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Scalar mixing from a concentrated source
in turbulent channel flow
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The mixing of a scalar (temperature) emitted from a concentrated line source in fully
developed high-aspect-ratio turbulent channel flow is studied. The motivation for
the work is to study the effect of the inhomogeneity on the scalar dispersion. It is
most readily carried out in a flow that is inhomogeneous in only one direction, i.e.
channel flow. Experiments were performed at two Reynolds numbers (Re ≡ 〈U (y =
h)〉h/ν = 10 400 and 22 800), three wall-normal source locations (ys/h= 0.067, 0.17
and 1.0) and six downstream distances (4.0 � x/h � 22.0). Both the mean and r.m.s.
temperature profiles were found to be described well by truncated Gaussian distribu-
tions. In contrast to homogeneous flows, (i) the growth rates of the mean profile widths
did not exhibit power law behaviours, (ii) the centres of the r.m.s. profiles were found
to drift towards the centre of the channel for plumes emanating from off-centreline
source locations and (iii) the r.m.s. profiles showed no tendency towards double
peaks far downstream, as are observed in homogeneous flows. For near-wall source
locations, the probability density function (PDF) of the scalar fluctuations evolved
from a quasi-Gaussian distribution near the wall to a strongly positively skewed PDF
(with a large spike at the cold-fluid temperature) for transverse locations away from
the wall. Increasing the Reynolds number was found to improve the mixing, even
though this decreases the amount of time for which the scalar can mix (owing to
the more rapid advection). For the centreline source location, the PDF shape was, in
general, more spiked, indicating the importance of the flapping of the plume in this
case. The effect of the meandering of the plume was less significant when the plume
was bounded by the wall. Second- and third-order velocity–temperature correlations
were presented. The differences in their profiles for the near-wall and centreline source
locations were distinct.

1. Introduction
The diffusion of scalars (e.g. temperature, mass, etc.) in turbulent flows is relevant to

a variety of scientific and engineering phenomena, including heat transfer, combustion,
meteorology, oceanic science and environmental pollutant dispersion. To model and
predict such processes accurately, a thorough understanding of scalar mixing in a
turbulent fluid is therefore required. Reviews of the subject have been compiled by
Sreenivasan (1991), Shraiman & Siggia (2000) and Warhaft (2000).

A problem of particular interest is the diffusion of scalars from concentrated sources
in turbulent flows. A classic example is the dispersion of a contaminant from a
smokestack in the atmospheric boundary layer. Here, a scalar (the contaminant) is
injected into the turbulent surroundings at a scale much smaller than the integral scale
of the velocity field. Consequently, the plume emitted by the smokestack – initially of
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136 R. A. Lavertu and L. Mydlarski

a characteristic size of the same order as the smokestack exit diameter – grows as it
is transported downstream. Experiments, simulations and theoretical work have been
devoted to furthering our understanding of problems of this nature.

The most fundamental problem is scalar dispersion from a concentrated source
in the simplest turbulent flow: homogeneous, isotropic turbulence. Though basic in
principle, its details are nevertheless complex. The difficulties increase when consi-
dering scalar mixing from a concentrated source in homogeneous, but anisotropic,
turbulent shear flow. (A thorough literature review of these two subjects is given in
Karnik & Tavoularis 1989.) The complexity further increases when the problem is
extended to inhomogeneous flows. Some of the previous work is summarized herein.

Taylor’s (1921) work inspired experiments studying the mean and fluctuating
temperature field downstream of a line source in (homogeneous, isotropic) grid-
generated turbulence. Among the first were Taylor (1935), Uberoi & Corrsin (1953)
and Townsend (1954). Subsequent work showed that the (time-averaged) mean
temperature profiles are Gaussian and that the development of the thermal plume in
this flow can be divided into three stages: molecular diffusive, turbulent convective
and turbulent diffusive. In the molecular-diffusive range (t � κ/〈v2〉), the growth of
the mean temperature profile width, σmean, (where σ is the standard deviation of a
Gaussian profile – a measure of its width) increases as t1/2. (t is the diffusion time, κ is
the thermal diffusivity and 〈v2〉 is the velocity variance in the transverse direction.) In
the turbulent–convective range (κ/〈v2〉 � t � τL, where τL is the Lagrangian integral
time-scale), the spreading of σmean increases linearly with time. In the final stage,
where t � τL, the spreading is proportional to t (2−n)/2, where n is the decay exponent
of the velocity field and takes on values close to one (Stapountzis et al. 1986). Though
the mean temperature profiles are Gaussian, the r.m.s. profiles of the temperature
fluctuation are non-Gaussian (Warhaft 1984; Stapountzis et al. 1986). The effect of
downstream distance of the wire from the grid on the mean and r.m.s. profiles was
also studied by Warhaft (1984).

Stapountzis et al. (1986) compared their experimental results of scalar dispersion in
homogeneous isotropic turbulence with the Lagrangian stochastic model of Sawford
& Hunt (1986). (See also Durbin 1980 and Thomson 1990.) They found that molecular
diffusion and viscosity affect the development of the thermal plume – particularly the
intensity of the temperature fluctuations – in all stages, not just in the molecular-
diffusive range. Anand & Pope (1983) also numerically studied scalar dispersion in this
flow. They developed a quantitative relation for all three stages of development of the
thermal plume using probability density function (PDF) methods. Livescu, Jaberi &
Madnia (2000) employed direct numerical simulation to study dispersion from a single
line source in homogeneous isotropic turbulence.

A line source placed in a homogeneous turbulent shear flow will determine the
effect of shear (an anisotropy) on the scalar dispersion. Detailed measurements of the
resultant thermal plume in such a flow field have been undertaken by Stapountzis &
Britter (1987), Karnik & Tavoularis (1989) and Chung & Kyong (1989). The mean and
r.m.s. temperature profiles have been documented in detail. Additionally, quantities
such as velocity–temperature correlations, temperature PDFs, and joint velocity–
temperature PDFs were compiled. Numerical simulations of similar experiments have
been performed by Wilson, Flesch & Swaters (1993) and Cho & Chung (1997).

The subject of the present work is scalar dispersion from a concentrated source in
inhomogeneous turbulent channel flow. The flow is fully developed and the channel
has a high aspect ratio. Consequently, it is inhomogeneous in only the wall-normal
direction. Scalar mixing from concentrated sources has been studied in other
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Scalar mixing from a concentrated source in turbulent channel flow 137

inhomogeneous flows – predominantly boundary layers and jets, which are inhomo-
geneous in a minimum of two directions. Because most ‘practical’ flows are
inhomogeneous, it is desirable to determine explicitly the effect of the inhomogeneity
on the dispersion of the scalar by studying it in a fully developed duct flow. This
motivates the present work, where it will be shown that the scalar mixing process
varies strongly from the wall to the channel centreline. In addition to elucidating
the effect of the inhomogeneity, the results presented herein will serve as a reference
for numerical simulations of turbulence. This is particularly true given that channel
flows more readily lend themselves to numerical simulation than boundary-layer
flows. Nevertheless, the previous work on scalar mixing from concentrated sources in
turbulent boundary layers is of interest. Motivated by the need to further understand
atmospheric pollutant dispersion, the thermal plume behind a line source in a
turbulent boundary layer has received significant attention.

Over a narrow range in both the streamwise direction (such that this direction can
be effectively considered homogeneous) and the wall-normal directions, some results
in boundary-layer flow may be similar to those in fully developed channel flow.
Specifically, for (i) small downstream distances and (ii) source locations and plumes
contained entirely in the inner layer (generally y/h < 0.1 (Pope 2000)), the velocity
fields of the two flows and the consequent scalar dispersion should be similar. However,
because the geometry of channel flow is significantly different from that of boundary-
layer flow, should (i) the plume have dispersed far enough downstream such that the
inhomogeneity in this direction can no longer be neglected, (ii) the source be located
outside the inner region or (iii) the plume have diffused out of the inner region, the
mixing of the scalar will differ.

The mean temperature profile downstream of a line source placed in a boundary
layer was studied by Shlien & Corrsin (1976). They found that, when normalized, it
approached an asymptotic form, independent of source position from the wall, and
that an appropriately defined turbulent Prandtl number was approximately unity.
Paranthoën et al. (1988) measured the mean and fluctuating temperature field down-
stream of a line source placed in a turbulent boundary layer and in a plane jet. They
deduced a rescaling scheme based on the temporal integral Lagrangian scale of
the vertical velocity fluctuations (see also Dupont, El Kabiri & Paranthoën 1985.)
This scheme satisfactorily collapsed the mean profiles onto a simple curve, however,
the profiles of fluctuating quantities did not rescale well (see figures 12 and 13 of
Paranthoën et al. 1988). Further measurements of scalar dispersion from a line source
in a boundary layer were undertaken by El Kabiri et al. (1998) to assess various
first- and second-order closure models. Measurements of the variance, intermittency,
peak concentration values, probability density functions and spectra of the scalar
have been made by Fackrell & Robins (1982) for ground level and elevated point
sources in a turbulent boundary layer. They also studied the balance of terms in
the variance and turbulent flux transport equations. Raupach & Legg (1983) made
velocity and temperature measurements from an elevated line source in a turbulent
boundary layer to test first- and second-order closure models. Additional work
involving the experimental study of scalar dispersion in inhomogeneous flow fields
has been performed by Legg, Raupach & Coppin (1986), Veeravalli & Warhaft (1990),
Bara, Wilson & Zett (1992), Tong & Warhaft (1995), and Vincont et al. (2000).

