
Euro. Jnl of Applied Mathematics (2020), vol. 31, pp. 111–142 c© Cambridge University Press 2018. 111
doi:10.1017/S0956792518000499

On the avascular ellipsoidal tumour growth
model within a nutritive environment

G E O R G E F R A G O Y I A N N I S1, F O T E I N I K A R I O T O U2

and P A N A Y I O T I S V A F E A S1

1Department of Chemical Engineering, University of Patras, Patras, Greece
email: vafeas@chemeng.upatras.gr; gfrago@chemeng.upatras.gr

2School of Science and Technology, Hellenic Open University, Patras, Greece
email: kariotou@eap.gr

(Received 6 October 2017; revised 30 June 2018; accepted 21 July 2018; first published online 18 September 2018 )

The present work is part of a series of studies conducted by the authors on analytical models of
avascular tumour growth that exhibit both geometrical anisotropy and physical inhomogeneity. In
particular, we consider a tumour structure formed in distinct ellipsoidal regions occupied by cell
populations at a certain stage of their biological cycle. The cancer cells receive nutrient by diffusion
from an inhomogeneous supply and they are subject to also an inhomogeneous pressure field imposed
by the tumour microenvironment. It is proved that the lack of symmetry is strongly connected to a
special condition that should hold between the data imposed by the tumour’s surrounding medium, in
order for the ellipsoidal growth to be realizable, a feature already present in other non-symmetrical
yet more degenerate models. The nutrient and the inhibitor concentration, as well as the pressure
field, are provided in analytical fashion via closed-form series solutions in terms of ellipsoidal eigen-
functions, while their behaviour is demonstrated by indicative plots. The evolution equation of all
the tumour’s ellipsoidal interfaces is postulated in ellipsoidal terms and a numerical implementation
is provided in view of its solution. From the mathematical point of view, the ellipsoidal system is
the most general coordinate system that the Laplace operator, which dominates the mathematical
models of avascular growth, enjoys spectral decomposition. Therefore, we consider the ellipsoidal
model presented in this work, as the most general analytic model describing the avascular growth in
inhomogeneous environment. Additionally, due to the intrinsic degrees of freedom inherited to the
model by the ellipsoidal geometry, the ellipsoidal model presented can be adapted to a very populous
class of avascular tumours, varying in figure and in orientation.

Key words: Mathematical modelling, boundary value problems, avascular tumour growth, ellip-
soidal geometry
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1 Introduction

The prognosis of cancer tumour development has gainedmuch scientific interestover the last
century due to its crucial importance on designing the best treatment option for the patient. The
corresponding research refers to many different disciplines, since it concerns a very complicated
phenomenon, including many interrelated procedures, which is still only partly understood.
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The mathematical modelling of tumour growth offers much in the theoretical research in this
field, since it saves time, funds and ethical confrontations. It aims to bring to light the domi-
nant mechanisms and the most effective parameters of the phenomenon, keeping the need of
in vivo experiments to the minimum. Nevertheless, a mathematical model cannot be but an
approximation to the in vivo development of a tumour mass in a healthy tissue, so in order
to have useful results one has to develop a mathematical model as close to reality as possible.

In this direction, a great deal of scientific effort has been made and the corresponding bibli-
ography counts a massive mathematical model production within the last 50 years. Considering
only a small subdivision of them, deterministic continuum models, amenable to analytic formu-
lation and treatment, range in complexity with respect to the geometrical symmetry allowed in
modelling the tumour’s structure [2, 3, 5, 6, 16, 17, 21, 28, 30], to the degree of the cell hetero-
geneity or of the host medium’s inhomogeneity [5, 6, 22, 28] or to the different scales taken into
account, describing the corresponding processes that are involved in the model [2, 5, 11, 27–30].

Before we proceed, let us briefly outline the cancer tumour physiology. A tumour consists of
cells that consume nutrients, proliferate many more times than normal cells do and die, either
out of reaching the end of their cell cycle (in which case they are called apoptotic cells) or due to
lack of nutrients or to external inhibitory agents (called then necrotic cells).

A cancer tumour starts to build up inside a healthy tissue after several concurrent incidents
in cell physiology trigger tumorigenesis [12, 21, 25, 27]. The cancer colony receives nutrients
from its surrounding medium by diffusion. As the colony becomes crowded, the nutrient level
declines towards the tumour’s centre, producing a corresponding decline of the cells vitality,
which gradually leads to the formation of a necrotic core and to an observable delay on the
tumour’s growth [31]. With diffusion being the dominant mechanism for the nutrient supply and
for the removal of the wastes, the tumour eventually reaches an equilibrium stage, where the cell
volume gained by proliferation balances the cell volume loss due to necrosis and disintegration.
The tumour size reaches a plateau which may be maintained for as long as the nutrient supply
remains restricted. Such growth pause marks the end of the first phase of the tumour’s evolution,
called the avascular phase of tumour growth [2, 5, 21, 30]. As the time passes, the cancer colony
may be either diminished, under effective surveillance from the immune system, or the next
evolution phase may be activated by the onset of angiogenesis, characterised by the formation of
new blood vessels that ensure unlimited nutrient supply. The invasive phase of vascular growth
is then inevitable, leading to malignant and/or metastatic tumours [5, 12, 21, 25, 27, 31].

