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Fluid dynamics induced by periodically forced flow around a cylinder is analysed
computationally for the case when the forcing frequency is much lower than the
von Kármán vortex shedding frequency corresponding to the constant flow velocity
condition. By using the Koopman mode decomposition approach, we find a new
normal form equation that extends the classical Hopf bifurcation normal form by
a time-dependent term for Reynolds numbers close to the Hopf bifurcation value.
The normal form describes the dynamics of an observable and features a forcing
(control) term that multiplies the state, and is thus a parametric – i.e. not an additive
– forcing effect. We find that the dynamics of the flow in this regime is characterized
by alternating instances of quiescent and strong oscillatory behaviour and that this
pattern persists indefinitely. Furthermore, the spectrum of the associated Koopman
operator is shown to possess quasi-periodic features. We establish the theoretical
underpinnings of this phenomenon – that we name quasi-periodic intermittency –
using the new normal form model and show that the dynamics is caused by the
tendency of the flow to oscillate between the unstable fixed point and the stable
limit cycle of the unforced flow. The quasi-periodic intermittency phenomenon is also
characterized by positive finite-time Lyapunov exponents that, over a long period of
time, asymptotically approach zero.

Key words: bifurcation, low-dimensional models, vortex flows

1. Introduction
Hopf bifurcations and the ensuing dynamics are ubiquitous throughout physics.

In fluid dynamics, the interest in Hopf bifurcations is motivated by both practical
and theoretical considerations. From a practical perspective, Hopf bifurcations are
inherent features of many fluid dynamic systems with engineering significance, such
as vortex-induced vibrations, wake dynamics and instabilities (Provansal, Mathis &
Boyer 1987; Sreenivasan, Strykowski & Olinger 1987; Huerre & Monkewitz 1990).
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Quasi-periodic intermittency in oscillating cylinder flow 681

Theoretical investigations are of interest due to the impact on a variety of nonlinear
dynamical systems phenomena, including theories of the onset of turbulence (Ruelle
& Takens 1971; Landau & Lifshitz 1987). In fluid dynamics, the near-wake dynamics
of a stationary cylinder subjected to a sufficiently large steady streamwise flow
Reynolds number (the bifurcation parameter) is a well-established physical realization
of a Hopf bifurcation (Sreenivasan et al. 1987).

In order to understand the development of Hopf bifurcation dynamics when
subjected to external influences, it is informative to study systems with applied
forcing. The forcing could represent a controller input or it could result from coupling
between the fluid dynamics and another dynamical system such as in fluid–structure
interaction problems. Correspondingly, flows over oscillating cylinders have been the
subject of several numerical and experimental studies (Provansal et al. 1987; Cetiner
& Rockwell 2001; Konstantinidis & Balabani 2007; Leontini, Jacono & Thompson
2011, 2013). Typically, these studies have been motivated by the fluid–structure
interaction vortex-induced vibration (VIV) problem. Although a variety of oscillation
(forcing) amplitudes have been investigated, much of the streamwise oscillating
cylinder studies have focused on VIV relevant frequency conditions in which a
prescribed cylinder oscillation frequency, f , corresponds to a low-order harmonic of
the stationary cylinder natural shedding frequency, f0. The 1 6 f /f0 6 2 regime has
been thoroughly investigated (Leontini et al. 2011, 2013). Synchronization between
the vortex shedding dynamics and f , as well as quasi-periodicity for non-synchronized
conditions, are well-established phenomena that can occur in this regime.

However, the simple harmonically forced cylinder system is not limited to syn-
chronization or quasi-periodic dynamics. Two-dimensional simulations by Perdikaris,
Kaiktsis & Triantafyllou (2009) have indicated the presence of chaos at certain
amplitudes when f /f0 = 1. Perdikaris et al. (2009) attributed aperiodic behaviour
observed in the lift force as a manifestation of chaos caused by competition between
the spatial structures of the natural shedding mode (spatially anti-symmetric) and
the forced mode (spatially symmetric). These results from Perdikaris et al. (2009)
demonstrate the rich and potentially complex dynamical states that can be achieved
from simple harmonic forcing of the canonical cylinder flow problem. It is interesting
to note that the explanation offered for aperiodicity in the observable functional (i.e.
lift force) was based on the underlying Navier–Stokes system states (i.e. velocity
mode shapes), rather than through a direct mathematical expression of the observable
dynamics that exhibited chaotic symptoms. In this study, a dynamics-of-observables
perspective is taken in which an equation directly describing the evolution of the
functional of interest (lift force) is used to provide theoretical understanding for the
observed phenomena.

Although lock-on and synchronization regimes of systems forced near resonances
are well understood, the underlying chaotic or quasi-periodic dynamics when forcing
far away from a natural frequency is not. This behaviour can be critical for systems of
practical significance, such as oscillating airfoils undergoing dynamic stall (McCroskey
1982) where f can be at least one order of magnitude lower than the separated flow
shedding frequency of the stationary airfoil. Therefore, study of canonical systems
such as the oscillating cylinder for f � f0 can lend insight into unexplored periodically
forced bifurcation parameter regimes that may advance fundamental understanding of
more complex practical situations.

As discussed, periodically forced Hopf bifurcation flows such as oscillating
cylinders can exhibit a variety of dynamical phenomena, ranging from lock-
on/synchronization to chaos. Typically, a spectral perspective corresponding to a
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local measurement (i.e. velocity at a particular location in the wake) or an integrated
measurement (i.e. lift force) has been utilized to characterize the dynamics. The
spectral perspective is ideal for cylinder wake shedding dynamics given that much
of Hopf bifurcation theory deals with parametric changes in eigenvalues in the
vicinity of a critical value, e.g. Wiggins (1990). Therefore, a spectral approach seems
appropriate for extension to forced bifurcation flows in which we seek to track the
development of dynamically relevant post-bifurcation features, such as the shedding
mode, as forcing is applied. However, typically the transition from the nonlinear,
infinite-dimensional Navier–Stokes description to a reduced-order set of equations
considered in Hopf bifurcation normal form theory is difficult. Detailed theoretical
treatments of forced flows involving natural Hopf bifurcations based on spectral
decompositions of the velocity field and application of multi-scale analysis have
yielded insight into some interactions between the bifurcation mode and the forcing
that are possible (Luchtenburg et al. 2009; Sipp 2012; Brunton & Noack 2015). These
theoretical treatments have led to insight into important phenomena, particularly those
that can be attributed to discrete spectral interactions associated with f0 ± f , as well
as stability considerations when forcing is applied.

Recently, modal decomposition methods for the analysis of both finite and
infinite-dimensional nonlinear systems based on spectral properties of evolution
operators have emerged (Mezić 2005, 2013; Rowley et al. 2009; Budisic & Mezić
2012). This framework has the remarkable capability of capturing the full nonlinear
dynamics by merging applied ergodic theory with operator theory to identify key
spectral properties of an evolution operator attributed to Koopman (Koopman 1931;
Mezić 2005). These operators are defined for any nonlinear system, and modal
decompositions of nonlinear systems based on spectral analysis of the Koopman
operator can be derived from measured data without the need for linearization
(Rowley et al. 2009) and when expansion-based theoretical treatments such as those
in Luchtenburg et al. (2009) and Sipp (2012) are not possible because one does
not have access to governing equations. Moreover, spectral decompositions derived
from the Koopman operator lead to spatial modes valid in all of phase space, not
just locally, and the modes correspond to specific frequencies and growth/decay
rates (Koopman 1931; Mezić 2013). Thus, these so-called ‘Koopman modes’ provide
a qualitative fully nonlinear analogue to the familiar notion of global modes (see
the discussion in Huerre & Monkewitz (1990) on linearized global modes). While
recent progress illuminating the spectral properties of the Koopman operators show
considerable promise, there remain a number of fundamental research issues. For
instance, the important effects of periodic excitation of bifurcation parameters have
not been studied.

