we want to find Vi ∈ F with L i ⊂ Vi and
⋂

Vi = ∅. By the

inductive hypothesis, for every x ∈ L p there exist V x
i ∈ F such that x ∈ V x

p , L i ⊂ V x
i and⋂

i V x
i = ∅. By compactness there exists a finite set G ⊂ L p such that L p ⊂

⋃
x∈G V x

p . It

is finally enough to consider Vp =
⋃

x∈G V x
p and Vi =

⋂
x∈G V x

i for all i 6= p.

Notice that odeg(K ) = 0 only in the trivial case when K = ∅. The next case is the

following:

Proposition 30. If K 6= ∅, then odeg(K ) = 1 if and only if K is metrizable.

Proof. Remember that K is metrizable if and only if it has a countable basis of open sets.

So if K is metrizable, then the countable basis F shows that odeg(K ) 6 1. Conversely,

if odeg(K ) 6 1, then by Lemma 29, K has a countable family F of open sets such that

every two disjoint closed sets are separated by disjoint elements of F . This implies that

F is a countable basis for the topology of K , so K is metrizable.

The following related notion (in the case n = 2) was relevant in the analysis of [14]:

Definition 31. A compact space K is a premetric compactum of degree at most n if

there exists a continuous function h : K −→ M onto a metrizable compactum such that

|h−1(x)| 6 n for every x ∈ M .

Proposition 32. K is a premetric compactum of degree at most n if and only if there

exists a countable family F of open Fσ -sets such that for every x0, . . . , xn ∈ K there exist

Vi ∈ F with xi ∈ Vi and
⋂

i Vi = ∅. In particular, if K is a premetric compactum of degree

at most n, then odeg(K ) 6 n.
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Proof. If h : K −→ M is as above, it is enough to consider F = {h−1(W ) : W ∈ B} where

B is a countable basis for the topology of M . Conversely, if we have such a family F , for

each W ∈ F we can find a continuous function hW : K −→ [0, 1] such that h−1
W (0, 1] = W ,

and then we consider h : K −→ [0, 1]F given by h(x) = (hW (x))W∈F , and M = h(K ).

As we will show later, the converse of the last statement of Proposition 32 is not true.

Theorem 33. odeg(K1(P)) = |P| and odeg(K∞(Q)) = |Q| + 1.

Proof. We prove the four inequalities.

odeg(K1(P)) 6 |P|. For this, it is enough to consider the clopen sets

Vt = { f ∈ K1(P) : f (t) = 1} = {fs : t 6 s} ∪ {f(x,P) : t 6 x},

Wt = {ft } = { f ∈ K1(P) : f (t) = 1, f (t_i) = 0, i < m}

for t ∈ m<ω. Let us check that the family F = {Vt ,Wt , K \Wt : t ∈ m<ω
} has the desired

property. So we declare n = |P| and we pick points x0, . . . , xn ∈ K1(P). If at least one of

the points is of the form ft with t ∈ m<ω, then we can simply take Wt as its neighborhood,

and K \Wt as the neighborhood of the rest. Otherwise, if all points are of the form xi =

f(yi ,Pi ), then since |P| = n, we can find i, j such that yi 6= y j . Then we can pick s, t ∈ n<ω

such that yi ∧ y j < s, yi ∧ y j < t , s 6 yi , t 6 y j . In that case Vs is a neighborhood of

f(yi ,Pi ), Vt is a neighborhood of f(V j ,Pj ) and Vs ∩ Vt = ∅.

odeg(K∞(Q)) 6 |Q| + 1. For this, we consider the sets

Vt = {gs : t 6 s} ∪ {g(x,P) : t 6 x},

Wt = {gt } = {g ∈ K∞(Q) : g(t) = 1}.

Notice that Wt is a clopen set, and that Vt is open because

Vt =
⋃

t6y,P∈Q

{g ∈ K∞(Q) : g(y, P) = 1} \
⋃
s<t

Ws .

We check that

F = {Vt ,Wt , K \Wt : t ∈ n<ω}

satisfies that whenever we pick x0, . . . , xn ∈ K∞(Q), with n = |Q| + 1, we can find

neighborhoods of each point in the family F which are disjoint. If at least one of the

points is of the form gt with t ∈ m<ω, then we can take Wt and K \Wt as neighborhoods.

