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A dual-plane snapshot proper orthogonal decomposition (POD) analysis of turbulent
pipe flow at a Reynolds number of 104 000 is presented. The high-speed particle
image velocimetry data were simultaneously acquired in two planes, a cross-stream
plane (2D–3C) and a streamwise plane (2D–2C) on the pipe centreline. The
cross-stream plane analysis revealed large structures with a spatio-temporal extent
of 1–2R, where R is the pipe radius. The temporal evolution of these large-scale
structures is examined using the time-shifted correlation of the cross-stream snapshot
POD coefficients, identifying the low-energy intermediate modes responsible for
the transition between the large-scale modes. By conditionally averaging based on
the occurrence/intensity of a given cross-stream snapshot POD mode, a complex
structure consisting of wall-attached and -detached large-scale structures is shown to
be associated with the most energetic modes. There is a pseudo-alignment of these
large structures, which together create structures with a spatio-temporal extent of
approximately 6R, which appears to explain the formation of the very-large-scale
motions previously observed in pipe flow.
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1. Introduction
In turbulent pipe flows, we generally recognize four distinct types of coherent

motion (Smits, McKeon & Marusic 2011). The first is the near-wall streaks, which
are regions of low momentum located in the viscous sublayer with a spanwise
spacing of 100ν/uτ , where uτ is the friction velocity and ν is the fluid kinematic
viscosity. The second is the hairpin or horseshoe vortices (Theodorsen 1952), which
display a variety of scales with a minimum height of approximately 100ν/uτ . The
third and fourth are the large-scale and very-large-scale motions (LSMs and VLSMs
respectively).

The LSMs are believed to be the result of an alignment of hairpin vortices
(sometimes referred to as ‘hairpin packets’), travelling at a common convective
velocity and characterized by a region of low-momentum fluid between the hairpin
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legs (Adrian, Meinhart & Tomkins 2000; Ganapathisubramani, Longmire & Marusic
2003; Tomkins & Adrian 2003). Measurements using multiple-plane particle image
velocimetry (PIV) show the streamwise and wall-normal extent of these structures
(Hambleton, Hutchins & Marusic 2006), and there is now an emerging consensus
that the LSMs are initiated at the wall, grow upwards in the streamwise direction at
a mean angle of approximately 12◦ to form a ramp-like structure with a streamwise
extent of 2–3R in pipes (R is the pipe radius), and then finally detach from the wall
while initiating a new attached structure at the wall (Adrian 2007).

The VLSMs are structures of uncertain origin, marked by long meandering
regions of low- and high-speed momentum in the outer layer of wall-bounded
turbulence. They have been characterized primarily by using spatio-temporal two-point
correlations, or point measurements in combination with Taylor’s hypothesis. Kim
& Adrian (1999) were the first to identify their presence by the occurrence of
low-frequency peaks in the premultiplied energy spectra of streamwise velocity
fluctuations in a turbulent pipe flow. Later work (del Álamo & Jiménez 2003; del
Álamo et al. 2004; Guala, Hommema & Adrian 2006; Monty et al. 2007; Bailey
et al. 2008) confirmed the presence of these large-scale structures in pipe and channel
flows over a very wide range of Reynolds numbers, with a streamwise extent of as
much as 30R. Hutchins & Marusic (2007) found that these structures also exist in
boundary layers, where they are called ‘superstructures’, extending to more than
10δ even in atmospheric surface layers (where δ is the boundary layer thickness).
Balakumar & Adrian (2007) showed that 40–65 % of the turbulence kinetic energy
was carried by wavelengths larger than 3δ, and Bailey & Smits (2010) found that
these structures spanned a third of the circumference of the pipe. In supersonic
boundary layers, Ganapathisubramani, Clemens & Dolling (2006) found the spatial
extent of the superstructures to be over 8δ (the limit of their PIV field of view), while
Ganapathisubramani, Clemens & Dolling (2009) combined wide-field high-speed PIV
with Taylor’s hypothesis and discovered even longer structures.