Various approaches for computing Koopman modes are summarized in Mezić
(2013). The interpretation of the dynamic mode decomposition (DMD) method
(Schmid 2010) as an approximate approach for calculating Koopman modes was
established in Rowley et al. (2009). Koopman and DMD analysis have recently been
applied to post-bifurcation wake dynamics of flow past a stationary cylinder (Chen,
Tu & Rowley 2011; Bagheri 2013, 2014; Wynn et al. 2013). Chen et al. (2011)
and Wynn et al. (2013) introduced improved numerical methods to generalize DMD
and obtain more accurate approximations of the Koopman modes, while Bagheri
(2013) established the linkages between the complex-valued Landau equation (i.e.
first-order normal form) describing Hopf bifurcations and the Koopman operator. The
effects of noise on the Koopman decompositions of stationary cylinder flow were
later treated in Bagheri (2014). However, Koopman-theoretic analyses of periodically

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

53
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.530


Quasi-periodic intermittency in oscillating cylinder flow 683

forced bifurcation systems have not been pursued – neither within the context of fluid
dynamics nor outside of it – and we do that here. By considering a separation in scale
between the forcing and natural frequencies, we find a physical realization of a novel
dynamics regime that we dub the quasi-periodic intermittency due to the interchange
of quiescent and oscillatory regimes of flow. This regime is interesting since it
combines the properties of quasi-periodicity with intermittency, and presents us with
a novel type of an attractor in a simple form that reflects more complex attractors
responsible for a variety of transition regimes from laminar to turbulent flows.
Methodologically, we develop a procedure for deriving normal forms in nonlinear
field theories, such as the Navier–Stokes equations, by utilizing the Koopman mode
decomposition.

In this paper, we utilize Koopman decompositions of cylinder flow fields due
to prescribed streamwise velocity oscillations superimposed on a steady flow
component to gain understanding of dynamics for the separation-of-scale regime
f � f0. The cylinder flow problem, two-dimensional computational fluid dynamics
(CFD) implementation and the connections to Hopf bifurcation dynamics are briefly
described in § 2. A summary of Koopman-operator-based theory and numerical
implementation is provided in § 3. In § 4, the effect of forcing is derived from a
dynamics-of-observables perspective where it is shown that oscillating the streamwise
Reynolds number is equivalent to exciting the Hopf bifurcation parameter. A
centre-manifold reduction using Koopman modes is described next, followed by
further simplification of nonlinearities using normal form theory. Finally, results
are presented in § 5 which establish the accuracy of the reduced-order normal form
mathematical models and provide theoretically grounded evidence of a new dynamical
systems phenomenon that occurs in the f � f0 regime.

2. Cylinder flow
Two-dimensional CFD simulations of a streamwise oscillating circular cylinder are

considered. For the stationary cylinder, the system can be expressed in the general
dynamical systems form given by

ż=F(z), (2.1)

where z is the vector of streamwise and transverse velocity components in the
discretized domain and F are the discretized incompressible Navier–Stokes equations.
When the oncoming streamwise flow is oscillated, the forced Navier–Stokes equations
can be written in the following format:

ż=F(z)+ Bu(t). (2.2)

The external forcing applied to the system is represented by u(t), while the linear
operator B allows us to take into account the fact that forcing (i.e. prescribed
oscillation of the cylinder) can enter via boundary conditions, like in our problem,
and thus the forcing does not necessarily affect all the states in structurally the
same way. Similar to the implementation described in Perdikaris et al. (2009), at
the domain inlet and lateral boundary, the elements of Bu are 2q sin(ωf t) for the
streamwise velocity components, and 0 for the transverse components. Furthermore,
F(z)= 0 is at the inlet boundary. At all other locations in the domain away from the
inlet boundary, B = 0. The amplitude of the oscillation is controlled by q, and the
prescribed frequency is ωf = 2πf .
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As in Leontini et al. (2013), the CFD equations are solved in a frame of reference
attached to the moving cylinder. Therefore, the resultant oncoming streamwise flow
velocity u∞ over the cylinder is

u∞(t)= u0 −
2q
ωf

cos(ωf t), (2.3)

where u0 is the steady component of the free stream. Since sinusoidal cylinder motions
are prescribed, the oscillatory Reynolds number Re is

Re(t)= Re0 − Req sin(ωf t), (2.4)

where Re0= u0D/ν, Req= 2qD/(ωfν), ν is the kinematic viscosity which is held fixed
and D is the cylinder diameter. The commercial software package, CFD++ was used
for all CFD solutions of (2.1) and (2.2). The CFD++ framework is a finite-volume-
based solver and is second-order accurate in space. Implicit, dual time stepping was
employed.

The connections between Hopf bifurcation dynamics and flow past a stationary
cylinder are well known (Sreenivasan et al. 1987). In such systems, a critical Hopf
bifurcation parameter µ exists such that:

(i) For µ< 0: perturbations to the system decay,
(ii) For µ = 0: the system is neutrally stable and initial perturbations induce

oscillations that neither decay nor grow,
(iii) For µ > 0: initial perturbation amplitudes grow in a transient manner until

reaching a saturation value; the system is characterized by limit cycle oscillations
for long time.

The Hopf bifurcation limit cycle frequency corresponds to the von Kármán wake
shedding mode and µ is proportional to (Re0−Rec), where Rec is the critical value at
which vortex shedding initiates (Sreenivasan et al. 1987). Without loss of generality,
we consider the critical bifurcation value to be µ = µ0 = 0. This dynamics can be
expressed by the classical Landau equation (i.e. first-order normal form equation),

η̇= λ1(µ)η+ β(µ)η
2η̄, (2.5)

where η represents a time-dependent state governed by the bifurcation dynamics (e.g.
velocity in the cylinder wake, integrated lift force, etc.), λ1(µ) is complex valued such
that Im[λ1(µ)] corresponds to the von Kármán wake shedding frequency, Re[λ1(µ)] is
the associated growth/decay rate and β(µ) is a complex-valued parameter that affects
the limit cycle saturation amplitude and frequency. Identification of the parameters
in (2.5) as functions of Re0 for stationary cylinder wake shedding was established
by Sreenivasan et al. (1987). In the following sections, we extend the standard Hopf
bifurcation normal form (2.5) to account for the effects of forcing, Bu(t).

3. Koopman mode decomposition
A summary of Koopman modal analysis is provided in this section. The modal

analysis stems from a decomposition of an infinite linear dimensional operator that
captures the dynamics of an arbitrary observable functional, even if the observable
is a nonlinear function of a dynamical system state. By utilizing such an approach,
the dynamics of some measurable quantity can be described directly and without
linearization of the underlying dynamical system. Additional details can be found in
Mezić (2013).
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3.1. Continuous time
For the general dynamical system (2.1) defined on a state space A (i.e. z∈ A), where
z is a RN vector and F is a possibly nonlinear vector-valued function of the same
dimension as its argument z. We denote by St(z0) the position at time t of a trajectory
corresponding to (2.1) that starts at initial condition z0.

An arbitrary vector-valued observable from A to Rp is denoted by g. The value of
g at time t starting from the system trajectory initial condition z0 is

g(t, z0)= g(St(z0)). (3.1)

Note that the space of observables g is a vector space. The family of operators Ut,
acting on the space of observables parameterized by time t is defined by

Utg(z0)= g(St(z0)). (3.2)

Thus, for a fixed time τ , Uτ maps the vector-valued observable g(z0) to g(τ , z0).
With some abuse of language we will call the family of operators Ut the Koopman
operator of the continuous-time system given by (2.1). This operator was defined for
the first time in Koopman (1931), for Hamiltonian systems. In operator theory, such
operators, when defined for general dynamical systems, are often called composition
operators, since Ut acts on observables by composing them with the mapping St

(Singh & Manhas 1993).
The operator Ut is linear as can be easily seen from its definition by (3.2), and thus

it makes sense to consider its spectral properties in the context of analysing (2.1). In
this direction, we will be looking for special observables φ(z) : A→ C on the state
space that have the evolution in time given by

Utφ(z0)= φ(St(z0))= exp(λt)φ(z0). (3.3)

Such observables (functions) φ are the eigenfunctions of Ut, and the associated
complex numbers λ are the eigenvalues of Ut.

For quasi-periodic attractors, the observables can be expanded onto a basis system
spanned by the Koopman eigenfunctions as (Mezić 2005, 2013)

g(t, z0)=

∞∑
j=1

φj(z)sj =

∞∑
j=1

Utφj(z0)sj =

∞∑
j=1

eλjtvj(z0)+ eλ̄jtv̄j(z0), (3.4)

where sj are the Koopman modes and represent the projections of the observables onto
the eigenfunctions, v(z0)= φj(z0)sj and λ̄j, v̄j are the complex conjugates of λj and vj
respectively.

