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SUMMARY

A new kinematic design of a parallel spherical wrist with
actuator redundancy is presented. A special feature of
this parallel manipulator is the arrangement of co-axial
actuators which allows unlimited rotation about any axis
inside a cone-shaped workspace. A detailed kinematic
analysis has shown that actuator redundancy not only
removes singularities but also increases workspace while
improving dexterity. The structure optimization has been
performed with a global dexterity criterion. Using a
conditioning measure, a comparison with a non-
redundant structure of the same type was performed and
shows that a significant improvement in dexterity has
been obtained.
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1 INTRODUCTION

A wrist is intended to modify the end-effector orientation
around any direction in space. The performances of an
ideal wrist would be constant and independent of its
configuration. This property, known as isotropy, is not
guaranteed. Indeed, many mechanisms have configura-
tions in which large actuator motions result in small
changes in end-effector orientation. However, isotropy is
necessary in many practical applications as the same
specifications must be satisfied in any direction, whatever
the configuration of the manipulator may be.

Designing a wrist that exhibits isotropic properties
over a given workspace first requires the selection of an
appropriate mechanical structure. Second, the design
parameters of the structure have to be optimized in order
to satisfy one or several dexterity measures. For the
mechanical structure, it is possible to choose between
serial and parallel kinematic chains. Serial chains, in this
case three consecutive rotational joints, are characterized
by a large usable workspace but poor isotropy. They also
have singular points for which the end-effector cannot be
rotated around a particular direction. An additional joint
can be used to avoid this singularity problem and
improve the isotropy. This is called kinematic
redundancy.

The main advantages of parallel kinematic chains are
lightness and rigidity. The use of these chains in a robotic
context is of recent date.'™ Their lightness, mainly due to
the ability of bringing the actuators as close as possible to
the fixed base is interesting in many applications
requiring high rate of acceleration™® or force control such
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as teleoperation with a force-reflecting controller.” In this
latter case, the master-slave coupling must be transpar-
ent, which calls for the design of a master system with
low inertia and high isotropy. The use of parallel
structures as wrists is even more recent.*'° Opposite to
the kinematic redundancy in serial chains is the actuator
redundancy in parallel mechanisms, which has been
studied particularly by Hayward. This means that the
mechanism has more actuators than necessary, without
increasing mobility. Actuator rates are uniquely deter-
mined by a given trajectory but actuator torques are
undetermined. It can be used to increase dexterity and
eliminate certain type of singularities.

Many authors have analysed the dexterity of
manipulators and compared different measures, particu-
larly Klein and Blaho,'"' and Park.'”” One of the first
papers to consider dexterity was by Salisbury and
Craig,” who introduced the condition number of the
Jacobian J (k= ||J|| |/ '||) which is simply the ratio of
the radii of the largest and smallest principal axes of the
manipulability ellipsoid described by Yoshikawa.'* A
direct physical significance of this local measure has also
been shown.'"'>!® Other measures taking into account
inertial properties have been defined (generalized inertia
ellipsoid by Asada," dynamic manipulability measure by
Yoshikawa'”). Since they characterize the dexterity of a
robot only at a given configuration, the above measures
are local. But for design optimization, a global measure
may be more desirable. In papers of Gosselin and
Angeles,'” Kurtz and Hayward,'® global measures are
defined by integrating local dexterity indices over the
workspace.

The purpose of this paper is to present a new design of
a redundantly actuated spherical parallel wrist, de-
veloped at CERT-ONERA by C. Reboulet.'”” To this
end, the inverse kinematics, the Jacobian and the
singularities of this mechanism are presented and
discussed. Afterwards, a global dexterity measure is
introduced. This measure, coupled with constraints on
workspace volume, is used to optimize the geometrical
parameters of the structure. Finally, the results are
compared with another, similar, non redundant
mechanism.

2 DESCRIPTION OF THE MECHANISM

The mechanism is composed of two pairs of sub-arms,
pair (1) and (2), and pair (3) and (4), attached at one end
to points P, and P;, of the moving platform,
respectively, and at the other two points of the fixed
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axis z;. Each sub-arm consists of two spherical links. All
the joints are revolute and their axes (active and passive)
intersect at point O, defining the rotation center of the
spherical wrist. As it is shown in Figure 1, this structure
has all its actuator axes aligned to the zq-axis.

This mechanism which is close to non-redundant
structures studied by Asada and Cro Granito,® Cox and
Tesar,” Gosselin and Angeles,' differs also in design as
there are only two attachment points on the moving
platform. In its nominal configuration (moving frame
coinciding with the fixed frame), the structure is
symmetrical about the x;y; plane (Figure 1). An angle vy
between the attachment points (P, and P;4) has been
chosen equal to 90° in order to simplify the design.
Computation of the conditioning measure for different
values of y showed that perfect isotropy is impossible
and that the measure is divided by (1+|cosyl|),
increasing the anisotropy of the mechanism. This justify
the choice of 90° for angle 7.