Scalar transport in low-Reynolds-number channel flow has been simulated by
Lyons & Hanratty (1991), Papavassiliou & Hanratty (1997) and Na & Hanratty
(2000). Kontomaris & Hanratty (1994) studied the effects of molecular diffusivity on
a point source located at the centreline of a turbulent channel flow. Direct numerical
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Low Re High Re

〈U〉y/h=1 [m s−1] 5.2 11.4
urmsy/h=1

[m s−1] 0.21 0.45

u∗ [m s−1] 0.26 0.54
εy/h=1 [m2 s−3] 0.56 4.7
�y/h=1 [mm] 16 20
λy/h=1 [mm] 4.2 3.3
ηy/h=1 [mm] 0.28 0.16
Re(= 〈U〉y/h=1h/ν) 10 400 22 800
Reτ (= u∗h/ν) 520 1080
Reλ(y/h=1)(= urms(y/h=1)λy/h=1/ν) 58 100

ys/h = 0.067 y+
s = 35 y+

s = 72
ys/h = 0.17 y+

s = 87 y+
s = 180

ys/h = 1.0 y+
s = 520 y+

s = 1080

Table 1. Flow parameters. The upper half of the table gives properties of the flow for the two
Reynolds numbers under consideration. The lower half gives the source locations in terms of
wall units for the two Reynolds numbers. h = 0.030 m. ν = 15 × 10−6 m2 s−1.

simulations of scalar mixing released from a point source in fully developed pipe
flow have been performed by Brethouwer et al. (1999). Vrieling & Nieuwstadt (2003)
performed direct numerical simulations of single and double line sources in fully
developed turbulent channel flow. Other numerical simulations of dispersion in
inhomogeneous turbulent flows have been performed by Bernard & Rovelstad (1994),
Wang & Komori (1999) and Iliopoulos & Hanratty (1999).

It should be noted that the mean concentration of scalar dispersion in a long pipe
can be accurately predicted using Taylor shear flow dispersion theory (Taylor 1953,
1954). This method can be extended to other turbulent shear flows, however, it is
valid only for very large diffusion times (i.e. times much greater than the Lagrangian
integral time scale, τL). Since the present work concentrates on the early stages of
diffusion (i.e. the turbulent convective stage), this method is not applicable to the
results presented herein. Lastly, we remark that the effects of inhomogeneity on scalar
mixing, including variations in the turbulence intensity across a plume, have been
studied theoretically in Hunt (1985).

The objective of the present work is to study scalar dispersion in an inhomogeneous
turbulent flow. The flow under consideration is one of the simplest inhomogeneous
turbulent flows: fully developed high-aspect-ratio turbulent channel flow. In such a
flow, the inhomogeneity is isolated to one direction (the wall-normal direction). Conse-
quently, the effect of the inhomogeneity on the scalar dispersion can be most readily
discerned. Statistics of the scalar field are studied for two Reynolds numbers and
three source locations – one at the channel centreline and two near-wall positions
(see table 1).

The remainder of the paper is organized as follows. The apparatus is described
in § 2. In § 3, the experimental conditions and sources of error are discussed. Results
are presented in § 4, where the (i) mean temperature field, (ii) fluctuating temperature
field, (iii) temperature probability density functions and (iv) velocity–temperature
correlations are detailed. Lastly, the conclusions and a discussion of the results are
given in § 5. As the results are presented, they will be compared to those of scalar
dispersion in homogeneous, isotropic, grid-generated turbulence and homogeneous
turbulent shear flow, where significant progress has been made, both theoretically and
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Scalar mixing from a concentrated source in turbulent channel flow 139

Figure 1. The channel in which the experiments were conducted.

experimentally. In addition, comparisons with other work in inhomogeneous flows
will also be made.

2. Apparatus
The open-circuit high-aspect-ratio channel shown in figure 1 was designed for the

present experiments. The channel cross-section is 1.1 m (=L) high by 0.06 m (=2h)
wide. These dimensions provide an aspect ratio of 18, ensuring that – away from the
top and bottom walls – the flow field will be two-dimensional.

The air flow is supplied by a centrifugal blower (Hudson Buffalo ACL size 330
BI Class 2), capable of operating over the range of required flow rates. The blower
is powered by a 7.5 h.p. electric motor, and is mounted on high-density rubber
footpads to damp vibrations. Precise control of the motor r.p.m. (and hence flow rate)
is accomplished by an ABB ACS 600 controller. A filter box was installed at the
blower intake and prevents particles greater than 3 µm in diameter from entering the
test-section and potentially interfering with the instrumentation.

A perforated plate located at the blower exit serves as a preliminary flow-
conditioning measure. In order to minimize the transmission of blower vibrations to
the flow conditioner, a flexible rubber coupling joins the blower output to the entrance
of the flow conditioner. The latter consists of a wide-angle diffuser, a settling chamber
and a contraction. The purpose of the wide-angle diffuser is to reduce the speed of
the flow before it enters the settling chamber. This allows the flow to remain there
for a longer period of time, and also reduces the local Reynolds number of the flow
through the screens and honeycomb. The area ratio of the diffuser is 3.55 – a design
constraint established by the (fixed) dimensions of the blower exit area, contraction
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ratio and cross-section of the channel. To minimize the diffuser length, a wall-angle of
45◦ was chosen. Inside a traditional diffuser, such a large wall-angle would normally
result in a strong adverse pressure gradient, with a subsequent separation of the
flow. The latter is inhibited by the use of four appropriately located screens inside
the diffuser, which balance the pressure rise (due to the decrease in velocity) with
the pressure drop (resulting from the screens). The design of wide-angle diffusers is
discussed in detail in Mehta (1977). The settling chamber eliminates any transverse
velocity fluctuations and swirl. Its cross-sectional area is constant and it begins with
an aluminium honeycomb section. Following the latter are six screens, appropriately
located to maximize the efficiency of the settling chamber (Reshotko, Saric & Nagib
1997). The honeycomb section is 76 mm long and the opposing hexagonal cell walls
are 6.35 mm apart, providing the desired length to diameter ratio and cell density
(Mehta 1977; Mehta & Bradshaw 1979). The mesh size of the screens is chosen
to be 1 mm, based on the necessary honeycomb cell diameter to screen mesh size
ratio (Mehta 1977; Reshotko et al. 1997). The flow conditioner height is the same
as the channel (as intended), and therefore the contraction is two-dimensional. A
contraction ratio of eight is chosen, based on recommended design criteria (Mehta
1977; Reshotko et al. 1997). To satisfy all contraction profile constraints, its shape is
based on a fifth-order polynomial. After exiting the contraction, the flow enters the
channel as a uniform, low-turbulence-intensity (0.25 %) velocity field.

The channel dimensions are 8 m × 1.1 m × 0.06 m. The sidewalls of the channel each
consist of 8 mated one-inch thick Plexiglas sheets of dimensions 1.1 m × 1 m. The top
and bottom walls each consist of four Plexiglas caps of dimensions 0.06 m × 2 m. To
ensure that the joints of the sidewall sheets do not interfere with the flow field, ‘biscuits’
and adjustable tightening screws are used along the joints in the spanwise direction
to keep the height between mating ridges less than 5 viscous lengths. This height is
dependent upon the flow Reynolds number. The maximum measured height is within
the limits of which the channel walls can be considered hydrodynamically smooth
(Tennekes & Lumley 1972). To establish fully developed flow as soon as possible,
boundary-layer tripping rods are placed near the entrance of the channel (Shah,
Chambers & Antonia 1983). Along each wall in the spanwise direction, a 3.2 mm
diameter rod is located 3 mm from the wall. These rods are located 60 mm downstream
of the entrance, to allow for some boundary-layer growth before tripping it. The test
section extends from 7.00 to 8.00 m downstream of the channel entrance. Custom-
made machined ports are located at 7.33 m and 7.67 m from the channel entrance
along the spanwise centreline, where all the measurements in this work are taken.

Injection of the scalar is accomplished by means of fine Nichrome wire line sources,
aligned in the spanwise direction and passing through small holes in the top and
bottom walls of the channel. For measurements close to the source (x/h � 10.8), the
source diameter was 0.127 mm. Farther downstream, a greater power input is required
to improve the signal-to-noise ratio. Therefore, a source diameter of 0.254 mm is
employed for these locations. The source is heated via a d.c. power supply, which
provides 45 Wm−1 and 100 Wm−1 for the small and large diameter sources, respec-
tively. Consequently, when temperature statistics are compared in a non-normalized
fashion (i.e. figures 6 and 9), the results for x/h > 10.8 must be divided by a factor of
2.22 (=100/45) to be consistent. We also remark that the line sources expand when
heated. Therefore, to maintain taut straight sources, a small weight is hung from the
bottom of the source, outside the channel.

Hot-wire anemometry was used to measure the longitudinal and transverse veloci-
ties. 3.05 µm diameter tungsten hot wires were operated at an overheat of 1.8 using a
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TSI IFA 300 constant temperature hot-wire anemometer. A TSI 1218 boundary-layer
probe was used to establish the flow conditions (figures 3 and 4) and a TSI 1241
X-wire probe was employed in the measurements of turbulent fluxes (figures 18–20).
The spatial resolution of the hot wires (in terms of viscous lengths, l+ ≡ lu�/ν, where l

is the wire length) was 9 and 18 for the low and high Reynolds numbers, respectively.
Khoo, Chew & Teo (2000) recommend (viscous) wire lengths no larger than 20–25
for accurate turbulence measurements. In terms of Kolmogorov variables, l/η(y = h)
was 1.8 and 3.1 for the low and high Reynolds numbers, respectively†. (Next to
the wall, these values became 3.3 and 5.6.) For the large-scale velocity measurements
presented in figures 18–20 (which were made outside the near-wall region), this resolu-
tion is adequate. The length-to-diameter ratio of the hot-wires was approximately 200
and the two wires composing the X-wire were separated by 1 mm. The effective-angle
method of Browne, Antonia & Chua (1989) was used to calibrate the X-wires. The
method of Lienhard (1988) was used to compensate the velocity measurements for
the variable temperature of the flow by a modified King’s Law with temperature-
dependent coefficients.

