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Flapping wings are important in many biological and bioinspired systems. Here,
we investigate the fluid mechanics of flapping wings that possess a single flexible
hinge allowing passive wing pitch rotation under load. We perform experiments
on an insect-scale (≈1 cm wing span) robotic flapper and compare the results
with a quasi-steady dynamical model and a coupled fluid–structure computational
fluid dynamics model. In experiments we measure the time varying kinematics,
lift force and two-dimensional velocity fields of the induced flow from particle
image velocimetry. We find that increasing hinge stiffness leads to advanced wing
pitching, which is beneficial towards lift force production. The classical quasi-steady
model gives an accurate prediction of passive wing pitching if the relative phase
difference between the wing stroke and the pitch kinematics, δ, is small. However,
the quasi-steady model cannot account for the effect of δ on leading edge vortex
(LEV) growth and lift generation. We further explore the relationships between
LEV, lift force, drag force and wing kinematics through experiments and numerical
simulations. We show that the wing kinematics and flapping efficiency depend on
the stiffness of a passive compliant hinge. Our dual approach of running at-scale
experiments and numerical simulations gives useful guidelines for choosing wing
hinge stiffnesses that lead to efficient flapping.
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1. Introduction
Flapping flight is a common mode of insect locomotion which is characterized by

complex and unsteady aerodynamic phenomena. As visualized in tethered (Jensen
1956) and untethered flight (Fry, Sayaman & Dickinson 2003) measurements,
the flow field around a flapping insect wing at intermediate Reynolds numbers
(50 6 Re 6 1000) is highly unsteady and vortical. Periodic flapping motion generates
larger time-averaged lift and drag forces than those of an equivalent translating airfoil
(Lentink & Dickinson 2009), suggesting that unsteady mechanisms are important to
insect flight at small scales.

† Email address for correspondence: yufengchen@seas.harvard.edu
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In several studies (Dickinson & Gotz 1993; Ellington et al. 1996; Dickinson,
Lehmann & Sane 1999) researchers have found that the most important feature of
flapping flight involves the development of a strong leading edge vortex (LEV) during
the wing translation phase. The LEV corresponds to a low-pressure region on the
wing upper surface, and it is responsible for the observed high lift. As shown in both
experimental and computational studies (Wang, Birch & Dickinson 2004; Bos et al.
2008), the growth and shedding of the LEV is sensitive to the flapping kinematics.
In addition, the interaction between shed vortices and a flapping airfoil significantly
influences the flapping kinematics and dynamics (Alben & Shelley 2005). Using
a dynamically scaled robotic wing, Dickinson et al. (1999) characterized unsteady
phenomena such as rotational circulation and delayed stall. Wang et al. (2004)
corroborated this observation through constructing and solving 2D computational
fluid dynamics (CFD) models. Recent experimental studies (Lentink & Dickinson
2009) and computational work have focused on subtle phenomena such as LEV
stability, wing–wing interactions and 3D flow patterns (Thielicke & Stamhuis 2015).
Computationally intensive 3D CFD simulation (Zheng, Hedrick & Mittal 2013) was
developed to study unsteady 3D effects. Meanwhile, computationally inexpensive
quasi-steady blade element (Sane & Dickinson 2001) models were also proposed
to explore how kinematic parameters influence manoeuvrability and flight stability
(Wang & Chang 2013).

These advances in the understanding of flapping-wing aerodynamics, together with
inspiration observed from nature, have led to the design and successful flight of
numerous flapping-wing micro-air vehicles (MAVs) (Lentink, Jongerius & Bradshaw
2010; Keennon et al. 2012; Ma et al. 2013). To reduce mechanical complexity, all
of these vehicles employ passive wing pitching mechanics to regulate the wing
angle of attack. In nature, passive pitching is also observed in some insect flight
from measurements of the torsional wave propagation direction along the wing span
(Ennos 1988).

While an analysis based on aerodynamic power expenditure has shown the
feasibility of passive wing pitching (Bergou, Xu & Wang 2007), there have been
very few studies on passive fluid–wing interaction due to a number of experimental
and modelling challenges. From an experimental perspective, the study of fluid–wing
interactions at the insect scale requires the building of millimetre-scale flapping-wing
devices and the resolution of time varying forces at micro-Newton levels. From
a theoretical perspective, the adoption of a classical quasi-steady model to predict
passive wing rotation requires careful analysis because aerodynamic torque estimation
sensitively depends on wing geometry and kinematics. Further, numerical simulations
are often more accurate yet computationally expensive; hence, it is important to
compare the accuracy of quasi-steady and numerical models against experimental
measurements with different kinematic and morphological inputs. A previous study
(Whitney & Wood 2010) addressed the experimental challenges by designing and
testing an insect-scale robotic flapper under various kinematic inputs. However,
that study did not use particle image velocimetry (PIV) techniques and numerical
simulations to study flow structures surrounding a flapping wing. Consequently, the
authors were not able to quantify the influence of design parameters such as hinge
stiffness and flapping amplitude on flapping efficiency. The interplay between passive
pitching and force generation has a profound influence on hovering efficiency and
manoeuvrability. Here, we conduct a detailed study of the influence of kinematic
parameters on passive pitching and force generation.
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Our research on passive wing pitching dynamics fits into the broad category of fluid
mechanics studies on flexible airfoils. In recent years numerous studies have explored
fluid–wing interactions through modelling hinge compliance or wing flexibility. Zhao
et al. (2010) explored the effects of trailing edge flexibility on force generation
through testing a scaled-up wing in an oil tank. Nakata & Liu (2011) performed
a similar study through numerical simulations. Kang & Shyy (2012) compared the
effects of hinge compliance and wing flexibility through numerical simulation and
found that hinge compliance has a large influence on flapping efficiency. Zhang, Liu
& Lu (2010) explored the passive pitching influence on a self-propelled airfoil. Thiria
& Godoy-Diana (2010) and Ramananarivo, Godoy-Diana & Thiria (2011) explored
the competing influences of system resonance and wing flexibility. An interesting
paper by Spagnolie et al. (2010) combined experimental and numerical approaches;
however, the experiments were performed in a much larger Reynolds number (Re)
regime (105). While these studies offer insights to the underlying fluid mechanics,
they do not include comparison between measurement and numerical modelling at the
insect scale (50 6 Re 6 1000). Here, we combine quasi-steady modelling, numerical
modelling and at-scale experiments to study flapping-wing flight with passive pitching.
This approach allows us to identify strengths and weaknesses of quasi-steady and
numerical models. More importantly, these comparison studies allow us to make
predictions about design parameter values that lead to efficient flapping motion.

With the goal of investigating the relationship between force generation and wing
passive pitching, we mainly use quasi-steady models and 2D CFD simulations to
explore fluid–wing interactions. The main difference between a 2D translating wing
and a 3D revolving wing is that in steady state the LEV remains stably attached on
the revolving wing over a much longer distance. On a 3D revolving wing, the pressure
gradient between the wing tip and the wing root causes spanwise flow to stabilize
the LEV. However, unlike a rotor, an insect wing accelerates, decelerates and reverses
in every flapping period. As shown in the particle velocimetry results of Cheng
et al. (2014), insect flapping wings shed vortices in the wake, and the associated
flow structures differ from those of rotary propellers. In the cases we study here, the
stroke amplitude to wing chord ratio is small (between 2 and 5), which suggests that
delayed vortex shedding caused by wing rotation is not significant. Further, several
previous studies (Wang et al. 2004; Bos et al. 2008) have demonstrated that 2D
simulations can give reasonable approximations of insect flight. To investigate the
effects of 3D phenomena on lift and drag generation, we implement a 3D CFD solver
and compare 2D and 3D simulations.

In this paper, we take an integrated and multifidelity approach towards investigating
the relationship between wing kinematics and lift force generation. We fabricate a
millimetre-scale piezoelectric flapping device with passive wing pitching and measure
time varying lift forces and flow quantities. The experimental study is complemented
by a modified quasi-steady model to identify favourable flapping kinematics and
optimal hinge stiffness values. A high-fidelity numerical model is also applied to a
number of wing kinematics to analyse unsteady mechanisms such as LEV dynamics.
We show that our quasi-steady model gives good estimates of hinge stiffnesses that
allow favourable flapping kinematics. Comparison with experiments shows that our
numerical model accurately describes fluid–wing interactions and surrounding flow
structures. Our study further quantifies the relationship between wing pitch rotation,
LEV strength and mean lift generation. The results presented here are of broad
interest to biologists, physicists and engineers interested in insect flight and the
design of micro-aerial vehicles.
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FIGURE 1. Flapping-wing kinematics. (a) Wing stroke (φ) and hinge (ψ) motion. The
motion of a thin rectangular segment along the wing chord is projected onto a 2D
plane. (b) Experimental kinematics extraction shows that stroke and hinge motion are
well approximated by pure sinusoids. A flapping period is broken down into translational
(yellow) and rotational (blue) phases. (c) Passive wing pitch rotation is described by
a phase shift parameter δ, with δ < 0◦ corresponding to advanced pitch and δ > 0◦
corresponding to delayed pitch.

The outline of this paper is as follows. Section 2 introduces a modified quasi-steady
model and explains the numerical solver implementation. Section 3 describes the
experimental set-up for measuring forces and flow field quantities. Section 4 compares
quasi-steady model predictions, numerical simulations and experimental measurements.
Finally, concluding remarks are given in § 5.

