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 SUMMARY
 A new kinematic design of a parallel spherical wrist with
 actuator redundancy is presented .  A special feature of
 this parallel manipulator is the arrangement of co-axial
 actuators which allows unlimited rotation about any axis
 inside a cone-shaped workspace .  A detailed kinematic
 analysis has shown that actuator redundancy not only
 removes singularities but also increases workspace while
 improving dexterity .  The structure optimization has been
 performed with a global dexterity criterion .  Using a
 conditioning measure ,  a comparison with a non-
 redundant structure of the same type was performed and
 shows that a significant improvement in dexterity has
 been obtained .

 KEYWORDS :  Parallel manipulator ;  Spherical wrist ;  Actuator
 redundancy

 1  INTRODUCTION
 A wrist is intended to modify the end-ef fector orientation
 around any direction in space .  The performances of an
 ideal wrist would be constant and independent of its
 configuration .  This property ,  known as isotropy ,  is not
 guaranteed .  Indeed ,  many mechanisms have configura-
 tions in which large actuator motions result in small
 changes in end-ef fector orientation .  However ,  isotropy is
 necessary in many practical applications as the same
 specifications must be satisfied in any direction ,  whatever
 the configuration of the manipulator may be .

 Designing a wrist that exhibits isotropic properties
 over a given workspace first requires the selection of an
 appropriate mechanical structure .  Second ,  the design
 parameters of the structure have to be optimized in order
 to satisfy one or several dexterity measures .  For the
 mechanical structure ,  it is possible to choose between
 serial and parallel kinematic chains .  Serial chains ,  in this
 case three consecutive rotational joints ,  are characterized
 by a large usable workspace but poor isotropy .  They also
 have singular points for which the end-ef fector cannot be
 rotated around a particular direction .  An additional joint
 can be used to avoid this singularity problem and
 improve the isotropy .  This is called kinematic
 redundancy .

 The main advantages of parallel kinematic chains are
 lightness and rigidity .  The use of these chains in a robotic
 context is of recent date . 1 – 4  Their lightness ,  mainly due to
 the ability of bringing the actuators as close as possible to
 the fixed base is interesting in many applications
 requiring high rate of acceleration 5 , 6  or force control such

 as teleoperation with a force-reflecting controller . 7  In this
 latter case ,  the master-slave coupling must be transpar-
 ent ,  which calls for the design of a master system with
 low inertia and high isotropy .  The use of parallel
 structures as wrists is even more recent . 8-10  Opposite to
 the kinematic redundancy in serial chains is the actuator
 redundancy in parallel mechanisms ,  which has been
 studied particularly by Hayward .  This means that the
 mechanism has more actuators than necessary ,  without
 increasing mobility .  Actuator rates are uniquely deter-
 mined by a given trajectory but actuator torques are
 undetermined .  It can be used to increase dexterity and
 eliminate certain type of singularities .

 Many authors have analysed the dexterity of
 manipulators and compared dif ferent measures ,  particu-
 larly Klein and Blaho , 1 1  and Park . 1 2  One of the first
 papers to consider dexterity was by Salisbury and
 Craig , 1 3  who introduced the condition number of the
 Jacobian  J  ( k  5  i  J  i  i  J 2 1  i  ) which is simply the ratio of
 the radii of the largest and smallest principal axes of the
 manipulability ellipsoid described by Yoshikawa . 1 4  A
 direct physical significance of this local measure has also
 been shown . 11 , 15 , 16  Other measures taking into account
 inertial properties have been defined (generalized inertia
 ellipsoid by Asada , 1 5  dynamic manipulability measure by
 Yoshikawa 1 7 ) .  Since they characterize the dexterity of a
 robot only at a given configuration ,  the above measures
 are local .  But for design optimization ,  a global measure
 may be more desirable .  In papers of Gosselin and
 Angeles , 1 8  Kurtz and Hayward , 1 6  global measures are
 defined by integrating local dexterity indices over the
 workspace .