Hellström, Sinha & Smits (2011) analysed time-resolved stereo PIV data in the
cross-stream plane of pipe flow for a Reynolds number of ReD = 12 500 using
snapshot proper orthogonal decomposition (POD). Here, ReD = 2RUb/ν, where Ub
is the bulk velocity. They showed that the velocity fields constructed using only the
lower-order modes display many characteristics common to the VLSMs, such as long
radially and azimuthally meandering behaviour. However, the convergence of the
POD modes in that work was limited by the short time interval, corresponding to a
convective displacement of 22R.

Baltzer, Adrian & Wu (2013) investigated a direct numerical simulation of a
turbulent pipe flow for ReD = 24 580, and found the presence of LSM-like structures
pseudo-aligning in a helical pattern with an azimuthal angle of 4–5◦, which they
suggested as the basis for VLSM formation. Proper orthogonal decomposition analysis
indicated that the most energetic modes contained two or three azimuthal structures
(m= {2, 3}) with a streamwise wavelength of 15–30R, limited to an integer fraction
of their computational domain.

Hellström & Smits (2014) addressed the modal convergence in Hellström et al.
(2011) by obtaining a much larger data set, for ReD = 50 000 and 100 000. The
low-order modes were similar to those found by Bailey & Smits (2010) using
cross-correlation techniques, spanning from the wall well in to the wake region.
The dominant motion consisted of three azimuthal structures, which were only
weakly dependent on the Reynolds number. These energetic modes were identified as
significant contributors to the shear stress; for instance, the first 10 modes contribute
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FIGURE 1. (Colour online) The dual-plane PIV experimental set-up, where the two PIV
planes are orthogonally polarized.

15 % of the turbulence kinetic energy and 43 % of the integrated shear stress. The
modes with one radial and two, three or four azimuthal structures (m = {2, 3, 4})
exhibited a characteristic frequency corresponding to a convective length of 20–40R,
similar to that seen for the VLSM.

Despite this earlier work, the spatial extent and therefore the origin of VLSMs has
been much debated. In particular, Kim & Adrian (1999) suggested that the VLSMs
are a consequence of an alignment of the LSMs, and this point was also reiterated by
Dennis & Nickels (2011) using 3D PIV data, whereas del Álamo & Jiménez (2006)
proposed that the VLSMs could be formed by linear or nonlinear processes. Here, we
address this question by examining the spatial structure and evolution of the VLSMs,
and the spatio-temporal transitions between successive VLSMs using dual-plane PIV
in turbulent pipe flow. We will analyse the data using POD, since Hellström et al.
(2011) demonstrated that these modes capture well the large-scale structures. Our
primary focus will be on the modes previously associated with the VLSM, that is,
m= {2, 3, 4}. We build on this POD approach and use conditional analysis to identify
the origin of the VLSMs and determine their relationship to the LSMs.

2. Experimental set-up
The experiment was conducted in the same pipe flow facility as described by

Hellström & Smits (2014). The pipe is made of seven glass sections each 1.2 m long
with an inner diameter of D = 38.1 ± 0.025 mm, resulting in a development length
of 200D. The results presented here were obtained at a single Reynolds number,
ReD =UbD/ν = 104 000, and the working fluid was water at room temperature. The
corresponding friction Reynolds number Reτ = uτR/ν = 2460.

The flow was simultaneously investigated in two planes using dual-plane PIV,
similar to that used by Ganapathisubramani et al. (2005); see figure 1. The first plane
was a cross-sectional plane and was interrogated using stereoscopic PIV (2D–3C).
The second plane was a streamwise plane along the pipe centreline, spanning 4.8R
in the streamwise direction, centred on the cross-plane, and it was investigated using
planar PIV (2D–2C). The laser sheets were generated by a Nd:YAG dual-cavity
pulsed laser with 50 mJ pulse−1, equipped with an adjustable beam splitter such that
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the intensities could be independently balanced. The two 1 mm thick light sheets
were orthogonally polarized using a pair of half-wave plates, allowing particles in
each plane to be distinguished using a pair of linear polarizers placed in front of each
camera. The cross-sectional plane was vertically polarized to minimize the scatter
in the vertical direction and thereby reduce the contamination of the planar PIV
image (Adrian & Westerweel 2011). Similarly, the streamwise plane was horizontally
polarized.