2. Quasi-steady modelling and numerical simulation
2.1. Flapping kinematics

During hovering, insect wings typically have three degrees of freedom (Ellington
1984). However, the motion that is normal to the stroke plane (i.e. ‘stroke plane
deviation’) is usually very small. In our robotic design (as shown in figure 1a), we
make the simplifying approximation that the kinematics of a flapping wing has two
degrees of freedom: stroke and hinge rotations (i.e. wing pitching). The experimental
set-up allows us to control the frequency and amplitude of the stroke motion, while
the hinge rotation is passively controlled by aerodynamic and inertial torques and
hinge compliance. As shown in figure 1(b), the experimental measurement shows
that the hinge motion is close to a pure sinusoid, where the amplitude of the second
harmonic component is approximately 19 % that of the fundamental harmonic. While
this small but noticeable component does not have a large effect on force production,
it offers interesting insight into the role of insect steering muscles. In a previous study
Dickson et al. measured the flapping kinematics of a flying Drosophila (figure 9 of
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Dickson, Straw & Dickinson (2008)). Compared with our experimental measurement,
we observe similar stroke (φ(t)) and pitch (ψ(t)) motion. In particular, ψ(t) has
noticeable flattened peaks in both measurements. This similarity implies that fruit fly
steering muscles may function similarly to a linear torsional spring.

The stroke and hinge motion can be approximated as

φ = φmax cos(2πft), (2.1a)
ψ =ψmax sin(2πft+ δ), (2.1b)

where φmax is the stroke amplitude, ψmax is the hinge amplitude, f is the flapping
frequency and δ is the relative phase. Figure 1(c) illustrates that δ < 0◦ corresponds
to advanced pitch rotation and δ > 0◦ corresponds to delayed pitch rotation. In
quasi-steady blade element models and 2D CFD models, the angular stroke motion is
approximated by the translational motion of a thin blade element located a distance
r from the wing root. As shown in figure 1(a), the amplitude of the wing chord
translational motion is given by L = rφmax. We choose r to be the wing midspan
because PIV studies show that the circulation is strongest near midspan (Birch &
Dickinson 2003) and the effect of wing tip vortical flow near midspan is small. A
detailed discussion of wing driver design and kinematics measurement will be given
in §§ 3.1 and 3.3.

As shown in figure 1(b), the flapping period can be further decomposed into the
translational phase and the rotational phase. The translational phase refers to the wing
motion during midstroke at an approximately constant angle of attack. The rotational
phase occurs during wing pitch reversal at the transition between down and up strokes.
During this phase, the wing stroke velocity is small and hence lift and drag forces
are smaller than those in the translational phase. As a consequence, the lift peak in
the translational phase is called the primary lift peak whereas the lift peak observed
during wing reversal is called the secondary lift peak. We discuss the influence of the
kinematic parameters on the primary and secondary lift peaks in § 4.

2.2. Quasi-steady modelling
We develop a quasi-steady model to predict the aerodynamic forces and passive wing
pitching at midstroke given different driving frequencies, stroke amplitudes and wing
hinge stiffnesses. We assume that the relative phase shift δ is small and both stroke
and hinge motions are purely sinusoidal. Consequently, we need to predict ψmax, FL
and FD given f , φmax, wing shape and hinge stiffnesses. Here FL and FD are defined
as the lift and drag force, respectively.

Our quasi-steady model is based on the blade element model used in numerous
previous studies of insect flight (Dickinson et al. 1999; Sane & Dickinson 2001;
Whitney & Wood 2010). The blade element model states that the instantaneous force
on a translating wing chord is proportional to the local velocity squared. The total
force on a translating wing is given by the integral along the wing span direction:

Fi(t)= 1
2

Ci(α(t))ρ
∫ xr+R

xr

u2(r, t)c(r) dr, (2.2)

where ρ is the air density, u(r, t) is the local wing chord velocity, xr is the wing
root location, c(r) is the local chord length and i stands for either lift (L) or drag
(D). The force coefficients Ci are functions of the angle of attack α, which is
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defined as α = π/2− ψ . Equation (2.2) is derived from thin-airfoil theory under the
assumption of steady inviscid external flow without flow separation. In addition, it also
assumes that the instantaneous force generation only depends on the instantaneous
motion of the flapping insect wing but not the unsteadiness of the surrounding
fluid. Consequently, extra terms such as added mass, wake capture and rotational
acceleration need to be added to (2.2) to account for unsteady effects during wing
rotation. Sane and Dickinson showed that using experimentally measured coefficients
CL and CD the quasi-steady model can give accurate time-averaged force predictions
(figure 3 in Sane & Dickinson (2001)).

This quasi-steady model assumes fully prescribed kinematics; however, in our study
we need to solve a coupled fluid–wing system because the wing pitching is passive.
As shown in a previous study (Whitney & Wood 2010), the coefficients of the added
terms change considerably as the wing shape and kinematics vary in passive pitching
experiments. Hence, adoption of the full quasi-steady model to analyse wing passive
pitching may be subject to excessive overfitting. Consequently, we only use the
translational term (2.2) of the quasi-steady model to estimate the aerodynamic force
and to predict the passive pitching at midstroke. In (2.2) the lift and drag coefficients
CL(α) and CD(α) are substituted with Dickson’s dynamically scaled measurements
(figure 5 in Dickson et al. (2008)). The local wing chord velocity u(r) equals 2πfr
at midstroke, where f is the flapping frequency and r is the spanwise position.

In addition to invoking (2.2) we need to solve for the angle of attack α

simultaneously at midstroke. If we assume that the relative phase shift δ is small
and both stroke and hinge motions are purely sinusoidal, then α is a minimum at
midstroke. We can solve for αmin by imposing Euler’s angular momentum equation:∑

τi = I ·ω+ω× (I ·ω), (2.3)

where
∑
τi is the sum of external torques, I is the moment of inertia tensor and ω

is the angular velocity of the wing. The spanwise component of (2.3) is

Kψ − (FL cos α + FD sin α)Rcop = Ixxα̈ + (Iyy − Izz)φ̇
2 cosψ sinψ, (2.4)

where K represents the hinge stiffness, Rcop is the mean chordwise centre of
pressure and Ixx is the effective rotational moment of inertia considering added mass
contributions from the surrounding fluid. We obtain Ixx, Iyy and Izz from the CAD
modelling software SolidWorks (SolidWorks, 2013, Troy, MI), and we adopt the added
mass corrections from Whitney & Wood (2010). Here, we ignore the contribution
of the centre of mass to the rotational axis. This approximation is justified in the
supplementary material available at http://dx.doi.org/10.1017/jfm.2016.35. The value
of the hinge stiffness K is given in § 4.1 and details of wing planforms and wing
inertial properties are given in appendix A.

Equations (2.2) and (2.4) form a coupled system that gives lift, drag and angle of
attack predictions based on kinematic and morphological inputs. While parameters
such as the hinge stiffness and wing inertia are straightforward to calculate, the centre
of pressure coefficient Rcop is difficult to model. A quasi-steady model based on
thin-airfoil theory always places Rcop at the quarter-chord position, but this prediction
does not hold for flapping flight due to flow separation and unsteady effects. Through
experiments, we find that Rcop is a strong function of wing shape and angle of attack.
For a particular wing planform, Rcop(α) needs to be measured first.
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Performance of a flapping wing with passive pitching 7

With the assumption that the wing stroke and pitch motion are purely sinusoidal,
Rcop(α) can be calculated using measured kinematics at wing midstroke. We can
substitute the kinematic parameters into (2.4) and obtain

Rcop = K(π/2− αmin)− 4π2f 2Ixx(π/2− αmin)− 4π2f 2(Iyy − Izz)φ
2
max cos αmin sin αmin

FL cos αmin + FD sin αmin
.

(2.5)
By varying driving inputs and measuring the corresponding kinematic parameters, we
can obtain Rcop(α) for a range of α. To evaluate the performance of a particular wing,
we first run several experiments to measure the hinge kinematics. Then we solve for
Rcop(α) as a function of α using (2.2) and (2.5). After Rcop(α) is computed, (2.2) and
(2.4) can be used to simultaneously predict lift, drag and wing pitching kinematics for
other driving conditions and hinge stiffnesses. Due to the assumption that δ is small,
(2.4) and (2.5) are only invoked at midstroke.

In summary, our proposed quasi-steady model assumes purely sinusoidal stroke and
pitch motion with small phase shift δ. By adopting Dickson’s experimentally obtained
lift and drag coefficients and imposing angular momentum balance, the model solves
for lift, drag and angle of attack at wing midstroke. This quasi-steady model is
easy to evaluate and provides useful predictions for flapping-wing experiments. The
functional form of CL(α) is very close to sin(2α), which implies that maximum lift
can be achieved when the minimum angle of attack is approximately 45◦. Given a
wing planform, flapping frequency and stroke amplitude, we can use this quasi-steady
model to estimate the appropriate hinge stiffness that leads to the desired hinge
motion. Here, we refer to the process of finding the optimal hinge stiffness for the
desired pitching motion as wing characterization. From an experimental perspective,
this model reduces the number of wing hinge fabrication and flapping tests needed
to achieve the desired performance. However, the model ignores unsteady effects
that may be crucial for certain kinematic inputs. In addition, the model also requires
experimental measurement of Rcop for every wing planform. We discuss its accuracy
and shortcomings in § 4.1.