Otherwise, all points are either of the form xi = g(yi ,P) or g∞. Similarly as before, since

n = |Q| + 1, we can find i, j such that yi 6= y j . Then we can pick incomparable s, t ∈ n<ω

such that s, t > yi ∧ y j , s 6 yi , t 6 y j , and in that case Vs is a neighborhood of g(yi ,Pi ),

Vt is a neighborhood of g(y j ,Pj ) and Vs ∩ Vt = ∅.

odeg(K1(P)) > |P|. We suppose that we have a countable family F of open subsets of

K1(P) that satisfies the property of the definition of open degree for n = |P| − 1 and we

work toward a contradiction. Consider the family

F ′ = {{s ∈ m<ω
: fs ∈ V } : V ∈ F}.

Claim. If we have {AP ⊂ m<ω
: P ∈ P} such that AP is an (i, j)-sequence for some (i, j) ∈

P, then there exist sets {BP : P ∈ P} ⊂ F ′ such that AP \ BP is finite and
⋂

P∈P BP = ∅.
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Proof of the claim. By Proposition 16, {fs : s ∈ AP } converges to a point of the form

f(xP ,P). We can find open sets VP ∈ F such that f(xP ,P) ∈ VP and
⋂

P VP = ∅. It is enough

to take BP = {s ∈ m<ω
: fs ∈ VP } ∈ F ′. This finishes the proof of the claim.

The claim above implies that, if we denote

IP = {A ⊂ m<ω
: A is an (i, j)-comb for some (i, j) ∈ P},

we have that the families {IP : P ∈ P} are countably separated, in contradiction with

Lemma 14.

odeg(K∞(Q)) > |Q| + 1. We suppose that we have a countable family F of open

subsets of K∞(Q) that satisfies the property of the definition of open degree for n = |Q|
and we work toward a contradiction. Consider the family

F ′ = {{s ∈ m<ω
: gs ∈ V } : V ∈ F}.

Claim. If we have {AP ⊂ m<ω
: P ∈ Q∪ {∞}} such that AP is an (i, i)-sequence for some

i ∈ P, and A∞ is a (0, 1)-comb, then there exist sets {BP : P ∈ Q∪ {∞}} ⊂ F ′ such that

AP \ BP is finite and
⋂

P BP = ∅.

Proof of the claim. By Proposition 20, {gs : s ∈ AP } converges to a point of the form

g(xP ,P) for P ∈ Q, and {gs : s ∈ A∞} converges to g∞. Then, we can find open sets

VP ∈ F such that g(xP ,P) ∈ VP , g∞ ∈ V∞ and
⋂
{VP : P ∈ Q∪ {∞}} = ∅. It is enough to

take BP = {s ∈ m<ω
: gs ∈ VP } ∈ F ′. This finishes the proof of the claim.

The claim above implies that, if we denote

IP = {A ⊂ m<ω
: A is an (i, i)-comb for some i ∈ P},

for P ∈ Q, and I∞ is the family of all (0, 1)-combs of m<ω, then the families

{IP : P ∈ Q∪ {∞}} are countably separated, in contradiction with Lemma 14.

Proposition 34. K1(P) is a premetric compactum of degree |P| but if Q 6= ∅, then K∞(Q)
is not premetric of any degree.

Proof. The first statement follows from Proposition 32 because the sets Vt , Wt and K \Wt
in the first part of the proof of Theorem 33 are all clopen. The second statement follows

from the fact that K∞(Q) has a point g∞ that is not Gδ-point.

A compact space K is a premetric compactum of degree n if it is a premetric compactum

of degree at most n but not a premetric compactum of at most n− 1. The main result of [3]

is that, for every n, there exist two Rosenthal premetric compacta Sn(I ) and Dn(2N) of

degree n such that every separable Rosenthal premetric compactum of degree n contains

a homeomorphic copy of either Sn(I ) or Dn(2N). Although there is some superficial

similarity, the result from [3] is not deduced from the results of this paper, nor vice

versa. It is worth to notice some differences:

• The spaces Sn(I ) and Dn(2N) from [3] are not separable, so that is not a basis result.

•While Sn(I ) and Dn(2N) are just two spaces for every n, the number of spaces in the

list of Theorem 3 increases with n.
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• All premetric compacta of finite degree are first countable. However, non-first-countable

spaces, like the K∞(Q), may have finite open degree.

• Even for first-countable separable Rosenthal compacta, the two degrees might be quite

different. For example, let P = {P1, . . . , Pm−1} be a partition of m×m where Pk =

{(i, j) : max{1, i, j} = k}. Inside K1(P), consider

L = {fs_i : s ∈ 2<ω, i ∈ m}

= {fs_i : s ∈ 2<ω, i ∈ m} ∪ {f(x,P) : x ∈ 2ω, P ∈ P}.