Much scientific effort has been devoted to studying the early phase of avascular growth, both
because it is the step stone from which the invasive phase begins and also because it is a well-
defined phase amenable to theoretical analysis and experimental reproducibility. Moreover, the
mathematical modelling of the avascular growth allows carrying out thorough analytical studies
of the phenomenon and for obtaining analytical results, thus providing clear insights on underly-
ing mechanisms. In this work, the interest is focused on the avascular stage of tumour’s evolution.

A feature characterising the avascular phase, apart that it ends with a phenomenological halt
of the tumour’s spatial evolution, is that during that phase, the tumour consists of distinct layers,
each one occupied by cells at a certain phase of their cell cycle. In particular, as it was pointed
out in the seminal work of Folkman and Hochberg [12] and used thereafter as basic geomet-
rical structure in relative mathematical models, see, for example, [25] for an extensive review
and references therein, a fully developed avascular tumour colony consists of an exterior rim,
occupied by cells that are proliferating, and it is formed right next to the host tissue, receiving
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abundant nutrient. The subsequent layer is occupied by live but dormant cells, which envelopes
the necrotic core, where all cells are either dead or disintegrated. As a consequence of nutrient
diffusion and consumption, the different layers of the colony exhibit inwardly decreasing nutrient
levels. The living cells’ metabolic by-products as well as the by-products of the disintegration of
necrotic cells inhibit proliferation and thus they are considered to be growth-inhibiting factors.
Moreover, as a result of the growing cancerous mass, a layer occupied by normal cells is formed
in the immediate vicinity of the tumour and it provides nutrient supply, while it also transmits
the pressure, generated by the abnormal growth, from the host tissue to the tumour.

Most mathematical models of the avascular growth found in the literature concern radially
symmetric layered structures growing in homogeneous suspensions, while small perturbations
of the spherical configuration have also been considered [3, 5, 6, 11, 16, 17, 22, 28]. This
is not surprising, since most avascular tumours cease their growth at such a size that small
deviations from the spherical symmetry are considered quantitatively insignificant. However,
there is evidence that mechanical effects influence both the size and the shape of the growing
tumour [1, 7, 19, 32, 33]. In some previous works [9, 18, 22–24], the authors have investi-
gated the effect of a non-symmetric tumour configuration on the prognosis of the tumour’s
evolution, by gradually relaxing the geometrical symmetry of the mathematical model from the
one-dimensional spherical model to the two-dimensional (2D) axisymmetric oblate or prolate
spheroidal one. It has been shown that certain qualitative features are revealed with the departure
from radial symmetry, such as that there are special conditions needed to be fulfilled in order
for non-symmetrical growth to be feasible. Moreover, it has been shown that in non-spherically
symmetric models, the geometrical interfaces in the tumour structure do not coincide with the
corresponding material ones, as it happens in the spherical case. However, small deviations
from the initial spherical shape occur also in fully homogeneous environment, without imposing
ad hoc boundary conditions or requiring any special conditions [4, 6, 22], while in [15] it is
graphically shown that ellipsoidal and more complex shapes can appear from initially spherical
tumours, even considering homogeneous and isotropic conditions.

In the present paper, we proceed this investigation with tackling the geometrically three dimen-
sional (3D) anisotropic model of an avascular cancer colony, while maintaining the physical
description of piecewise isotropic structure. In particular, we investigate the tumour’s evolution,
under the assumption that the colony exhibits an ellipsoidal configuration, attributed mostly to
the pressure field imposed by the host tissue in the presence of inhomogeneous nutrient envi-
ronment. Assuming an ellipsoidal model, the tumour’s description in three dimensions inherits
two degrees of freedom, namely the two eccentricities of the corresponding ellipsoidal system,
in addition to its orientation. Thus, the model can be fairly adjusted quite accurately to most of
the avascular tumours, considering their convexity and the regularity of their exterior boundary.
Moreover, using ellipsoidal geometry we reach the limits of treating analytically the boundary
value problems involved in the model. This is due to the fact that the dominant operator for such
problems is the Laplace operator and the ellipsoidal system is the most general coordinate system
with second-degree level surfaces, in which its spectral decomposition is tractable [8, 10, 20, 26].

Moreover, the tumour is considered to be lying in a bounded ellipsoidal inhomogeneous
nutritive surrounding medium which, additionally to providing abundant nutrient supply,
balances the pressure field resulting from the interaction of the growing cancerous mass and
the surrounding tissue’s restrictions. The pressure field is also considered inhomogeneous, and
the exact conditions for the nutrient supply and for the pressure imposed, which ensure the
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ellipsoidal growth, are one of the scopes of the present work. Thus, in this paper we examine
the most general analytic geometrical model of the avascular tumour growth supported by
inhomogeneous data, where the physical parameters of the model, as the consumption or
production rates, the diffusion constants and the cell motility parameters, are step functions with
respect to the tumour compartments.