The three 5.5 Megapixel LaVision Imager sCMOS cameras were operated at
30 Hz with an interframe time of 40 µs, so that at ReD = 104 000 there was a bulk
convective displacement of 0.96R between two consecutive data planes. The flow
was seeded using 10 µm hollow glass spheres, and although the scattered light lost
some of its polarization, the polarization was sufficient to separate the two orthogonal
images with little cross-talk.

The test section was enclosed by an acrylic box, filled with water to minimize
the optical distortion due to refraction through the pipe wall. The pipe wall
thickness (1.27 ± 0.064 mm) was minimized to further reduce the reflection and
distortion caused by the mismatch between the refractive index of water and that
of glass. The PIV calibration method was similar to that presented by van Doorne
& Westerweel (2007) and Hellström et al. (2011). An access port was located
immediately downstream of the test section in order to insert the planar and stereo
PIV calibration targets while the pipe was filled with water. The stereo PIV target
was a 1.6 mm thick plate with 272 dots set in a rectangular grid. The target was
traversed 2 mm in each direction of the laser sheet, resulting in three calibration
images for each stereo PIV camera. The planar target was a 150 mm long D-shaped
cylinder having circular ends, with 189 dots arranged in a rectangular grid. The target
was attached to a micrometer stage for streamwise alignment of the streamwise plane
with the cross-plane.

The data consisted of ten blocks, each containing 2200 image pairs. The images
were processed using DaVis 8.1.6, and the resulting velocity field for the cross-plane
consisted of 20 vectors mm−2 on a square mesh. The velocity components were
interpolated onto a new mesh with polar coordinates [r, θ, x], having 132 radial mesh
points spaced a distance 1r, and 834 azimuthal mesh points, matching the vector
density at the wall while oversampling at the pipe centre. The streamwise plane
resulted in 15 vectors mm−2, and these data were interpolated onto a mesh with
radial grid points that matched the cross-plane. The singularity point at r = 0, when
performing POD, was avoided by offsetting the inner mesh points by 1r/2.

In the streamwise plane approximately 100 vectors, corresponding to 0.3 % of the
total vector count, were corrupted by the depolarized scatter off the pipe wall from the
cross-plane light sheet. These vectors were estimated by performing snapshot POD on
the streamwise plane, while excluding the corrupt vectors. The excluded vectors were
then interpolated for each snapshot POD mode, where the fields are smoother than in
the instantaneous velocity realizations. The complete velocity field was subsequently
obtained by reconstructing the interpolated POD modes.

The data analysis was performed in three steps: snapshot POD analysis on the
three-component fluctuating velocity data in the cross-plane, a temporal analysis of
the most energetic mode and its transitional modes, and a conditional mode analysis
to simultaneously visualize the average mode shapes in the cross-plane and the
streamwise plane.
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3. Snapshot POD
We begin with snapshot POD analysis of the three-component fluctuating velocity

data in the cross-plane. The procedure is similar to that followed by Hellström &
Smits (2014), who simultaneously performed classical and snapshot POD on a cross-
stream plane in the same pipe as used here. They found that snapshot POD may
suffer from mode mixing, resulting in some non-optimal modes composed of parts
of optimal modes. The effect of mode mixing can be reduced by decomposing the
azimuthal direction using a Fourier series expansion, as proposed by Duggleby & Paul
(2010). The POD equation in pipe coordinates can be written as∫

r′
S(m; r, r′)Φn(m; r′) dr′ = λn(m)Φn(m; r), (3.1)

where n represents the POD mode number, Φn are the eigenfunctions with the
corresponding eigenvalues λn, and m represents the azimuthally decomposed mode
number. Here, r from the polar integration is absorbed into the eigenfunctions and the
cross-correlation tensor (Glauser & George 1987; Citriniti & George 2000; Tutkun,
Johansson & George 2008). The time-averaged cross-correlation tensor becomes

S(m; r, r′)= lim
τ→∞

1
τ

∫ τ

0
r1/2u(m; r, t)u∗(m; r′, t)r′1/2 dt, (3.2)

with ∗ denoting the complex conjugate. The method of snapshots assumes that the flow
is separable in time and space functions, which can be written in pipe coordinates as

αn(m; t)=
∫

r
u(m; r, t)r1/2Φ∗n (m; r) dr. (3.3)