2.3. Numerical simulation with fully prescribed kinematics
In passive flapping experiments kinematic parameters such as φmax, ψmax and δ
are interdependent. Consequently, it is difficult to explore the influence of a single
parameter. A numerical model based on fully prescribed kinematic inputs can be
used to study parameter dependence and influence. Here, we implement a numerical
model that solves the incompressible Navier–Stokes equation. Our computational
model assumes a 2D flat plate of dimensions 90 µm × 3 mm flapping in air
with kinematics described in § 2.1. The wing chord dimension is chosen based
on wings used in experiments. The incompressible Navier–Stokes equation and the
corresponding boundary conditions that govern the flapping motion are

ρ
∂u
∂t
+ ρ(u · ∇)u=−∇p+µ∇2u, (2.6a)

∇ · u= 0, (2.6b)
u|wing = (u, v)wing, (2.6c)

p|∞ = 0, (2.6d)

where ρ is the fluid density, µ is the fluid viscosity, u= (u, v) is the fluid velocity
field and p is the pressure field that enforces the incompressibility condition. The fluid
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speed on the wing surface is equal to the wing velocity, and the pressure at far field
is set to be 0. In our computations, the range of Reynolds numbers is between 50 and
1000.

To solve this partial differential equation (PDE), we implement a numerical solver
using the nodal discontinuous Galerkin finite element method (FEM-DG). The solver
is implemented on a moving Cartesian coordinate system. The computational Delaunay
triangulation mesh is generated by the open source package DistMesh (Persson &
Strang 2004), and we specify smaller mesh elements around wing leading and trailing
edges to resolve flow–structure details. The mesh radius is chosen to be 15 times
the wing chord to reduce artificial boundary effects. The solution inside each mesh
element is interpolated using fifth-order Lagrange polynomials, and the mesh consists
of approximately 4000 elements.

The structure of this solver is based on the method developed in Hesthaven &
Warburton (2007). The temporal scheme is solved using the second-order backward
Adams–Bashforth method, and the spatial scheme is separated into three steps
that individually treat nonlinear advection, pressure field contribution and viscous
correction. The first step is solved explicitly whereas the last two steps are formulated
as implicit Poisson and Helmholtz equations respectively. For the pressure field, we
impose Neumann boundary conditions along the wing surface and Dirichlet boundary
conditions on the mesh boundary. For the velocity fields, we impose Dirichlet
boundary conditions along the wing surface and Neumann boundary conditions on
the mesh boundary. The size of the time step 1t is determined using the method
in Hesthaven & Warburton (2007) to satisfy stability conditions. In our simulation,
1t is in the range of 0.4–0.6 µs, which means that each flapping period consists
of approximately 17 000 time steps. The 2D CFD model validation is given in
appendix B.

Given the fluid velocity field and the pressure field we can compute the force per
unit length and torque per unit length on the wing segment by integrating the stress
tensor along the wing surface:

f =
∫

wing
n̂ · σ dl, t=

∫
wing

r× (n̂ · σ ) dl, (2.7a,b)

where n̂ is the local surface normal. Lower case letters represent quantities per unit
length. We can expand the stress tensor and arrive at equations for the lift and drag
forces as follows:

fL =−
∫

wing

(
−pny + νρ ∂u

∂y
nx + νρ ∂v

∂x
ny + 2νρ

∂v

∂y
ny

)
dl, (2.8a)

fD =−
∫

wing

(
−pnx + 2νρ

∂u
∂x

nx + νρ ∂v
∂x

ny + νρ ∂u
∂y

ny

)
dl. (2.8b)

We can further compute the instantaneous chordwise lift and drag coefficients as

CL = fL
1
2ρu2c

, (2.9a)

CD = fD
1
2ρu2c

, (2.9b)
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FIGURE 2. The set-up of the 2D FEM-DG numerical solver. (a) A moving wing
coordinate is defined by (ξ , η) and an inertial coordinate is defined by (x, y). The direction
of lift force always points upward, and the direction of drag force is always opposite
to the stroke velocity u. (b) A zoomed-in image of the triangulated computational mesh.
Finer elements are generated near the leading and trailing edges to resolve flow details.
The mesh tip geometry in (b) facilitates convergence and does not compromise lift and
drag accuracy.

where u is the instantaneous chord leading edge velocity and c is the local wing
chord length. Finally, we can relate to the experimental measurements by substituting
the computed CL and CD into (2.2). The time-averaged lift and drag forces can be
computed by integrating (2.2) over a flapping period.

Figure 2(a) illustrates the moving wing coordinates (ξ , η), the inertial coordinates
(x, y), the definition of fL and fD with respect to the stroke velocity u and the fluid
torque τf with respect to the wing leading edge. Figure 2(b) shows an enlarged image
of the computational mesh.

2.4. Numerical simulation with partially prescribed kinematics
While the quasi-steady model in § 2.2 predicts the wing pitch ψmax, it is limited
by the assumption that the phase shift δ is small. We can relax this assumption by
formulating a coupled fluid–mesh numerical model to study passive pitch rotation. At
each computation time step, the incompressible Navier–Stokes equation is solved to
obtain the flow field and the pressure field. The computed flow exerts fluid torque on
a passive polymer hinge that is modelled as a torsional spring. Consequently, we can
formulate an ordinary differential equation (ODE) that models the wing pitching:

ixxψ̈ + kψ +mlẌ cosψ + τf = 0, (2.10)

where k is the hinge stiffness and ixx is the principal moment of inertia in the spanwise
direction. The term mlẌ cosψ corresponds to the effect of stroke acceleration on the
offset centre of mass. In this term m is the wing mass per unit length and l is the
centre of mass offset to the rotation axis. For the simulation shown in § 4.2.3 this term
is ignored because its effect is small compared with the unsteady 3D contribution. The
derivation of (2.10) is given in the supplementary material. This ODE is solved using
a forward Euler method. This coupled PDE–ODE system allows us to numerically
model passive hinge motion and to study fluid–wing interaction.
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In (2.10), ixx is computed with respect to the wing leading edge using the parallel
axis theorem and does not include an added mass correction as it is in the quasi-steady
model. Since this is a 2D numerical model, ixx and k are normalized to quantities per
unit length. Here, ixx is normalized by the wing span as ixx= Ixx/R. In our experimental
set-up the flapping motion has a 3D rotational component, which means that choosing
the equivalent hinge stiffness in 2D simulation is challenging. A wing chord that is
near the wing tip experiences larger aerodynamic and inertial forces. Since the wing
leading edge position varies along the wing span, the chordwise centre of rotation
also changes along the wing span. This shift of the chordwise centre of rotation has
a noticeable effect on torque estimation; hence, it is important to adjust for 3D effects.
The normalized hinge stiffness value needs to be a function of wing chord spanwise
location and wing shape; k should have the form of

k= 1
β

( r
R

)2 K
w
, (2.11)

where K is the wing hinge stiffness, w is the hinge width, (r/R)2 gives the spanwise
scaling and β is a dimensionless number that accounts for wing shape and other 3D
effects. In the comparison between experiments and simulations, we experiment with
several values of β and choose the best fitting value.

In addition, the polymer hinge should also have a dissipative damping coefficient;
however, this damping coefficient is small and difficult to measure. Ashby reported the
loss coefficient of Kapton to be approximately 0.02 (Ashby 2011). Since the damping
effect is much smaller than the aerodynamic effect and the spring torsion, we ignore
damping and nonlinear hinge properties in our model.

2.5. Three-dimensional simulation with fully prescribed kinematics
While we primarily use 2D CFD models to study fluid–wing interactions, we also set
up a 3D CFD solver to compare the similarities and differences between 2D and 3D
simulations. The 3D model solves the incompressible Navier–Stokes equation with
identical boundary conditions to those shown in (2.6). Similarly to the 2D solver, the
3D solver uses the nodal discontinuous Galerkin method on a moving mesh. Figure 3
shows the wing surface mesh dimensions, the inertial coordinates (x, y, z), the moving
coordinates (ξ , η, ς) and the wing surface mesh. The mesh radius is chosen to be
10 times the mean wing chord to avoid boundary effects. The 3D tetrahedral mesh is
generated by the open source package gmsh (Geuzaine & Remacle 2009). The mesh
consists of 140 000 tetrahedral elements and we use first-order Lagrange polynomials
as the interpolation basis function. A first-order limiter based on Tu & Aliabadi (2005)
is implemented to remove artificial numerical oscillations. The temporal scheme and
boundary conditions are identical to the 2D implementation. Wing planforms are
detailed in appendix A. The 3D method has a first-order spatial convergence rate and
a second-order temporal convergence rate. Solver validation is shown in appendix B.
The 3D simulation runtime and memory usage are over 30 times more costly.

Unlike the 2D numerical model, the 3D CFD model can directly compute
instantaneous forces without normalizing to chordwise lift or drag coefficients. The
force and torque are given by

F=
∫

wing
n̂ · σ da, T=

∫
wing

r× (n̂ · σ ) da, (2.12a,b)
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z

y

x

(a) (b)

(c)

FIGURE 3. Computational mesh of 3D CFD simulations. (a) The spherical computational
domain radius is 10 times the mean wing chord. (b) Definition of the inertial coordinate
system (x, y, z) and the moving coordinate system (ξ , η, ς). Both have their origins at
the leading edge of the wing root. (c) An enlarged view of the wing surface mesh. The
computational mesh consists of 140 000 tetrahedral elements and 15 000 surface elements.

where n̂ is the local surface normal. The force equation in (2.12) can be expanded as

Fx =−
∫

wing

((
−p+ 2µ

∂u
∂x

)
nx +µ

(
∂u
∂y
+ ∂v
∂x

)
ny +µ

(
∂u
∂z
+ ∂w
∂x

)
nz

)
da,

(2.13a)

Fy =−
∫

wing

((
µ
∂v

∂x
+ ∂u
∂y

)
nx +

(
−p+ 2µ

∂v

∂y

)
ny +µ

(
∂v

∂z
+ ∂w
∂y

)
nz

)
da,

(2.13b)

Fz =−
∫

wing

(
µ

(
∂w
∂x
+ ∂u
∂z

)
nx +µ

(
∂w
∂y
+ ∂v
∂z

)
ny +

(
−p+ 2µ

∂w
∂z

)
nz

)
da.