Cold-wire thermometry was used to measure the temperature field. The cold wires
were made of Wollaston wire (with 0.63 µm diameter platinum cores) and soldered to
TSI 1210 single-wire probes. The former were operated by a cold-wire thermometer
built at the Université Laval (Québec, Canada) and based on a constant-current
anemometry circuit given by Lemay & Jean (2001) and Lemay & Benäıssa (2001).
A single cold wire was used in the measurements of the mean temperature excess
(	T = 〈T 〉 − T∞), whereas all measurements of the fluctuating temperature employed
a cold-wire probe positioned 1 mm away from a X-wire. (Consequently, the fluctuating
temperature measurements begin farther from the channel wall to avoid interference
effects between the wall and the probe assembly.) The cold-wire probe current was
150 µA and the length-to-diameter ratio of the etched portion of its wires was
approximately 800 (i.e. lwire ≈ 0.5 mm). This choice was a compromise between the
competing effects of (i) spatial resolution and (ii) conduction between the cold-wire
and its prongs (Browne & Antonia 1987). A complete discussion of this is given
in Mydlarski & Warhaft (1998). Wyngaard’s corrections for spatial resolution error
(Wyngaard, 1968, 1971) were applied to the spectra. Lemay & Jean (2001) showed
that a 0.63 µm Pt–10%Rh cold wire is able to resolve frequencies up to 7.3 kHz and
8.7 kHz for flows of 5 m s−1 and 10 m s−1, respectively.

With the exception of the measurement of the mean quantities, the hot-wire
anemometer and cold-wire thermometer outputs were both high- and low-pass filtered
(using Kron-Hite 3382 and 3384 band-pass filters). A National Instruments PC-MIO-
16E4 data acquisition board controlled using LabVIEW was used to digitize their
analogue outputs. Moments of fluctuating quantities were recorded using data sets
consisting of 4.096 × 104 samples recorded at 200 Hz (for a corresponding record
duration of 3.4 min). The sampling frequency corresponds to roughly the inverse of
the integral time scale of the measured quantities. Spectral data sets (used to compute
spectra as well as any quantities involving time derivatives, e.g. dissipations) consisted
of 4.096 × 105 data points sampled at twice the low-pass filtering frequency (which
was set to a frequency slightly larger than the Kolmogorov frequency, fη = 〈U〉/(2πη)).

† η(y) ≡ (ν3/ε(y))1/4, where ε(y) is the dissipation rate of turbulent kinetic energy. The latter
is estimated, assuming local isotropy, by ε = 15ν

∫ ∞
0

κ2
1Eu(κ1) dκ1, where κ1 is the longitudinal

wavenumber and Eu(κ1) is the power spectrum of the longitudinal velocity fluctuations.
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Figure 2. A schematic of the experiment in which the coordinate system used
herein is defined.

Probability density functions (PDFs) were estimated using 4.096 × 105 samples
recorded at 200 Hz. Convergence of these quantities was verified in Lavertu (2002).

For the measurements of mean temperature excesses, the mean output voltage of the
cold-wire thermometer was determined by averaging the non-high-pass-filtered output
voltages. The ambient ‘cold’ fluid temperature, T∞, was also recorded to compensate
for drifts in room temperature. The cold temperature was measured by a mini-
bead thermistor (Sensor Scientific), located in the channel, upstream of the source.

Lastly, the thermal plume and flow field were scanned in the transverse direction
using a linear traversing mechanism driven by a precision stepper motor and linear
traversing mechanism (0.01 mm per step – Velmex BiSlide). Note that measurements
could not be made in the 10 mm region closest to the farthest wall because of inter-
ference from the probe. Therefore, no measurements for 1.67 � y/h � 2 are shown.

A schematic of the coordinate system used in the present work is shown in figure 2.

3. Experimental conditions and sources of error
The first objective of the present section is to characterize the flow field. This was

thoroughly done in Lavertu (2002) and the results are summarized herein. The second
objective of this section is to discuss and quantify (where possible) the potential
sources of error in the present work.

The (statistically) two-dimensional nature of the flow in the present apparatus was
verified by McLeod (2000). He found that profiles of the mean and r.m.s. longitudinal
velocity, as well as its skewness (〈u3〉/〈u2〉3/2) and kurtosis (〈u4〉/〈u2〉2) all collapsed
for measurements made at z/L = − 0.25, 0, +0.25.

The static pressure distribution in the channel was subsequently measured and
shown to be linearly decreasing by the end of the channel, where the experiments are
performed. However, this is the most rudimentary test for fully developed flow (Shah
et al. 1983). The mean and r.m.s. velocity profiles in the channel for a Reynolds number
of 22 800 are shown in figure 3 at two downstream measurement locations (x = 7.33m
and x = 7.67 m, which correspond to x/h=244 and 256, respectively. (Recall that h

is the channel half-width: 0.03 m.) The maximum difference in the measured profiles
is 0.9% for the mean and 3.7% for the r.m.s. The differences in the skewness and
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Figure 3. Velocity profiles across the channel at two downstream locations. (a) Mean velo-
city profile. (b) Root mean square velocity profile. �, x/h =244; +, x/h = 256. Re= 22 800.
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Figure 4. Power spectra of the longitudinal velocity fluctuations at the channel centreline
(y/h =1.0). Solid line: Re= 10 400. Dashed line: Re= 22 800.

kurtosis of the longitudinal velocity fluctuations measured at the centreline for these
two downstream locations was less than 0.01 (i.e. constant to within the experimental
uncertainty). Comparable results were obtained at a Reynolds number of 10 400 and
can be found in Lavertu (2002).

Given that fully developed flow has been achieved in the test section, we present
spectra of the velocity field in figure 4. The power-spectra of the longitudinal
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velocity fluctuations for the two Reynolds numbers collapse well at small scales
(when normalized by Kolmogorov variables).

Having characterized the flow, we must also ensure that the presence of the source
and the thermal field it generates do not affect the velocity field. As mentioned
in the previous section, two different line source diameters were used: 0.127 mm
and 0.254 mm. The source Reynolds number, Resource ≡ 〈U (y)〉d/ν, is based on the
local mean velocity and the kinematic viscosity of the air at the film temperature,
Tfilm ≡ (Tsource+T∞)/2. (Tsource was determined from an energy balance over the source in
conjunction with the applied power and the average convective heat transfer coefficient
over the source, calculated by means of the Zhukauskas (1972) correlation.) For the
different flows, source diameters and source locations, Resource varied from 17 to 111.
Since some values of Resource are above 40, vortex shedding from the source may
occur (Blevins 1990). However, no mechanical effects of the source were observed in
any of the experiments. None of the measured velocity spectra exhibited any spikes
indicative of vortex shedding. We therefore conclude that if vortex shedding is present,
its effects are so small that they are masked by the turbulence.

To confirm that the source diameter is not affecting the results, we examined
temperature statistics for different source diameters. Lavertu (2002) compared r.m.s.
and skewness profiles of the thermal fluctuations generated by sources with diameters
d =0.127 mm and d = 0.254 mm. (These diameters correspond to dsource/ηy = ys

= 0.85
and 1.7, respectively at Re= 10 400, where ηy = ys

is the Kolmogorov length scale at the
wall-normal source location.) Lavertu (2002) found the differences to be negligible.
Therefore, we are assured that our results are independent of the source diameter for
the downstream locations under consideration.

Given that the temperature field is statistically homogeneous in the direction of the
gravitational acceleration vector (z), it is difficult to determine the effect of buoyancy.
As a ‘worst-case’ estimate, the ratio of the buoyant production of turbulent kinetic
energy to its dissipation, g〈vθ〉/(T ε), was calculated assuming that the direction of
the acceleration due to gravity is in the transverse (y) direction. A typical value was
1.7% (for ys/h= 0.067, x/h= 4.0, Re= 22 800), showing the role of buoyancy to be
small. The scalar fluctuations can therefore be considered passive. Since the mean
temperature excesses in this experiment are under 1 K, this should come as no surprise.

The interaction of the channel walls with the thermal plume is studied by making
an approximate energy balance through the channel wall. Lavertu (2002) showed
that the heat transfer through the walls is a small fraction of the total heat transfer
to the flow. Assuming the temperature of the inner channel surface to be equal to
the centreline mean temperature in the plume (an overestimate), he found the heat
transfer through the wall to be 5% of the total power input to the thermal line source.
In addition, the ratio of the resistance to heat transfer by conduction through the
channel wall (tPlexiglas/(kPlexiglasA)) to the resistance to convective heat transfer over its

(inner) surface (1/(hconvectiveA)) is approximately 25 for the low-Reynolds-number case
and 42 for the high-Reynolds-number case†. Both values are sufficiently larger than
1 that the channel walls may be regarded as adiabatic.

We proceed to discuss the error of the experimental results to be presented herein.
First, the measurements of the mean temperature excess experience the largest
uncertainty. Their peak mean temperature rise is of the order of 0.5 K while the typical
error in their measurement is ±0.05 K. The latter, which is quantified by the error

† This ratio – hconvectivetPlexiglas/kPlexiglas, where h is the average convective heat transfer
coefficient, k is the thermal conductivity and t is the thickness – can be interpreted as a modified
Biot number.
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bars in figure 6, results from inaccuracies in estimating the free-stream temperature.
Consequently, the measurement of mean temperature excess profiles is difficult given
that the signal-to-noise ratio is often below 10. More emphasis is therefore placed
on the qualitative behaviour of the mean temperature profiles. Also note that the
mean temperature excess statistics are not shown for x/h = 10.8 (for ys/h= 1.0)
and x/h= 22.0 (for all ys/h). Both downstream locations correspond to the furthest
downstream measurements for the 0.127 mm and 0.254 mm diameter sources, respec-
tively. At such locations, the error can be too large to provide accurate results.