The article is organised as follows. In Section 2, the model is postulated as a system of three
boundary value problems coupled with an ordinary differential equation in terms of ellipsoidal
geometry. The underlying physical hypotheses of the model are also included here. Section 3
provides the solutions of the boundary value problems in an explicit analytical fashion, while
the differential equation is expressed analytically in the form of a highly nonlinear equation,
amenable to numerical elaboration. This task is accomplished in Section 5, where we additionally
demonstrate the efficiency of the proposed model by implementing the obtained fields, while in
Section 4 the reduction of the results obtained from the ellipsoidal model to more degenerate
forms is included. A discussion section summarises the results of the present work, giving hints
to further analysis and development of the model. Finally, an appendix with detailed information
for obtaining the final analytical formulae completes the structure of this article.

2 Statement of the problem

We consider a unique confocal ellipsoidal coordinate system with foci (0, ±h1, 0), (±h2, 0, 0),
(±h3, 0, 0) [8] emanating from the reference ellipsoid, given in Cartesian coordinates as

x2
1
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+ x2
2

α2
2

+ x2
3
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3

= 1 (2.1)
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, (2.4)

where the corresponding variables run within the intervals ρ ≥ h2, μ2 ∈ [h2
3, h2

2

]
and ν2 ∈ [0, h2

3

]
.

We note that the Cartesian octants correspond to the ellipsoidal coordinates according to the
following transformation rules [8]. The sign of x1 is ruled by the sign of ν, the sign of x2 is ruled

by the corresponding sign of
√

h2
3 − ν2 and the sign of x3 is controlled in accordance to the sign

of the ellipsoidal factor
√

h2
2 −μ2. We also note that the reference ellipsoid inherits the confocal

ellipsoidal system’s semifocal distances h1, h2, h3 and hereafter its semiaxes α1, α2, α3 will no
more appear in the model description.
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FIGURE 1. Three-shell avascular tumour growth model including (a) the 3D representation of the model’s
regions and (b) the detailed illustration of the corresponding spatial domains �j and boundaries Sj on
x1x3-plane with j = N , Q, P, E.

In terms of the ellipsoidal variables, the fully developed avascular tumour that we consider
in our model is described as follows. We denote by �j the ellipsoidal region in the tumour,
occupied by cells at a certain stage of their biological cycle, characterized by constant density
dj, j indexing the different compartments as they will be designated in the next paragraph. The
available nutrient concentration in r ∈�j is denoted by σ (r), while the concentration of the
growth inhibiting agent is denoted by β(r). Moreover, the tumour tissue is considered incom-
pressible and compact; thus the cell gain or loss, due to proliferation and disintegration in each
region, results in a pressure field P(r). The gradient of the aforementioned parameters determines
the cell movement with velocity v(r), so that a cell moves passively down the pressure gradient
and towards regions rich in nutrient and poor in inhibitor concentration. The vital state of the
cell occupying the geometrical point r depends on the nutrient concentration and on the inhibitor
concentration available, with respect to the critical values σ ∗

N , σ ∗
Q, β∗ as follows. A cell is alive if

and only if the nutrient level is above the critical concentration σ ∗
N ; it is in a mitotic dormant state

if the nutrient varies in the interval
[
σ ∗

N , σ ∗
Q

)
and proliferates when σ (r) ≥ σ ∗

Q and β(r) ≤ β∗.
In particular, the necrotic core, which is occupied by necrotic cells, is defined in ellip-

soidal terms as �N = {
(ρ,μ, ν) ∈R

3 : h2 ≤ ρ < ρN , h2
3 ≤μ2 ≤ h2

2, 0 ≤ ν2 ≤ h2
3

}
, while the next

layer is occupied by quiescent cells and is defined as �Q = {
(ρ,μ, ν) ∈R

3 : ρN ≤ ρ < ρQ,
h2

3 ≤μ2 ≤ h2
2, 0 ≤ ν2 ≤ h2

3

}
. The proliferating layer is comprised of �P = {

(ρ,μ, ν) ∈R
3 :

ρQ ≤ ρ < ρP, h2
3 ≤μ2 ≤ h2

2, 0 ≤ ν2 ≤ h2
3

}
, while the whole cancer tumour is enveloped inside

the healthy exterior layer defined via the domain �E = {
(ρ,μ, ν) ∈R

3 : ρP ≤ ρ < ρE,
h2

3 ≤μ2 ≤ h2
2, 0 ≤ ν2 ≤ h2

3

}
, which is occupied by normal cells of the host tissue. The exterior

ellipsoidal boundaries Sj of the above domains, correspond to the different values of the ellip-
soidal variable ρ = ρj with j = N , Q, P, E, respectively, and apparently it holds that h2 ≤ ρN <

ρQ <ρP <ρE. The aforementioned modelling configuration is illustrated within Figure 1 for an
intersection with the x1x3-plane.