(2.13c)

Based on the coordinate system set-up, the lift and drag force magnitudes are

FL = Fz, (2.14)

FD =
√

F2
x + F2

y . (2.15)

3. Experimental set-up
3.1. Wing driver and wing fabrication

The wing used in the experiments is made from a carbon fibre frame and polyester
membrane with a 4 mm mean chord and 54 mm2 total area. The wing hinge is made
of a compliant Kapton layer sandwiched between two carbon fibre layers. The wing
driver consists of a bimorph piezoelectric actuator and a flexure-based transmission,
which converts the linear displacement of the actuator tip to an angular displacement
to drive the wing stroke. Details of the design and manufacturing methodology used
for the wing, transmission and actuators are described in Wood et al. (2008).
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3.2. Time-resolved force measurement
The custom sensor consists of four parallel dual cantilever modules arranged in
a series–parallel configuration. The structure converts a load into displacements in
the vertical and horizontal directions, and the displacements in both directions are
measured by two (D− 510.021, PISeca) capacitive sensors. We calibrate the sensors
by hanging weights, and the sensitivities are found to be −84.6 and 85.5 V mN−1

for the lift and drag axes respectively. The zoomed-in images in figures 4(a) and 4(b)
illustrate the wing driver, the capacitive force sensors and the optical sensor set-up.

In our experiment, the driving frequency is chosen to be 120 Hz so that the lift
force has a fundamental frequency of 240 Hz and the drag force has a fundamental
frequency of 120 Hz. Since the sensors measure the aerodynamic and inertial forces
from the wing and wing driver, we only report time-averaged drag measurements. On
the other hand, we can accurately measure the lift by filtering out the 10–200 Hz and
>500 Hz harmonics to eliminate actuator inertial contributions and system resonance.
We use the MATLAB non-causal filtfilt function in our analysis. This band pass filter
may eliminate higher-order harmonics of the actual lift signal; hence, for comparison
purposes we also apply the same filter to the numerically computed lift. The wing
used in our experiment weighs 0.52 mg, and the magnitude of the wing inertial
contribution often accounts for 15–20 % of the total sensor measurement. Using the
measured flapping kinematics and the estimated mass properties from SolidWorks,
we can subtract out the effect of this wing inertial contribution. On the lift axis, the
formula is given by

Faero =maz −mg− Fsensor, (3.1)

where az is the z-component of the wing inertial acceleration. We can compute az as

az = rcom,z(cos(ψ)ψ̇2 + sin(ψ)ψ̈), (3.2)

where rcom,z is the wing centre of mass position in the vertical direction. In our mass
model we neglect the centre of mass offset due to wing thickness.

3.3. Extraction of wing kinematics
We use a high-speed Phantom v7.3 camera to record wing motion during experiments.
Figure 4(a) illustrates the camera orientation and position. As shown in figure 4(c),
a 532 nm, 2 W laser sheet illuminates a vertical plane positioned at wing midspan,
normal to the camera sensor plane. The laser sheet allows for visualization of fluid
flow along the quasi-two-dimensional plane of the laser. Image frame acquisition
is triggered by the xPC target through digital pulses, so that frame acquisition and
other sensor measurements are synchronized. To capture the high-speed motion of
the particles and reduce motion blur we use a shutter time of 50 µs. We control
acquisition parameters and video downloading through the Vision Research MATLAB
driver.

In addition to revealing fluid flow, the laser sheet imaging system also illuminates
a thin bright elliptical region of the wing. By tracking the position and orientation of
the wing–laser intersection we are able to track the wing stroke angle and hinge angle
with high fidelity. We track the wing stroke position along the sheet laser plane, x(t),
and the hinge angle projected along the laser plane, ψ(t), with a custom automated
image segmentation and tracking algorithm. The tracking algorithm segments the
foreground image through a series of morphological operations. We first threshold
the image, then perform morphological closing and opening operations to remove
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Top view
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Camera

Enclosed
chamber

Wing

Wing

Wing

Enlarged anterior view

Enlarged anterior viewAnterior view

Invar target plate

Capacitive
sensor (drag)

Wing driver transmission

Wing driver

Carbon fibre wing

Capacitive sensor (lift)

Capacitive
sensor

Double cantilever sensor

Carbon fibre wing driver
Optical sensor

Optical sensor

Piezoelectric bending
actuator
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Vorticity

Oil droplets
x(t)
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(a)

(b)

(c) (d)

FIGURE 4. Illustration of the experimental set-up, kinematics extraction and particle
velocimetry set-up. (a) Schematics of the experimental set-up. The top view shows laser
and camera placement with respect to the wing driver. The enlarged view shows the
arrangement of the capacitive force sensors, the optical displacement sensors and the
wing driver. (b) Photographs of the experimental set-up. These pictures correspond to the
schematics in (a). (c) Wing kinematics tracking of x(t) and α(t) from a laser illuminated
image. (d) Sample PIV images of the x, y components of the fluid velocity field and
the corresponding vorticity field. The red bounding box on the vorticity plot defines the
integration area for computing the leading edge circulation. The choice of bounding box
dimensions is explained in § 4.2.2.

spurious points and fill holes in the wing blob. In the foreground image, we locate all
connected components and retain only the largest component which is the wing–laser
intersection (the ellipse in figure 4c). In this setting, a connected component is defined
as an isolated white region in a binary image where the background colour is black.
From the wing–laser intersection component we determine the wing centroid and
orientation, ψ(t). The horizontal distance of the wing leading edge from the wing
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root in the laser plane is x(t) (figure 4c). From x(t) we compute the wing stroke
angle φ(t) = atan(x(t)/l0), where l0 is the distance from wing root to wing–laser
intersection at φ = 0.

3.4. Digital particle velocimetry
Well-described fluid structures such as leading and trailing edge vortices are associated
with aerodynamic force generation during flapping flight. To observe these features,
we measure the fluid flow surrounding the flapping wing using digital PIV techniques
(Willert & Gharib 1991).

The velocity fields are determined from PIV by dividing an image into small
image patches on a square grid and registering the relative motion of objects in the
image patches between times t and t +1t. Object motion between the time steps is
determined by locating the peak of the cross-correlation between the images. We use
a Fourier-based approach to compute the correlation peak between PIV images in a
custom MATLAB routine (Fienup & Kowalczyk 1990).

Our PIV algorithm uses the series of high-speed camera images as input, and
generates velocity vectors sampled on a grid of lattice dimensions 32× 32 pixels as
output. In addition, we numerically differentiate the velocity fields to compute the
vorticity field. Figure 4(d) illustrates sample velocity and vorticity field measurements.

4. Results and discussion
To assess the accuracy and usefulness of the quasi-steady and numerical models,

we compare model predictions with experimental results. Our experiments show that
the quasi-steady model can accurately predict the passive pitching ψmax when the
phase shift δ is small. The 2D numerical model reveals several unsteady effects
although it ignores 3D effects. We further qualitatively compare the measured versus
computed vorticity field and quantitatively compare the strength of the LEVs. Finally,
we perform a numerical simulation with passive hinge kinematics and obtain good
agreement.

4.1. Quasi-steady model comparison
To examine the robustness of the quasi-steady model proposed in § 2.2, a wing is
driven at various input frequencies and voltage amplitudes. The wing is driven from
85 to 145 Hz in steps of 5 Hz, and the driving voltage is increased from 80 V to
130 V in units of 10 V. We define an operating point to be an input frequency and
voltage pair. Four wing hinges with different stiffness values are built to study the
interplay of aerodynamic and elastic hinge torques (table 1). The rotational stiffness
K is approximated using the linear elastic deformation equation

K = Et3w
12l

, (4.1)

where E is the Young’s modulus of the flexure material (Kapton), and w, l and t are
flexure width, length and thickness respectively. Rotational and translational motions
are analysed separately to identify different force generation mechanisms.

Our quasi-steady model is applicable to the translational phase where unsteady
effects are small. As discussed in § 2.2, the angle of attack α is close to minimum at
wing midstroke. To predict αmin at a particular operating point, it is crucial to analyse
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FIGURE 5. Hinge amplitude ψmax as a function of actively controlled kinematic parameters.
(a) Maximum hinge angle versus maximum stroke angle at various input frequencies and
voltage amplitudes. (b) Maximum hinge angle versus maximum stroke velocity. Both (a)
and (b) use the same set of experimental data. The hinge stiffness for these experiments
is K = 1.4 µNm rad−1.

Hinge label w (mm) l (µm) t (µm) K (µN m rad−1)

Soft 1.25 140 7.5 0.73
Normal 1.25 80 7.5 1.4
Stiff 1.25 45 7.5 2.4
Very stiff 1.25 155 12.7 3.4

TABLE 1. Polymer hinge geometries and stiffnesses. Four hinges with varying stiffness
values are designed and manufactured to study passive hinge rotation as a function of
input stroke motion. The Young’s modulus of the flexure material (Kapton) is 2.5 GPa.

the relationship between three kinematic parameters, φmax, ψmax and αmin. Figure 5(a)
shows the relationship between ψmax (equivalently π/2 − αmin) and φmax at various
testing conditions. Each curve in the graph represents a discrete frequency sweep
(85–145 Hz) at a fixed drive voltage. Figure 5(b) shows the same data by plotting
hinge angle as a function of wing tip velocity. It should be noted that all curves from
figure 5(a) overlap in figure 5(b), which suggests a universal relationship between
maximum stroke velocity and maximum hinge angle. This observation shows that the
effect of the phase shift δ on the maximum translational lift is small at midstroke.