The eigenvalue problem can then be rewritten to yield the POD coefficients, αn, as in

lim
τ→∞

1
τ

∫ τ

0

(
r1/2u(m; r, t), r1/2u(m; r, t′)

)
αn(m; t) dt′ = λn(m)αn(m; t), (3.4)

where (· , ·) is the inner product over r. Due to the azimuthal decomposition, the
eigenfunctions are reduced to one complex radial mode for each m and n, which can
be found according to

lim
τ→∞

1
τ

∫ τ

0
r1/2u(m; r, t)α∗n(m; t) dt=Φn(m; r)λn(m). (3.5)

The relative turbulence kinetic energy of the first 15 azimuthal modes m and five
POD modes n is seen in figure 2. The five most energetic modes, (m, n)= (1–5, 1),
corresponding to the first five modal pairs reported by Hellström & Smits (2014),
contribute 16 % of the total energy. The cumulative energy for (m, n) = (1–5, 1–5)
contributes 28 % of the total energy.

Thus, the POD modes are reduced to a set of complex radial profiles, one for each
POD mode number and azimuthal mode number combination. The mode shapes are
illustrated in figure 3. The pipe centreline is located at y/R = 1, around which the
POD mode is revolved with a magnitude corresponding to a sine wave having the
appropriate azimuthal wavelength set by m. Here, we have applied a phase shift to
each mode, to ensure that they are real, and so only the real component is shown.
The shapes of the five most energetic POD modes, (m, n) = (1–5, 1), are shown in
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FIGURE 2. (Colour online) The columns show the scaled energy content of the first five
POD modes n and first 15 azimuthal modes m (scaled mode energy ξn(m)), and the dashed
curve shows the cumulative energy content of first five POD modes.

figure 3(a), and the behaviour of the higher-order POD modes, (m, n)= (3, 1–5), is
shown in figure 3(b); the higher-order POD modes have an increasing number of
radial structures. Higher-order POD modes do not necessarily correspond to more
radial structures; for instance, the second and fourth POD modes exhibit similar
profiles while the fourth mode contains wall-detached structures, whereas the second
mode does not. It can be seen that the most energetic structure is composed of three
azimuthal structures (m = 3) with a radial profile containing one structure, similar
to the structures identified by Bailey & Smits (2010) and those associated with the
VLSMs by Hellström & Smits (2014). It should be noted how the structures approach
the wall as the azimuthal mode number increases.

We now examine the temporal occurrence/intensity of each mode by using the POD
coefficients, αn(m; t). We assume on the basis of our previous work (Hellström et al.
2011; Hellström & Smits 2014) that the basic features of the VLSMs, especially
their meandering behaviour and azimuthal extent, are well captured by the behaviour
of the first few POD modes, and we propose that the evolution of the VLSMs can
be determined by identifying the transitions that lead to these lower-order modes.
Although the convective displacement between two snapshots is large in the current
experiment (0.96R), it is smaller than the typical length of the LSM, and at least an
order of magnitude smaller than the reported length of the VLSM, and therefore we
expect to be able to track the meandering behaviour of the VLSM and its connection
to the LSM using this approach.

Figure 4 shows the magnitude of the correlation ρ of the POD coefficient α1(3, t)
and all other coefficients (m, n) = (1–15, 1–5), for positive and negative time shifts
±τ , where τ = 1 corresponds to the convective displacement of 0.96R based on Ub.
Here, the normalized cross-correlation is defined as

ρ(m1,m2, n1, n2, τ )= (αn1(m1, t), αn2(m2, t+ τ))
‖αn1(m1, t)‖‖αn2(m2, t)‖ , (3.6)

where (· , ·) is the sliding inner product with respect to time and ‖ · ‖ represents its
L2 norm. The highest correlations are all within the same azimuthal mode number,
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FIGURE 3. (a) The first POD mode for the first–fifth azimuthal modes, (m, n)= (1–5, 1);
(b) the first five POD modes for the third azimuthal mode, (m, n)= (3, 1–5).

m = 3, indicating that within ±τ the structures either remain the same or they
transition to a higher-order POD mode with the same azimuthal mode number. The
results therefore suggest that the transition of the structures is associated with a
change in radial behaviour rather than with a change in azimuthal mode number, and
so these higher-order radial modes describe the transition in and out of these large
energetic motions. The mode shapes associated with the transition of Φ1(3; r) are
shown in figure 3(b).