We have that odeg(L) = 2. As countable family of open sets to witness this, we can

take

F = {Wt , L \Wt , L ∩ Vt ,Ui : t ∈ 2<ω, i ∈ {2, . . . ,m}}

where Wt and Vt are as in the first part of the proof of Theorem 33, and

Ui = {fs_i : s ∈ 2<ω} ∪ {f(x,Pi ) : x ∈ 2ω}.

On the other hand, L is a premetric compactum of degree m− 1. In fact{
f(x,P) : x ∈ 2ω, P ∈ P

}
is homeomorphic to the space Dm−1(2N) of [3].

8. The main result

Lemma 35. Let K be a separable Rosenthal compact space with odeg(K ) > n and D a

countable dense subset of K . Then there exists an injective map d : n<ω −→ D such that

{d[t] : t_i 6 z} ∩ {d[t] : t_ j 6 z} = ∅ (??)

for all z ∈ nω and all i < j < n.

Proof. By Lemma 11, we can suppose that K is a compact set of first Baire class on the

Polish space ωω with a dense countable set of continuous functions D ⊂ K . We will further

assume that f (r0, r1, r2, . . .) = − f (r0+ 1, r1, r2, . . .) for all f ∈ K and all (r0, r1, . . .) ∈

ωω. This can be easily done by adding a new coordinate to ωω at the beginning. The

reason for this is to avoid consideration of too many cases in the future because now we

will have that if f, g ∈ K and f 6= g, then there exists x ∈ ωω such that f (x) < g(x).
We consider an infinite game of two players in the sense of [8, § 20]. At stage k < ω

Player I plays (dk, si j
k : i < j < n) where dk ∈ D, si j

k ∈ ω
<ω and, if k > 0, si j

k−1 < si j
k . Player

II responds with an integer pk ∈ {0, . . . , n− 1}. At the end of the game, consider x i j
∈ ωω

to be the branch determined by the si j
k ’s. Player I wins if and only if for every i < j < n

there exist two rational numbers q < q ′ and a natural number k0 such that

{dk(x i j ) : k > k0, pk = i} < q < q ′ < {dk(x i j ) : k > k0, pk = j}. (?)

Since the d ′ks are continuous, the last statement (?) can be rephrased by saying that for

every k > k0 there exists a further k1 > k0 such that dk(x) < q whenever si j
k1

6 x , pk = i ,

and such that dk(y) > q ′ whenever si j
k1

6 y, pk = j . Rephrased in this way, it is clear that

this is a Borel game. By Martin’s theorem, cf. [8, Theorem 20.5], one of the two players

has a winning strategy.
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If Player II has a winning strategy, then we claim that odeg(K ) < n. For every finite

partial round of the game ξ = (d0, si j
0 , p0, . . . , dk, si j

k , pk), every (si j
: i < j < n) with

si j
k < si j and every p ∈ {0, . . . , n− 1}, consider D[ξ, (si j ), p] the set of all d ∈ D such

that Player II, according to its strategy, plays p after ξ is played and Player I plays

(d, si j , i < j < n). We claim that the countable family F of all open sets of the form

V [ξ, (si j ), p] = K \ D[ξ, (si j ), p]

witnesses that odeg(K ) < n. So, let us take f0, . . . , fn ∈ K , and we shall find disjoint

neighborhoods from F . For every i < j we can find x i j
∈ ωω and qi j < q ′i j such that

fi (x i j ) < qi j < q ′i j < f j (x i j ).

For every i , let

W (i) = { f ∈ K : f (x i j ) < qi j for j > i and f (x j i ) > q ′j i for j < i}.

If Player I is able to play all the time in such a way that si j
k = x i j

|k , and, when Player II

is playing according to its strategy, dk ∈ W (pk), then Player I will win, a contradiction.

Therefore, Player I cannot play like this all the time, and this implies that there is a

finite round of the game ξ = (d0, si j
0 , p0, . . . , dk, si j

k , pk) where si j
l = x i j

|l such that

D[ξ, (x i j
|k+1), p] ∩W (p) = ∅

for every p ∈ n. Since W (p) is open, this implies that

D[ξ, (x i j |k+1), p] ∩W (p) = ∅,

hence

W (p) ⊂ V [ξ, (x i j
|k+1), p].