From the tracked wing kinematics we solve the quasi-steady model (derived in § 2.2)
for the centre of pressure Rcop as a function of α. As shown in figure 6(a), Rcop is a
monotonically increasing function of angle of attack α. This is in disagreement with
predictions from thin-airfoil theory based on inviscid and steady flow, which always
places Rcop at quarter-chord.

The experimentally measured Rcop can be used to further predict changes to the
kinematic parameters as the hinge stiffness varies. From an experimental perspective,
we aim to find the optimal hinge stiffness for a given wing planform. Rather than
designing and testing a number of hinges, we can use the quasi-steady model to
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FIGURE 6. (a) Normalized centre of pressure Rcop/c̄ versus minimum angle of attack
α. The centre of pressure is measured with respect to the wing leading edge and is
normalized by the mean wing chord. Each curve represents a frequency sweep from 85
to 145 Hz at a fixed driving voltage. (b) Hinge angle prediction as function of wing
tip velocity at different hinge stiffnesses. The relationship is measured for a particular
wing–hinge pair (shown in black) to compute Rcop as a function of α. Using the Rcop
function, the hinge angle function is predicted for the soft, normal and very stiff hinges
(red, green, blue curves).

predict φmax and αmin as the hinge stiffness changes. Accurate predictions of φmax and
αmin at varied hinge stiffnesses greatly reduce the number of experiments needed for
wing or hinge characterization.

Figure 6(b) shows an example of using the quasi-steady model to predict αmin and
φmax relationships for different wing hinges in various operating conditions. First,
according to the procedure discussed in § 2.2, we measure φmax and αmin for a wing
with a stiff hinge (black curve). Next, we solve for Rcop by invoking (2.5). Then, we
further predict changes to φmax and αmin when the hinge stiffness changes. Finally,
we manufacture a number of hinges and run experiments to compare with the model
prediction. As shown in figure 6(b), the predictions for the normal and very stiff
hinges (green and blue curves) show good agreement with the measurements. The
error between ψmax predictions and experimental measurements for the normal hinge
is less than 4◦ (green curve). The ψmax error for the very stiff hinge is also less than
4◦ for small stroke velocity (blue curve). However, the experimental measurement of
wing tip velocity with the very stiff hinge does not exceed 5 m s−1. The actuator
dynamics limits the range for comparison of experiment and model for stiff hinges.
However, the model does not include actuator dynamics and is thus not limited.

While predictions for the normal and stiff hinges show good agreement with the
experiments, the prediction for the soft hinge (red curve) in figure 6(b) is inaccurate at
high stroke velocity. This discrepancy can be understood by observing the large phase
shift δ for the soft hinge design at high flapping frequencies, as shown in figure 7(a).
Figure 7(a) shows δ versus f for different hinge stiffnesses, where the driving
voltage is fixed at 120 V. As the driving frequency increases or the hinge stiffness
decreases, we observe that δ increases. In particular, δ becomes large at higher driving
frequencies for the soft hinge. Since in the derivation of our quasi-steady model we
assume δ ≈ 0◦, it is not surprising that our model accuracy deteriorates at large δ.

We study the dependence of δ on the hinge stiffness and its effect on the mean lift
based on experimental data. Using independent pitch and stroke control, Dickinson
showed how the phase δ influences rotational circulation (Dickinson et al. 1999).
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FIGURE 7. (a) Relative phase shift δ as a function of frequency for changing hinge
stiffness. (b) Mean lift versus input frequency with changing hinge stiffness and driving
voltage. (c) Mean lift coefficient versus input frequency. (d) Normalized mean lift
coefficient versus δ. All panels show the same set of experimental data.

If δ is negative, pitch reversal precedes stroke reversal, and favourable circulation
develops along the wing boundary layer. As a result, additional lift is generated. On
the other hand, if pitch reversal lags stroke reversal, adverse circulation develops, and
lift is reduced. In our experiment with passive wing rotation, we confirm Dickinson’s
observation.

Figure 7(b) shows the mean lift versus the input frequency with changing hinge
stiffness and driving voltage. Experimentally we observe that a stiffer hinge generates
a higher mean lift. While the kinematic parameters φmax, ψmax and δ are interdependent
in our experiments, figures 7(c) and 7(d) show the effect of δ by normalizing away
the effects of φmax and ψmax. Figure 7(c) shows the mean lift coefficient

CL = FL
1
2ρu2

rmsS
, (4.2)

where urms is the root mean square velocity given by

urms =
√

1
T

∫ T

0
u2(t) dt. (4.3)

In (4.3), T is the flapping period and u is the instantaneous wing tip velocity. Here,
u(t) is approximated as a pure sinusoid based on the measured φmax. All experiments
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show that increasing frequency corresponds to decreasing CL. Normalizing to CL

removes the effect of varying φmax in different tests. We further remove the effect of
ψmax in figure 7(d). According to Dickson’s formula, CL is approximately proportional
to sin(2α); hence, we normalize all measured CL values by the corresponding
measured αmin values. Figure 7(d) shows CL/ sin(2αmin) versus δ for all experiments.
All experiments show negative correlation between CL and δ.

Figure 7(d) shows that CL/ sin(2αmin) reduces by a factor of 2 from δ = −30◦
to δ = 40◦, which suggests that δ has a large influence on the mean lift force.
We further compare the relative importance of δ on mean lift to that of the other
kinematic parameters φmax, ψmax and f . Based on the quasi-steady model, the mean
lift has a quadratic dependence on f , a linear dependence on φmax and a trigonometric
dependence on ψmax. This suggests that the flapping frequency f is the most significant
factor to the mean lift. Figure 7(b) shows the trend that the mean lift increases as
the driving frequency and voltage increase. However, as f and φmax increase, δ also
increases. As shown by the dotted red and green curves in figure 7(b), the effect
of δ gradually dominates at high frequency because the mean lift drops. Hence, the
relative importance of φmax, ψmax, f and δ depends on the system operating conditions.
When φmax, ψmax and f are small, increasing the flapping frequency is most effective
to increase the lift. On the other hand, stiffening the wing hinge is more effective
when δ exceeds 40◦. For a flapping-wing vehicle, f and φmax are often limited by
actuator and transmission designs. Meanwhile, δ and ψmax are mainly influenced
by the choice of hinge stiffness. Considering the limits on actuation, the choice of
appropriate hinge stiffness is crucial towards achieving large mean lift.

When an actuator is overloaded by drag, the stroke amplitude φmax ceases to
increase even when the driving frequency and voltage increase. In addition, the driver
transmission no longer behaves as lossless pin joints. Consequently, the flapping
motion of an underpowered system has small φmax but large ψmax. Since we do not
model actuator–wing coupling, the lift data of the very stiff hinge experiments are
not presented in figure 7.

Overall, the quasi-steady model yields accurate predictions of the passive pitching
angle ψmax for small or negative δ. The difference between quasi-steady prediction of
ψmax and measurements is always smaller than 6◦ for δ < 40◦. However, it does not
account for unsteady mechanisms and fails at large δ.

We further illustrate the effect of the phase shift δ on the mean lift by normalizing
away the contribution of φmax and ψmax. In the normalization process we make the
approximation that CL is proportional to sin(2αmin). This approximation is based on
Dickson’s empirically measured coefficients and further assumes that both the wing
stroke and the hinge motion are purely sinusoidal. To completely isolate the effect of
δ on the mean lift we need to experimentally vary δ while holding all other kinematic
parameters constant. However, the passive pitching experiments are limited because we
do not have independent control over δ and ψmax. Instead, we quantify the effects of
δ using numerical simulations.

4.2. Numerical model comparison
Our numerical model enables detailed studies of unsteady phenomena. In this section,
we compare the measured and the computed lift to examine the accuracy of the
2D CFD model. We also compare the measured and the computed vorticity fields
for a number of wings flapped with similar stroke kinematics. In addition, we set
up a simulation with prescribed stroke motion and numerically calculate passive
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FIGURE 8. Qualitative comparison of 2D CFD and 3D CFD models. (a–f ) Flow field
and pressure field comparison; (a–c) show the 2D CFD results and (d–f ) show the
corresponding 3D CFD results. We show the solution on a chordwise plane at wing
midspan. (g,h) Flow features that are unique to the 3D CFD model. In (g) it is shown that
there is flow from wing root to wing tip on the upper wing surface. (h) The isovorticity
contour near the wing surface, showing the LEV, the trailing edge vortex (TEV) and a
tip vortex. The value of the isovorticity contour is 1200 1 s−1. The units of the velocity
fields Ux, Uy and Uz are m s−1. The units of the pressure fields are N m−2. Both the
2D and 3D meshes use elliptical cross-sections for fair comparison. This meshing choice
facilitates convergence of the numerical solver.

hinge rotation. The computed hinge kinematics are compared with the measured
hinge kinematics. Finally, we use the numerical simulator to explore portions of the
parameter space that are not covered by our experimental set-up. The effects of the
relative phase shift δ on the mean lift and drag coefficients CL and CD are quantified.