A similar procedure was performed for Φ1(2; r) and Φ1(4; r). These modal
combinations show a similar evolution to that of Φ1(3; r), where the low-order mode
is first preceded and then followed by transitional modes with higher-order radial
behaviour, again suggesting a radial evolution of the structure. The data from this
analysis are not shown here for brevity.

The correlation analysis revealed the likely structure of the transition in and out
of the energetic motions. To examine the spatio-temporal extent of the structures
themselves, as well as their meandering behaviour, we use the autocorrelation
of αn(3, t). The results are shown in figure 5. Because α1(3; t) is azimuthally
decomposed into Fourier modes, it will resolve an azimuthally meandering structure.
We see that the autocorrelation of α1(3, t) decays after one time step, after which it
has transitioned to a higher-order POD mode, suggesting that the structure contained
in Φ1(3; r) has a spatio-temporal extent of 1–2R, similar to that ascribed to the LSMs
and much smaller than the wavelength of 6–20R previously ascribed to the VLSMs.
The autocorrelations for the higher-order POD modes, or the transitional modes,
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FIGURE 4. (Colour online) The magnitude of the cross-correlation of the POD coefficient
α1(3, t) and all other coefficients up to (m, n)= (5, 15) using one time step offset, τ = 1.
(a) Correlation for τ = −1, showing the likelihood of a mode to temporally precede
Φ1(3; r); (b) correlation for τ =+1, showing the likelihood of a mode to temporally follow
Φ1(3; r).

have a length scale shorter than the 0.96R resolved by the cross-plane, indicating
rapid modal transitions, see figure 5(b). This disconnect between the wavelengths
associated with these energetic modes suggests that the structural components of the
VLSM persist, on average, for only approximately one pipe diameter. The VLSMs
appear to represent either the alignment of these shorter structures, as indicated by
Kim & Adrian (1999) in pipes and Dennis & Nickels (2011) in boundary layers, or
the recurrence of a specific mode.

4. Temporal comparison
The link between the LSM and VLSM structures can be further explored by

combining the POD analysis presented here with the time-resolved data obtained by
Hellström et al. (2011) at ReD = 12 500. We intend to identify the flow structures
associated with the low-order POD mode and its transitional modes. However, the
time-resolved data were acquired over a rather short time interval, and we cannot
expect to use the POD modes as they are not well converged. Instead, as the
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FIGURE 5. Autocorrelation of αn(3, t), revealing the temporal extent of Φn(3; r) before a
modal transition occurs, indicating the likely length of the meandering coherent structure.
Autocorrelation for POD mode (a) n= 1, (b) n= 3.

evolution of the structures is resolved within each azimuthal mode number, we
azimuthally decompose the velocity field into a Fourier series expansion and in that
way investigate the flow for each azimuthal mode number.

Figure 6(a) shows a carpet plot of the streamwise velocity fluctuations at a
wall-normal location of y/R= 0.2, where Taylor’s hypothesis was used to convert time
to streamwise distance, x/R, and where s/R represents the scaled azimuthal arclength.
Figure 6(b) shows the reconstructed velocity field using only the azimuthal mode
m = 3 at the same wall-normal location. By inspection, there appear to be coherent
structures of O(6R) spanning x/R = [0, 6], and shorter structures at x/R = 10, 14
and 18. Figure 6(c) shows the streamwise velocity field for m = 4 at y/R = 0.1.
These structures are similar to those extracted using the first snapshot POD mode
by Hellström et al. (2011). Again, there exist coherent azimuthally steady structures
with an estimated length of O(6R) and a repetition rate of approximately 10R. These
structures span from x/R= [0, 5], [7, 13] and [16, 21].