On the one hand, f p ∈ W (p) and on the other hand
⋃

p<n D[ξ, (x i j
|k+1), p] = D;

therefore,
⋂

p<n V [ξ, (x i j
|k+1), p] = ∅. This finishes the proof that odeg(K ) < n.

So we suppose that Player I has a winning strategy. For every t = (t0, . . . , tk) ∈ n<ω, we

consider (d[t], si j
[t]). The kth move of Player I according to its strategy after Player II

has played t0, t1, . . . , tk . Since Player I always wins when playing with his strategy, using

property (?) after Player II plays the integers in any z ∈ nω, we get

{d[t] : t_i 6 z} ∩ {d[t] : t_ j 6 z} = ∅. (??)

This is not the end because d : n<ω −→ D might not be injective. However, we can

define a first-move embedding σ : n<ω −→ n<ω inductively such that σ(t_i) = σ(t)_i_st
where st is chosen so that d(σ (t_i)) is different from all previously defined values of d ◦ σ .

Notice that (??) implies that such an st must exist. In this way d ◦ σ : n<ω −→ n<ω would

be a new function which still satisfies (??) and is moreover injective.

Lemma 36. For every injective function d : n<ω −→ K from n<ω into a Rosenthal

compactum K there exists a first-move embedding σ : n<ω −→ n<ω such that

(1) either the bijection d(σ (t)) 7→ ft extends to a homeomorphism between d(σ (n<ω))
and a space K1(P) for some partition P of n× n;

(2) or the bijection d(σ (t)) 7→ gt extends to a homeomorphism between d(σ (n<ω)) and

a space K∞(Q) for some family Q of pairwise disjoint subsets of n.
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Proof. Again, by Lemma 11, we can suppose that D = d(n<ω) is a family of continuous

functions on ωω and K is its pointwise closure. The image of a t ∈ n<ω under the function

d will be denoted by dt , while dt (x) will be the evaluation of the function dt on some

x ∈ ωω. First of all, observe that the family

A = {a ⊂ n<ω : {dt : t ∈ a} is a convergent sequence}

is a coanalytic family of subsets of n<ω. This is because a ∈ A if and only if for every

x ∈ ωω and for every rational ε > 0 there exists a finite set F ⊂ n<ω such that |dt (x)−
ds(x)| < ε for all t, s ∈ a \ F , and we are supposing that the functions dt are continuous

on ωω. In particular A is Baire-measurable, so we can apply Theorem 12, and we conclude

that for any given infinite A ⊂ n<ω there exists a first-move subtree TA ⊂ n<ω such that

either {dt : t ∈ a} is convergent whenever A ≈ a ⊂ TA or {dt : t ∈ a} is never convergent

whenever A ≈ a ⊂ TA. By passing to a first-move subtree after applying this principle

finitely many times, we can suppose that:

(1) For every i, j, k, l ∈ n, either {dt : t ∈ a} converges for every (i, j, k, l)-double comb

a, or {dt : t ∈ a} never converges for any (i, j, k, l)-double comb a.

(2) For every i, j, k, l, u, v ∈ n, either {dt : t ∈ a} converges for every (u, v)-split

(i, j, k, l)-double comb a, or {dt : t ∈ a} never converges for any (u, v)-split

(i, j, k, l)-double comb a.

(3) For every i, j ∈ n, the sequence {dt : t ∈ a} converges for every (i, j)-comb a.

Notice that in the case of (i, j)-combs the case of never convergence cannot occur

because any infinite subset of an (i, j)-comb is an (i, j)-comb, and every sequence in K
has a convergent subsequence.

We claim that for every y ∈ nω and for every (i, j) ∈ n× n, the limit lim{dt : t ∈ a} is

the same for all (i, j)-combs over the branch y, and we can call this limit h(z,i, j). This

follows from the fact that if we have two (i, j)-combs a and b over the same branch, then

it is easy to construct a new (i, j)-comb of the form a′ ∪ b′ where a′ ⊂ a and b′ ⊂ b are

infinite.

We consider an equivalence relation on n× n by declaring that (i, j) ∼ (k, l) if {dt : t ∈
a} converges for all (i, j, k, l)-double combs. This is an equivalence relation because we

can produce an (i, j, k.l)-double comb a and an (k, l, p, q)-double comb b that contain

a common (k, l)-comb. Thus, if the first two double combs were convergent, they have

to converge to the same limit, and then we can produce an (i, j, p, q)-double comb that

converges to that same limit by joining an (i, j)-comb inside a and a (p, q)-comb inside b.