3.2. Discrete time and computation of Koopman modes
Due to the discrete nature of numerical simulations or experimental data, the
dynamical system can be described by a discrete sequence of state values or
observables:

zk+1 =F(zk) (3.5)

and a discrete sequence of Uk1t
; k= 0; · · · ;N is obtained. It is easy to show that the

discrete version of (3.4) is (Mezić 2005, 2013)

g(zk)=

∞∑
j=1

φj(zk)sj =

∞∑
j=1

Ukφj(z0)sj =

∞∑
j=1

λk
j vj(z0)+ λ̄

k
j v̄j(z0). (3.6)
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Koopman modes can in principle be computed directly based on snapshots of the
flow, using the generalized Laplace analysis (Mezić 2013). The Koopman modes can
also be approximated by using an Arnoldi-like algorithm (Schmid & Sesterhenn 2008;
Rowley et al. 2009) which computes eigenvalues based on the so-called companion
matrix.

Given a sequence of equispaced in time snapshots from numerical simulations
or physical experiments, with 1t being the time interval between snapshots, a data
matrix is formed, columns of which represent the individual data samples uj ∈ Rn,
j= 0; · · · ;m with j representing time j1t. The companion matrix is then defined as:

C =


0 0 · · · 0 c0
1 0 0 c1
0 1 0 c2
...

. . .
...

0 0 · · · 1 cm−1

 , (3.7)

where ci, i= 0, . . . ,m− 1 are such that:

um =

m−1∑
j=0

ciui + r (3.8)

and r is the residual vector.
The spectrum of the Koopman operator restricted to the subspace spanned by uj is

equal to the spectrum of the infinite-dimensional companion matrix and the associated
Koopman modes are given by Ka (provided that a does not belong to the null space of
K ), where K = [u0; u1 · · · ; um−1] is the column matrix (vector valued) of observables
snapshots at times 0;1t; · · · ; (m− 1)1t and a is an eigenvector of the shift operator
restricted to Krylov subspace spanned by ui which the companion matrix is an
approximation of. The approximate Koopman eigenvalues and eigenvectors obtained
by the Arnoldi’s algorithm are sometimes called Ritz eigenvalues and eigenvectors.

The standard Arnoldi-type algorithm to calculate the Ritz eigenvalues βj and
eigenfunctions vj is as follows:

(i) Define K = [u0, u1, . . . , um−1].
(ii) Find constants cj such that:

r= um −

m−1∑
j=0

cjuj = um − Kc, r⊥span{u0, . . . , um−1}. (3.9)

This can be done by defining c=K+um where K+ is the pseudo inverse of K .
(iii) Define the companion matrix C by (3.7) and find its eigenvalues and eigenvectors:

C = T−1αT, α = diag(α1, . . . , αm), (3.10)

where eigenvectors are columns of T−1. Note that the Vandermonde matrix, T̃ :

T̃ =


1 α1 α2

1 · · · αm−1
1

1 α2 α2
2 · · · αm−1

2
...

...
...

. . .
...

1 αm α2
m · · · αm−1

m

 (3.11)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

53
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.530


Quasi-periodic intermittency in oscillating cylinder flow 687

diagonalizes the companion matrix C, as long as the eigenvalues α1, . . . , αm are
distinct.

(iv) Define vj to be the columns of V = KT̃
−1

.

Then, the Arnoldi-type Koopman mode decomposition gives:

∀k= [0, 1, . . . ,m], uk =

m∑
j=1

αk
j V(:, j). (3.12a,b)

To fairly compare the contribution of all the Koopman modes, the eigenvectors of
the companion matrix C can be normalized to be unitary i.e. the column of T−1 are
normalized to have norm 1. Let Nj=‖T−1(:, j)‖ and VN(:, j)=KT−1(:, j)/Nj, then:

∀k= [0, 1, . . . ,m], uk =

m∑
j=1

αk
j VN(:, j)Nj. (3.13a,b)

4. Dynamics of observables with applied forcing

The evolution of an observable function of interest subject to applied forcing
is developed in this section. The full-order representations are derived first, which
explicitly show how forcing effects appear in the dynamics-of-observables equations.
In order to obtain a lower-order representation that can be used to understand
phenomena observed in the forced bifurcation systems, projections onto the unforced
system Koopman shedding mode basis are described. This basis corresponds to the
centre manifold of the unforced system. Finally, the nonlinearity in the reduced-order
equations are simplified further for f � f0 to obtain remarkably simple mathematical
model equations that explain the salient features of the seemingly complex dynamical
states.

4.1. Full-order equations
Considering the observables evolved by the Koopman operator as in (3.2), we denote

g(t, z0)= g(Stz0). (4.1)

Note that g(t, z0) depends on the initial condition z0 so we can think of it as a function
in the Lagrangian frame – but in the state space, not in the physical space! We have

∂g(t, z0)

∂t
=
∂g(Stz0)

∂t
=∇g(Stz0) ·

∂Stz0

∂t
= ż · ∇g(t, z0)=F(z) · ∇g(t, z0), (4.2)

where (2.1) has been substituted for ż and the gradient operator corresponds to the
state space. Equation (4.2) describes the evolution of observables starting from a
smooth initial condition given by g(0, z0). In operator form, equation (4.2) can be
written as

∂g
∂t
= (F · ∇)g= Lg, (4.3)
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where L is the linear infinite-dimensional operator – the generator of Koopman
operator evolution – that fully characterizes the evolution of g, which can be a
nonlinear function of z. From (4.3), the Koopman operator is given by

Ut
= eLt. (4.4)

The linkages between the Landau equation (2.5) and the Koopman operator (4.4) for
post-critical flow past a stationary cylinder were established in Bagheri (2013).

Now, an applied forcing Bu(t), where B is a linear operator and u is a vector in the
same space as z, can be added to the Navier–Stokes equations, as in (2.2). Substituting
the forced system (2.2) into (4.2) leads to

∂g(t, z0)

∂t
= (F(z)+ Bu(t)) · ∇g(t, z0)= Lg+ (Bu · ∇)g. (4.5)

Although the external forcing in the underlying system (2.2) appears as an additive
term, it is clear from (4.5) that forcing appears as a bi-linear term in g and u when
considering the time evolution of a general observable. Similarly, it is clear from (4.5)
that additive forcing can only occur when considering dynamics of observables in the
special case when g is a linear function of z. Therefore, the original additive forcing
will lead to a parametric-type excitation in the observable evolution equation for the
general case when g is a nonlinear function of z. Note that the forcing u could also
be thought of as a control input; thus (4.5) also demonstrates that control studies
involving dynamics-of-observables models based on additive forcing in the underlying
system must involve a term multiplicative in control u, which in the simplest case
reduces to a bi-linear term.

4.2. Koopman modes and the unforced system reduced-order model
In the vicinity of a non-hyperbolic fixed point in state space, the long-time behaviour
can be accurately represented by the dynamics on the lower-dimensional centre
manifold (Wiggins 1990). Therefore, we truncate the projection in (3.4) by considering
a subspace spanned by the Koopman eigenfunction and eigenvalue corresponding to
Re[λj(µ0)] = 0 and Im[λj(µ0)] = ω0(µ0) 6= 0. For flow over a stationary cylinder, this
is the well-known von Kármán wake shedding (bifurcation) mode. If the Koopman
eigensolutions are ordered such that j = 1 is the bifurcation mode, then (3.4) is
approximated by the truncated expansion

g(t, z0)≈ γ1(t)v1(z0)+ γ̄1(t)v̄1(z0)=VΓ , (4.6)

where V= [v1, v̄1] ∈Cp×2, and Γ = [γ1, γ̄1]
T
∈C2×1 contains the complex-valued time-

dependent coefficients γ1 and γ̄1 which replace the exponential terms when considering
reduced-order approximations (Susuki & Mezić 2012). Substituting (4.6) into (4.2) and
noting that z= g−1(g(z)) leads to the reduced-order model,

Γ̇ = (V†V)−1V†
[F ◦ g−1(g(VΓ )) · ∇(VΓ )]. (4.7)

This two-dimensional reduced-order model can be re-written as[
γ̇1
˙̄γ1

]
=

[
λ1(µ) 0

0 λ̄1(µ)

] [
γ1
γ̄1

]
+ F̂(γ1, γ̄1, µ), (4.8)
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where the right-hand side of (4.7) has been expressed as a linear term plus a nonlinear
term, i.e.