 The purpose of this paper is to present a new design of
 a redundantly actuated spherical parallel wrist ,  de-
 veloped at CERT-ONERA by C .  Reboulet . 1 9  To this
 end ,  the inverse kinematics ,  the Jacobian and the
 singularities of this mechanism are presented and
 discussed .  Afterwards ,  a global dexterity measure is
 introduced .  This measure ,  coupled with constraints on
 workspace volume ,  is used to optimize the geometrical
 parameters of the structure .  Finally ,  the results are
 compared with another ,  similar ,  non redundant
 mechanism .

 2  DESCRIPTION OF THE MECHANISM
 The mechanism is composed of two pairs of sub-arms ,
 pair (1) and (2) ,  and pair (3) and (4) ,  attached at one end
 to points  P 1 , 2  and  P 3 , 4  of the moving platform ,
 respectively ,  and at the other two points of the fixed
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 axis z f .  Each sub-arm consists of two spherical links .  All
 the joints are revolute and their axes (active and passive)
 intersect at point  O ,  defining the rotation center of the
 spherical wrist .  As it is shown in Figure 1 ,  this structure
 has all its actuator axes aligned to the  z f  -axis .

 This mechanism which is close to non-redundant
 structures studied by Asada and Cro Granito , 8  Cox and
 Tesar , 9  Gosselin and Angeles , 1 0  dif fers also in design as
 there are only two attachment points on the moving
 platform .  In its nominal configuration (moving frame
 coinciding with the fixed frame) ,  the structure is
 symmetrical about the  x f  y f   plane (Figure 1) .  An angle  g
 between the attachment points ( P 1 , 2  and  P 3 , 4 ) has been
 chosen equal to 90 8  in order to simplify the design .
 Computation of the conditioning measure for dif ferent
 values of  g   showed that perfect isotropy is impossible
 and that the measure is divided by (1  1  u cos  g  u ) ,
 increasing the anisotropy of the mechanism .  This justify
 the choice of 90 8  for angle  g .

 Due to the four collinear actuators ,  unlimited rotation
 is possible around any axis inside a cone inscribed in the
 workspace .  The opening angle of the cone is twice the
 maximum angle between the moving axis  z  and the fixed
 axis  z f  ,  whatever the orientation of the platform may be .
 A cone as wide as possible is equivalent to maximizing
 the workspace .

 3  KINEMATIC ANALYSIS

 3 . 1  In y  erse kinematic problem
 The inverse kinematic problem for this manipulator
 consists in finding the joint variables  a i  ,  ( i  5  1 ,  .  .  .  ,  4)
 corresponding to a given orientation of the moving
 platform .  As two configurations exist for each sub-arm ,
 there are 16 solutions .

 Orientation of the moving platform is specified by
 three Euler angles  c  ,  θ  ,  w ,  where  c   is the rotation
 around the  z f  -axis ,   θ   is the rotation around the new axis
 x  and  w   is the rotation around the new axis  z .  The

 Fig .  1 .  The spherical wrist .

 rotation matrix with respect to the base coordinates is
 given by :

 R  5  Rot z ( c  )  ?  Rot x ( θ  )  ?  Rot z ( w )

 Let us consider the geometric parameters of the
 manipulator in Figure 2 .  Let us denote by  a  and  b  the
 link angles of the segments of each sub-arm and define  u $  i

 as the unit vector along the axis ( OP i ) of the revolute
 joint connecting the moving platform to the adjacent
 link .  In the chosen layout ,  the points  P 1  and  P 2  merge in
 P 1 , 2   and points  P 3  , P 4  into  P 3 , 4  .  [ x i  ,  y i  ,  z i ]

 T   the components
 of  u $  i   in the fixed base ,  are functions of the three Euler
 angles  c  ,  θ  ,  w .  Moreover ,   w $  i   is defined as the unit vector
 along the axis of the intermediate revolute pair of each
 sub-arm .  The components of vector  w $  i   are given by :

 w $  i ( a i )  5 3  sin  a  cos  a i

 sin  a  sin  a i

 ( 2 1) i  cos  a
 4  (1)

 The solution of the inverse kinematics problem is
 obtained by solving for  a i   each of the four equations :

 u $  i  ?  w $  i ( a i )  5  cos  b  (2)

 For each sub-arm ,  this leads to :

 X i  cos  a i  1  Y i  sin  a i  5  Z i  (3)
 where :