The structures with a length scale of O(6R) seem to be broken into shorter blocks
of approximately 2R. The alignment of shorter structures is more apparent in figure 7,
where the streamwise radial behaviour of the structures is visualized at s/R= 0. It can
be seen that the coherent structures in figure 6(c) at x/R= [16, 21] in fact consist of
an alignment of shorter structures, figure 7(b) x/R= [16, 21]. A similar behaviour can
be seen at x/R= [2, 6] for the carpet plots representing m= 3.
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FIGURE 6. (Colour online) Carpet plots of the streamwise velocity fluctuations at
ReD= 12 500, constructed using Taylor’s hypothesis. (a) Instantaneous streamwise velocity
fluctuations at a wall-normal distance of y/R = 0.2 (taken from Hellström et al. 2011).
(b) Reconstructed velocity field using the azimuthal mode number m= 3 at y/R= 0.2. (c)
Reconstructed velocity field for m= 4 at y/R= 0.1. Flow is from left to right.
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FIGURE 7. (Colour online) Carpet plots of the streamwise velocity fluctuations at ReD =
12 500, constructed using Taylor’s hypothesis. (a) Reconstructed velocity field using the
azimuthal mode number m= 3 at s/R= 0. (b) Reconstructed velocity field for m= 4 at
s/R= 0. Flow is from left to right.
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The results suggest that a typical alignment of approximately 2–3 energetic
structures (as in figure 7(b) at x/R= [14, 21]) repeated at a spacing of approximately
10R. It is also apparent that the azimuthal meandering of the longer structures is a
consequence of the superposition of modes with different azimuthal mode numbers,
rather than the meandering of a structure described by a specific modal pair.

5. Conditional dual-plane modes
The previous analysis has relied on a temporal interpretation of the velocity

field, using either time correlations or Taylor’s hypothesis. The spatial extent of the
transition between modes will now be examined by analysing the dual-plane PIV
data.

We introduce a conditionally time-averaged mode, Ψ(m,n), as a method to simul-
taneously visualize the mode shape in both planes. These modes are subject to the
condition that the magnitude of the real part of the POD coefficient in the cross-stream
plane is larger than its root-mean-square (r.m.s.), which is a measure of how active a
mode is while aligned with the streamwise plane. That is, we define

Ψ(m,n)(x, r, θ)=
〈

ui(x, r, θ, t)
Re{αn(m; t)}
|Re{αn(m; t)}|

∣∣∣∣ |Re{αn(m; t)}|>αrms
n (m)

〉
, (5.1)

where ui is the dual-plane fluctuating velocity field and

αrms
n (m)= 〈αn(m; t)α∗n(m; t)

〉1/2
. (5.2)

A consequence of the phase shift applied to each mode to force them to be real and
the alignment of the two planes is that the POD coefficient is real when a structure is
aligned with the streamwise plane. The modes were largely insensitive to the threshold
limit, and so the r.m.s. value (αrms

n (m)) was chosen due to its convenience. The set
of instantaneous velocity snapshots satisfying the condition is doubled in number by
allowing both positive and negative values of αn(m; t), as long as its magnitude is
larger than the threshold. In the case of negative αn(m; t), the instantaneous fluctuating
velocity field was rectified by multiplying the velocity field with −1, indicated by the
second term in (5.1). Typically 3500 of the 22 000 snapshots available satisfied the
condition for each mode number. Therefore, the conditional averages presented in this
section are well converged.

The process is illustrated in figure 8, where we compare an instantaneous velocity
field for which |Re{α1(3; t)}|>αrms

1 (3) with the corresponding conditionally averaged
mode. We see that the principal effect of the conditional average is to remove the
jitter caused by the other modes that are present in the instantaneous velocity field.
The streamwise extent of the structures in the conditional modes is sensitive to any
azimuthal rotation; the rotation results in a weaker correlation and a prematurely
decaying structure. However, as shown earlier, the azimuthal rotation is weak and is
not expected to significantly affect the streamwise extent of the conditional modes.
The energy associated with each structure is identified through the cross-plane POD,
and the limited field of view of the streamwise plane is not expected to provide any
bias or to have any influence on the visualized structures. It can, however, be seen
that the structure in figure 8(b) is truncated by the domain, and the transition between
structures is inspected by the transitional modes.