On the exterior surface SE, the surrounding medium provides nutrient in the form

σ∞(rE) =
∞∑

l=0

2l+1∑
m=1

σm
∞,l (ρE) Sm

l (μ,ν) with rE = (ρE,μ,ν) ∈ SE) (2.5)
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and imposes a pressure field

P∞(rE) =
∞∑

l=0

2l+1∑
m=1

pm
∞,l (ρE) Sm

l (μ, ν) with rE = (ρE,μ, ν) ∈ SE, (2.6)

where the parameters σm
∞,l(ρE) and pm

∞,l(ρE) for l ≥ 0 and m = 1, 2, . . . , 2l + 1 are subject to the
exterior conditions, while Sm

l (μ,ν) = Em
l (μ) Em

l (ν) are the surface ellipsoidal harmonic functions
of degree l and order m, while Em

l are the Lamé functions of the first kind [8, 10, 20, 26], being
regular at the origin.

The aim of the present work is focused on determining the evolution of the exterior boundary
SP of the ellipsoidal tumour. To this due and following [22–24], we assume that the exterior
tumour boundary evolves according to the equation

drP

dt
= −μP∇P(rP) +μσ∇σ (rP) −μβ∇β(rP) with rP = (ρP,μ, ν) ∈ SP, (2.7)

where μP, μσ , μβ are positive proportionality constants that depend on the cells’ motility.
Equation (2.7) is a modification of the widely used Darcy’s law [6, 16, 17, 21, 22, 28], and
additionally to the pressure-driven movement, a chemotactic movement of the cell is taken into
account, towards the best conditions for the cell’s proliferation.

Both the nutrient and the inhibitor agents are governed by the Fick’s diffusion law, which
allows for diffusion in the direction of less concentration, and are considered to be in a diffusive
equilibrium state, due to the relatively small time scale of the diffusion compared to the growth
time scale, as can be seen in details in [6, 22]. Their concentrations satisfy the partial differential
equations given by

�σ (r) = γj for every with r ∈�j with j = N , Q, P, E (2.8)

and

�β(r) = pj for every r ∈�j with j = N , Q, P, E, (2.9)

where each physical constant γj and pj denotes the consumption rate and the production rate,
respectively, normalised by the corresponding diffusivity kσ and kβ , at the corresponding region.
Each constant reflects the phase of the biological cycle of the cells occupying the corresponding
region. In particular, non-zero values of γN support physical considerations on processes aim-
ing to eradicate the nutrient excess, present in the necrotic region, while γP ≥ γQ > 0. Moreover,
since cancer cells proliferate much more actively than the normal cells, their metabolic needs are
also greater, leading to γP ≥ γE ≥ 0. For simplicity and without loss in generality, we addition-
ally assume that γE = 0. Similarly, considering as inhibitor both the metabolic by-products of
the living cells and the chemicals produced during necrosis and disintegration, we assume that
pN 	= 0 and pQ = pP := pL, while it is reasonable to assume that pE = 0.

Additionally, we assume that both the nutrient and the inhibitor concentrations are regular at
the centre of the colony and continuous across the tumour’s interfaces, as well as their directional
derivatives normally to the corresponding interface. For a detailed justification of these regularity
assumptions, see [22]. Thus, the boundary conditions that complete the problems regarding the
nutrient and the inhibitor concentrations, in terms of the ellipsoidal variables, read as follows,

lim
ρ→ρ−

j

σ (ρ,μ, ν) = lim
ρ→ρ+

j

σ (ρ,μ, ν) with j = N , Q, P (2.10)
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and

lim
ρ→ρ−

j

β(ρ,μ, ν) = lim
ρ→ρ+

j

β(ρ,μ, ν) with j = N , Q, P, (2.11)

while the nutrient concentration on SE is dictated by the inhomogeneous exterior data given in
(2.5) and the inhibitor concentration is just required to decay in the exterior of the tumour, being
eliminated in a comparatively long distance from the colony. Moreover, in terms of the outward
unit normal vector ρ̂ on each confocal ellipsoidal surface Sj and in view of the well-known
ellipsoidal gradient differential operator [8], the ellipsoidal normal derivative on Sj reads as

ρ̂ · ∇ =
√
ρ2

j − h2
2

√
ρ2

j − h2
3√

ρ2
j −μ2

√
ρ2

j − ν2

∂

∂ρ
with ∇ = ρ̂

hρ(rj)

∂

∂ρ
+ μ̂

hμ(rj)

∂

∂μ
+ ν̂

hν(rj)

∂

∂ν
at rj = (ρj,μ, ν)

(2.12)
for every μ2 ∈ [h2

3, h2
2

]
and ν2 ∈ [0, h2

3

]
with j = N , Q, P, E, where hρ , hμ and hν are the ellip-

soidal metric coefficients [8, 26]. Therefore, the continuity conditions for the normal derivatives
yield

lim
ρ→ρ−

j

∂σ (ρ,μ, ν)

∂ρ
= lim
ρ→ρ+

j

∂σ (ρ,μ, ν)

∂ρ
with j = N , Q, P (2.13)

and

lim
ρ→ρ−

j

∂β(ρ,μ, ν)