At this point, it is important to note that the fluctuating temperature field is not
subject to the effects of room temperature variations (and is therefore significantly
more precise). For its measurement, the cold-wire thermometer signal is high-pass
filtered (at 0.1 Hz), which eliminates any error from drifts in the room temperature.
Such room temperature variations occur at frequencies lower than the high-pass filter
frequency.

The errors in mean profile widths, peak r.m.s. temperature, r.m.s. profile widths and
r.m.s. peak locations are quantified by the error bars in figures 7, 9, 10 and 11. They
were estimated from multiple measurements of the respective quantities. The average
error in the velocity–scalar correlations has been estimated at ± 5% (of the value of the
correlation), with a maximum absolute error of ±0.05 in their peak. The measured cor-
relations between θ and v were generally less accurate than those between θ and u.

Lastly, errors in positioning the probe are small. Downstream distances are accurate
to within 1 mm (or x/h= 0.033). Wall-normal distances have an absolute error of
approximately 0.5 mm (y/h= 0.017) owing to uncertainties in the initial positioning of
the probe. However, the error in relative displacements is negligible owing to the high
precision (0.01 mm per step) of the stepper-motor-controlled traversing mechanism.

4. Results
The results are divided into a discussion of the mean temperature field (§ 4.1), the

fluctuating temperature field (§ 4.2), temperature probability density functions (PDFs)
(§ 4.3) and velocity–temperature correlations (§ 4.4). Experiments were performed at
two different Reynolds numbers, with the source located at three positions from
the wall. Table 1 summarizes the flow properties for the six experimental conditions
studied herein.

4.1. Mean temperature field

In isotropic grid-generated turbulence (Warhaft 1984), the transverse mean tempera-
ture profiles are Gaussian. The mean temperature profiles behind a concentrated
source in homogeneous turbulent shear flow are also initially Gaussian. Farther down-
stream, however, the profiles become asymmetric, and their peaks shift to the region of
lower velocity (Karnik & Tavoularis 1989). Mean temperature profiles (normalized by
the peak mean temperature) are shown in figure 5 for the ys/h= 0.067, 0.17 and 1.0
source locations. Over the downstream distances considered, they are approximated
well† by truncated Gaussian profiles with peaks that remain relatively fixed behind
the source. Any potential displacement of the peaks of the profiles is not discernable

† Because the wall can be approximated as adiabatic, a more accurate profile should, in principle,
be given by a Gaussian profile with reflection from an imaginary source located at −ys/h – see,
for example, Fackrell & Robins (1982). However, for the purposes of the present work (where the
emphasis is placed on the fluctuations and their related fluxes) the increased complexity is of little
benefit, especially with respect to the growth rates of the plume width – see figure 7.
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Figure 5. Non-dimensionalized mean temperature excess profiles at different downstream
locations for the three source locations and the two Reynolds numbers. The vertical grey
lines indicate the transverse location of the source. (a)–(c) correspond to Re =10 400. (d)–(f )
correspond to Re= 22 800. (a), (d) ys/h = 0.067. (b), (e) ys/h = 0.17. (c), (f ): ys/h = 1.0.
�, x/h = 4.0; × , x/h = 7.4; �, x/h = 10.8; +, x/h = 15.2; �, x/h = 18.6. The solid lines
corresponds to the best fit Gaussian profile.
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owing to the combination of (i) the smaller range of downstream positions considered
herein as compared to the unbounded flows of Fackrell & Robins (1982), Raupach &
Legg (1983), Karnik & Tavoularis (1989) and El Kabiri et al. (1998), (ii) the lack of
near-wall data because of the interference of the probes with the wall, and (iii) the
experimental scatter. (Karnik & Tavoularis (1989) only observed the drift of the peak
of the mean temperature profiles for x/M � 48.) The effect of the source location on
the mean temperature profile is as expected – source locations farther from the wall
have their peaks at locations farther from the wall. Also, as we might anticipate, the
profiles at the higher Reynolds number are less wide than those at the lower Reynolds
number. This observation derives from the fact that the plumes have had less time to
spread because the mean velocity is higher at the larger Reynolds number.

The peak mean temperature excess (∆Tpeak) is plotted in figure 6 as a function of
distance downstream of the source (x/h) for different source locations and Reynolds
numbers. In isotropic grid-generated turbulence, as well as in homogeneous turbulent
shear flow, the decay rate of the peak mean temperature is reasonably well described
by a power law of the form ∆Tpeak ∝ xn. In the present flow, this is clearly not the case.
Nevertheless, fitting a power law to the data (for the sole purpose of comparison with
data from homogeneous flows) results in a decay exponent of n ∼ −0.7, −0.5 and
−0.6 for the ys/h= 0.067, 0.17 and 1.0 source locations, respectively. (The values of
n showed no significant Reynolds-number dependence.) Such values are less than the
values obtained in homogeneous flows for which n ≈ −0.75 to −1.0 for x/M � 1 . (See
Karnik & Tavoularis (1989), figure 8, which summarizes their results in addition to the
grid turbulence results of Warhaft (1984) and Stapountzis et al. (1986).) Presumably,
for homogeneous flows at large enough values of x/M (so that the plume is well into
the turbulent diffusive stage), n should decrease to a value of the order of −0.5. (Such
measurements, however, have not been made in homogeneous flows – see Warhaft
1984.) In turbulent boundary layers, Dupont et al. (1985) showed that data from
different experiments collapsed (using a Lagrangian rescaling) and exhibited a decay
of the peak mean temperature with a power-law slope, n, of −1 that evolved to a decay
with n ≈ −0.5 farther downstream. In the present flow, a turbulent diffusive regime is
unexpected owing to its bounded nature. This will be discussed shortly with respect to
the r.m.s. temperature profiles. In numerical simulations of fully developed turbulent
channel flow, Vrieling & Nieuwstadt (2003) observed n ≈ −1 for a source located at
the channel centreline. However, we note that their data does not extend beyond
x/h ≈ 8 and is for a Reynolds number of Reτ = 180. For a centreline point source
release in fully developed pipe flow (ReD(≡ 〈U〉D/ν) = 5300), Brethouwer et al. (1999)
also observed a mean peak temperature decay with a slope of approximately −1.

The width of the mean profiles is quantified in figure 7, which plots the standard
deviations† of the best-fit Gaussian curves to the mean temperature profiles (σmean)
as a function of x/h for the different source locations and Reynolds numbers. Like
the previous figure, these do not exhibit a power-law dependence, as is the case in
homogeneous flows. Here, we note that the increase in σmean is retarded for larger
values of x/h – an observation presumably attributable to the channel walls ‘impeding’
the dispersion of the energy. As mentioned with respect to figure 5, the mean profile
widths for the higher Reynolds number are generally smaller than the corresponding
widths at the lower Reynolds number.

† The half-width of a profile is an alternative measure of a profile’s width and is defined to be
half the width of the profile when it is 50% of its maximum value. For a Gaussian profile, it can
be shown that the half-width is equal to 1.177 times the standard deviation.
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Figure 6. The downstream evolution of the peak mean temperature excess for both Reynol-
ds numbers. (a) ys/h = 0.067. (b) ys/h = 0.17. (c) ys/h = 1.0. �, Re = 10 400; × , Re = 22 800.
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Figure 7. The downstream evolution of the width of the mean temperature profiles for
both Reynolds numbers. (a) ys/h = 0.067. (b) ys/h = 0.17. (c) ys/h = 1.0. �, Re= 10 400; × ,
Re = 22 800. In the interest of clarity, error bars are shown only for the low-Reynolds-number
data since the accuracy of the measurements is similar for both Reynolds numbers.
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Figure 8. Non-dimensionalized r.m.s. temperature profiles at different downstream locations
for the three source locations and the two Reynolds numbers. The vertical grey lines indicate
the transverse location of the source. (a)–(c) correspond to Re= 10 400. (d)–(f ) correspond
to Re= 22 800. (a), (d) ys/h = 0.067. (b), (e) ys/h = 0.17. (c), (f ) ys/h = 1.0. �, x/h =4.0;
× , x/h = 7.4; �, x/h = 10.8; +, x/h =15.2; �, x/h = 18.6; �, x/h = 22.0. The solid lines
corresponds to the best fit Gaussian profile.

4.2. Fluctuating temperature field

The transverse profiles of the r.m.s. temperature fluctuation, θrms, normalized by their
peak value, θrms−peak are shown in figure 8. Like the mean profiles, for the ranges
under consideration, these are described well by truncated Gaussian curves (with
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deviations beginning to appear at large x/h for the plume with ys/h= 1.0). However,
unlike the mean profiles, there exists a clear drift of the peak of these profiles towards
the centreline (for the cases corresponding to source locations off the centreline†). A
drift of the peaks of the scalar r.m.s. profiles away from the wall for concentrated
source releases in turbulent boundary layers was also observed in the work of Fackrell
& Robins (1982), Raupach & Legg (1983) and El Kabiri et al. (1998).

In homogeneous turbulence, Warhaft (1984) and Karnik & Tavoularis (1989)
observed r.m.s. profiles that were initially double-peaked (up to x/M ∼ 2), then
single-peaked, then again double-peaked for distances far downstream from the
source. In the present work, our first downstream measurement is made at x/h = 4.0,
i.e. beyond the initial region in which a double-peaked r.m.s. profile might be expected.
(As a first estimate, � ∼ M in the works of Warhaft (1984) and Karnik & Tavoularis
(1989), whereas � ∼ h in the present work‡. Therefore, for the purposes of comparing
downstream distances between the different flows, scaling by M and h should be
similar.) There is no reason to suspect, however, that the r.m.s. profiles in the present
experiment are not double-peaked very close to the source.