Due to the four collinear actuators, unlimited rotation
is possible around any axis inside a cone inscribed in the
workspace. The opening angle of the cone is twice the
maximum angle between the moving axis z and the fixed
axis z;, whatever the orientation of the platform may be.
A cone as wide as possible is equivalent to maximizing
the workspace.

3 KINEMATIC ANALYSIS

3.1 Inverse kinematic problem

The inverse kinematic problem for this manipulator
consists in finding the joint variables «;, (i=1,...,4)
corresponding to a given orientation of the moving
platform. As two configurations exist for each sub-arm,
there are 16 solutions.

Orientation of the moving platform is specified by
three Euler angles ¢, 6, ¢, where ¢ is the rotation
around the z,-axis, 6 is the rotation around the new axis
x and ¢ is the rotation around the new axis z. The

Fig. 1. The spherical wrist.
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rotation matrix with respect to the base coordinates is
given by:
R = Rot, () - Rot,(6) - Rot.(¢)

Let us consider the geometric parameters of the
manipulator in Figure 2. Let us denote by a and b the
link angles of the segments of each sub-arm and define &,
as the unit vector along the axis (OP,) of the revolute
joint connecting the moving platform to the adjacent
link. In the chosen layout, the points P, and P, merge in
P, , and points P, P, into P 4. [x;, i, z;]" the components
of u; in the fixed base, are functions of the three Euler
angles ¢, 6, ¢. Moreover, w; is defined as the unit vector
along the axis of the intermediate revolute pair of each
sub-arm. The components of vector w; are given by:

sin a cos «;
sin a sin «; (1)
(1) cosa

wi(a;) =

The solution of the inverse kinematics problem is
obtained by solving for «; each of the four equations:

I/_Zi ° I/Tii(a,-) = COS b (2)
For each sub-arm, this leads to:

where:

X, =x;sina
Y,=y;sina
Z;=cosb — (—1)'z;cosa
This classic equation has a solution if:
X2+Y?=27?

For each sub-arm, it gives the two following solutions to
the inverse kinematics problem:

a; = B; + arcos (%) 4)

i

Fig. 2. Geometric parameters.
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with
d;=VX;+Y;

- arctan2

B; = arctan X,

For technical reasons of design, the layout of Figure 1

has been chosen. The corresponding solutions «;

(i=1,...,4) are selected by testing the sign of
det (W, u;, Zy).

3.2 Jacobian matrix
The Jacobian matrix can be found by differentiation of
equation (2) as shown by Gosselin,'” namely:

id; - W, il W= 0 (5)
where

o being the angular velocity of the moving platform.
Equation (5) can be rewritten as:

bia; + (i; Ow,) - ® =0 (6)
with:
b; = Zf - (w; Od;)

which gives the 4 X 3 inverse of the Jacobian matrix J ':

_(’Zi D"T’i)T
a= b, &=J"'d (M

@ being the 4 X 1 vector of joint rates.

It is interesting to note that because the motor axes
coincide with the zg-axis, the choice of i, rotation
around the same z;-axis provides an unusual property.
The condition number of the Jacobian matrix J does not
depend on angle i, which allows to perform the
optimization process with angles 8 and ¢ only.

3.3 Discussion on singularities
As shown by Gosselin and Angeles,” equation (7) can
be written as:

, 0 .
' . LS _(ﬁiD"T}i)T >
. o= w
0 b,
Ba=A& with J'=B'A 8)

which leads to the following mechanism singularities:

« Singularities of the first kind,”® (or serial-type
singularities), that appear when det(/)=0 which
corresponds to det(B)=0. They consist of the set of
points where different branches of the inverse
kinematics problem meet and are known to lie on the
boundary of the workspace. As the matrix B is of a
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diagonal form, this happens if one of the b; is equal to
Zero, i.e.:

Z}‘(WLDIZ,)ZO izl,...,4 (9)
This equation states that the two links of a sub-arm are

coplanar, i.e. the corresponding sub-arm is totally
unfolded or folded, which can be expressed as:

i+ Zy=(—1)cos(axb)i=1,...,4 (10)
which leads to:

sin @sin ¢ = *cos (a = b)
(11)
sin 8 cos ¢ = *cos (a + b)
Hence it is possible to plot the locus of first type
singularities in the 8 — ¢ plane.