Let P be the partition of n× n associated to the equivalence relation ∼. It is clear

that h(z,i, j) = h(z,k,l) if (i, j) ∼ (k, l). So we can rename the point h(z,i, j) as h(z,P), where

P ∈ P is the equivalence class for which (i, j) ∈ P. We distinguish two cases.

Case 1. For all i, j, k, l, u, v ∈ n with u 6= v, the sequence {dt : t ∈ a} never converges

for any (u, v)-split (i, j, k, l)-double comb a. First of all, this implies that h(x,P) 6=
h(y,Q) whenever x 6= y, because in other case, we could construct a inc(x, y)-split

(i, j, k, l)-double comb a such that {dt : t ∈ a} converges. We claim that the bijective

map dt 7→ ft extends to a homeomorphisms between their closures. By Lemma 9, if the
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map dt 7→ ft does not extend to a continuous function between their closures, then there

exist two sequences a, b ⊂ n<ω such that {dt : t ∈ a} and {dt : t ∈ b} converge to the same

point but {ft : t ∈ a} and {ft : t ∈ b} converge to different points. We can suppose, by

Lemma 13 that a is an (i, j)-comb over some x and b is a (k, l)-comb over some y.

Since {dt : t ∈ a} and {dt : t ∈ b} converge to the same point, we have that x = y and

there exists P such that (i, j), (k, l) ∈ P. This implies that {ft : t ∈ a} and {ft : t ∈ b} also

converge to the same point, by Proposition 16. Exactly the same argument shows that

the inverse map ft −→ dt extends to a continuous function between their closures, hence

this continuous function is a homeomorphism.

Case 2. There exist i, j, k, l, u, v ∈ n with u 6= v such that the sequence {dt : t ∈ a}
converges for any (u, v)-split (i, jk, l)-double comb a. In this case, we restrict to a further

first-move subtree Tu = {u_t : t ∈ n<ω}. Fix a (k, l)-comb c inside Tv = {v_t : t ∈ n<ω}.
For every (i, j)-comb a inside Tu it is possible to find infinite a′ ⊂ a and c′ ⊂ c such

that a′ ∪ c′ is a (u, v)-split (i, j, k, l)-double comb. Therefore, we conclude that for all

(i, j)-combs a ⊂ Tu , the sequence {dt : t ∈ a} converges to the same point, that we call

h∞. We claim that, indeed, every (̃ı, ̃)-comb inside Tu for any ı̃ 6= ̃, the set {dt : t ∈ a}
converges to h∞. In other words, we claim that h(z,̃ı,̃) = h∞ whenever ı̃ 6= ̃. To see this,

let {tq : q < ω} be an (̃ı, ̃)-comb over a branch z. For every q < ω, let {tqp : p < ω} be

an (̃ı, ̃)-comb such that tq < tqp for all p. Since each sequence {tqp : p < ω} converges

to h∞, we can apply Lemma 8 and we obtain infinite N , Nq ⊂ ω such that the sets

{{dtqp : p ∈ Nq} : q ∈ N } converge to h∞. It is possible to pick p[q] ∈ Nq such that

{tqp[q] : q < ω} is an (̃ı, ̃)-comb over z. This shows that h(z,̃ı,̃) = h∞.

For p, q ∈ n we have an equivalence relation p ∼ q induced by the equivalence relation

defined on pairs before: p ∼ q if and only if (p, p) ∼ (q, q). Notice that if h(z,p,p) = h∞
for some z then h(z,p,p) = h∞ for all z. This is because if h(z,p,p) = h∞ then there is

an (i, j, p, p)-double comb a for which {dt : t ∈ a} is convergent and then {dt : t ∈ a} is

convergent for every (i, j, p, p)-comb a. Let Q be the set of the equivalence classes of

∼ on n with the exception of the equivalence class of all p such that h(z,p,p) = h∞. We

claim that the map dt 7→ gt induces a homeomorphism between the closures. The proof

is similar as in Case 1, since now we have a complete control on the convergence of all

combs. If this map did not induce a continuous function between the closures, then we

would have {dt : t ∈ a} and {dt : t ∈ b} that converge to the same point but {gt : t ∈ a} and

{gt : t ∈ b} that converge to different points. We can suppose that a is a (p, q)-comb over

x and b is a (p′, q ′)-comb over y, so that {dt : t ∈ a} converges to h(x,p,q) and {dt : t ∈ b}
converges to h(x,p′,q ′). But the discussion above implies that h(x,p,q) = h(x,p′,q ′) if and

only if {gt : t ∈ a} and {gt : t ∈ b} converge to the same point according to Lemma 20.