Double-peaked r.m.s. profiles are not observed for far downstream distances. The
re-emergence of double-peaked r.m.s. (or equivalently variance) profiles in homo-
geneous flows was explained in Karnik & Tavoularis (1989). Noting that temperature
fluctuations result from (i) ‘local’ turbulent production in regions of non-zero mean
temperature gradient and (ii) turbulent transport of temperature, they remarked
that the latter causes temperature fluctuations at locations corresponding to the
peak mean temperature, where the mean transverse temperature gradient will be
zero. (This argument neglects the weaker mean streamwise temperature gradient – a
reasonable assumption.) If the size of the eddies performing the turbulent transport of
temperature is small compared to the distance over which the transverse temperature
gradient (here d〈T 〉/dy) changes, θrms should be roughly proportional to the local
value of the transverse temperature gradient, d〈T 〉/dy. For quasi-Gaussian mean
profiles, this will result in a double-peaked r.m.s. profile. On the other hand, should
the size of the eddies performing the turbulent transport be large compared to the
distance over which d〈T 〉/dy changes, the r.m.s. profile will be smoother. The former
case corresponds to plume widths larger than the integral scale of the turbulence,
whereas the latter case corresponds to the opposite case. (A similar explanation was
also given by Thomson 1990.) In the present bounded inhomogeneous flow, plume
widths much larger than the integral scale are physically impossible. Therefore, in
inhomogeneous flows, the re-emergence of double-peaked r.m.s. profiles is unlikely.

The downstream decay of the peak values of the θrms profiles is plotted in figure 9
for different source locations and Reynolds numbers. On a log–log plot, the curves
are approximately linear. Assuming their decay is described by a power law of the
form θrms−peak ∝ xn results in n ∼ −1 for all locations and Reynolds numbers. The
decay of the peak values of the temperature variance profiles in homogeneous flows
was summarized in Karnik & Tavoularis (1989), figure 10. In homogeneous, isotropic
grid turbulence, n ∼ −0.8 for xθ/M � 3. In homogeneous shear flow, Karnik &

† Given the underlying symmetries of the experiment, all profiles for ys/h= 1.0 must be symmetric
about the channel centreline (y/h = 1.0).

‡ In the present inhomogeneous flow, � = �(y). At the channel centreline, �= 0.53h and 0.66h
for Re = 10 400 and 22 800, respectively. In Warhaft (1984), � = 0.4M to 0.65M , depending on the
downstream position. In Karnik and Tavoularis (1989), �= 0.4M to 2M .
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Figure 9. The downstream evolution of the peak r.m.s. temperatures for both Reynolds
numbers. (a) ys/h = 0.067. (b) ys/h =0.17. (c) ys/h = 1.0. �, Re = 10 400; × , Re = 22 800.
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Figure 10. The downstream evolution of the width of the r.m.s. temperature profiles for
both Reynolds numbers. (a) ys/h = 0.067. (b) ys/h = 0.17. (c) ys/h = 1.0. �, Re= 10 400; × ,
Re =22 800. In the interest of clarity, error bars are shown only for the low-Reynolds-number
data since the accuracy of the measurements is similar for both Reynolds numbers.
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ys/h Re A m

0.067 10 400 0.111 0.431
22 800 0.096 0.454

0.17 10 400 0.134 0.372
22 800 0.132 0.348

1.0 10 400 0.075 0.679
22 800 0.067 0.697

Table 2. Parameters corresponding to the power-law evolution of standard deviations of the
Gaussian curve fits applied to the θrms profiles: σrms/h = Axm.

Tavoularis (1989) show that nθ ≈ −0.85 ‘near the source’ (i.e. for xθ/M � 10) and that
nθ ≈ − 1.6 farther downstream.

The standard deviations of the best-fit Gaussian curves to the r.m.s. temperature
profiles (σrms) are plotted as a function of x/h in figure 10 for the different
source locations and Reynolds numbers. We observe that the plumes at the lower
Reynolds numbers exhibit slightly larger widths, owing to their correspondingly longer
advection times. The best fit power laws to these curves (of the form σrms/h= Axm)
are given in table 2.

Note in table 2 that the scaling exponents, m, show no Reynolds-number depen-
dence. They are, however, strongly dependent on the source location, ys/h. For the
source location closest to the wall (ys/h= 0.067), m ≈ 0.44. For the source located
at ys/h= 0.17, m decreases to 0.36. For the source located at the channel centreline,
m ≈ 0.69. (This non-monotonic trend of m in ys/h is similar to what was observed
for the decay rates of the mean peak temperatures.) The initial drop in m may be
attributable to the decrease in turbulence intensity with increasing distance from the
wall. Except for locations very close to the wall (i.e. for y+ < 20, e.g. Pope 2000,
p. 283), the turbulence intensity falls as one progresses from the wall towards the
channel centreline (because the production of turbulent kinetic energy is highest at
the wall, where the mean velocity gradient is the largest). Therefore, we would expect
m to be the largest for near-wall source locations and smallest for a source located
on the channel centreline. However, the subsequent rise in m for ys/h= 1.0 may be
attributable to the increased flapping of the plume for such a source location. (The
latter phenomenon will be confirmed in the next section when examining the PDFs
of the temperature fluctuations.) Flapping is less significant for the ys/h= 0.067 and
0.17 source locations, which are in close proximity to the wall. In this respect, the
results pertaining to the ys/h= 1.0 source location are closest to Warhaft’s (1984)
results in homogeneous, isotropic turbulence, where m is roughly 0.75.

The drift of the peak of the r.m.s. profiles is plotted in figure 11 for the two near-wall
source locations and two Reynolds numbers. (Because of the underlying symmetries
of the present experiment, the r.m.s. profiles for ys/h= 1.0 must be even functions
about y/h= 1. Therefore, any centreline peak will not drift.) As expected, the drift
of the peaks is smaller for the high-Reynolds-number case, where the plume has
less time to diffuse outwards. They also exhibit approximate power-law behaviours,
with a scaling exponent of 0.6 for ys/h= 0.067 and 0.5 for ys/h= 0.17. The trend is
consistent with the fact that the scaling exponent should tend to zero as ys/h → 1.

Another quantity of interest is the ratio of the (peak) r.m.s. temperature fluctuation
to the (peak) mean temperature excess. In the present flow, we have observed that
the peaks of the r.m.s. profiles drift, whereas the peaks of the mean profiles remain

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

04
00

32
10

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112004003210


Scalar mixing from a concentrated source in turbulent channel flow 155

100 100

100 100101 102 101 102
10–110–1

x/h x/h

ypeak

(a) (b)

h

Figure 11. The downstream evolution of the transverse location of the peak of the r.m.s.
temperature profiles for both Reynolds numbers. (a) ys/h =0.067. (b) ys/h = 0.17. �,
Re = 10 400; × , Re = 22 800.
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Figure 12. Typical power spectra of the temperature fluctuations. Solid line: x/h = 4.0.
Dashed line: x/h = 18.6. (a) ys/h = y/h = 0.17. (b) ys/h = y/h = 1.0.

relatively fixed. Therefore, calculating such a ratio may not be sensible for the
ys/h= 0.067 and 0.17 source locations. However, both the mean and r.m.s. profiles
peak at the same location (y/h= 1.0) for centreline source locations. For our data,
we find that θrms–peak/∆Tpeak decreases monotonically from 1.75 ± 0.1 (at x/h = 4.0)
to 0.8 ± 0.1 (at x/h= 18.6). However, no conclusions regarding asymptotic values
can be made. We can remark that the present results are larger than what has been
observed in homogeneous flows (Warhaft 1984; Karnik & Tavoularis 1989) and fall
within the wide range of observed values in inhomogeneous flows. For example, in the
turbulent-boundary-layer work of Fackrell & Robins (1982), the maximum value of
this ratio was in the range 1.3 to 5, with larger values associated with smaller (point)
source sizes (see Chatwin & Sullivan 1979; Durbin 1980; Sawford & Hunt 1986;
Thomson 1990). In fully developed turbulent channel flow, Vrieling & Nieuwstadt
(2003) observed a maximum value of θrms-peak/∆Tpeak equal to 0.8 at x/h = 8.

Lastly, figure 12 presents typical spectra of the scalar field. Though the spectra
were calculated for all the cases studied herein, they generally added little insight
to the evolution of the fluctuating scalar field. One noteworthy observation was
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Figure 13. PDFs of the temperature fluctuations at x/h = 7.4 for ys/h = 0.067.
(a) Re= 10 400. (b) Re= 22 800. �, y/h = 0.067; × , y/h = 0.17; �, y/h = 0.33.

that, with the exception of the smallest downstream distances, the spectra exhibited
approximate κ−1

1 scaling ranges (which were more clearly defined for the near-wall
source locations). Such results are reminiscent of those of Villermaux, Innocenti &
Duplat (2001), who demonstrated that a κ−1

1 scaling results when a scalar whose
distribution is intermittent (e.g. from the flapping of the plume) is injected in the
inertial range of scales and subject to a fixed stretching rate.

4.3. Temperature probability density functions

The statistical distribution of the scalar fluctuations is investigated in this section by
considering the probability density functions (PDFs) of the temperature field.

When a scalar is introduced into a turbulent flow at small scales (as is the case in
the present work), the temperature fluctuations are produced by two mechanisms. One
is the internal turbulent structure of the thermal plume itself. The second is the bulk
flapping of the plume, where the instantaneous plume is moved from side to side by
the large eddies. The flapping results in a meandering profile of the plume downstream
from the source (for the locations where the plume width is smaller than the largest
eddies). This manifests itself in the PDF by a spike at a temperature corresponding to
that of the cold fluid (for measurement locations that can fall outside of the flapping
plume).

PDFs of the temperature fluctuations for different transverse (y) locations are shown
in figure 13 at a downstream position of x/h = 7.4 for both Reynolds numbers. In
this figure, the source location is ys/h= 0.067. Here, the near-wall PDFs are found
to be better mixed than those measured farther away from the wall – they are more
Gaussian in shape than the PDF measured at y/h = 0.33, which exhibits a spike
at the corresponding cold fluid temperature. In addition, as the Reynolds number is
increased, the near-wall PDFs become even better mixed. For Re = 22 800, the PDF at
y/h=0.17 becomes less skewed, more Gaussian in shape and similar to that measured
at y/h=0.067. At the higher Reynolds number, the spike of the PDF measured at
y/h=0.33 drops from 0.8 to 0.6. This tendency results from the increased mixing
associated with higher Reynolds numbers and is more significant than the fact that
the scalar has had less time to mix (because of the faster advection).