(V†V)−1V†
[F ◦ g−1(g(VΓ )) · ∇(VΓ )] =

[
λ1(µ) 0

0 λ̄1(µ)

] [
γ1
γ̄1

]
+ F̂(γ1, γ̄1, µ). (4.9)

Equation (4.8) can be thought of as the projection of (4.2) onto the centre manifold
spanned by the basis corresponding to the primary Koopman shedding (bifurcation)
mode at µ=µ0. Since γ1 and γ̄1 in (4.8) correspond to complex conjugate states, it
is sufficient to solve one of the complex-valued differential equations,

γ̇1 = λ1(µ)γ1 + F̂1(γ1, γ̄1, µ), (4.10)

where F̂1 is the first element of the vector F̂. It is important to note that, equations
(4.8)–(4.10) are expressed as functions of the bifurcation parameter µ, even though the
reduced order projections are based on the Koopman modes at µ=µ0. This is valid
for values of µ in the vicinity of µ0 for dynamics projected onto the centre manifold;
i.e. the Koopman modes at µ=µ0 are a valid projection basis for all values of µ in
the vicinity of µ0 since the orbit of the full-order system (4.3) near µ0 is determined
by the solution restricted to the centre manifold (Wiggins 1990).

4.3. Koopman modes and the forced system reduced-order model
The appropriate basis for model order reduction of the forced Hopf bifurcation system
is considered next. We make the argument that the unforced Koopman modes at the
Hopf bifurcation value of the Reynolds number (i.e. µ = µ0) can be used as the
projection bases, even for the forced system. From (4.5), the dynamics of the forced
system is described by the unforced linear operator L plus an additional time-variant
forcing term that is bi-linear in u and g. We know that the unforced Koopman
eigenvalues and eigenfunctions satisfy

Lφi(z)= λiφi(z), i= 0, 1, 2, . . . ,∞. (4.11)

As a result, if we select a basis spanned by unforced system Koopman eigenfunctions,
as in (3.4), then the full action of L on g in (4.5) will be captured. If the forcing
term is properly projected onto the new basis, then ġ will be represented without
any approximation. Therefore, the modes computed from the unforced system can be
used as an appropriate basis for model order reduction of the forced system. As we
will show to be the case in § 5.1.2, this implies that the spatial modal structures of
the unforced bifurcation system persist into the forced case, though the corresponding
time dependence γ1(t) will differ between the two cases. However, just as in the case
for the unforced reduced-order model, truncation to a finite number of modes will
introduce error. Therefore, one would still need to be careful to include modes that
may not be significant in unforced conditions, but become relevant when the forcing
is applied. Since we are primarily interested in the shedding dynamics under forcing,
we restrict our projection to just the primary bifurcation mode (and its complex
conjugate), just as in the unforced case.

Proceeding with the reduced-order model development for the forced system, the
expansion (4.6) is substituted into (4.5), which leads to[

γ̇1
˙̄γ1

]
=

[
λ1(µ) 0

0 λ̄1(µ)

] [
γ1
γ̄1

]
+ F̂(γ1, γ̄1, µ)+ (V†V)−1V†

[u · ∇(VΓ )]. (4.12)
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In this study, we assume simple harmonic time dependence for u with frequency ωf =

2πf . When the elements of u corresponding to the streamwise velocity components
equal 2q sin(ωf t), and all other elements equal zero, then

γ̇1 = λ1(µ)γ1 + F̂1(γ1, γ̄ , µ)+ 2q sin(ωf t)[γ1a+ γ̄1ā], (4.13)

where a(z0) corresponds to the first element of the vector (V†V)−1V†∑N
i=1 ∂v1/∂zi and

ā(z0) is its complex conjugate. The coefficients a and ā represent in-phase and out-of-
phase components of the observable; i.e. a accounts for contributions of the Koopman
mode corresponding to λ1 to the observable of interest, while ā accounts for the
contribution from the out-of-phase component of the Koopman mode corresponding
to λ̄1. Furthermore, we replace the explicit time dependence in the forcing term by
an additional state, ζ = eiωf t such that (4.13) becomes

γ̇1 = λ1(µ)γ1 + F̂1(γ1, γ̄1, µ)− iq(ζ − ζ̄ )(γ1a+ γ̄1ā). (4.14)

Note the bi-linear terms involving ζ and γ1 originate from u · ∇g in (4.5).

4.4. Normal form theory
It is possible to gain theoretical insight into the first-order behaviour of (4.14) by
using normal form theory in order to understand when the forcing can induce more
complex spectral content beyond the classical ω0 ± ωf -type interactions that are well
known, in both general nonlinear dynamics phenomena and forced cylinder flow
contexts. Normal form theory allows one to eliminate terms from nonlinear dynamics
equations such as (4.14) that do not have first-order effects on the evolution variable
of interest, i.e. γ1. In normal form theory, only the resonant terms proportional to eiω0t

and near-resonant terms proportional to ei(ω0±ωf≈ω0)t must be retained in the differential
equation. Otherwise, they can be removed from the differential equation to simplify
the nonlinearity, and then added later to the response of interest. Details on normal
form theory and its application can be found in Guckenheimer & Holmes (1983),
Wiggins (1990) and Nayfeh (2011). Clearly, the near-resonant condition is satisfied
for terms proportional to ζγ1 and ζ̄ γ1 when the forcing frequency is much less than
the natural frequency, f � f0. This regime is the focus of this study.

In Bagheri (2013), it was shown that the reduced-order model obtained by
projecting onto the Koopman mode corresponding to post-critical shedding past a
stationary cylinder is equivalent to the classical Landau equation (2.5) for a Hopf
bifurcation. Therefore, when q = 0, equation (4.14) reduces to (2.5), where η(t) is
interpreted as the first-order approximation of γ1(t) (Bagheri 2013). It is clear that
both the linear and cubic terms in (2.5) are proportional to eiω0t to a first order, and
thus the Landau equation is a normal form equation for a Hopf bifurcation. Although
the cubic structure of (2.5) is universal to any Hopf bifurcation problem, explicit
expressions for β as a function of µ must be estimated empirically when explicit
expressions for F̂1 are not available.

For any values of f such that f � f0 it is clear that the forcing term in (4.14)
results in near-resonant terms. If we define Q≡QR + iQI ≡ qa, then the normal form
approximation for the forced system is

η̇= λ1(µ)η+ β(µ)η
2η̄− iQ(ζ − ζ̄ )η, (4.15)

which is valid for f � f0. The normal form equation provides theoretical insight into
when the forcing can induce broadly distributed spectral content. When there is no
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separation in scale between f and f0, the spectrum corresponding to η(t) – and thus
g(t, z0) to a first order – would be narrowly concentrated about f , f0 and f0 ± f . This
is because the forcing term in (4.15) could be eliminated from (4.15), leading to (2.5)
which has a solution corresponding to the limit cycle frequency f0. Then, the non-
resonant terms discarded from (4.15) would be added to the solution of (2.5), thus
accounting for discrete spectral content at f and f0 ± f . Therefore, the full normal
form approximation shows that f � f0 is a necessary (though not sufficient) condition
for the simple harmonic forcing to induce broadly distributed spectra as leading-order
phenomena in the observable since their occurrence could not be ruled out a priori
from (4.15) when f � f0. It should be noted that the forcing term in (4.15) can also
be viewed as adding harmonic oscillation to the eigenvalue λ1, which is physically
intuitive since the applied forcing corresponds to harmonic excitation of the Reynolds
number and thus harmonic variation of the bifurcation parameter µ.

Replacing the complex variable η by the polar coordinate representation η= r(t)eiθ(t)

and −i(ζ − ζ̄ )= 2 sin(ωf t) in (4.15) gives

ṙ= σ(µ)r+ βR(µ)r3
+ 2rQR sin(ωf t) (4.16)

and
θ̇ =ω0(µ)+ βIr2

+ 2QI sin(ωf t), (4.17)

where βR and βI are the real and imaginary parts of β. It can be shown that
this normal form system is analogous to a nonlinear mechanical oscillator with a
parametrically excited damper corresponding to QR sin(ωf t) and a parametrically
driven spring stiffness associated with QI sin(ωf t). Furthermore, for the range of
parameters corresponding to cylinder flow considered in this study, ω0 + βIr2

� QI .
Thus, the forcing primarily affects the dynamics through the parametrically excited
damping. Note that if g is linear in z, then the forcing would not appear as a radial
excitation in (4.16).

Interestingly, a similar set of equations as (4.16) and (4.17) were studied by Wang
& Young (2003) and Lin & Young (2008) in which it was shown that shear-induced
chaos could be induced. However, a fundamental difference between the shear induced
chaos attractor and (4.16) and (4.17) is that the equation governing ṙ in Lin & Young
(2008) contained functional dependence on θ in the bi-linear forcing term. Clearly,
this is not the case for (4.16) and leads to different behaviour compared to the shear-
induced chaos attractor. As we will show, equations (4.16) and (4.17) do not lead to
chaos, and in fact describe a fundamentally different phenomena.