∂ρ
= lim
ρ→ρ+

j

∂β(ρ,μ, ν)

∂ρ
with j = N , Q, P. (2.14)

Next, we assume that each cell moves according to the modification of the Darcy law, as
introduced in (2.7) and its velocity yields

v(r) = −μP∇P(r) +μσ∇σ (r) −μβ∇β(r) with r ∈ ∪
j=N ,Q,P,E

�j. (2.15)

Applying the divergence operator on both sides of the velocity field (2.15) and implying (2.8)
and (2.9), we obtain the pressure field as

�P(r) = Fj for r ∈�j with j = N , Q, P, E, (2.16)

where

Fj := −Gj/μP +μσγj/μP −μβpj/μP, (2.17)

while Gj := ∇ · v(rj) denote the mass per unit volume, per unit time, that is produced or lost
in the region �j and normalised by the tissue’s density [22], while it is considered constant in
the corresponding region. Taking into consideration the restrictions on the constants γj and pj,
as well as definition (2.17), we deduce that the constants FN , FQ, FP are in general not equal
between each other, nor zero and also that FE = 0. The conditions assigned to the pressure field
demand regularity at the centre of the colony and continuity for both the pressure and its normal
derivative across the entire interior to the tumour interfaces, namely

lim
ρ→ρ−

j

P(ρ,μ, ν) = lim
ρ→ρ+

j

P(ρ,μ, ν) for j = N , Q (2.18)
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and

lim
ρ→ρ−

j

∂P(ρ,μ, ν)

∂ρ
= lim
ρ→ρ+

j

∂P(ρ,μ, ν)

∂ρ
for j = N , Q, P, E. (2.19)

The interfaces SP and SE distinguish regions characterised by different densities, since the
cancerous mass is in general more dense than the host tissue and the healthy compartment formed
around the tumour [7, 17]. Therefore, the corresponding boundary conditions on SP and SE are
dictated by the Young–Laplace equation for two-face incompressible fluids, namely

lim
ρ→ρ−

j

P(r) − lim
ρ→ρ+

j

P(r) = ajJ (rj) with j = P, E, (2.20)

where J (rj) stands for the mean curvature at the point rj of the ellipsoidal surface, which is given
via the expression [8]

J (rj) = −1

2

ρj

√
ρ2

j − h2
3

√
ρ2

j − h2
2√

ρ2
j −μ2

√
ρ2

j − ν2

(
1

ρ2
j −μ2

+ 1

ρ2
j − ν2

)
(2.21)

for every μ2 ∈ [h2
3, h2

2

]
and ν2 ∈ [0, h2

3

]
with aP, aE ∈R being proportionality constants. Since

J (r) is a continuous function in the coordinate variables μ,ν, it accepts an ellipsoidal expansion
as shown in the following:

J (rj) =
∞∑

l=0

2l+1∑
m=1

jm
l (ρj)S

m
l (μ, ν) with rj = (ρj,μ, ν) ∈ Sj (2.22)

for j = P, E,μ2 ∈ [h2
3, h2

2

]
and ν2 ∈ [0, h2

3

]
. Additionally, on the surface SE the trace of the exterior

pressure is given in the form of (2.6).
The model is completed by combining the solutions of the aforementioned problems in equa-

tion (2.7), which determines the velocity of the cells occupying the exterior tumour boundary.
In particular, in order for the corresponding problems to be treated analytically, we assume that
the ellipsoidal tumour evolves, maintaining its confocality, so that all interfaces are members
of the same ellipsoidal system throughout the tumour evolution. Therefore, we assume that the
cells move only in the normal direction, a condition secured if dμ/dt = 0 = dν/dt. Consequently,
since in the ellipsoidal system we have [8, 9]

dr

dt
= ρ̂hρ(r)

dρ

dt
+ μ̂hμ(r)

dμ

dt
+ ν̂hν(r)

dν

dt
, (2.23)

we deduce that ρ̂ · dr
dt = hρ(r) dρ

dt . By means of (2.7) and (2.12) and inserting the metric coefficient

hρ(r) =
√
ρ2 −μ2

√
ρ2 − ν2√

ρ2 − h2
3

√
ρ2 − h2

2

, (2.24)

we arrive at

h2
ρ(rP)

dρP

dt
= −μP

dP(rP)

dρ
+μσ

dσ (rP)

dρ
−μβ

dβ(rP)

dρ
with rP = (ρP,μ, ν) ∈ SP, (2.25)

which is an ordinary differential equation – it holds for rP(t) = (ρP(t),μ,ν) ∈ SP and it is subject
to an initial condition ρP(0) = RP > h2. Once computed, its solution determines the tumour’s
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exterior boundary evolution. In order for (2.25) to be solved, the pressure, the nutrient con-
centration and the inhibitor concentration, which are solutions of the corresponding problems,
have to be introduced. Therefore, we begin the analysis of the model by solving the problems
(2.8), (2.10) and (2.13) for the nutrient concentration, (2.9), (2.11) and (2.14) for the inhibitor
concentration and (2.16)–(2.21) for the pressure field. This is the task accomplished in the next
section.