 X i  5  x i  sin  a

 Y i  5  y i  sin  a

 Z i  5  cos  b  2  ( 2 1) i z i  cos  a

 This classic equation has a solution if :

 X  2
 i  1  Y  2

 i  $  Z  2
 i

 For each sub-arm ,  it gives the two following solutions to
 the inverse kinematics problem :

 a i  5  b i  Ú  arcos  S Z i

 d i
 D  (4)

 Fig .  2 .  Geometric parameters .

https://doi.org/10.1017/S0263574797000490 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574797000490


 Optimal design  401

 with
 d i  5  4 X  2

 i  1  Y 2
 i

 b i  5  arctan  2 S  Y i

 X i
 D

 For technical reasons of design ,  the layout of Figure 1
 has been chosen .  The corresponding solutions  a i

 ( i  5  1 ,  .  .  .  ,  4)   are selected by testing the sign of
 det  ( w $  i  ,  u $  i  ,  z $  f  ) .

 3 . 2  Jacobian matrix
 The Jacobian matrix can be found by dif ferentiation of
 equation (2) as shown by Gosselin , 1 0  namely :

 u $ ~  i  ?  w $  i  1  u $  i  ?  w $ ~  i  5  0  (5)
 where

 u $ ~  i  5  v $  ∧  u $  i

 v $    being the angular velocity of the moving platform .
 Equation (5) can be rewritten as :

 b i a ~  i  1  ( u $  i  ∧  w $  i )  ?  v $  5  0  (6)

 with :

 b i  5  z $ f  ?  ( w $  i  ∧  u $  i )

 which gives the 4  3  3 inverse of the Jacobian matrix  J 2 1 :

 (7) a $ ~  5

 .  .  .
 2 ( u $  i  ∧  w $  i )

 T

 b i

 .  .  .
 .  .  .

 v $  5  J 2 1 v $C D
 a $ ~    being the 4  3  1 vector of joint rates .

 It is interesting to note that because the motor axes
 coincide with the  z f  -axis ,  the choice of  c  ,  rotation
 around the same  z f  -axis provides an unusual property .
 The condition number of the Jacobian matrix  J  does not
 depend on angle  c  ,  which allows to perform the
 optimization process with angles  θ   and  w   only .

 3 . 3  Discussion on singularities
 As shown by Gosselin and Angeles , 2 0  equation (7) can
 be written as :

 3  b 1

 0

 ?  ?  ?

 0

 b 4
 4 a $ ~  5 3

 .  .  .
 2 ( u $  i  ∧  w $  i )

 T

 .  .  .
 .  .  .

 4 v $

 B a $ ~  5  A v $  with  J  2 1  5  B  2 1 A  (8)

 which leads to the following mechanism singularities :
 $  Singularities of the first kind , 2 0  (or serial-type

 singularities) ,  that appear when det  ( J )  5  0 which
 corresponds to det  ( B )  5  0 .  They consist of the set of
 points where dif ferent branches of the inverse
 kinematics problem meet and are known to lie on the
 boundary of the workspace .  As the matrix  B  is of a

 diagonal form ,  this happens if one of the  b i   is equal to
 zero ,  i . e . :

 z $ f  ?  ( w $  i  ∧  u $  i )  5  0  i  5  1 ,  .  .  .  ,  4  (9)

 This equation states that the two links of a sub-arm are
 coplanar ,  i . e .  the corresponding sub-arm is totally
 unfolded or folded ,  which can be expressed as :

 u $  i  ?  z $  f  5  ( 2 1) i  cos  ( a  Ú  b )  i  5  1 ,  .  .  .  ,  4  (10)

 which leads to :

 sin  θ  sin  w  5  Ú cos  ( a  Ú  b )
 (11)

 sin  θ  cos  w  5  Ú cos  ( a  Ú  b )

 Hence it is possible to plot the locus of first type
 singularities in the  θ  2  w   plane .