The same argument shows that the inverse mapping ht 7→ dt also extends to a continuous

function between their closures, so this continuous extension is a homeomorphism.

Let Q2 = {2} be the trivial partition of 2 = {0, 1} into just one set, and for n > 2,

let Qn = {{0}, {1}, . . . , {n− 2}} be the partition of n− 1 into singletons. In this way,

odeg(K∞(Qn)) = n.
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Theorem 37. Let K be a separable Rosenthal compact space and n a natural number. If

odeg(K ) > n then K contains either a homeomorphic copy of K∞(Qn) or of K1(P f α ) for

some strong-dense-type α with |α| = n.

Proof. After applying Lemma 35 and then Lemma 36, we obtain {dt : t ∈ n<ω} such that

{dt : t_i 6 z} ∩ {dt : t_ j 6 z} = ∅ (??)

for all z ∈ nω and all i < j < n, and

(1) either dt 7→ ft induces a homeomorphism of {dt : t ∈ n<ω} with a space K1(P);

(2) or dt 7→ gt induces a homeomorphism of {dt : t ∈ n<ω} with a space K∞(Q).

In the first case, property (??) implies that each (i, i) lies in a different piece of the

partition P for each i ∈ n, so in particular |P| > n. Then, Lemma 28 implies that K
contains a copy of K1(P f α ) for some α with |α| = n. In the second case, property (??)

implies that for i 6= j , i and j cannot be in the same set from Q. This leaves only two

possibilities, either Q = Qn+1 consists of all singletons of n, or Q consists of all singletons

of n except one, and we can suppose without loss of generality that this missed singleton

is {n− 1}. If n > 2, in both cases we obtain that {dt : t ∈ (n− 1)<ω} is homeomorphic to

Qn and we are done. If n = 2, then in both cases we obtain that

{d(t0,0,t1,0,...,tk ) : (t0, t1, . . . , tk) ∈ 2<ω}

is homeomorphic to K∞(Q2). In all cases the homeomorphism is easily checked as we

have done several times before using Lemmas 9 and 20, as it is clear where each kind of

(i, j)-comb converges.

9. Some classical compact spaces

Notice that if |P| = 1 then K1(P) has open degree 1, so it is metrizable. In fact, in that

case K1(P) is a zero-dimensional compact metrizable space, hence homeomorphic to a

subspace of the Cantor set.

Lemma 38. K1(P) contains a homeomorphic copy of the Cantor set if and only if there

exist i 6= j such that (i, j) and ( j, i) live in the same piece of the partition.

Proof. If (i, j), ( j, i) ∈ P live in the same piece P of the partition, then {f(z,P) : z ∈ {i, j}ω}
is homeomorphic to the Cantor set. This is easy to check using Proposition 16. Conversely,

if K1(P) contains a copy of the Cantor set, then it contains a copy of K1({0, 1}2). Suppose

that P = Pg1 for some function g1 and g0 is the constant function equal to 0 on {0, 1}2.

So we have K1(Pg0) ⊂ K1(Pg1). By Lemma 26, we get that there exists σ such that

σ ◦ g0
≺ g1. That is, there is a constant function on {0, 1}2 that is ≺-below g1. Just

using the definition, it is easy to check that this implies that there exists (i, j) such that

g1(i, j) = g1( j, i). If otherwise, g1(i, j) 6= g1( j, i) for all i 6= j , then that would imply

that g0(0, 1) 6= g0(1, 0).

Consider the compact space S = [0, 1]× {0, 1} endowed with the order topology induced

by the lexicographical order. The split interval, also known as the double arrow space,
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is the space S′ = S \ {(0, 0), (1, 1)} that we get after removing the two isolated points

from S. It is not a difficult exercise to check that, for every perfect set A ⊂ [0, 1], the

space S(A) = A×{0, 1} ⊂ S contains a homeomorphic copy of S′. Indeed, every closed

subset of S without isolated points is order-isomorphic and homeomorphic to S′. We shall

consider the space S(2ω) = 2ω×{0, 1} where 2ω is identified with the Cantor set inside

[0, 1], so that its order is the lexicographical order.