Before we proceed though, it is worth reminding that the model described above concerns
phenomena that take place in two different scales. Processes that take place in the small scale, as
the diffusion of the nutrient and of the inhibitor, appear as if they were static phenomena and thus
they are described by means of the elliptic boundary value problems (2.8)–(2.14). The tumour
growth occurs in the large time scale and its time dependence is exactly what we are looking
for by analysing the model. Therefore, the radial variable in the tumour structure depends on
time, a fact reflected on the evolution equation (2.25). This fact justifies that the whole problem
developed in this section, in view of the model that we described, is actually a free boundary
problem, as the boundaries that define the fundamental regions of the problem are also part of
the problem. The existence and stability of such problems for the radially symmetric case have
been studied in a series of papers, such as [13] and the references therein.

Since the dependence in time of the diffusion processes is intrinsic and it is inherited via the
time dependence of the radial variable ρ (t), we solve the corresponding problems as if they
were elliptic boundary value problems, temporarily ignoring time, which eventually joins in the
fundamental formula of the evolution equation.

3 Analytical solutions of the model’s problems

The above problems will be solved by properly applying the standard method of separation of
variables in every ellipsoidal compartment �j for j = N , Q, P, E. To this end, we remind that the
interior ellipsoidal harmonic functions of degree l ≥ 0 and order m = 1, 2, ..., 2l + 1 are given in
terms of the corresponding Lamé functions of the first kind Em

l (ρ) as

E
m
l (ρ,μ, ν) = Em

l (ρ)Sm
l (μ, ν), (3.1)

where Sm
l (μ, ν) = Em

l (μ)Em
l (ν) are the surface ellipsoidal harmonic functions [8, 10, 20, 26].

Similarly, the exterior ellipsoidal harmonic functions of the same degree and order are given by
the product

F
m
l (ρ,μ, ν) = Fm

l (ρ)Sm
l (μ, ν), (3.2)

where Fm
l (ρ) = (2l + 1)Im

l (ρ)Em
l (ρ) are the corresponding Lamé functions of the second kind,

whilst Im
l (ρ) stands for the following elliptic integral

Im
l (ρ) =

+∞∫
ρ

dt

(Em
l (t))2

√
t2 − h2

2

√
t2 − h2

3

. (3.3)
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Here we remind the orthogonality property of the surface ellipsoidal harmonic functions that
holds on every ellipsoidal surface Sρ∫∫

Sρ

Sm
l (μ, ν)Sm′

l′ (μ, ν)
ds(μ, ν)√

ρ2 −μ2
√
ρ2 − ν2

= γ m
l δll′δmm′ , (3.4)

in view of the Kronecker delta notation, where ds(μ, ν) is the ellipsoidal surface element and γ m
l

are the L2 norm of the surface ellipsoidal harmonic Sm
l (μ, ν) [8].

Since each Poisson’s partial differential equation, rendered by (2.8), (2.9) and (2.16), has a
constant non-homogeneous term, we suggest in a trivial manner (see Appendix A1 for details)
that the following function can serve as a particular solution,

fpart, j(r) = Ajρ
2
[
d1

0E1
0(μ)E1

0(ν) + d1
2E1

2(μ)E1
2(ν) + d2

2E2
2(μ)E2

2(ν)
]

for j = N , Q, P, E, (3.5)

where

d1
0 = 1

6
, d1

2 = − 1

6
(
�−�′) (�− α2

1

) and d2
2 = 1

6
(
�−�′) (�′ − α2

1

) , (3.6)

while � and �′ are the roots of the second-degree quadratic equation
3∑

i=1

1
�−α2

i
= 0 and the

constants Aj for j = N , Q, P, E are defined appropriately to match the corresponding equation.
For reasons of notational convenience in the forthcoming concrete presentation of our analyti-
cal results, we additionally define dm

l := 0 for every l ≥ 1 and m = 1, 2, ..., 2l + 1, excluding the
non-vanishing values for (l, m) 	= (2,1) and (l, m) 	= (2, 2).

Skipping the details of the tedious but straightforward calculations (see Appendix A2), the
analytical solutions are obtained in a closed compact fashion in terms of the Heaviside function

H(ρ − ρj) =
{

1, ρ ≥ ρj

0, ρ < ρj

with j = N , Q, P, E, (3.7)

using the additional notation for l = 0, 1, 2, ... and m = 1, 2, ..., 2l + 1 with ρ ∈ [h2, ρE)

em
l (ρ) = 2Em

l (ρ) − ρEm′
l (ρ), (3.8)

f m
l (ρ) = −2Fm

l (ρ) + ρFm′
l (ρ), (3.9)

Rm
l (ρ) = em

l (ρ) + Em
l (ρE)