 $  Singularities of second kind 2 0  (or parallel-type
 singularities) that correspond to configurations in which
 the gripper is locally movable even when all the motors
 are locked .  As opposed to the first kind ,  this kind of
 singularity lies inside the workspace and corresponds to a
 set of points where dif ferent branches of the direct
 kinematics problem meet .  These singularities appear
 when det  ( J )  5  ̀  ,  i . e .  det  ( A )  5  0 .  Since  u $  1  5  u $  2  and
 u $  3  5  u $  4  ,  the matrix A can be written :

 A  5  2 3
 ( u $  1  ∧  w $  1 )

 T

 ( u $  1  ∧  w $  2 )
 T

 ( u $  3  ∧  w $  3 )
 T

 ( u $  3  ∧  w $  4 )
 T
 4  (12)

 A is singular if its rank becomes less or equal to two ,
 then if its four line vectors are coplanar .  As sub-arm (1)
 is coupled with sub-arm (2) (respectively (3) with (4)) ,
 the first two line vectors being collinear implies :

 w $  1  5  Ú w $  2  (13)

 –  w $  1  5  w $  2  is possible only if  a  5  90 8 .
 –  w $  1  5  2 w $  2  is impossible without crossing a singularity

 of the first kind ,  as the chosen layout yields :

 det  ( w $  1  ,  u $  1  ,  z $ f  )  .  0
 (14)

 det  ( w $  2  ,  u $  1  ,  z $ f  )  .  0

 The argument is the same for (3) and (4) .  Then ,  if
 a  ?  90 8 ,  the first two line vectors of A always define a
 plane perpendicular to  u $  1  and the last two line vectors a
 second plane perpendicular to  u $  3  .  Since  u $  1  and  u $  3  are
 always perpendicular ,  it is impossible for the two planes
 to merge and no parallel-type singularities exists in the
 workspace .

 If  a  5  90 8 , w $  1  5  w $  2  and  w $  3  5  w $  4  then rank  ( A )  5  1 ;  The
 nominal configuration is singular and uncontrolled
 degrees-of freedom appear .

 4  DEXTERITY MEASURE AND OPTIMAL
 DESIGN
 The notion of optimality is dif ficult to incorporate in the
 design process as there exists no global criteria including
 all objective functions .  It is particularly dif ficult to take
 into account simultaneously geometrical ,  inertial and
 dynamic performance aspects and combine them into a
 single performance measure .
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 Another goal of design ,  particularly for parallel
 mechanisms ,  is the maximisation of the usable
 workspace .  It is also desirable to have the best
 conditioning inside the workspace ,  but these two goals
 are often conflicting .

 In the case of three-dof parallel manipulators with
 identical actuators ,  the Jacobian matrix  J  is involved in
 kinematic ,  force and inertial relations .  Therefore ,  using
 the condition number of  J  (or its inverse ,  called
 dexterity) seems appropriate to perform optimization
 even if it is not the only criterion for mechanism design .
 The condition number is defined as the ratio between the
 largest and the smallest singular values of  J :

 k ( J )  5
 s m a x ( J )
 s m i n ( J )

 For the spherical wrist ,  it is possible to have isotropy at
 nominal configuration ( c  ,  θ  ,  w  5  0) .  The condition
 ( k ( J )  5  1)   can be written as an equation function of
 angles  a  and  b :

 3  cos 2  a  1  2  cos 2  b  5  2  (15)

 But the opening angle of the inscribed cone is then of 70 8
 maximum .  Therefore ,  it may be more interesting to
 accept some deviation from isotropy at nominal
 configuration in order to obtain a larger workspace .

 As the minimization of the condition number of J is
 only a local criterion ,  the choice of values for  a  and  b  is
 dif ficult .  Gosselin and Angeles 1 8  and Kurtz and
 Hayward 1 6  defined an interesting global measure  D g  ,
 which consists in integrating the dexterity over the
 workspace and then normalizing by the volume  N w   of the
 workspace :

 D g  5
 1

 N w
 E

 W

 1
 k ( J )

 dw  N w  5 E
 W

 dw  (16)

 with  dw ,  element of volume of the workspace  W .
 Expressing  dw  for an orientation device is not as simple
 as it is for a positioning device .  The workspace  W  and its
 limits are well-known in terms of Euler angles  c  ,  θ   and  w
 but the preceding integral has to be computed with an
 element of volume  dw  that is homogeneous in all the
 orientation workspace .  This is not the case for the
 volume generated by elementary angles  d c  , d θ  , d w .