4.2.1. Comparison of 2D and 3D CFD and experiment
While 2D CFD models are computationally less expensive than 3D CFD models,

they ignore rotational effects and the influence of the wing shape on force generation.
Here, we examine the similarities and differences between 2D and 3D models. In one
of the flapping experiments we measure φmax = 34◦, ψmax = 43◦ and δ = 0◦ when the
system is driven at f = 120 Hz. We use these kinematic parameters as the input and
solve the 2D flow problem for the chord segment at wing midspan. Further, we use
the 3D model to solve for the flow along the entire wing. To give a fair comparison,
the wing chord cross-sectional shapes are set to be identical for the 2D and 3D
simulations.

Figure 8(a–f ) compares the 2D and 3D computed flow fields and pressure fields
at wing midspan. The 2D and 3D flow fields are qualitatively similar although we
observe stronger downwash in the 2D case. While the pressure profiles near the wing
surface are similar, in the 2D case low-pressure regions are present in the wake.
These low-pressure regions correspond to previously shed vortices. In the 3D case
shed vortices decay much faster; hence, the wake does not have complex vortex
structures.

Figure 8(g,h) shows flow features that are unique to the 3D simulation. Figure 8(g)
describes the spanwise flow at wing midspan, which is driven by the pressure gradient
between the wing root and the wing tip. This flow weakens downwash because fluid
momentum is also dissipated in the spanwise direction. In addition, the spanwise flow
transports vorticity to the wing tip. Figure 8(h) shows the isovorticity contour along
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FIGURE 9. (a) Lift and (c) drag coefficient comparison for the 2D CFD model (green),
the 3D CFD model (blue) and the experimental measurement (red). The yellow regions
represent the stroke acceleration phase and the violet regions represent the stroke
deceleration phase. Relationship between (b) the LEV strength and (d) the associated
pressure field. The LEV is fully developed during the stroke deceleration phase and it
corresponds to a strong low-pressure region on the wing upper surface. The illustrations
in (b,d) are computed from the 2D CFD model. The units of the vorticity and pressure
fields are 1 s−1 and N m−2 respectively.

the wing surface. In addition to the LEV and TEV that are also observed in the 2D
simulation, there is also a strong tip vortex on the upper wing surface.

The 3D simulation describes spanwise flow and shows the presence of a tip
vortex. While these effects are ignored in the 2D simulation, the pressure profiles
are qualitatively similar. We further compare computed lift forces with experimental
measurements in figure 9(a).

Figure 9(a,c) reports the measured time varying lift force (red) and the simulated
lift and drag forces. The green curves represent the 2D CFD simulations and the
blue curves show the 3D CFD results. Both the 2D and 3D simulations show that
primary lift and drag peaks occur early in the stroke deceleration phase. The growth
and shedding of the LEV is the primary lift generation mechanism for flapping flight.
Figure 9(b,d) shows the LEV on an impulsively started wing and the corresponding
pressure field computed by the 2D CFD model. In the stroke acceleration phase, the
vorticity on the upper wing surface is small. In the stroke deceleration phase, the LEV
is fully developed and we observe a strong low-pressure region attached to the upper
wing surface. Physically, a strong vortex always corresponds to a low-pressure region
because streamline curvature implies an outward pointing radial pressure gradient.
Compared with experimental measurements, both the 2D and the 3D CFD models
give accurate lift force predictions during the stroke deceleration phase (violet). Due
to the lack of stabilizing spanwise flow, the LEV in the 2D simulation is shed prior
to that of the experimental measurement. However, the 2D LEV also decays slower
due to the lack of spanwise flow. Consequently, the effect of early LEV detachment
is compensated by the slow LEV decay. These 2D effects counteract each other and
lead to accurate lift force prediction in the stroke deceleration phase.

However, the 2D CFD model is less accurate in the stroke acceleration phase
(yellow) due to interactions with shed vortices and stronger downwash. In the stroke
acceleration phase the 2D CFD model underpredicts both lift and drag forces. The
experimentally measured mean lift is 0.46 mN; the 2D and 3D CFD model estimates
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are 0.31 mN and 0.46 mN respectively. In addition, the relative root mean square
error of model estimation can be computed as

erms =

√∫
T
(Fmeasure − Fmodel)

2 dt√∫
T

F2
model dt

, (4.4)

where the integration interval is between the third and the sixth period. The 2D and
3D model errors are 34 %, and 4.5 % respectively. In the 2D simulation, the stroke
acceleration phase (yellow) and deceleration phase (violet) contribute 86 % and 14 %
of the total model error, suggesting that the shed vortex interaction in the stroke
acceleration phase causes the greatest 2D model error. For completeness, figure 9(c)
also shows the drag force predicted by the 2D and 3D models. The mean drag forces
computed by the 2D and 3D models are 0.57 mN and 0.71 mN respectively. Due
to the reasons discussed in § 3, we do not report experimental time varying drag
measurements.

Although the 2D CFD model is less accurate than the 3D model, it gives reasonable
estimates of lift and drag forces. The 2D model accuracy is comparable to that of the
3D model in the stroke deceleration phase. However, it suffers from excessive shed
vortex interaction in the stroke acceleration phase. In the remaining sections we use
the 2D model to quantify the effect of δ on mean lift.

4.2.2. Vorticity field comparison
The vorticity field offers a very informative description of fluid–wing interaction and

lift and drag generation. Since the flow is modelled as incompressible, comparing the
experimentally measured and computed vorticity fields is equivalent to comparing
both the x and y components of fluid velocity fields. In addition, as we have
discussed in § 4.2.1, there is an intuitive connection between the vorticity field
and the pressure field. Here, we experimentally compare the measured vorticity fields
with the computed vorticity fields.

We perform experiments on four different wing designs with different aspect ratios
(AR= 3, 3.5, 4.5, 5). All wings are flapped at 120 Hz, and we vary the input drive
voltage to achieve similar stroke motion for each wing. We measure the flapping
kinematics and the associated flow fields using techniques described in § 3.4, and then
we run 2D numerical simulations with the measured kinematic parameters φmax, ψmax,
f and δ. These experiments evaluate the 2D CFD model accuracy and explore the
effect of the phase shift δ on LEV strength. Different wing shapes are used in the
experiments to achieve different values of δ while maintaining similar stroke motions.
These passive hinge experiments and 2D simulations are not intended to explore wing
shape influence on mean lift.

Figure 10 compares the numerically computed vorticity field with the measured
vorticity field for the wing with AR= 3. We show the vorticity field during the 10th
computational period to avoid initial transients. While there is some noise in the
measured vorticity field due to motion blur and numerical differentiation, we observe
qualitative agreement between experiments and simulations. In (a,c,e,g,i,k,m,o,q,s),
experimental measurements show a growth of the LEV during the wing translation
phase and vortex shedding during wing reversal. Similar vortex growth and shedding
patterns are observed through the numerical simulations shown in (b,d, f,h,j,l,n,p,r,t).
There are some differences between the measurements and the simulations. In the
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FIGURE 10. Vorticity comparison plot between experimental measurements and
simulations for Re = 520. The wing aspect ratio is 3, and the wing is flapped at
120 Hz with leading edge displacement equal to 3.7 mm. The relative phase shift is 22◦.
Red colour corresponds to counterclockwise rotating vortices and blue colour corresponds
to clockwise rotating vortices: (a,c,e,g,i,k,m,o,q,s) the experimentally measured vorticity
fields: (b,d, f,h,j,l,n,p,r,t) the computed vorticity fields (2D CFD), for (a,b) T = 10.0,
(e, f ) 10.1, (i,j) 10.2, (m,n) 10.3, (q,r) 10.4, (c,d) 10.5, (g,h) 10.6, (k,l) 10.7, (o,p) 10.8,
(s,t) 10.9. The unit of the vorticity plots is 1 s−1. The colour scale of the vorticity plots
is estimated based on camera frequency and lens magnification. The vorticity colour
scales for experiments and simulations do not correspond to identical contour values,
hence this plot only shows qualitative comparison.

experiments, the LEV is concentrated more closely around the leading edge, whereas
in simulations the vorticity is more spread out along the upper wing surface. In
addition, shed vortices decay quickly in our experiments whereas shed vortices are
much stronger in the simulations. These differences may be due to the 2D flow
assumption of our numerical solver. In 2D simulations, shed vortices (both LEV and
TEV) are infinitely long vortex filaments and decay slowly. On the other hand, shed
vortex structures in 3D flapping experiments have radially outward momentum due to
the spanwise flow. The influence of the shed wake structure on the wing weakens as
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FIGURE 11. (a) Wing stroke motion as a function of time in experiment. (b) Hinge
rotation as a function of time. The arrow indicates that increasing wing aspect ratio (AR)
corresponds to decreasing phase shift δ. The stroke and hinge motions shown in (a,b) are
projected to the lowest Fourier component for numerical simulation. (c) Experimentally
measured leading edge circulation as a function of time. (d) Numerically computed
circulation as a function of time. The unit of circulation in (c,d) is m2 s−1. The arrows
in (c,d) indicate that increasing aspect ratio AR corresponds to increasing leading edge
circulation. The bounding box that defines the leading edge circulation region is shown
in figure 4(d). In all graphs, time is normalized to one flapping period.

the LEV and the TEV move in both downward and outward directions. In addition,
because a 3D vortex has finite length, it decays faster due to viscous dissipation. As
a result, interactions between previously shed vortices and the wing are weaker in
3D flow. Details about 3D wake structures around a flapping wing can be found in
Cheng et al. (2014).