Analogous measurements for a source location of ys/h= 0.17 are given in figure 14.
Here, similar results are obtained – the PDF evolves from an approximately Gaussian
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Figure 14. PDFs of the temperature fluctuations at x/h =7.4 for ys/h =0.17. (a) Re = 10 400.
(b) Re = 22 800. �, y/h = 0.067; × , y/h = 0.17; �, y/h =0.33; �, y/h = 0.50; �, y/h = 0.67.
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Figure 15. PDFs of the temperature fluctuations at x/h =7.4 for ys/h = 1.0.
(a) Re =10 400. (b) Re= 22 800. �, y/h = 0.8; × , y/h = 1.0.

shape near the wall to a skewed spiked shape as the centre of the channel is ap-
proached. As before, increasing the Reynolds number improves the mixing in the flow.
Note that the location of the cold fluid spike changes. This results from the fact that
the mean temperature changes in the transverse (y) direction. When the PDFs are
plotted dimensionally versus the total temperature, ∆T + θ (not shown), the locations
of the cold spikes all align at T∞.

PDFs of the thermal plume emanating from a source located at the channel
centreline (ys/h= 1.0) are shown at x/h= 7.4 in figure 15. For all transverse locations
(even y/h= 1.0 – directly behind the source), the PDF is spiked and positively skewed,
implying that flapping of the thermal plume plays a dominant role in the dispersion
of the scalar at this central source location.

The downstream evolution of the PDFs are shown in figure 16. All measurements
are for transverse locations that are downstream of the source (i.e. y = ysource).
As the downstream distance increases, the PDF becomes better mixed for all
source locations and Reynolds numbers. As the source is located farther from the
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Figure 16. The downstream evolution of the PDFs of the temperature fluctuations. The
transverse position in each figure is behind the source location (i.e. y = ys). (a)–(c) correspond
to Re= 10 400. (d)–(f ) correspond to Re= 22 800. (a), (d) ys/h = 0.067. (b), (e) ys/h = 0.17.
(c), (f ) ys/h = 1.0. �, x/h = 4.0; × , x/h =10.8; �, x/h = 22.0.

wall, the PDF is more positively skewed, indicating that the near-wall source locations
mix the scalar better in the initial stages of the plume. Such a result is consistent with
the larger turbulence intensity near the wall and increased flapping of the plume for
the centreline source location.
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For many combinations of position (x/h, y/h) and source location (ys/h), the
PDFs exhibit a spiked, positively skewed shape. Other measurements (e.g. Fackrell &
Robins 1982; Villermaux et al. 1998; Brethouwer et al. 1999) have shown PDFs that
were described well by exponential curves. Plotting the present results in a log–linear
form (where an exponential appears as a straight line) indicates that the above
mentioned PDFs are not inconsistent with these results. However, we remark that the
quality of the (exponential) fit to the PDFs is inferior to those observed in Villermaux
et al. (1998). In log-linear coordinates, the exponential tail of the PDF often displays
a slight concave-down ‘hump’. Such a phenomenon may be a remnant of the peak of
the PDF pertaining to samples that are measured when the probe is inside the plume
(as opposed to the peak at the cold fluid temperature. See, for example, the bimodal
PDF for y/h= 0.33 in figure 14(b), which clearly shows both peaks.) The existence
of the hump may derive from the bounded nature of the present flow that limits the
flapping of the plume.

Some insight into the mixing process can be obtained by considering the transverse
r.m.s. profiles of the previous section in conjunction with the PDFs. If we consider
the shapes of the PDFs at the locations where the r.m.s. profiles peak, the PDFs
are found to exhibit similar shapes. This shape has two smaller spikes – one at the
cold-fluid temperature and another at a temperature corresponding to the hotter fluid
(i.e. the plume). For an example of this (see figure 14b) the PDF at y/h = 0.33 for
ys/h= 0.17, x/h= 7.4 and Re = 22 800. (Figure 8 shows that the corresponding r.m.s.
profile peak is in the vicinity of y/h ≈ 0.35. This was verified for other cases not
shown here.) The implication to be drawn from this is that the r.m.s. fluctuations
contain an important contribution from the flapping of the thermal plume and do
not exclusively result from the internal structure of the plume itself.

The tendency towards strongly positively-skewed PDFs away from the centres of
the plumes is evident in figure 17, where transverse skewness profiles are plotted.
Results are presented for the three source positions, the two Reynolds numbers and
selected downstream distances. Near the centres of the plumes, the PDFs of θ are
relatively symmetric and therefore have skewnesses around zero. However, as the
edges of the plumes are approached, the PDFs become positively skewed and their
skewness increases. Very far away from the sources locations (and therefore centres of
the plume), the skewness falls to zero outside the plume. As the downstream distance
increases, the PDFs become better mixed and the skewnesses consequently drop. With
respect to the skewness profiles corresponding to near-wall source locations, it is of
interest to note that the near-wall skewness falls to negative values for large enough
downstream distances. This indicates that such locations are most often inside the
plume and experience occasional bursts of cold fluid – the opposite of what occurs
on the edges of the plume. However, consistent with the results of Brethouwer et al.
(1999), this is not the case for the plumes emanating from centreline source locations,
which have positive skewnesses for all transverse and downstream locations.

4.4. Velocity-temperature correlations

Results for specific combinations of source location (ys/h), downstream position
(x/h) and Reynolds number are given below. For results pertaining to combinations
not presented herein, the reader is referred to Lavertu (2002).

The correlation coefficients of (i) u and θ and (ii) v and θ are defined by:

ρuθ ≡ 〈uθ〉
urmsθrms

(4.1)
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Figure 17. Transverse profiles of the skewness of the temperature fluctuations at different
downstream locations for the three source locations and the two Reynolds numbers. (a)–(c)
correspond to Re= 10 400. (d)–(f ) correspond to Re= 22 800. (a), (d) ys/h =0.067. (b), (e),
ys/h = 0.17. (c), (f ) ys/h =1.0. �, x/h = 4.0; × , x/h = 10.8; �, x/h =22.0.

and

ρvθ ≡ 〈vθ〉
vrmsθrms

. (4.2)

ρuθ and ρvθ are presented in figure 18 at x/h = 7.4 and Re =10 400 for the three
source locations. They represent the non-dimensional longitudinal and transverse
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Figure 18. Transverse profiles of the correlation coefficients of velocity and temperature,
ρuiθ . �, ρuθ ; × , ρvθ . (a) ys/h = 0.067. (b) ys/h = 0.17. (c) ys/h = 1.0. x/h = 7.4. Re = 10 400.

turbulent heat fluxes, respectively. For the off-centreline source locations, ρuθ and ρvθ

are opposite in sign because of the negative correlation between u and v in this region
of the flow. As necessitated by the underlying symmetries, ρuθ exhibits even (and ρvθ

exhibits odd) symmetry about the channel centreline for ys/h= 1.0.
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The Reynolds number and downstream distance from the source do not change the
overall shape of the heat flux profiles significantly. With increasing Reynolds number,
the profiles become slightly thinner, consistent with the profiles in the previous
sections. As the downstream distance is increased, the profiles widen, as expected. For
the near-wall source locations, ρuθ and ρvθ peaked at values of −0.4 to −0.5 and 0.4 to
0.5, respectively, with a slight tendency towards larger magnitudes for larger x/h. For
the centreline source locations, the peaks of ρuθ increased from approximately 0 to
0.4 (opposite to the results of Brethouwer et al. 1999) and the peaks of ρvθ decreased
from approximately 0.4 to 0.3 when x/h was increased. The results for near-wall
sources are (i) similar to those of Fackrell & Robins (1982), Raupach & Legg (1983)
and El Kabiri et al. (1998) in turbulent boundary layers and (ii) significantly different
from those for ys/h= 1.0. In addition, the profiles of the turbulent heat fluxes are
significantly different from the results obtained in homogeneous flows (e.g. Karnik &
Tavoularis 1989) owing to the presence of the wall and the different underlying sym-
metries of the two flows.

The turbulent transport of scalar variance by velocity fluctuations, 〈θ2ui〉, is given
in figure 19 at x/h= 7.4 and both Reynolds numbers for the three source locations.
The longitudinal and transverse transport terms are non-dimensionalized as follows:

〈θ2u〉ND ≡ 〈θ2u〉
〈θ2〉urms

(4.3)

and

〈θ2v〉ND ≡ 〈θ2v〉
〈θ2〉vrms

. (4.4)

It is worth noting that the non-dimensionalized quantities are not correlation
coefficients and are therefore not bounded by ±1. (This will be relevant shortly.)
As with the turbulent heat fluxes, the near-wall source locations produce results
similar to those in turbulent boundary layers, but significantly different from those
corresponding to the centreline source location.