5. Results
5.1. Koopman decompositions

5.1.1. Stationary cylinder
For the CFD simulations, the cylinder diameter was D = 0.002 m and the steady

component of the free-stream velocity was u0 = 0.4 m s−1. The simulation time step
normalized by the convective time scale was 1tu0/D= 0.028. The simulation was run
for 60 000 time steps, which was sufficient to allow the near-wake dynamics to settle
into the well-known post-bifurcation limit cycle behaviour. The oncoming free stream
was Re0 = 53. A low free-stream Reynolds number was selected so that turbulence
could be neglected. The CFD data corresponding to the first 525 time steps were
discarded in order to eliminate numerical transients. The remaining data record was
used to conduct the Koopman modal analysis. Note that the CFD cylinder simulation
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FIGURE 1. Imaginary components of Koopman eigenvalues corresponding to streamwise
velocity field for flow over a stationary cylinder; the mean is removed for clarity
and spectral amplitudes are normalized such that the maximum value is 1. (a) Using
normalization; (b) direct data.

exhibited the von Kármán vortex instability at Rec = 46, which is in good agreement
with experimental results presented in the literature (Sreenivasan et al. 1987). In
addition, the calculated vortex shedding frequency at Re0= 53 was f0D2/ν = 7, which
is consistent with the empirical relationship from Sreenivasan et al. (1987) in which
f0D2/ν = 5.46+ 0.21(Re0 − Rec)= 7.

The generalized harmonic analysis – approximated by finite-time fast Fourier
transforms – gives projections that enable computation of Koopman modes. In
addition, DMD yields such projections as well, so the two approaches are compared
along with the effects of normalization. Koopman decomposition spectra calculated
using normalization, and directly from the CFD data are compared in figures 1(a)
and 1(b) respectively. The dominant mode at the von Kármán shedding Strouhal
number ( f0D/u0) of St = 0.13 is captured when using normalization. We have also
verified that the normalization recovers a spectrum closer to that predicted by Fourier
analysis at local probe locations in the wake. However, the spectrum computed from
the direct data is somewhat contaminated by low frequency content and predicts
maximum spectral content at a St = 0.02. The Koopman eigenvalues computed from
the direct data set and using normalization are shown in figure 2. The eigenvalues
are coloured and sized by the magnitude of each mode; i.e. larger magnitude modes
appear as larger circles. The dominant eigenvalues computed using normalization are
on the imaginary axis and consist with the base frequency and harmonics. In contrast,
the eigenvalues computed from the direct data set show significant contributions
from non-periodic modes close to St = 0. Even if all Koopman modes are on the
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FIGURE 2. Koopman eigenvalues in the complex plane for the streamwise velocity
component; Re[λ] on the horizontal axis and Im[λ] on the vertical axis (Hz). (a) Using
normalization; (b) direct data.

attractor, i.e. Re[λ] = 0, the numerical computation will give values slightly different
than 0, as shown in figure 2. This is amplified for the Koopman modes based on
the direct data because the normalized Koopman modal analysis diminishes the
importance of the non-periodic modes. The results in figures 1 and 2 indicate that
Koopman modal decompositions based on normalization is better suited for analysing
dynamics on an attractor, while utilizing the direct data set may yield better results
for transient dynamics. Normalization is used throughout the remainder of the paper
since long-time dynamics is of interest.

Streamwise velocity Koopman modes corresponding to the mean (St = 0), the von
Kármán shedding Strouhal number (St= 0.13), and higher harmonics of the shedding
mode (St= 0.27 and St= 0.4) are shown in figure 3. The modes were normalized. The
St = 0.13 Koopman mode clearly reproduces the anti-symmetric character associated
with von Kármán wake vortex shedding, while the higher harmonic shedding modes
exhibit finer scale spatial structure. Note that only the real parts of the Koopman
modes are shown since the imaginary parts exhibit similar spatial structure. The spatial
structures shown in figure 3 match with previously reported Koopman decompositions
of the stationary cylinder wake (Chen et al. 2011; Bagheri 2013).

5.1.2. Oscillating cylinder
The streamwise velocity oscillations were prescribed at Stf = 0.0025 for Re0 = 53,

which is two orders of magnitude slower than the shedding frequency for the
stationary cylinder. As a result of the separation of scales associated with f � f0, we
focus on dynamical states other than lock-on/synchronization phenomena that occur
when f ∼ f0. Oscillation amplitudes from Req= 1 to Req= 20 were considered in order
to compare large amplitude cases which oscillate through Rec, and smaller amplitude
cases which are above Rec throughout the oscillation. The oscillating cylinder cases
were computed for a total time record of twelve forcing periods.

The spectra corresponding to various oscillation amplitudes are provided in figure 4.
Progressive broadening of the wake spectral content with increasing amplitude is
apparent from figure 4. At low amplitude Req = 1 oscillations, the spectrum becomes
quasi-periodic with narrow bands of discrete spectral content centred about the
natural shedding frequency f0 and its harmonics. In figure 4(a), the two largest
spikes surrounding f0 and its nth harmonic are due to interactions with the applied
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FIGURE 3. Real parts of Koopman modes corresponding to streamwise velocity for the
stationary cylinder. Axes correspond to spatial coordinates in metres; the 0.002 m diameter
cylinder is centred at (0, 0) and the flow moves from left to right. All mode shapes are
normalized such that the maximum value is 1.

forcing and correspond to nf0 ± f . This follows from the algebraic properties of
the Koopman eigenfunctions discussed in Mezić (2013) where it was shown that
if φ1 is an eigenfunction of the Koopman operator associated with λ1, and φ2 is
an eigenfunction associated with λ2, then λ = λ1 + λ2 is also an eigenvalue and is
associated with eigenfunction φ = φ1φ2. Thus if we have an eigenvalue λf associated
with the forcing frequency f , and λ0 associated with f0, then λ0+ nλf is an eigenvalue
with frequency f0 + nf . A similar argument applies to 2f0 + f , 3f0 + f , etc. As the
oscillation amplitude is increased to Req = 20, the spectral broadening increases
while still remaining discrete since the spacing between each frequency spike is
1St= Stf = 0.0025.

Figure 5 shows Koopman modes for Req = 1. The modes correspond to f0 − f , f0,
f0 + f , 2f0 − f , 2f0 and 2f0 + f ; these are prevalent frequencies in figure 4(a). The
modes shown in figure 5(a–c) exhibit similar coherent asymmetric spatial structure as
the primary shedding mode shown in figure 3(b), while those shown in figure 5(d–f )
are similar to figure 3(c). Therefore, while the spectral content is beginning to broaden
even for low amplitude forcing, the mode shapes of the unforced system are still
underlying features of the forced system.

Interestingly, similar behaviour is observed for the Koopman modes even as
oscillation amplitude is increased and the spectral content broadens. The prevalence
of the primary antisymmetric shedding mode shape across multiple amplitudes
and frequencies is illustrated in figure 6. In figure 6, panels (b,e) correspond to
the frequency of maximum amplitude from figure 4(b,c), while (a,d) and (c, f )
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FIGURE 4. Imaginary components of Koopman eigenvalues for streamwise velocity
components corresponding to the oscillating cylinder. The mean is removed for clarity
and spectral amplitudes are scaled by the amplitude of the prescribed Stf = 0.0025 mode;
vertical axes are adjusted in order to emphasize the wake shedding spectral content.
(a) Req = 1; (b) Req = 10 and (c) Req = 20.

approximately align with the minimum and maximum frequencies respectively at
which the primary shedding modal spatial structure could be clearly discerned. As
the oscillation amplitude is increased, the shedding mode appears across a wider range
of frequencies. For instance, the shedding mode appears throughout St = 0.1–0.17
for Req = 10 and 0.075–0.21 for Req = 20. Note that only the primary shedding
mode is shown in figure 6; occurrences of the second modal structure similar to
figure 3(c) were found at higher frequencies but are not shown. These results also
support the selection of the unforced shedding Koopman mode as an appropriate basis
for reduced-order modelling, as this bifurcation mode clearly remains a dynamically
relevant feature of the forced system. The theoretical underpinnings of Koopman
operators provide the underlying theoretical justification for using unforced Koopman
modes, even for modelling forced Hopf bifurcation dynamics. This is because the
action of the unforced operator L is still prevalent in the forced dynamics in (4.5).