We quantitatively measure the LEV strength for comparison between simulation
and experiment. The flapping kinematics of all four wings have similar stroke motion
and identical driving frequency. The hinge amplitude and relative phase shift vary,
and in this setting we investigate the relationship between passive hinge motion
and leading edge circulation. Figure 11(a) shows that the measured stroke motions
are similar for all four wings. Figure 11(b) shows the measured hinge motions. As
wing aspect ratio increases, the relative phase shift between stroke and hinge motion
decreases. Figure 11(c) shows the experimentally measured leading edge circulation as
a function of time during a flapping period. We measure the leading edge circulation
by integrating the vorticity in a small rectangle around the leading edge. The bounding
box dimension is chosen to include the entire LEV while excluding contributions from
previously shed vortices. We only integrate over negative vorticity (clockwise rotating
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FIGURE 12. Computed passive hinge motion versus experimentally measured hinge
rotation. This graph shows the 10th–15th flapping periods to avoid transient effects.

vortices) to avoid cancellation between positive and negative vorticity on opposite
wing surfaces. The integration formula is given by

0LEV =
∣∣∣∣∫

box
(∇× u)z · ((∇× u)z 6 0) da

∣∣∣∣ , (4.5)

where (∇ × u)z is the z component of the vorticity vector, and the conditional
statement (∇ × u)z 6 0 avoids contributions of positive vorticity on the other side
of the wing surface. The strength of the LEV between period = 0 and period = 0.5
directly correlates to the lift force production. At around the half-period point, the
wing reverses and a previous LEV is shed and attaches to the lower wing surface.
Experimentally, we observe that flapping experiments with advanced pitch rotation
correspond to stronger leading edge circulation. Figures 11(b) and 11(c) show that
wings with larger leading edge circulation also have more negative phase shift δ.
This experimental observation is confirmed by the numerical simulations shown in
figure 11(d). The simulation results confirm that wings with more negative phase
shift have larger leading edge circulation.

4.2.3. Numerical simulation with passive hinge rotation
In § 2.4 we introduced a 2D coupled fluid–mesh model that allows us to prescribe

stroke motion and compute passive hinge rotation. We use the measured stroke
kinematics of the AR= 3 wing in figure 11(a) as the input, and we compute passive
hinge motion and the vorticity fields. The parameters in (2.10) are found using the
method discussed in § 2.4. The normalized moment of inertia ixx is 0.12 mg mm. We
run a number of simulations and identify the best fitting β to be 2.8. The normalized
hinge stiffness k is calculated to be 100 µN rad−1 using (2.11). We ignore the
contribution of wing centre of mass offset to the rotation axis in this simulation. As
shown in the supplementary movie, the driving frequency and wing resonance are
very different and hence the effect of this inertial term is small.

Figure 12 compares the computed hinge rotation with the experimentally measured
hinge motion. The differences between the predicted and measured hinge amplitudes
ψmax and phase shifts δ are ±3◦ and ±5◦ respectively. Figure 13 shows qualitative
agreement of the vorticity field between the experimental measurement and the passive
hinge simulation. We observe similar LEV formation and vortex shedding behaviours.
Due to the lack of spanwise flow, the 2D simulation is less stable than 3D flow.
We observe that a small LEV detaches at T = 10.7, and at the same time a new
LEVquickly develops on the wing upper surface. At T = 10.8 and T = 10.9, the
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FIGURE 13. Vorticity comparison plot between experimental measurements and passive
hinge simulations for Re = 520. Red corresponds to counterclockwise rotating vortices
and blue corresponds to clockwise rotating vortices: (a,c,e,g,i,k,m,o,q,s) the experimentally
measured vorticity fields; (b,d, f,h,j,l,n,p,r,t) the computed vorticity fields (2D CFD), for
(a,b) T=10.0, (e, f ) 10.1, (i,j) 10.2, (m,n) 10.3, (q,r) 10.4, (c,d) 10.5, (g,h) 10.6, (k,l) 10.7,
(o,p) 10.8, (s,t) 10.9. The unit of the vorticity plots is 1 s−1.

new LEV on the upper wing surface is qualitatively similar to the measured LEV.
Although we observe an instance of instability, the LEV profile during the downstroke
(10.75 6 t 6 11.0) is qualitatively similar to the measurement. Hence, the influence
of this early shedding on lift is not significant. This coupled fluid–mesh simulation
demonstrates that the numerical solver can reasonably describe passive hinge rotation
when given the stroke kinematics.

4.2.4. Effect of relative phase shift
In §§ 4.2.2 and 4.2.3 we show that simulations with fully or partially prescribed

kinematics yield good agreement with experimental measurements. We further use
numerical simulations to explore kinematic inputs that cannot be studied using the
existing experimental set-up. In figure 7(b) we observe that the mean lift plummets
when δ is large and positive. However, we cannot experimentally isolate the effect
of the phase shift δ because the hinge motion depends on the stroke and frequency
operating points.
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FIGURE 14. Plots of CL, CD and CL/CD as functions of δ. All simulations are run with
φmax = 34◦, ψmax = 43◦, f = 120 Hz, while the phase parameter δ is varied from −40◦
to 30◦. (a) Time-averaged lift and drag coefficients for an impulsively started wing for a
half flapping period. (b) The same simulations averaged over six flapping periods. Panels
(a) and (b) Show 2D CFD results. (c) Three-dimensional CFD simulation of mean lift
and drag coefficients averaged over six flapping periods. (d) Comparison of CL/sin(2αmin)
between 2D and 3D simulations and measurements.

We study the effect of δ numerically through simulations with fully prescribed
kinematics. Figure 14 shows CL and CD as a function of the phase shift δ while
holding other kinematic parameters constant. Here, we set φmax = 34◦, ψmax = 43◦

and f = 120 Hz. Figure 14(a) shows the time-averaged lift and drag coefficients
of an impulsively started wing for half of a flapping period and 14(b) shows the
averages for six flapping periods. In the first half-stroke there are no downwash or
wake capture effects; hence, figure 14(a) quantifies the effect of δ on translational
lift and drag alone. Figure 14(b) shows the variation of CL and CD due to δ on both
translational and rotational motion.

Both figures 14(a) and 14(b) show that CL and CD decrease as δ increases. It should
be recalled from § 2.2 that the quasi-steady model does not relate CL and CD to δ.
Using the numerical solver we have shown that the lift and drag coefficients are strong
functions of δ. Compared with δ = 0◦, the 2D simulation of δ =−30◦ shows a 61 %
increase of CL and a 66 % increase of CD. On the other hand, at δ= 30◦ we observe
a 44 % decrease of CL and a 7.1 % decrease of CD.
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Figure 14(c) further shows the CL and CD dependence on δ through 3D simulations.
Since 3D CFD simulations are less influenced by shed vortex interactions and
downwash effects, we only show the case of averaging over six periods. The 3D
simulations show that CL and CD reduce by 52 % and 38 % from δ = −30◦ to
δ= 40◦ respectively. The mean lift and drag coefficients are monotonically decreasing
functions of δ. We observe that the half-period 2D result is more similar to the
3D simulation than the six-period 2D result. This suggests that unsteady vortex
interactions and downwash may be the main factors of discrepancy between 2D and
3D simulations.

Figure 14(a–c) also shows the ratio CL/CD as a function of δ. The ratio CL/CD is
an important MAV design parameter because it relates to flight endurance. Instead of
maximizing mean lift, it is energetically more efficient to maximize CL/CD in flight.
Both 2D and 3D simulations show that CL/CD is small when the phase shift δ is much
less than 0◦ or much greater than 0◦. In particular, the 3D CFD simulation shows that
CL/CD is a maximum at δ =−5◦, which suggests δ ≈ 0◦ to be a desirable operating
point. This suggests that optimization based on a quasi-steady model (which assumes
δ = 0◦) will be fruitful in future study.

Finally, figure 14(d) compares the CL/sin(2αmin) dependence on δ between
experiments, 2D and 3D simulations. The data shown in figure 14(d) are taken from
figures 7(d), 14(b) and 14(c). Although 2D simulations underestimate CL/ sin(2αmin),
both 2D and 3D simulations show a similar trend to the experiments. In passive
pitching experiments the minimum angle of attack varies in different driving
conditions; hence, we normalize effects of different αmin values by dividing by
sin(2αmin).

5. Conclusion and future work

In summary, we studied the aerodynamic performance of flapping flight with passive
hinge rotation through insect-scale experiments and comparison with quasi-steady and
numerical models. Experimentally, we tracked the flapping kinematics and measured
the associated aerodynamic forces. Comparison with quasi-steady model predictions
showed that the quasi-steady model gives accurate predictions of wing pitching
when the kinematic parameter δ is small. The quasi-steady model expedites the
wing characterization process but cannot account for unsteady effects. To investigate
unsteady effects, we implemented 2D and 3D numerical solvers for the incompressible
Navier–Stokes equation. The numerical simulation results show good agreement with
experimentally measured forces and vorticity fields. In addition, both experiments
and simulations show that the time-averaged lift coefficient CL is a strong function
of the phase shift δ. A set of experiments and simulations shows that negative
phase shift corresponds to a stronger LEV and thus larger lift and drag forces.
We further propose a coupled fluid–mesh numerical solver that models the hinge
as a linear spring. Numerical simulation with only prescribed stroke motion gives
good agreement with experimentally measured hinge rotation and vorticity fields. In
addition, the numerical solver is used to explore parameter spaces that cannot be
reached by the existing experimental set-up. Numerical simulation results quantify the
precise effects of the relative phase shift δ on lift and drag forces. These studies are
also applicable to micro-aerial vehicle designs where the wing flapping frequency is
determined by the actuation dynamics but not wing resonance. We found that wings
with stiffer hinges achieve favourable pitching kinematics that lead to larger mean lift
forces.
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FIGURE 15. The wing planforms used in the experiments. The grey regions illustrate
carbon fibre wing spars and the white regions represent polyester membranes. Here, R
is the wing span and c is the local wing chord; (a) AR= 3.0, (b) 3.5, (c) 4.5, (d) 5.0.