Lemma 39. If g : {0, 1}2 −→ {0, 1} is such that g(0, 1) 6= g(1, 0) and Pg 6= {{(0, 0), (1, 0)},
{(1, 1), (0, 1)}}, then K1(Pg) is homeomorphic to a subspace of the split interval.

Proof. We consider a homeomorphic embedding φ : K1(P) −→ S(2ω) defined as follows.

For x = (x0, x1, . . .) ∈ 2ω, let

φ(f(x,g−1(i))) = ((x0, 0, 1, x1, 0, 1, x2, 0, 1 . . .), i).

For s = (s0, . . . , sk) ∈ 2<ω, we define

φ(fs) = ψ(s0, 0, 1, s1, 0, 1, . . . , sk, 1, 1, 1, 1, 1, . . .) if g(0, 0) = g(1, 1) = g(0, 1),

φ(fs) = ψ(s0, 0, 1, s1, 0, 1, . . . , sk, 0, 0, 0, 0, 0, . . .) if g(0, 0) = g(1, 1) = g(1, 0),

φ(fs) = ψ(s0, 0, 1, s1, 0, 1, . . . , sk, 0, 1, 0, 1, 0, . . .) if g(0, 0) = g(0, 1)

and g(1, 1) = (1, 0).

Using Proposition 16 and Lemma 9, one easily checks that this is continuous one-to-one

map.

Lemma 40. K1(P) contains a homeomorphic copy of the split interval if and only if there

exist i 6= j such that (i, j) and ( j, i) live in different pieces of the partition P.

Proof. If (i, j) ∈ P and ( j, i) ∈ P ′ live in different pieces of the partition, then

{f(z,P), f(z,P ′) : z ∈ {i, j}ω} is naturally homeomorphic to S(2ω). Hence that set contains a

copy of the split interval. The homeomorphism is easy to check using Proposition 16

since in both spaces, the topology is determined by convergent sequences. If K1(P)

contains a copy of the split interval, then by Lemma 39 it also contains copy of K1(Pg0)

where g0
: {0, 1}2 −→ {0, 1} is g0(i, j) = i . Suppose that P is of the form P = Pg1 , so by

Lemma 26 there exists σ such that σ ◦ g0
≺ g1. But from the definition of ≺ it easily

follows that if g1(i, j) = g1( j, i) for all i, j , the same would happen for g0.

Theorem 41. Let K be a Rosenthal compact space that is not scattered. Then K contains

either a homeomorphic copy of the Cantor set or a homeomorphic copy of the split

interval.

Proof. Since K is not scattered, there exists a continuous surjection ψ : K −→ [0, 1].
For every t = (t1, . . . , tk) ∈ 2<ω, let zt =

∑k
j=1 2t j 3− j

∈ [0, 1]. In this way, {zt : t ∈ 2<ω}
is the Cantor set. For every t ∈ 2<ω, pick dt ∈ K such that ψ(dt ) = zt . The key property

of these points is that

{dt : s_0 6 t} ∩ {dt : s_1 6 t} = ∅ (♣)
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for every s ∈ 2<ω. By Lemma 36, we pass to a first-move subtree T ≈ 2<ω for which the

natural bijection induces a homeomorphism between {dt : t ∈ T } and the dense subset of a

space of the form K1(P) or K∞(Q) on the dyadic tree. However, property (♣) eliminates

the case of K∞(Q) because g∞ would be in all those closures. By Lemmas 38 and 40,

the space K1(P) contains a Cantor set if (0, 1) and (1, 0) lie in the same piece of the

partition, and it contains a split interval if (0, 1) and (1, 0) lie in different pieces of the

partition.

Notice that the above proof shows something a little bit stronger: if we have a

continuous surjection from a Rosenthal compact space onto a non-scattered space, then

there is a closed subspace where the restriction is either a homeomorphism between

Cantor sets or it looks like the canonical surjection S(2ω) −→ 2ω.

A similar argument shows that if a Rosenthal compactum maps continuously onto the

split interval, then it contains the split interval:

Theorem 42. Let K be a Rosenthal compact space and ψ : K −→ S be a continuous

surjection from K onto the split interval. Then, there exists a closed subset Z ⊂ K
homeomorphic to the split interval such that the restriction ψ |Z : Z −→ L is one to one.

Proof. Consider now z−t = (zt , 0) ∈ S to be the left twin of the zt considered in the

previous proof. We pick again dt such that ψ(dt ) = z−t , and we have the same key

property (♣) as above. This property also implies that ψ{dt : t ∈ 2<ω} is uncountable.