Figures 4–6 indicate the potential for the wake shedding dynamics to progress
from narrowly banded quasi-periodicity to spectrally broad dynamics, while still
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FIGURE 5. Koopman modes (real parts) corresponding to streamwise velocity for the
oscillating cylinder (Req= 1). (a) f0− f ; (b) f0; (c) f0+ f ; (d) 2f0− f ; (e) 2f0; ( f ) 2f0+ f .
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FIGURE 6. Real parts of representative Koopman modes corresponding to streamwise
velocity for various oscillation amplitudes and frequencies. (a) Req = 10; St = 0.1;
(b) Req = 10; St= 0.165; (c) Req = 10; St= 0.17; (d) Req = 20; St= 0.075; (e) Req = 20;
St= 0.19; ( f ) Req = 20; St= 0.21.

maintaining some of the spatial coherency associated with the unforced bifurcation
case. The fundamental mechanism for the spectral broadening, along with the
seemingly contradictory prevalence of the modal/spatial coherency, are explained
next using normal form mathematical models from § 4.4.

5.2. Normal forms
Before proceeding to provide theoretical underpinnings for the numerical Koopman
mode results using simplified normal form mathematical models, the reduced-order
normal form approximations presented in § 4 are verified by comparing with full-order
CFD solutions. To demonstrate the concepts associated with dynamics of observables,
we select the integrated transverse force coefficient on the cylinder, cy, as the
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observable of interest since it is a convenient, and commonly used, representation of
cylinder wake dynamics, e.g. Cetiner & Rockwell (2001) and Perdikaris et al. (2009),

g(t, z0)= cy(t). (5.1)

Using the methodology outlined by Sreenivasan et al. (1987), explicit quantitative
functions for the normal form parameters, λ1 and β in (4.15), expressed in terms
of the bifurcation parameter µ = (Re − Rec)ν/D2 are estimated from the stationary
cylinder CFD solutions. By using the methodology outlined by Sreenivasan et al.
(1987), the normal form parameters can be easily estimated from time-signal response
data corresponding to the observable, cy(t). Following the procedure from Sreenivasan
et al. (1987), we obtain the following expressions estimated from CFD time-signal
solutions of cy(t):

λ1 = 0.17µ+ i(38.6ν/D2
+ 0.7µ), (5.2)

Re[β] =−0.2/(cy,max)
2
; Im[β] =−3 Re[β]. (5.3a,b)

Note that all parameters are estimated from the stationary cylinder case, except for
Re[β], in which the maximum value of the observable time signal, cy,max for each
applied forcing amplitude of interest is needed to match quantitatively with the
saturation amplitude of the response. Qualitatively similar behaviour is possible by
simply estimating Re[β] from the unforced cylinder flow case value for cy,max, but
quantitatively accurate matches require that this parameter be varied with the applied
forcing amplitude.

Spectral and time-signal comparisons between normal form theory and CFD results
are presented in figures 7 and 8 for f � f0. The normal form (4.15) was used for
the comparisons due to the separation in scale between the forcing and natural
frequencies. For simplicity, it was assumed that QI = 0 since ω0 + βIr2

� QI
for the range of parameters that were considered. The leading-order normal form
approximations accurately capture the spectral broadening exhibited by the CFD
solutions as oscillation amplitude is increased. These results indicate that the forcing
effects acting on only the primary bifurcation mode are responsible for the similar
behaviour observed in figure 4 for the streamwise velocity fields.

The transverse force time-signal comparisons corresponding to figure 7 are provided
in figure 8. The similarities between full order and approximate time signals further
illustrate the excellent agreement between the normal forms based on just one mode.
The accuracy of the normal form approximations derived from centre manifold
reductions support the finding that using the unforced bifurcation mode as the basis
can lead to an accurate first-order approximation of a forced Hopf bifurcation system.
So while the broad spectral content associated with the CFD would indicate a
complicated high-dimensional system, the ‘complexity’ can be simplified quite nicely
into a low-order representation when viewed from the correct perspective; in this case,
the appropriate perspective is a basis spanned by the unforced Koopman bifurcation
mode. Perhaps one of the most prevalent features of the time signals as forcing
amplitude is increased is the emergence of quiescent behaviour that interrupts the
oscillatory potions. This is most clearly observed in figure 8(e, f ). This occurs for
high amplitude cases because the applied forcing amplitude is sufficiently large such
that the Reynolds number oscillates above and below the critical bifurcation value of
the stationary cylinder.
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FIGURE 7. Transverse force spectra for St = 0.0025 oscillating cylinder cases at various
oscillation amplitudes; normal form solutions based on (4.15). (a) Req = 1; (b) Req = 10;
(c) Req = 20.

To demonstrate that f � f0 is a necessary condition for spectral broadening due
to simple harmonic forcing of a bifurcation mode, CFD and normal form results
for a case when f = f0 are shown in figure 9. Figure 9 can be contrasted with
the f � f0 cases in figure 7(b). As discussed in § 4.4, when f is not much less
than f0 the forcing terms can be removed from the ordinary differential equation,
resulting in (2.5) governing the first-order response of the observable. This normal
form differential equation, which is equivalent to the unforced bifurcation system,
accurately approximates the full system first-order dynamics, as shown in figure 9.
Note, that in contrast to figure 7(b), the spectral content of figure 9 is narrowly
distributed around a few noticeable spikes. In addition to the primary frequency
at f0, the CFD solution also exhibits spectral content at 2f0 and 0. Whereas in
the f � f0 case the ηζ and ηζ̄ terms are retained in the normal form differential
equation, when f is not much less than f0 these terms can be eliminated from the
differential equation and thus do not affect the leading-order approximation of the
observable. Instead, they are recovered by adding as higher-order effects to the
solution of (2.5); see Nayfeh (2011) for details on application of normal form theory.
As such, ηζ corresponds to the 2f0 spectral content and ηζ̄ produces the steady
content observed in the CFD. Therefore, the leading-order effects of the forcing will
enter as additive terms to the expression for γ1 – rather than terms in the ordinary
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FIGURE 8. Transverse force coefficient time signals for St = 0.0025 oscillating cylinder
cases at various oscillation amplitudes; normal form solutions based on (4.15). (a) CFD,
Req = 1; (b) Normal form, Req = 1; (c) CFD, Req = 10; (d) Normal form, Req = 10;
(e) CFD, Req = 20; ( f ) Normal form, Req = 20.

differential equation governing η – and thus will always appear as narrowly banded
discrete spectral content. The results in figure 9 using (2.5) demonstrate that it is
not necessary to retain the leading-order forcing effects in the differential equation
for all frequency regimes. By proceeding with the full normal form simplifications
using assumptions on f , we are able to show explicitly that f � f0 is a necessary
condition for leading-order forcing effects to appear in the differential equation, and
thus other scenarios for f are precluded from inducing spectral broadening or chaos
as a leading-order phenomena spanned by the wake shedding mode.

Finally, we use normal form theory to demonstrate the importance of the dynamics-
of-observables formalism that leads to a bi-linear structure of forcing/excitation terms
when g is a nonlinear function of z; see (4.5). Without undertaking the formal
development in § 4, one may be tempted to treat the effects of u by adding a simple
harmonic forcing term to the unforced normal form equation, i.e.