Fm
l (ρE)

f m
l (ρ) (3.10)

and also the Wronskian

W m
l (ρ) := W m

l (Em
l (ρ), Fm

l (ρ)) = Em
l (ρ)Fm′

l (ρ) − Em′
l (ρ)Fm

l (ρ) 	= 0, (3.11)

where the prime denotes differentiation with respect to the argument. Then, the nutrient
concentration, which satisfies the problems (2.5), (2.8), (2.10) and (2.13) yields
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σ (r) =
∞∑

l=0

2l+1∑
m=1


m
l (ρ) Sm

l (μ, ν)

=
∞∑

l=0

2l+1∑
m=1

{
dm

l γNρ
2 +

[
σm

∞,l(ρE) + dm
l Fm

l (ρE)

((
γQ − γN

)
ρN

Rm
l (ρN )

W m
l (ρN )

− (
γQ − γP

)
ρQ

Rm
l (ρQ)

W m
l (ρQ)

− γPρP
Rm

l (ρP)

W m
l (ρP)

)]
Em

l (ρ)

Em
l (ρE)

+ dm
l

[
H (ρ − ρN )

(
γQ − γN

)(
ρ2 − ρN

f m
l (ρN ) Em

l (ρ) + em
l (ρN ) Fm

l (ρ)

W m
l (ρN )

)

− H
(
ρ − ρQ

) (
γQ − γP

)(
ρ2 − ρQ

f m
l (ρQ) Em

l (ρ) + em
l (ρQ) Fm

l (ρ)

W m
l (ρQ)

)

−H (ρ − ρP) γP

(
ρ2 − ρP

f m
l (ρP) Em

l (ρ) + em
l (ρP) Fm

l (ρ)

W m
l (ρP)

)]}
Sm

l (μ, ν) (3.12)

at any point r = (ρ,μ, ν) with ρ ∈ [h2, ρE), μ2 ∈ [h2
3, h2

2

]
and ν2 ∈ [0, h2

3

]
. Similarly, for the

inhibitor concentration, which is the solution of the problem (2.9), (2.11) and (2.14), we derive

β(r) =
∞∑

l=0

2l+1∑
m=1

Bm
l (ρ)Sm

l (μ, ν)

=
∞∑

l=0

2l+1∑
m=1

dm
l

{
pNρ

2 + Fm
l (ρE)

[
( pL − pN )ρN

Rm
l (ρN )

W m
l (ρN )

− pLρP
Rm

l (ρP)

W m
l (ρP)

]
Em

l (ρ)

Em
l (ρE)

+ H (ρ − ρN ) ( pL − pN )

(
ρ2 − ρN

f m
l (ρN ) Em

l (ρ) + em
l (ρN ) Fm

l (ρ)

W m
l (ρN )

)

− H (ρ − ρP) pL

(
ρ2 − ρP

f m
l (ρP) Em

l (ρ) + em
l (ρP) Fm

l (ρ)

W m
l (ρP)

)}
Sm

l (μ, ν) (3.13)

for every r = (ρ,μ, ν) with ρ ∈ [h2, ρE), μ2 ∈ [h2
3, h2

2

]
and ν2 ∈ [0, h2

3

]
. Finally, the pressure field

proves to be quite more involved, mainly due to the Young–Laplace conditions (2.20) that need
to be satisfied. Nevertheless, the involvement concerns only the coefficients, while the pres-
sure assumes a similar functional form like (3.12) and (3.13), reflecting the similarity in the
corresponding boundary value problems. Therein, this field admits

P(r) =
∞∑

l=0

2l+1∑
m=1

�m
l (ρ) Sm

l (μ, ν) =
∞∑

l=0

2l+1∑
m=1

{
dm

l FNρ
2

+
[

pm
∞,l (ρE)+ aE jm

l (ρE) + aPjm
l (ρP)

Em
l (ρE) Fm′

l (ρP) − Fm
l (ρE) Em′

l (ρP)

W m
l (ρP)

+ dm
l Fm

l (ρE)

×
((

FQ − FN

)
ρN

Rm
l (ρN )

W m
l (ρN )

+ (
FP − FQ

)
ρQ

Rm
l (ρQ)

W m
l (ρQ)

− FPρP
Rm

l (ρP)

W m
l (ρP)

)]
Em

l (ρ)

Em
l (ρE)

+ dm
l

[
H (ρ − ρN )

(
FQ − FN

)(
ρ2 − ρN

f m
l (ρN ) Em

l (ρ) + em
l (ρN ) Fm

l (ρ)

W m
l (ρN )

)
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+ H
(
ρ − ρQ

) (
FP − FQ

)(
ρ2 − ρQ

f m
l (ρQ) Em

l (ρ) + em
l (ρQ) Fm

l (ρ)

W m
l (ρQ)

)

− H (ρ − ρP) FP

(
ρ2 − ρP

f m
l (ρP) Em

l (ρ) + em
l (ρP) Fm

l (ρ)

W m
l (ρP)

)]

− H (ρ − ρP) aPjm
l (ρP)

Em
l (ρ) Fm′

l (ρP) − Fm
l (ρ) Em′

l (ρP)

W m
l (ρP)

}
Sm

l (μ, ν) (3.14)

again for every r = (ρ,μ, ν) with ρ ∈ [h2, ρE), μ2 ∈ [h2
3, h2

2

]
and ν2 ∈ [0, h2

3

]
.