Figure 9 shows the conditional modes for azimuthal modes m= 3 and 4, and the
first three POD modes n= 1–3. The evolution of structures with m= 3 is seen in (a–c)
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FIGURE 8. (Colour online) Visualization of the conditional mode process for (m, n) =
(3, 1). (a) Instantaneous snapshot of the |Re{α1(3; t)}| > αrms

1 (3) event. (b) Conditional
mode acquired by averaging the subset of snapshots satisfying the |Re{α1(3; t)}|>αrms

1 (3)
condition. Red and blue correspond to positive and negative values of the streamwise
velocity fluctuations respectively. Flow goes from left to right.

and for m = 4 in (d–f ), with the initial structure in (a,d) and its transitional modes
in (b,c,e,f ). While the transitional modes are active upstream and downstream of the
initial structure, we show the downstream counterparts, where we have adjusted the
sign of the mode such that we only receive correlations with zero phase.

We can now examine the POD modes and the accompanying spatial evolution in the
cross-stream plane. In figure 9(a,d) we see the initial structure, which remains attached
while growing in size, extending from the wall well into the central part of the pipe.
As seen in the autocorrelation in figure 5, the streamwise extent of the structures is
approximately 2–4R. This behaviour may be seen in the first conditional modes, at
x/R = 2, where the structures start to detach from the wall and the intensity of the
conditional mode weakens as a consequence of modal transition. A transition from the
initial structure can occur through one of the transitional modes, with a higher radial
behaviour. The transitional modes show the detachment of the previous structure and
the start of a new structure. The upstream structures show a ramp-like behaviour with
a detached downstream end, under which a new structure of either the same, (c,f ),
or opposite, (b,e), sign is initiated at the wall. This evolution is very similar to the
growth of the LSMs described by Adrian et al. (2000). The transition between these
structures is rapid and occurs over a distance of one radius. It can also be seen that the
structures near the wall shown in the transitional modes (c,f ) blend together, appearing
as one coherent structure. A similar feature was seen in figure 6, where the carpet
plots closer to the wall exhibit longer and more coherent structures.

Therefore, the conditional mode analysis confirms that the modes associated with
the VLSM, that is m = {2, 3, 4}, are much shorter than expected, more of the scale
associated with LSM rather than VLSM.

6. Discussion and conclusions
We found that the most energetic POD modes, previously shown to be associated

with the VLSMs, are instead characterized by a streamwise and temporal extent of
≈2R, after which a transition to a new structure occurs which is characterized by
the detachment and decay of an old structure and the initiation of a new structure
at the wall. Our observations are consistent with the view that these modes describe
basic building blocks with streamwise extent similar to that of the LSM, and that
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FIGURE 9. (Colour online) Conditional modes showing the evolution of (m, n)= (3, 1–3)
in (a–c) and (4, 1–3) in (d–f ): (a) Ψ(3,1), (b) Ψ(3,2), (c) Ψ(3,3), (d) Ψ(4,1), (e) Ψ(4,2), (f ) Ψ(4,3).
Here, (a) shows the initial structures for m= 3, while (b,c) show the transitional modes.
Similarly, (d) shows the initial structures for m= 4 and (e,f ) its transitional modes. Red
and blue correspond to positive and negative values of the streamwise velocity fluctuations
respectively. Flow goes from left to right.

these blocks line up to create a longer structure with a characteristic length estimated
to be approximately 6R. It was also shown that the structure described by a specific
azimuthal mode number, m, was azimuthally steady. The meandering is instead a
consequence of the interaction between structures with different azimuthal mode
numbers.

Our observations seemingly contradict previous studies that indicated that the VLSM
can extend up to 30R in length. However, it must be recognized that all previous
works that show elongated structures use multipoint temporal measurements and
interpret them as spatial data. For example, Hellström & Smits (2014) presented the
frequency spectra associated with the same POD modes as presented here, and found
that the frequency peak corresponded to a convective bulk velocity displacement
of 20–40R; they concluded that VLSMs can extend up to this length. However,
based on the findings of the current study, we propose that the coherence of the
long meandering structures visualized by multipoint measurements is actually the
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consequence of a pseudo-alignment of shorter modes/structures, combined with
the reccurrence of a specific mode/structure at regular time intervals. The shorter
structures appear to have characteristics very similar to LSM, and our observations
are in broad agreement with the suggestion by Kim & Adrian (1999) and Dennis
& Nickels (2011) that the VLSMs are in fact not spatial structures but a temporal
manifestation of repeating LSMs.
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