* Singularities of second kind®*® (or parallel-type
singularities) that correspond to configurations in which
the gripper is locally movable even when all the motors
are locked. As opposed to the first kind, this kind of
singularity lies inside the workspace and corresponds to a
set of points where different branches of the direct
kinematics problem meet. These singularities appear
when det(J)— o, i.e. det(A)=0. Since i@, =ii, and
U5 = il4, the matrix A can be written:
(it, Ow,)"
(i@, OWw,)"
(it; Ohws)"
(5 Owy) "
A is singular if its rank becomes less or equal to two,
then if its four line vectors are coplanar. As sub-arm (1)

is coupled with sub-arm (2) (respectively (3) with (4)),
the first two line vectors being collinear implies:

A=-— (12)

Wy = W, (13)
— W, =W, is possible only if a = 90°.
— W, = —w, is impossible without crossing a singularity

of the first kind, as the chosen layout yields:
det (wy, iy, Zr) >0

(14)
det (W_)z, L_l)l, Zf) >0
The argument is the same for (3) and (4). Then, if
a #90°, the first two line vectors of A always define a
plane perpendicular to &, and the last two line vectors a
second plane perpendicular to ;. Since i; and i; are
always perpendicular, it is impossible for the two planes
to merge and no parallel-type singularities exists in the
workspace.
If a =90°, W, =W, and w; =W, then rank (A) =1; The
nominal configuration is singular and uncontrolled
degrees-of freedom appear.

4 DEXTERITY MEASURE AND OPTIMAL
DESIGN

The notion of optimality is difficult to incorporate in the
design process as there exists no global criteria including
all objective functions. It is particularly difficult to take
into account simultaneously geometrical, inertial and
dynamic performance aspects and combine them into a
single performance measure.
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Another goal of design, particularly for parallel
mechanisms, is the maximisation of the usable
workspace. It is also desirable to have the best
conditioning inside the workspace, but these two goals
are often conflicting.

In the case of three-dof parallel manipulators with
identical actuators, the Jacobian matrix J is involved in
kinematic, force and inertial relations. Therefore, using
the condition number of J (or its inverse, called
dexterity) seems appropriate to perform optimization
even if it is not the only criterion for mechanism design.
The condition number is defined as the ratio between the
largest and the smallest singular values of J:

Tnax(J)
Tin(J)

For the spherical wrist, it is possible to have isotropy at
nominal configuration (¥, 6, ¢ =0). The condition

(k(J)=1) can be written as an equation function of
angles a and b:

k(J) =

3cos’a+2cos’h =2 (15)
But the opening angle of the inscribed cone is then of 70°
maximum. Therefore, it may be more interesting to
accept some deviation from isotropy at nominal
configuration in order to obtain a larger workspace.

As the minimization of the condition number of J is
only a local criterion, the choice of values for a and b is
difficult. Gosselin and Angeles'® and Kurtz and
Hayward'® defined an interesting global measure D,,
which consists in integrating the dexterity over the
workspace and then normalizing by the volume N,, of the
workspace:

17 1
Dz—f—d Nwzfd 16
ST N, k@) " i (16)

with dw, element of volume of the workspace W.
Expressing dw for an orientation device is not as simple
as it is for a positioning device. The workspace W and its
limits are well-known in terms of Euler angles ¢, 6 and ¢
but the preceding integral has to be computed with an
element of volume dw that is homogeneous in all the
orientation workspace. This is not the case for the
volume generated by elementary angles di, d6, de.
Finite rotations can be conveniently interpolated using
quaternion coordinates q,, ¢, ¢, g3 (also known as
quadratic invariants or Euler parameters) defined by:

o
qo=cos

(17)

- Lo -
q= [ql) q>, CI3]T = Slngu

where i is the unit vector of the axis of rotation and « is
the angle of rotation. Any rotation is represented by a
quaternion of unit magnitude, thus by a point on the
hypersphere S; of radius 1 in the four-dimensional
quaternion space.

Let us consider the rotation R, function of time,
mapping a fixed base B, into a moving base B,,, and @,
the associated instantaneous angular velocity. The
rotation R can be represented by a quaternion of unit
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magnitude ¢§. The relation between R and the
skew-symmetric matrix Q associated to o is:

Q=RR"
A relation between ¢ and @ can be derived in the same
way:

26 =4q* (18)
(with §* = [q,, —q], conjugate quaternion of g, §G* is a
pure quaternion, equivalent to a vector). From equation
(18), it can be derived that:

slél =141l (19)
The velocity along a trajectory on the unit hypersphere is
then always equal to half of the instantaneous angular
velocity, independently of the parameters used to specify
the rotation. This relation is of basic importance as it
proves that an element of volume on the unit
hypersphere corresponds to an elementary volume
homogeneous in all the orientation workspace.