In studying figure 19, there appears to be a significant Reynolds-number dependence
– especially for the near-wall source locations. As the Reynolds number increases,
the peaks of the non-dimensional scalar variance transport decrease in magnitude.
However, the shapes of the profiles remain similar. This decrease is due to the non-
dimensionalization. Considering θ2 to be a variable in and of itself, a correlation
coefficient can be defined as follows:

ρθ2ui
≡ 〈θ2ui〉

(θ2)rmsuirms

=
〈θ2ui〉

(
√

K(θ) − 1)〈θ2〉uirms

, (4.5)

noting that the r.m.s. of θ2 (i.e. (θ2)rms) can be re-written as:

(θ2)rms ≡ 〈(θ2 − 〈θ2〉)2〉1/2 = 〈θ4〉1/2 − 〈θ2〉 = (
√

K(θ) − 1)〈θ2〉, (4.6)

where the kurtosis of the scalar is defined as:

K(θ) ≡ 〈θ4〉
〈θ2〉2

. (4.7)

Given that the correlation coefficient ρθ2ui
must be bounded by ±1, the non-

dimensionalized scalar variance turbulent transport terms 〈θ2u〉ND and 〈θ2v〉ND must
be bounded by ±(

√
K(θ) − 1), cf. equations (4.3) – (4.5). The ratio of (

√
K(θ) − 1) at

Re = 10 400 to (
√

K(θ) − 1) at Re =22 800 (at the locations of the peaks of 〈θ2v〉 for
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Figure 19. Transverse profiles of the non-dimensionalized turbulent transport of scalar
variance, 〈θ2ui〉ND . �, 〈θ2u〉ND; × , 〈θ2v〉ND . (a)–(c) correspond to Re = 10 400. (d)–(f )
correspond to Re= 22 800. (a), (d) ys/h = 0.067. (b), (e) ys/h = 0.17. (c), (f ) ys/h = 1.0.

ys/h= 0.067 and x/h= 7.4) is 2.2. This is not inconsistent with the ratio of the peaks
of 〈θ2v〉ND , and suggests that the non-dimensionalization is presumably the source
of the apparent Reynolds-number dependence. (As for the mean, r.m.s. and skewness
profiles, the variation in the kurtosis of the scalar field with Reynolds number is
dominated by the narrowing of the plume width at higher advection velocities.) To
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remove the apparent Reynolds-number dependence, the scalar variance turbulent
transport could be non-dimensionalized following (4.5). This, however, is not the
standard convention and is the reason it was not used. Nevertheless, this shows the
effect of the PDF shape and its Reynolds-number dependence on the transport of θ2.

As x/h increases (not shown), the turbulent scalar variance transport profiles
broaden, as expected. For the non-centreline source locations, the peaks of both
〈θ2u〉ND and 〈θ2v〉ND decrease in magnitude with downstream distance for both
Reynolds numbers. At x/h= 7.4, the peaks of both profiles occur at the same
transverse location. Although the widths of both profiles are the same farther
downstream, the peak of 〈θ2u〉ND does not drift as much as that of 〈θ2v〉ND . For the
centreline source location, the peaks of 〈θ2u〉ND increased in the downstream distance,
whereas the peaks of 〈θ2v〉ND decreased.

The last velocity–temperature correlation to be considered is the transport of tur-
bulent heat flux by turbulent velocity fluctuations, 〈u2θ〉 and 〈v2θ〉, given in figure 20
at x/h=7.4 and Re = 10 400 for the three source locations. The longitudinal and
transverse terms are non-dimensionalized as follows:

〈u2θ〉ND ≡ 〈u2θ〉
〈u2〉θrms

(4.8)

and

〈v2θ〉ND ≡ 〈v2θ〉
〈v2〉θrms

. (4.9)

For the two cases corresponding to near-wall sources, the profiles are similar –
negative close to the wall, becoming positive away from the wall and returning to
zero far away from the wall. For the centreline source location, both profiles exhibit
even symmetry about the centreline, as required. The Reynolds-number dependence
of the (turbulent) transport of turbulent heat flux is limited to a slight thinning
of the profile widths at higher Re. No spurious Reynolds-number dependence is
observed for these triple correlations as was observed for 〈θ2ui〉 given that the present
non-dimensionalization depends on K(u) and K(v) (and not K(θ)), which are more
constant because they do not depend on the width of the thermal plume. Lastly, the
downstream dependence of 〈u2θ〉ND and 〈v2θ〉ND (not shown) is as expected – the
profiles broaden as x/h increases. There is a slight tendency towards higher peaks
with increasing x/h for the near-wall source locations.

5. Conclusions and discussion
The mixing of a scalar (temperature) emitted from a concentrated line source

in fully developed, high-aspect-ratio channel flow was studied. Results treating the
(i) mean temperature field, (ii) fluctuating temperature field, (iii) probability density
functions of the temperature fluctuations and (iv) velocity–temperature correlations
were presented. Three source locations (ys/h= 0.067, 0.17 and 1.0) and two Reynolds
numbers (Re = 10 400 and 22 800) were considered. Statistics were presented for
4.0 � x/h � 22.0. This range of downstream distances is beyond the molecular
diffusive range. A significant turbulent diffusive range is not expected herein because
of the bounded nature of the flow and the consequent inability of the plume to be
wider than the largest eddies of the flow.

The mean temperature excess profiles are found to be described well by truncated
Gaussian distributions. The centres of the profiles remain relatively fixed at a
transverse location downstream of the source. The downstream evolution of the
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Figure 20. Transverse profiles of the non-dimensionalized transport of turbulent heat flux
by turbulent velocity fluctuations, 〈u2

αθ〉ND . �, 〈u2θ〉ND; × , 〈v2θ〉ND . (a) ys/h =0.067. (b)
ys/h = 0.17. (c) ys/h = 1.0. x/h = 7.4. Re = 10 400.

peak temperature excess can be approximated (over the downstream distances under
consideration) by a power law with a decay exponent, n, in the range −0.5 to −0.7.
The value of n depends on the transverse location of the source (ys), with the fastest
decay occurring for the source located at ys/h= 0.067 and the slowest decay occurring
for ys/h= 0.17. The standard deviations of the profiles – a measure of the profile
width – grow at a rate that decreases with downstream distance, thus exhibiting the
effects of the inhomogeneous, bounded nature of the flow.
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Like the mean temperature excess profiles, the r.m.s. temperature fluctuation
profiles are described well by truncated Gaussian distributions for the downstream
distances considered herein. However, unlike the mean profiles, the peaks of the r.m.s.
profiles drift towards the channel centreline (for off-centreline source locations). The
downstream decay of the peak r.m.s. temperature follows an approximate power-law
behaviour with a decay exponent of approximately −1. Similar to the mean profiles,
the growth rate of the standard deviations of the r.m.s. profiles was a non-monotonic
function of the source location.

The PDFs of the scalar fluctuations exhibited strong dependencies on the source
location, the downstream position and the transverse position. For the near-wall
source locations, the PDF of the scalar field evolves from a quasi-Gaussian distribution
near the wall to a strongly positively-skewed PDF with a large spike at the cold fluid
temperature in the tail of the mean profile (i.e. far from the wall). In addition,
increasing the Reynolds number was found to improve the mixing undergone by the
scalar. Given that increasing the Reynolds number (by increasing the mean velocity)
has two opposite effects – increasing the turbulent Reynolds number (and therefore
the mixing) versus decreasing the amount of time for which the scalar is mixed (due to
the faster advection) – such a result is not evident a priori. For source locations at the
centreline, the scalar PDF is initially spiked and positively-skewed for all transverse
positions. This indicates that the flapping of the plume plays an important role for
that source location. As would be expected, the PDFs become better mixed (for all
source locations and Reynolds numbers) as the downstream distance increases.

Lastly, velocity–temperature correlations were measured. The profiles of all the
correlations presented herein are strongly dependent on the source location. The
profiles of the correlation coefficients of the (longitudinal and transverse) velocity
and temperature fluctuations are relatively independent of the Reynolds number. All
profiles broaden with increasing x/h. For the two near-wall source locations, ρuθ and
ρvθ peak at values of −0.4 to −0.5 and 0.4 to 0.5, respectively, with a slight tendency
towards larger magnitudes at larger x/h. For the centreline source locations, ρuθ and
ρvθ exhibit symmetric and anti-symmetric profiles about the centreline, as required.
In this case, the profiles broaden, the peaks of ρuθ increase from approximately 0
to 0.4 and the peaks of ρvθ decrease from approximately 0.4 to 0.3 with increasing
x/h.

The turbulent transport of scalar variance exhibits profiles that broaden and peaks
that decrease in magnitude with increasing x/h for the near-wall source locations.
For the centreline source location, the peaks of 〈θ2u〉ND increase in the downstream
distance, whereas the peaks of 〈θ2v〉ND decrease in that same direction. There appeared
to be a Reynolds-number dependence of 〈θ2ui〉ND – especially for the near-wall source
locations. However, this dependence was attributed to the non-dimensionalization,
which is sensitive to the shape of the scalar plume, which narrows at the higher
Reynolds number.

The transport of turbulent heat flux by turbulent velocity fluctuations, 〈u2
αθ〉ND

shows no significant Reynolds-number dependence other than a slight narrowing of
the profiles. The profiles widen as the plume evolves in the downstream direction
and the peak of the profiles for the near-wall source locations tends to slightly larger
values with increasing x/h.

Given that (i) the motivation for the present work was the explicit determination
of the effect of inhomogeneity in the flow on the dispersion of a scalar within it, and
(ii) scalar dispersion in a turbulent boundary layer has received much attention in
the past (whereas scalar dispersion in channel flow has not), an explicit comparison
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of the scalar mixing process in the two flows is required. Recall that their principal
differences are (i) the existence of a weak longitudinal inhomogeneity in boundary
layers (which is absent in channel flow), and (ii) the different nature of their outer
flows. The importance of the former is probably smaller than that of the latter, which
should be significant outside of the inner layer.

Strong differences between the dispersion within turbulent boundary layers and the
present work should be anticipated for scalar statistics resulting from the ys/h= 1.0
source, which is located in the outer region as far as possible from the wall. Some
differences may be observed for the ys/h= 0.17 source location, which is located
outside the inner layer, though still in the log-law region (as defined by Pope 2000,
p. 275). The fewest differences should be expected for the ys/h= 0.067 source location
statistics because the source is located within the inner layer. Nevertheless, differences
remain possible once the plume has diffused outside the inner layer, which occurs
very rapidly (see figure 5).