Using Lemma 36, we suppose that ft 7→ dt induces a natural homeomorphism

φ : K1(P) −→ {dt : t ∈ 2<ω}.

If (0, 1) and (1, 0) live in the same piece P of the partition P, then {f(x,P) : x ∈ 2ω} would

be homeomorphic to the Cantor set, but its image under ψφ would be, by property (♣),

an uncountable subspace of the split interval. This is impossible because every metrizable

closed subspace of the split interval is countable. So (0, 1) and (1, 0) lie in different pieces

of the partition P, P ′ ∈ P. But then

Z = {f(x,P) : x ∈ 2ω} ∪ {f(x,P ′) : x ∈ 2ω}

is homeomorphic to S(2ω) and ψ is injective on φZ by the choice of the elements dt .

10. Low degrees

In order to give the explicit list of the minimal separable Rosenthal compacta of degree

n we just have to enumerate all possible strong-dense-types α = (A, B,C, D, E, ψ,P, γ )
with |α| = n, consider the corresponding K1(P f α ) and adding K∞(Qn). The lists of the

strong types for n = 2 and n = 3 are found in [4, § 8], the dense-types being shorter

sublists of them. In any case, this is an easy discussion of cases:

For n = 2, we have, up to permutation, only two dense strong types α0 and α1:

m A B C D E ψ P γ

α0
2 2 {0, 1} {{0, 1}}

α1
2 2 {0} {1} {{1}}
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The corresponding partitions of 2× 2 are P0
2 = {{(0, 0), (1, 1), (1, 0)}, {(0, 1)}} and P1

2 =

{{(0, 0)}, {(0, 1), (1, 0), (1, 1)}}. Thus, K1(P
0
2), K1(P

1
2) and K∞(Q2) form the basis of three

elements for separable Rosenthal compact spaces. By Lemmas 39 and 40, the space

K1(P
0
2) both contains and is contained in the split interval. On the other hand, {f(x,P) :

x ∈ 2ω, P ∈ P1
2} is homeomorphic to the so-called Alexandroff duplicate of the Cantor

set, but this duplicate is non-separable while K1(P
1
2) is separable. These three minimal

spaces are like the seven spaces of [1].

For n = 3, the possible α’s are:

m A B C D E ψ P γ

α0
3 2 {0} {1, 2} {{1, 2}}

α1
3 3 {0} {1, 2} {{1}, {2}}

α2
3 2 {0, 1} {2} ≡ 2

For n = 4, the possible α’s are (in this table, we omit some brackets):

m A B C D E ψ P γ

α0
4 3 0, 1, 2, 3 {0, 1}, {2, 3}

α1
4 4 0 1, 2, 3 {1}, {2}, {3}

α2
4 3 0 1, 2, 3 {1}, {2, 3}

α3
4 3 0 1, 2 3 ≡ 3

α4
4 2 0, 1 2, 3 (0, 1) 7→ 2

(1, 0) 7→ 3
α5

4 3 0, 1 2 3 ≡ 2 {3}

α6
4 3 0, 1 2 3 ≡ 2 ≡ 2

α7
4 3 0, 1, 2 3 ≡ 3

Thus there are three minimal separable Rosenthal compact spaces of open degree 2,

four minimals of open degree 3 and eight minimals of open degree 4.

11. Problems

The fact that Rosenthal compact spaces are sequentially compact can be rephrased

by saying that a Rosenthal compact space is finite if and only if it does not contain

homeomorphic copies of K∞(∅). One of the main results of [14] can be reformulated in

our language by saying that Rosenthal compact space is first countable if and only if it

does not contain homeomorphic copies of K∞(Q2). In the same spirit, Corollary 41 can be

restated by saying that a Rosenthal compact space is scattered if and only if it does not

contain copies of either K1(P1) or K1(P2), where P1 = {{(0, 0), (1, 1), (0, 1), (1, 0)}} and

P2 = {{(0, 1)}, {(1, 0), (0, 0), (1, 1)}}. All these results suggest a general problem: Given a

fixed set of spaces of the form K1(P) or K∞(Q), which is the class of Rosenthal compact

spaces that do not contain any of them? Or from another point of view, which classes of
Rosenthal compact spaces can be described as those that do not contain certain spaces
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of the form K1(P) or K∞(Q)? For example, we do not know any characterization of the

class of Rosenthal compact spaces that do not contain the split interval.
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