These sets of experiments demonstrate that a 2D numerical solver can reasonably
describe the effect of the LEV and can be further developed towards exploring
flapping flight. In addition to modelling passive hinge rotation, future studies may
focus on the effects of wing camber and flexibility on 3D flow structures. Advances
in wing driver design will enable further study on more complex stroke kinematics
and higher-frequency components. Further, an adjoint-based numerical optimization
method can be applied towards searching for optimal flapping kinematics. The
optimization study can also be complemented through experimentation with different
wing designs and driving kinematics. Finally, three-dimensional simulations and
particle velocimetry measurement will better describe 3D mechanisms such as wake
interactions, spanwise flow and LEV stability.
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Appendix A. Wing planforms and inertial properties
Figure 15 shows the wing planforms used in our experiments. Most flapping

experiments are performed with a wing that has an aspect ratio equal to 3. The wing
weighs 0.52 mg, has a wing span of 12.8 mm and a surface area of 54 mm2. The
origin of the coordinate system is located at the wing tip leading edge. The centre
of mass is located at x = 3.41 mm, y = −0.52 mm, z = −0.04 mm. The moments
of inertia Ixx, Iyy and Izz with respect to the centre of mass are 1.54, 18.78 and
20.0 mg mm2. In our flapping experiment, the wing root location xr is designed to
be 0 mm.
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FIGURE 16. Numerical solver validation. Two-dimensional vorticity fields of flow over a
static (a), rotating (b) or vertically oscillating (c) cylinder. The corresponding mean drag
coefficients and Strouhal numbers are compared with values reported in table 2. (d) Three-
dimensional test cases. We compare the mean drag coefficients of flow over a static sphere
with values reported in Jones & Clarke (2008). The Reynolds number varies from 20 to
200 in steps of 20.

In the PIV studies we vary AR to study the effect of δ on LEV growth. Figure 15
also shows wing planforms for AR equal to 3.5, 4.5 and 5.0.

Appendix B. Validation of numerical solver
We simulate flow over a cylinder for Reynolds numbers between 100 and 200 to

validate the 2D solver. Here, we report and compare the mean drag coefficient and
Strouhal number with literature values. Figure 16(a) shows the vorticity field of flow
over a stationary cylinder. The Reynolds number is set to 150. To further validate the
moving mesh implementation, we simulate flow over a rotating cylinder in figure 16(b)
and a vertically oscillating cylinder in figure 16(c). In the rotating cylinder simulation,
we set Re = 100, wL/2Uref = 1, where w is the cylinder angular velocity, L is the
cylinder diameter and Uref is the upstream inflow velocity. In the oscillating cylinder
simulation, we set Re = 185, fo/fs = 0.8 and A/L = 0.2, where fo is the cylinder
oscillation frequency, fs is the vortex shedding frequency and A/L is the oscillation
amplitude to cylinder diameter ratio. These geometric and kinematic input parameters
are documented in table 2. Table 2 further shows the relative error of these simulations
compared with literature values. We find that the relative error of our simulation result
is within 3.25 % for all 2D test cases.

To validate the 3D numerical solver, we simulate flow over a sphere for Reynolds
numbers between 20 and 200 in steps of 20. The sphere has a diameter of 1. The
upstream length, downstream length and radius of the cylindrical channel are 5, 15
and 5 respectively. Figure 16(d) compares our simulated mean drag coefficients with
the ones reported in Jones & Clarke (2008). In all test cases our simulation results
slightly overpredict mean drag coefficients by approximately 1.5 %. We believe that
this small error is due to a blockage effect (the ratio between sphere diameter and
channel diameter) because our mesh dimensions are smaller than the mesh dimensions
used in Jones & Clarke (2008).

We further show convergence of the 2D and 3D solvers. To avoid meshing
discretization error and to reduce computational cost, we perform simulations in
rectangular channel flow with non-slip boundary conditions. For the 2D simulation,
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(a) (b)

(c) (d )

FIGURE 17. The convergence rates of the 2D and 3D solvers. All graphs show the two
norm relative errors as functions of mesh element length or time step size on log–log
scales. (a) The spatial and (c) the temporal convergence rate of the 2D CFD solver. We
simulate flow in a rectangular channel with non-slip boundary conditions. The Reynolds
number is 160. It is shown in (a) that the spatial convergence rate is 4.95 and in (c) that
the temporal convergence rate is 1.39. (b) The spatial and (d) the temporal convergence
rate of the 3D solver. We simulate flow in a 3D rectangular channel with non-slip
boundary conditions. The Reynolds number is 160. It is shown in (b) that the spatial
convergence rate is 2.40 and in (d) that the temporal convergence rate is 1.35.

the length and width of the channel are 20 and 4 respectively. The Reynolds number
is 160. For the 3D simulation, the length, width and height of the rectangular channel
are 20, 4 and 10 respectively. The Reynolds number is also 160.

Figure 17 shows the convergence rate of the solver on log–log scales. The
solver convergence rate can be approximated as the slope of the plots in figure 17.
Figure 17(a,b) shows that the 2D and 3D spatial convergence rates are 4.95 and
2.40. The 2D solver uses a fifth-order interpolation polynomial, hence it agrees
with the expected convergence rate. The 3D solver uses a first-order interpolation
polynomial but we observe second-order convergence. We observe a higher than
expected convergence rate because this particular test case possesses geometric
symmetry. (The flow field solution is symmetric in the plane orthogonal to the
incoming flow.) Figures 17(a,c) and 17(b,d) show that the 2D and 3D temporal
convergences are 1.39 and 1.35 respectively. We observe that the convergence rate is
slightly lower than expected because the Adams–Bashforth method is not self-starting
at the first time step. Details of the convergence properties of the Adams–Bashforth
method are explained in Hesthaven & Warburton (2007).
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STOJKOVIĆ, D., BREUER, M. & DURST, F. 2002 Effect of high rotation rates on the laminar flow
around a circular cylinder. Phys. Fluids 14 (9), 3160–3178.

THIELICKE, W. & STAMHUIS, E. J. 2015 The influence of wing morphology on the three-dimensional
flow patterns of a flapping wing at bird scale. J. Fluid Mech. 768, 240–260.

THIRIA, B. & GODOY-DIANA, R. 2010 How wing compliance drives the efficiency of self-propelled
flapping flyers. Phys. Rev. E 82 (1), 015303.

TU, S. & ALIABADI, S. 2005 A slope limiting procedure in discontinuous Galerkin finite element
method for gasdynamics applications. Intl J. Numer. Anal. Model. 2 (2), 163–178.

WANG, J. & CHANG, S. 2013 Predicting fruit fly’s sensing rate from insect flight simulations. Bull.
Am. Phys. Soc. 58 (1), 17002.

WANG, Z. J., BIRCH, J. M. & DICKINSON, M. H. 2004 Unsteady forces and flows in low Reynolds
number hovering flight: two-dimensional computations vs robotic wing experiments. J. Expl
Biol. 207 (3), 449–460.

WHITNEY, J. P. & WOOD, R. J. 2010 Aeromechanics of passive rotation in flapping flight. J. Fluid
Mech. 660, 197–220.

WILLERT, C. E. & GHARIB, M. 1991 Digital particle image velocimetry. Exp. Fluids 10 (4), 181–193.
WOOD, R. J., AVADHANULA, S., SAHAI, R., STELTZ, E. & FEARING, R. S. 2008 Microrobot design

using fiber reinforced composites. J. Mech. Design 130 (5), 052304.
ZHANG, J., LIU, N.-S. & LU, X.-Y. 2010 Locomotion of a passively flapping flat plate. J. Fluid

Mech. 659, 43–68.
ZHAO, L., HUANG, Q., DENG, X. & SANE, S. P. 2010 Aerodynamic effects of flexibility in flapping

wings. J. R. Soc. Interface 7 (44), 485–497.
ZHENG, L., HEDRICK, T. L. & MITTAL, R. 2013 A multi-fidelity modelling approach for evaluation

and optimization of wing stroke aerodynamics in flapping flight. J. Fluid Mech. 721, 118–154.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

35
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2016.35

	Experimental and computational studies of the aerodynamic performance of a flapping and passively rotating insect wing
	Introduction
	Quasi-steady modelling and numerical simulation
	Flapping kinematics
	Quasi-steady modelling
	Numerical simulation with fully prescribed kinematics
	Numerical simulation with partially prescribed kinematics
	Three-dimensional simulation with fully prescribed kinematics

	Experimental set-up
	Wing driver and wing fabrication
	Time-resolved force measurement
	Extraction of wing kinematics
	Digital particle velocimetry

	Results and discussion
	Quasi-steady model comparison
	Numerical model comparison
	Comparison of 2D and 3D CFD and experiment
	Vorticity field comparison
	Numerical simulation with passive hinge rotation
	Effect of relative phase shift


	Conclusion and future work
	Acknowledgements
	Appendix A. Wing planforms and inertial properties
	Appendix B. Validation of numerical solver
	References