Some of the differences (and similarities) have already been reported in § 4. For
example, the peaks of the r.m.s. profiles (figure 8) are found to drift towards the
centreline for the two near-wall source locations, but the peak of the r.m.s. profile
remained stationary when the source was located at ys/h= 1.0. The latter is merely
a consequence of the underlying symmetry of channel flow. However, this lack of
an analogous symmetry in turbulent boundary layers (that derives from the different
geometry of the flow) is precisely what causes the two flows to have different outer
layers. In comparing the data from the ys/h= 0.17 source location and that of the
elevated line source of Fackrell & Robins (1982) (for ys/H = 0.19, where H is their
boundary-layer thickness), the displacement of the peaks of the r.m.s. profiles appear
similar, though the data of Fackrell & Robins (1982) only extend to x/H = 6.52 (where
ypeak/H = 0.3, similar to figure 11b). As their plume disperses farther downstream (and
consequently farther away from the wall, deeper into the outer layer), larger differences
could be expected. For example, the r.m.s. profiles of El Kabiri et al. (1998) peak at
ypeak/∆o = 0.6 at a downstream distance of x/∆o = 10.4 for ys/∆o = 0.3 (∆o is their
boundary-layer thickness.) Nevertheless, given the differences in Reynolds numbers,
source locations, and lack of a Lagrangian rescaling of the downstream distances,
strong conclusions should be avoided.

Furthermore, for the larger downstream distances, the r.m.s. profiles behind the
centreline source become sub-Gaussian (see figure 8c,f ). This is not the case for
the r.m.s. profiles behind the two near-wall sources, which are approximated very
well by truncated Gaussian distributions for all x/h. To our knowledge, such sub-
Gaussian scalar r.m.s. profiles have not been observed in turbulent boundary layers.
We conjecture that such a characteristic arises from the growth of the tails of the
r.m.s. profile being impeded by the walls. Following this train of thought, we might
expect that at larger x/h than measured herein, the r.m.s. profiles emanating from a
near-wall sources would also become sub-Gaussian because their tails will begin to
be affected by the far (y/h= 2.0) wall. Given that the tails must travel twice as far
to ‘encounter’ a wall (i.e. ∼ 2h versus h for a centreline source), such an observation
would not occur until farther downstream.

In the same vein, the observed non-monotonic trend (in ys/h) of the scaling
exponents of σrms/h as a function of x/h (m – see table 2) is almost certainly related
to the outer-layer flow in a channel. Excepting for locations very close to the wall, the
turbulence intensity decreases with increasing distance from the wall (as is also the case
in turbulent boundary layers). This is consistent with σrms/h growing more rapidly for
ys/h= 0.067 than for ys/h= 0.17. However, this trend is counteracted – presumably
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by the flapping of the plume, which is most significant for centreline sources – causing
m to be maximal for ys/h= 1.0. The difference between near-wall and outer-layer
source locations in plumes dispersing in turbulent boundary layers is not expected to
be as significant as the difference between near-wall and centreline plumes in channel
flow.

With regard to velocity–temperature correlations, the present results for
ys/h= 0.067 and ys/h= 0.17 are similar to those observed in turbulent boundary
layers (e.g. Raupach & Legg 1983). The correlation coefficients (i) are approximately
zero at y = ys (in conjunction with gradient transport theory, given that the mean
temperature profiles peak at ys), (ii) increase in magnitude above the source (peaking
with magnitudes of 0.4–0.5), and (iii) subsequently fall to zero far above the source.
Profiles of ρuiθ like those in figure 18(c) for a centreline source have not been
observed in turbulent boundary layers and would be unlikely to occur given its
different geometry and outer flow. Similar results and arguments can be drawn for
the third-order velocity–temperature correlations (see, for example, El Kabiri et al.
1998 for results in a turbulent boundary layer).

Finally, it is tempting to relate the results of § 4 to the dynamics of the coherent
structures in wall-bounded flows. (See, for example, Robinson 1991 for an overview†.)
Coherent structures are of capital importance to the production of turbulent kinetic
energy in the near-wall region (y+ < 100). Here, the dominant structures are pairs of
elongated counter-rotating vortices (or rolls) whose axes are aligned with the mean
flow direction. Given the presence of a (wall-normal) mean velocity gradient, they
engender low-speed streaks of low-momentum fluid very close to the wall (y+ < 10).
The streaks induce inflection points in the mean velocity profile, leading to flow
instabilities, which result in intermittent intense outward ejections of the low-speed
fluid away from the wall, subsequently breaking down into small-scale turbulence.
To balance the ejections, high-speed fluid rushes towards the wall in what are called
sweeps. The rolls then form again to create a quasi-cyclic ‘bursting’ process.

The above phenomena are alternatively interpreted in terms of horseshoe or hairpin
vortices. The long quasi-streamwise tails of these structures cause the streaks, whereas
the ejections result from the lifting of the hairpin head and pumping up of fluid from
in between its legs.

The majority of the production of turbulent kinetic energy results from the ejection
and sweeps, which are second and fourth u − v quadrant motions (see Wallace,
Eckelmann & Brodkey 1972; Willmarth & Lu 1972). In other words, they correspond
to negative Reynolds stress (uv < 0) motions, which generate turbulent kinetic energy
in the amount −〈uv〉∂〈U〉/∂y. Given the influence of these structures in the near-wall
region on the transport of momentum, they must certainly also affect the transport
of scalars therein.

Though the objective of the present work was not the study of the relationship
between scalar transport and the dynamics of coherent structures in wall-bounded
flows, some of the results may nevertheless lend some insight. For three of the six cases
under study (ys/h= 0.067 and Re= 10 400; ys/h= 0.067 and Re = 22 800; ys/h= 0.17
and Re= 10 400), the source location is in the near-wall region (y+

s < 100). In these
instances, the scalar mixing process close to the wall is undoubtedly affected, if not
dominated, by the near-wall dynamics.

† Though a significant fraction of the work pertaining to coherent structures in turbulent flow
has been undertaken in boundary layers, it is expected that the near-wall dynamics in channel flow
and boundary layers should be the same (Holmes, Lumely & Berkooz 1996).
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The PDFs of scalar fluctuations emanating from near-wall sources (figures 13 and
14) exhibited a clear tendency towards Gaussian distributions as the measurement
location approached the wall. This is symptomatic of intense mixing in the near-
wall region, which results from the ejections and sweeps that also cause the turbulent
kinetic energy to peak therein. Though we might initially hypothesize that the bursting
process might result in a flapping of the plume (which would result in PDFs with
spikes at the free-stream temperature), such a phenomenon was not observed. Given
that the plume width was already larger than the height of the near-wall region for
the downstream positions studied herein, ejections and sweeps could not be expected
to ‘flap’ a plume. Because the ejections and sweeps occur over distances smaller than
the plume width, they serve instead to mix the plume intensely, which agrees with the
observation of Gaussian PDFs close to the wall. Should PDFs of scalars released from
near-wall sources be studied for small downstream distances (such that the plume
width was significantly smaller than the height of the near-wall region), flapping of
the plume (and the subsequent spiked PDFs) could be expected.

The relationship between scalar transport and coherent structures in wall-bounded
turbulent flows is perhaps best studied by simultaneous velocity and temperature
measurements. Thus, the velocity–temperature correlations of § 4.4 should be of
particular interest. Regrettably, the X–T probe assembly used in this work did not
allow measurements to be made below y/h=0.17, thus precluding the measurement
of near-wall correlations.

The relationship between the outer and inner regions is not yet clear, though results
suggest that though the former affects the latter, it does not control it (Robinson 1991).
Furthermore, the nature of coherent structures in the outer layer of wall-bounded
flows, especially channel flow, is less well understood. Work in this area is in progress
(e.g. Kim & Adrian 1999; Christensen & Adrian 2001; Liu, Adrian & Hanratty 2001)
and will hopefully serve to further our understanding of (and therefore our ability to
modify, as desired) scalar transport in the outer region of wall-bounded flows.
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Brethouwer, G., Boersma, B. J., Pourquié, M. B. J. M. & Nieuwstadt, F. T. M. 1999 Direct
numerical simulation of turbulent mixing of a passive scalar in pipe flow. Eur. J. Mech.
B/Fluids 18, 739–756.

Browne, L. W. B. & Antonia, R. A. 1987 The effect of wire length on temperature statistics in a
turbulent wake. Exps. Fluids, 5, 426–428.

Browne, L. W. B., Antonia, R. A. & Chua, L. P. 1989 Calibration of X-probes for turbulent flow
measurements. Exps. Fluids 7, 201–208.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

04
00

32
10

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112004003210


170 R. A. Lavertu and L. Mydlarski

Chatwin, P. C. & Sullivan, P. J. 1979 The relative diffusion of a cloud of passive contaminant in
incompressible turbulent flow. J. Fluid Mech. 91, 337–355.

Cho, M. S. & Chung, M. K. 1997 Application of a Reynolds stress/heat flux model to the
turbulent thermal dispersion behind a line heat source in a uniformly sheared flow. Numer.
Heat Transfer A-Applications 32, 715–732.

Christensen, K. T. & Adrian, R. J. 2001 Statistical evidence of hairpin vortex packets in wall
turbulence. J. Fluid Mech. 431, 433–443.

Chung, M. K., & Kyong, N. H. 1989 Measurement of turbulent dispersion behind a fine cylindrical
heat source in a weakly sheared flow. J. Fluid Mech. 205, 171–193.

Dupont, A., El Kabiri, M. & PAranthoen, P. 1985 Dispersion from elevated line source in a
turbulent boundary layer. Intl J. Heat Mass Transfer 28, 892–894.

Durbin, P. A. 1980 A stochastic model of two-particle dispersion and concentration fluctuations in
homogeneous turbulence. J. Fluid Mech. 100, 279–302.

El Kabiri, M., Paranthoen, P., Rosset, L. & Lecordier, J. C. 1998 Fluctuations de temperature
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