η̇= λ1(µ)η+ β(µ)η
2η̄− iQ(ζ − ζ̄ ), (5.4)

rather than the correct bi-linear parametric excitation appearing in (4.15). Similar
analogies have been suggested to describe oscillating cylinder wake dynamics,
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FIGURE 9. Transverse force spectra for Stf = St0= 0.13, Req= 10 oscillating cylinder case;
normal form solutions based on (2.5).
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FIGURE 10. Transverse force coefficients for (a) CFD and (b) normal form with additive
forcing term for a Stf =0.0025 oscillating cylinder case; (c) corresponding spectral content.

e.g. Provansal et al. (1987). However, as shown in this study, such an approach is only
valid when g is a linear function of z. For the more general dynamics-of-observables
case, equation (5.4) is incorrect. In essence, the additive forcing is appropriate when
considering the system states z as the observable of interest, while the parametric
system is appropriate for the dynamics of nonlinear functions of z, such as the force
coefficient considered in this study. To illustrate this, we reconsider the oscillating
cylinder case for Stf = 0.0025 and Req = 20. Except, we now compare with the
incorrect additive normal from (5.4), instead of the correct parametrically excited
normal form whose solutions are shown in figures 7(b) and 8(d). From figure 10,
it is clear that adding the forcing term to the unforced normal form equation in an
ad hoc manner will lead to incorrect results when considering dynamics of a generic
observable. This finding has significant implications for development of control
strategies based on reduced-order models of observables since the proper way to
introduce control inputs will be through bi-linear terms. The dynamics-of-observables
approach can be viewed as a generalization of the additive normal form approaches,
e.g. Tsarouhas & Ross (1987, 1988), Vance, Tsarouhas & Ross (1989), Gabale &
Sinha (2009), since the correct normal form structure would be recovered if the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

53
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.530


Quasi-periodic intermittency in oscillating cylinder flow 701

0 0.2

0

–0.2

0.2(a)

0 0.2

0

–0.2

0.2(a)

FIGURE 11. Normal form state-space trajectories for one period corresponding to the
forcing frequency f . (a) Req = 1; (b) Req = 20.

observable of interest is a linear function of the underlying state z. It is also worth
noting that while parametrically excited Hopf bifurcation studies such as Bajaj (1986)
include a bi-linear term, resonant phenomena (e.g. f ∼ 2f0) have typically been studied.
In contrast, the dynamics of (4.15) for f � f0 has, to the best of our knowledge, not
been presented previously. Note that other observable and forcing combinations may
result in non-parametric forcing. For example, in Gal, Nadim & Thompson (2001)
where cross-flow oscillations were considered, the forcing is not parametric which
implies that the observable of interest was linear with respect to the state vector
components in the direction of the forcing.

5.3. Quasi-periodic intermittency
Having verified the two-dimensional reduced-order normal form equations with respect
to the full-order CFD solutions, we now proceed with determining the underlying
nature of the spectral broadening that can manifest in the wake dynamics when f� f0;
i.e. is the dynamics quasi-periodic, chaotic or something else? First, it is useful to
visualize the attractor in state space. From figure 8, it appears that the trajectories
pass near r = |η| = 0 as the oscillatory forcing amplitude Req is increased. This is
confirmed in figure 11.

How closely the attractor passes near r= 0 is a critical delineator between classical
quasi-periodic dynamics and what we will later define as quasi-periodic intermittency.
This can be shown analytically by considering (4.16) which is decoupled from θ .
When r is sufficiently small, βRr3

� (σ + 2QR sinωf t)r, leading to

ṙ= (σ + 2QR sinωf t)r. (5.5)

If βRr3
� (σ + 2QR sin ωf t∗)r at some time t = t∗, then the solution to (5.5) at t =

t∗ +1t is
r(t∗ +1t)= r(t∗)eλL1t, (5.6)

where
λL = σ + 2QR(sinωf t∗ +ωf1t cosωf t∗) (5.7)
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FIGURE 12. (a) Comparison of state-space trajectories beginning from perturbed initial
conditions on the attractor in the regime where βRr3

� (σ + 2QR sin ωf t)r for Req = 20;
note that the plot corresponds to 1000 forcing periods after the initial perturbation and
only the portions of the trajectories corresponding to ṙ> 0 are shown for clarity. (b) The
development of the finite-time Lyapunov exponent for Req = 20 and Req = 1 over 100
forcing periods; the inset shows a zoomed in view.

and the approximation sin ωf (t∗ +1t)≈ sin ωf t∗ + ωf1t cos ωf t∗ has been used. Now
we consider the evolution of two trajectories: the first r1(t∗+1t) which is the solution
beginning from r(t∗), and the second r2(t∗ + 1t) beginning from a perturbed initial
condition r(t∗) + δ0. After substituting these initial conditions into (5.6), it is easy
to show that the separation between the two trajectories, δr(t∗ +1t)≡ r2(t∗ +1t)−
r1(t∗ +1t), is

δr(t∗ +1t)= δ0eλL1t. (5.8)

Furthermore, if ṙ > 0, then λL > 0. Therefore, the separation between the trajectories
exponentially diverges for finite time when ṙ > 0, until r increases sufficiently
for βRr3 to become significant. This behaviour is consistent with chaos since the
difference between two nearby trajectories on the attractor exponentially diverges. In
this context, λL in (5.8) can be interpreted as a finite-time Lyapunov exponent. Note
that the system is only susceptible to exponential divergence of nearby trajectories at
points on the attractor corresponding to small r and ṙ> 0. The exponential divergence
of nearby trajectories is illustrated in figure 12(a) where the two trajectories diverge
as they spiral radially outwards (ṙ> 0) until reaching a sufficiently large value of r. In
figure 12(a), the deviating trajectories are shown after 1000 forcing periods from the
initial instant at which perturbation is introduced. Even though the system was only
perturbed at one instant in time, the two trajectories will differ for all time due to the
periodic occurrence of exponential divergence. Thus, the system exhibits the sensitive
dependence on initial conditions on the attractor typically associated with chaotic
systems. We have verified (not shown) that introducing similar perturbations elsewhere
on the attractor away from small r, or for smaller forcing amplitudes, will not induce
exponential divergence and the two nearby trajectories will eventually coalesce and
become indistinguishable after sufficient time from the initial perturbation.

The development of the finite-time Lyapunov exponent as the number of iterations is
increased is shown in figure 12(b). Although the system exhibits the classically chaotic
feature of sensitive dependence on initial conditions for some points on the attractor,
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FIGURE 13. Variation of the critical parameter delineating the onset of chaos, A, with
oscillatory Reynolds number amplitude.

the Lyapunov exponent approaches 0 as t→∞. So in contrast to classically chaotic
systems, the Lyapunov exponent is not positive over infinite time. Instead, as shown in
the figure 12(b) inset, the divergence of nearby trajectories for Req= 20 is maintained
for all time due to transiently positive finite-time Lyapunov exponents as the system
periodically passes by r = 0. For systems that do not pass near r = 0, as shown for
the Req= 1 case in figure 12(b), the Lyapunov exponent never becomes positive even
within finite-time windows.

The effects of forcing amplitude on the susceptibility to exponential divergence
over finite time is shown in figure 13, where the critical parameter for exponential
divergence is

A=
βRr2

min

(σ + 2QR sinωf tmin)
(5.9)

in which rmin is the minimum value of r(t) and tmin is the time at which rmin occurs.
The horizontal line in figure 13 indicates when A� 1 and the system is sensitive to
perturbation at certain points on the attractor. Note that the value of 10−3 was chosen
arbitrarily as a small value for illustrative purposes. It is clear from figure 13 that
the oscillatory forcing amplitude must be sufficiently large to drive the system near
the fixed point. If 2QR is not > σ , then the system will never decay (although it will
saturate due to the cubic term). As a result, 2QR > σ is a condition on the amplitude
that is required for finite-time exponential divergence to be possible. Otherwise, such
behaviour can be ruled out a priori. For Req= 20, rmin∼O(1e−8). Therefore, for larger
oscillatory Reynolds numbers, the dynamics for the transverse force coefficient cy
would have finite-time exponential divergence under realistic experimental conditions
since very small perturbations (or lack of measurement precision for small numbers)
are realities.

Interestingly, the system also exhibits quasi-periodic characteristics even after
transitioning to exponential divergence for sufficient forcing amplitude. As shown in
figure 14(a), the normal form solution corresponding to Req = 20 exhibits a discrete
spectrum, as opposed to a continuous spectrum conventionally associated with chaos.
The corresponding Poincaré section is shown in figure 14(b). The Poincaré section
points are obtained by recording solutions at integer multiples of the forcing period
1/f . The intersection points fill in a curve in the Poincaré plane, i.e. a drift ring,
which is a clear indication of quasi-periodic dynamics (Hilborn 1994). Due to the
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FIGURE 14. Discrete spectrum (a) and Poincaré section (b) corresponding to the normal
form solution for Req = 20; both are computed from 1000 periods of forcing frequency
Stf = 0.0025.

FIGURE 15. The quasi-periodic intermittency attractor (yellow) plotted on the torus. The
toroidal grid (grey) is shown for reference. Rotation around the large diameter of the
torus corresponds to the radial growth/decay that occurs over the slow forcing frequency,
while rotation around the smaller diameter (i.e. phase velocity as the attractor spins around
cross-sections of the torus) correspond to the faster natural frequency of the system. The
figure corresponds to Req = 20 and 24 periods of motion corresponding to the forcing
frequency f .

described nature of this physical phenomenon – featuring finite-time exponential
leading to the bursts shown in figure 8(e), and quasi-periodic dynamics – we call it
the quasi-periodic intermittency.