Hence, dw is defined as an elementary volume of the
unit hypersphere S; even though the computation of the
integral is performed with Euler angles. As the three
Euler angles specify a trajectory on the unit hypersphere,
a radius r is introduced which allows to go through the
entire four-dimensional space M*. The mapping from
quaternions space to the four-dimensional space
(r, ¥, 6, @) is derived using the determinant of the
Jacobian. As § represent a rotation, r is taken equal to 1:

K(0, 6, ¢) = "L‘I‘L‘laﬁaﬁ
ar 9y 90 de
Therefore the measure D, takes the form:

1

Dg:]\l,fffk(J)K(l% 0, p)dipdbde
Vb

r=1

(20)
Nw=fffK(l//, 6, o) dydBde

.6,¢
In our case, a rotation specified by Euler angles i, 6,
@, (R/., R/, R,,) is represented by a quaternion § which
is computed in terms of ¢, 8, ¢ using the multiplication
in the quaternion algebra®' as:

TR R P

cos <%> cos <g> cos <(’2£>
|8 @]
w0 ) (=)
cos (3 cos (15 “’)_
sin (g) cos (1!1; ¢>
sin (g) sin <lp2_ qo)
cos <g> sin (lp;— go)_
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Fig. 3. Global dexterity measure for redundantly actuated
wrist.

Which yields that:
sin 8
8

As stated before k(J) is independent of the angle ¢,
allowing a simpler form of D,:

K, 6, ¢) =

1 1

D,=— || ——sin 6464 21

s Nwﬂk(J)sm ¢ @1)
@

Figure 3 shows the value of this global criterion for the
redundant wrist as a function of the two characteristic
parameters of the mechanism, the angles a and b. It is
possible to determine values of a and b providing an
optimal value of D,.

It is also interesting to use this graph to compare the
mechanism presented in this paper with an equivalent
non redundant spherical wrist like the one examined by
Asada and Cro Granito,® Cox and Tesar,’ and Gosselin
and Angeles.'” This mechanism is of the same type, with
collinear actuators but only three arms set at 120° from
each other (for purpose of symmetry). Figure 4 shows
the value of the same criterion for this wrist, as a

s
IR
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R
N

N
D N
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R
M

First angle 2 80 90 120 2nd angle b

Fig. 4. Global dexterity measure for three-actuators wrist.
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function of link angles a and b. From this analysis,
substantial differences between the two mechanisms can

be se

en. However, optimal values of parameters a and b

for this measure don’t ensure a large workspace.

It seems necessary to add a constraint on workspace
limits. This consists of specifying a minimal opening A for
the cone inscribed in the workspace inside which
unlimited rotation is possible. The limits of the

work

space are given by singularities of the first kind

when two links are totally folded or unfolded. The
opening angle A is limited by the values of a and b as:

A
E+90°Sa+b

22
A gr=a-b ()
5 =a

Figures 5 and 6 show the contour lines of D, and the
geometrical constraints added, with a value of 120° for A.
It can be seen that the values of the criterion satisfying

this

constraint are much higher in the case of the

redundant robot.
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wrist.

The preceding graphs allows us to choose optimal
values for the parameters a and b. It is interesting to
visualise the inverse of the condition number with these
values for the two mechanisms. The dexterity 1/k(J) is
plotted as a function of only two Euler angles: 8 and ¢.
As it has been shown, this is enough to cover the entire
workspace as k(J) is independent of the angle .

Figure 7, for the redundant system, and Figure 8, for
the non redundant system show the dexterity for chosen
optimal values of a and b. 8 represents the angle of
inclination of axis z of the moving platform and ¢
represents rotation around this axis. A substantial
degradation in performance can be seen for the non
redundant mechanism.

It can also be seen that for the point corresponding to
6 =0, both types of mechanism have the same value of
dexterity. When 0 is increased thus the moving platform
axis is inclined, performance improves for the redundant
mechanism whereas it worsens for the non redundant

one.
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Fig. 8. Local dexterity measure 1/k(J) for three-actuators wrist.
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5 CONCLUSION

A new kinematic design of a parallel spherical wrist with
actuator redundancy has been presented. Kinematic
analysis has shown that actuator redundancy not only
removes singularities but also improves dexterity in an
enlarged workspace. The method of optimisation
adopted is based on a global criterion which covers both
the notion of isotropy and the workspace volume.
Supplementary constraints concerning the workspace
volume have been introduced, mainly the possibility of
unlimited rotation around any axis situated within a 120°
cone (a property which is not common in most known
parallel mechanism). The structure which has been
presented guarantees dexterity superior to 1/3 over the
whole workspace. Comparisons with another equivalent
non-redundant structure were carried out with the aid of
condition number surfaces thus allowing a visualisation
of dexterity. They show a notable improvement in
performance in terms of uniformity of dexterity for the
redundant structure.
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