 Finite rotations can be conveniently interpolated using
 quaternion coordinates  q 0  , q 1  , q 2  , q 3  (also known as
 quadratic invariants or Euler parameters) defined by :

 q 0  5  cos
 a

 2
 (17)

 q $  5  [ q 1  ,  q 2  ,  q 3 ]
 T  5  sin

 a

 2
 u $

 where  u $    is the unit vector of the axis of rotation and  a   is
 the angle of rotation .  Any rotation is represented by a
 quaternion of unit magnitude ,  thus by a point on the
 hypersphere  S 3  of radius 1 in the four-dimensional
 quaternion space .

 Let us consider the rotation  R ,  function of time ,
 mapping a fixed base  B 0  into a moving base  B M  ,  and  v $  ,
 the associated instantaneous angular velocity .  The
 rotation  R  can be represented by a quaternion of unit

 magnitude  q ̃  .  The relation between  R  and the
 skew-symmetric matrix  Ω   associated to  v $    is :

 Ω  5  R ~  R T

 A relation between  q ̃    and  v $    can be derived in the same
 way :

 1 – 2 v $  5  q ̃ ~  q ̃  *  (18)

 (with  q ̃  *  5  [ q 0  ,  2 q $  ] ,  conjugate quaternion of  q ̃  , q ̃ ~  q ̃  * is a
 pure quaternion ,  equivalent to a vector) .  From equation
 (18) ,  it can be derived that :

 1 – 2  i  v $  i  5  i  q ̃ ~  i  (19)

 The velocity along a trajectory on the unit hypersphere is
 then always equal to half of the instantaneous angular
 velocity ,  independently of the parameters used to specify
 the rotation .  This relation is of basic importance as it
 proves that an element of volume on the unit
 hypersphere corresponds to an elementary volume
 homogeneous in all the orientation workspace .

 Hence ,   dw  is defined as an elementary volume of the
 unit hypersphere  S 3  even though the computation of the
 integral is performed with Euler angles .  As the three
 Euler angles specify a trajectory on the unit hypersphere ,
 a radius  r  is introduced which allows to go through the
 entire four-dimensional space  R 4 .  The mapping from
 quaternions space to the four-dimensional space
 ( r ,  c  ,  θ  ,  w )   is derived using the determinant of the
 Jacobian .  As  q ̃    represent a rotation ,   r  is taken equal to 1 :

 K ( c  ,  θ  ,  w )  5 U ­ q ̃
 ­ r

 ­ q ̃
 ­ c

 ­ q ̃
 ­ θ

 ­ q ̃
 ­ w

 U
 r 5 1

 Therefore the measure  D g   takes the form :

 D g  5
 1

 N w
 E E E
 c  , θ  , w

 1
 k ( J )

 K ( c  ,  θ  ,  w )  d c  d θ  d w

 (20)

 N w  5  E E E
 c  , θ  , w

 K ( c  ,  θ  ,  w )  d c  d θ  d w

 In our case ,  a rotation specified by Euler angles  c  ,  θ  ,
 w ,  ( R / z  ,  R / x  ,  R / z ) is represented by a quaternion  q ̃    which
 is computed in terms of  c  ,  θ  ,  w   using the multiplication
 in the quaternion algebra 2 1  as :

 q ̃  5  q ̃  c  3  q ̃  θ  3  q ̃  w

 5

 cos  S c

 2
 D

 0
 0

 sin  S c

 2
 D

 3

 cos  S θ
 2
 D

 sin  S θ
 2
 D

 0
 0

 3

 cos  S w

 2
 D

 0
 0

 sin  S w

 2
 DA B A B A B

 cos  S θ
 2
 D  cos  S c  1  w

 2
 D

 sin  S θ
 2
 D  cos  S c  2  w

 2
 D

 5

 sin  S θ
 2
 D  sin  S c  2  w

 2
 D

 cos  S θ
 2
 D  sin  S c  1  w

 2
 D

C D
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 Fig .  3 .  Global dexterity measure for redundantly actuated
 wrist .