Further insight can be gained by viewing a three-dimensional representation of
the quasi-periodic intermittency attractor obtained by plotting in toroidal coordinates,
which is a common approach to visualizing quasi-periodic and multi-scale behaviour
– see Hilborn (1994, § 4.7) for example. In figure 15, the slower forcing scale (i.e. f )
is represented by rotation around the larger diameter of the torus. It can be observed
that the radial growth/decay (i.e. ṙ) corresponds to rotation around the torus, which
is consistent with the fact that the forcing term manifests as a parametric excitation

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

53
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.530


Quasi-periodic intermittency in oscillating cylinder flow 705

of the bifurcation parameter. Similarly, rotation around the cross-section (i.e. θ̇ )
corresponds to the faster natural frequency f0. Note that if one were to unfold the
torus in figure 15 into a cylinder, the cross-sectional view of the cylinder would
resemble figure 11(b).

6. Conclusions

Parametrically excited Hopf bifurcation flows were studied using Koopman mode
analysis of the canonical oscillating cylinder system when there is a separation
of scale between the forcing and natural frequencies, i.e. f � f0. Koopman
decompositions indicate transition from narrowly distributed discrete spectra for
the stationary cylinder case, to more broadly distributed discrete spectra as the
oscillation amplitude is increased, even though only a single forcing frequency is
applied. Furthermore, the Koopman mode shapes for the forced case indicate that
the unforced shedding mode is still a dynamically relevant feature of the forced
system. The use of unforced Hopf bifurcation modes as a projection basis for
forced bifurcation normal form-based reduced-order modelling was also justified in
the context of Koopman-operator theory as the unforced Koopman operator was
shown to be a prevalent feature of the forced system. In contrast, this may not be
appropriate for reduced-order modelling control studies based on other approaches,
such as proper-orthogonal decomposition, which cannot be theoretically interpreted
as spanning the action of a linear operator associated with the unforced system that
remains a part of the equation governing the evolution of observables under forcing.

When considering a dynamics-of-observables perspective, it was shown that the
effect of forcing (or a control input) appears as a bi-linear excitation term if the
observable is a nonlinear function of the underlying state vector. To verify this
finding, model order reduction was conducted by projecting onto the unforced
Koopman shedding mode, i.e. the centre manifold. This system was then further
simplified using normal form theory. It was demonstrated that the two-dimensional
bi-linear normal form approximation accurately captures the leading-order effect of
the prescribed forcing on the shedding dynamics of the full-order high-dimensional
CFD solutions. These findings will inform future development of control-based
reduced-order modelling studies using Koopman theory, and are generally applicable
to forced Hopf bifurcation systems. More complex fluid dynamics applications that
may benefit directly from the methods and theory presented here could include
dynamic stall and some combustion blow-out problems where the interplay between
multi-scale dynamics produces complex behaviour. Applications of Koopman-based
decompositions may provide improved understanding of such systems, including
when the scales/modes interact in manner that cannot be explained by classical f0± f
effects.

Normal form mathematical models were used to explicitly establish f � f0 as
a necessary condition for the applied forcing to induce spectral broadening in
the shedding mode dynamics. It was shown that the normal form equations for
forced cylinder wake shedding dynamics are a physical realization of a phenomenon
that we call quasi-periodic intermittency. The phenomenon exhibits finite-time
exponential divergence of nearby trajectories, while maintaining a discrete spectrum
as in quasi-periodic systems. Given the prevalence of Hopf bifurcation systems
throughout physics, the interaction between disparate scales described by the
quasi-periodic intermittency theory may underpin a variety of multi-scale dynamics
phenomena. Potential applications where such quasi-periodic intermittency phenomena
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may be relevant include, turbulence, combustion, biological inspired soft robotic
control/motion and bursting phenomena in neurosciences and are the subjects of
current study.
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BUDISIC, M. & MEZIĆ, I. 2012 Applied Koopmanism. Chaos 22, 047510.
CETINER, O. & ROCKWELL, D. 2001 Streamwise oscillations of a cylinder in steady current. Part 1.

Locked-on states of vortex formation and loading. J. Fluid Mech. 427, 1–28.
CHEN, K. K., TU, J. H. & ROWLEY, C. W. 2011 Variants of dynamic mode decomposition: boundary

conditions, Koopman, and Fourier analyses. J. Nonlinear Sci. 22 (6), 887–915.
GABALE, A. P. & SINHA, S. C. 2009 A direct analysis of nonlinear systems with external periodic

excitations via normal forms. Nonlinear Dyn. 55 (1), 79–93.
GAL, P. L., NADIM, A. & THOMPSON, M. 2001 Hysteresis in the forced Stuart–Landau equation:

application to vortex shedding from an oscillating cylinder. J. Fluids Struct. 15, 445–457.
GUCKENHEIMER, J. & HOLMES, P. 1983 Nonlinear Oscillations, Dynamical Systems, and Bifurcations

of Vector Fields. Springer.
HILBORN, R. C. 1994 Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers.

Oxford University Press.
HUERRE, P. & MONKEWITZ, P. A. 1990 Local and global instabilities in spatially developing flows.

Annu. Rev. Fluid Mech. 22 (1), 473–537.
KONSTANTINIDIS, E. & BALABANI, S. 2007 Symmetric vortex shedding in the near wake of a

circular cylinder due to streamwise perturbations. J. Fluids Struct. 23, 1047–1063.
KOOPMAN, B. O. 1931 Hamiltonian systems and transformation in Hilbert space. Proc. Natl Acad.

Sci. USA 17 (5), 315–318.
LANDAU, L. D. & LIFSHITZ, E. M. 1987 Fluid Mechanics, vol. 2. Pergamon.
LEONTINI, J. S., JACONO, D. L. & THOMPSON, M. C. 2011 A numerical study of an inline

oscillating cylinder in a free stream. J. Fluid Mech. 688, 551–568.
LEONTINI, J. S., JACONO, D. L. & THOMPSON, M. C. 2013 Wake states and frequency selection

of a streamwise oscillating cylinder. J. Fluid Mech. 730, 162–192.
LIN, K. K. & YOUNG, L. S. 2008 Shear-induced chaos. Nonlinearity 21, 899–922.
LUCHTENBURG, D. M., GUNTHER, B., NOACK, B. R., KING, R. & TADMOR, G. 2009 A generalized

mean-field model of the natural and high frequency actuated flow around a high-lift
configuration. J. Fluid Mech. 623, 283–316.

MCCROSKEY, W. J. 1982 Unsteady airfoils. Annu. Rev. Fluid Mech. 14 (1), 285–311.
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SUSUKI, Y. & MEZIĆ, I. 2012 Nonlinear Koopman modes and a precursor to power system swing
instabilities. Power Systems, IEEE Trans. 27 (3), 1182–1191.

TSAROUHAS, G. E. & ROSS, J. 1987 Explicit solutions of normal form of driven oscillatory systems.
J. Chem. Phys. 87 (11), 6538–6543.

TSAROUHAS, G. E. & ROSS, J. 1988 Explicit solutions of normal form of driven oscillatory systems
in entrainment bands. J. Chem. Phys. 88 (9), 5715–5720.

VANCE, W., TSAROUHAS, G. & ROSS, J. 1989 Universal bifurcation structures of forced oscillators.
Prog. Theor. Phys. Suppl. 99, 331–338.

WANG, Q. & YOUNG, L. S. 2003 Strange attractors in periodically-kicked limit cycles and Hopf
bifurcations. Commun. Math. Phys. 240, 509–529.

WIGGINS, S. 1990 Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer.
WYNN, A., PEARSON, D. S., GANAPATHISUBRAMANI, B. & GOULART, P. J. 2013 Optimal mode

decomposition for unsteady flows. J. Fluid Mech. 733, 473–503.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

53
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.530

	Quasi-periodic intermittency in oscillating cylinder flow
	Introduction
	Cylinder flow
	Koopman mode decomposition
	Continuous time
	Discrete time and computation of Koopman modes

	Dynamics of observables with applied forcing
	Full-order equations
	Koopman modes and the unforced system reduced-order model
	Koopman modes and the forced system reduced-order model
	Normal form theory

	Results
	Koopman decompositions
	Stationary cylinder
	Oscillating cylinder

	Normal forms
	Quasi-periodic intermittency

	Conclusions
	Acknowledgements
	References