 Which yields that :

 K ( c  ,  θ  ,  w )  5
 sin  θ

 8

 As stated before  k ( J ) is independent of the angle  c  ,
 allowing a simpler form of  D g :

 D g  5
 1

 N w
 E E
 θ  , w

 1
 k ( J )

 sin  θ  d θ  d w  (21)

 Figure 3 shows the value of this global criterion for the
 redundant wrist as a function of the two characteristic
 parameters of the mechanism ,  the angles  a  and  b .  It is
 possible to determine values of  a  and  b  providing an
 optimal value of  D g .

 It is also interesting to use this graph to compare the
 mechanism presented in this paper with an equivalent
 non redundant spherical wrist like the one examined by
 Asada and Cro Granito , 8  Cox and Tesar , 9  and Gosselin
 and Angeles . 1 0  This mechanism is of the same type ,  with
 collinear actuators but only three arms set at 120 8  from
 each other (for purpose of symmetry) .  Figure 4 shows
 the value of the same criterion for this wrist ,  as a

 Fig .  4 .  Global dexterity measure for three-actuators wrist .

 Fig .  5 .  Contour line of global measure for redundantly
 actuated wrist .

 function of link angles  a  and  b .  From this analysis ,
 substantial dif ferences between the two mechanisms can
 be seen .  However ,  optimal values of parameters  a  and  b
 for this measure don’t ensure a large workspace .

 It seems necessary to add a constraint on workspace
 limits .  This consists of specifying a minimal opening  l   for
 the cone inscribed in the workspace inside which
 unlimited rotation is possible .  The limits of the
 workspace are given by singularities of the first kind
 when two links are totally folded or unfolded .  The
 opening angle  l   is limited by the values of  a  and  b  as :

 l

 2
 1  90 8  #  a  1  b

 (22)
 l

 2
 2  90 8  #  a  2  b

 Figures 5 and 6 show the contour lines of  D g   and the
 geometrical constraints added ,  with a value of 120 8  for  l .
 It can be seen that the values of the criterion satisfying
 this constraint are much higher in the case of the
 redundant robot .

 Fig .  6 .  Contour line of global measure for three-actuators
 wrist .
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 Fig .  7 .  Local dexterity measure 1 / k(J) for redundantly actuated
 wrist .

 The preceding graphs allows us to choose optimal
 values for the parameters  a  and  b .  It is interesting to
 visualise the inverse of the condition number with these
 values for the two mechanisms .  The dexterity 1 / k ( J ) is
 plotted as a function of only two Euler angles :   θ   and  w .
 As it has been shown ,  this is enough to cover the entire
 workspace as  k ( J ) is independent of the angle  c .

 Figure 7 ,  for the redundant system ,  and Figure 8 ,  for
 the non redundant system show the dexterity for chosen
 optimal values of  a  and  b .  θ   represents the angle of
 inclination of axis  z  of the moving platform and  w
 represents rotation around this axis .  A substantial
 degradation in performance can be seen for the non
 redundant mechanism .

 It can also be seen that for the point corresponding to
 θ  5  0 ,  both types of mechanism have the same value of
 dexterity .  When  θ   is increased thus the moving platform
 axis is inclined ,  performance improves for the redundant
 mechanism whereas it worsens for the non redundant
 one .

 Fig .  8 .  Local dexterity measure 1 / k(J) for three-actuators wrist .

 5  CONCLUSION
 A new kinematic design of a parallel spherical wrist with
 actuator redundancy has been presented .  Kinematic
 analysis has shown that actuator redundancy not only
 removes singularities but also improves dexterity in an
 enlarged workspace .  The method of optimisation
 adopted is based on a global criterion which covers both
 the notion of isotropy and the workspace volume .
 Supplementary constraints concerning the workspace
 volume have been introduced ,  mainly the possibility of
 unlimited rotation around any axis situated within a 120 8
 cone (a property which is not common in most known
 parallel mechanism) .  The structure which has been
 presented guarantees dexterity superior to 1 / 3 over the
 whole workspace .  Comparisons with another equivalent
 non-redundant structure were carried out with the aid of
 condition number surfaces thus allowing a visualisation
 of dexterity .  They show a notable improvement in
 performance in terms of uniformity of dexterity for the
 redundant structure .
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