Herein, we have to comment on the characterisation implied in the tumour interfaces, by the
forms (3.12)–(3.14). It is clear that all fields are point dependent with the angular dependence to
persist also on each ellipsoidal surface inside the tumour’s structure, which corresponds to any
constant value of the radial variable ρ ∈ [h2, ρP). Therefore, the critical values of the nutrient,
σ ∗

N , σ ∗
Q and also of the inhibitor β∗ cannot be met via (3.12) and (3.13), respectively, identifying

accordingly all points of each interface Sj with j = N , Q. This identification appears natural in
the spherical tumour model as the radial symmetry is reflected on the functional forms of σ (r)
and β(r) which depend only on the distance from the centre of the tumour. A physical way out
of this puzzle is to consider the ellipsoidal interfaces as ideal surfaces, which distinguish the
tumour compartments geometrically, whereas the material interfaces are defined as the locus
of the points, which attribute the constant critical values. In this view, we consider the critical
values as average values of the corresponding substance on each ellipsoidal surface, obtained by
integrating accordingly on the corresponding surface. Thus, via integration of (3.12) on SN and
using the orthogonality property (3.4), we obtain

6σ ∗
N = 6σ 1

∞,0 (ρE)+ γNρ
2
N + (

γQ − γN

)
ρN

(
ρN + 2

F1
0 (ρE) − F1

0 (ρN )

F1
0
′
(ρN )

)

− (
γQ − γP

)
ρQ

(
ρQ + 2

F1
0 (ρE) − F1

0 (ρQ)

F1
0
′
(ρQ)

)
− γPρP

(
ρP + 2

F1
0 (ρE) − F1

0 (ρP)

F1
0
′
(ρP)

)
, (3.15)

while similarly by integrating over SQ and by means of (3.15), we take

6σ ∗
Q = 6σ ∗

N + (
γQ − γN

)(
ρ2

Q − ρ2
N + 2ρN

F1
0 (ρN ) − F1

0 (ρQ)

F1
0
′
(ρN )

)
(3.16)

and finally, integrating (3.13) over SQ, we arrive at

6β∗ = pL

(
ρ2

Q − ρ2
P + 2ρP

F1
0 (ρP) − F1

0 (ρE)

F1
0
′
(ρP)

)
− 2 (pL − pN ) ρN

F1
0 (ρQ) − F1

0 (ρE)

F1
0
′
(ρN )

. (3.17)

Relations (3.15)–(3.17) will be proved very useful in solving the evolution equation in the next
section, since they provide interconnections between ρN , ρQ, ρP and ρE, which reflects the fact
that each interface inherits its growth rate to the others. In other words, this is consistent with
the consideration of the tumour as an incompressible fluid which grows without interior holes or
deformations during its evolution.
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We turn now to the elaboration of the basic equation of this work, which is the evolution
equation (2.25). By expanding the function h2

ρ(ρP,μ, ν) in terms of surface ellipsoidal harmonics,
we obtain

h2
ρ(ρP,μ, ν) = E1

2(ρP) E2
2(ρP)(

ρ2
P − h2

3

) (
ρ2

P − h2
2

)
[

S1
0(μ, ν) − S1

2(μ, ν)(
�−�′) E1

2(ρP)
+ S2

2(μ, ν)(
�−�′) E2

2(ρP)

]
.

(3.18)

At this point, we insert (3.18), as well as the results (3.12)–(3.14), calculated for ρ = ρP, into
(2.25) we multiply by Sm′

l′ (μ, ν) for l′ = 0, 1, 2, ... and m′ = 1, 2, ..., 2l′ + 1 and we integrate over
the surface SP. Due to the orthogonality (3.4), we arrive at a sequence of equations that all involve
the rate dρP

dt . In particular, by multiplying with S1
0 (μ, ν) (for l = 0 and m = 1) and integrating over

SP, we have

dρP

dt
=
(
ρ2

P − h2
3

) (
ρ2

P − h2
2

)
3E1

2 (ρP) E2
2 (ρP)

×
{[
μσ

(
γQ − γN

)−μβ ( pL − pN )−μP

(
FQ − FN

)] (
ρP − ρN

F1
0
′
(ρP)

F1
0
′
(ρN )

)

+ [
μσ

(
γP − γQ

)−μP
(
FP−FQ

)] (
ρP − ρQ

F1
0
′
(ρP)

F1
0
′
(ρQ)

)
− (−μσγN +μβpN +μPFN

)
ρP

}
,

(3.19)

while by using the orthogonality property of Sm
l (μ, ν), with l ∈N

∗ and m = 1, 2, . . . , 2l + 1,
where by virtue of the Kronecker delta, we obtain

E1
2(ρP) E2

2(ρP)(
�−�′) (ρ2

P − h2
3

) (
ρ2

P − h2
2

) ( δl2δm2

E2
2(ρP)

− δl2δm1

E1
2(ρP)

)
dρP

dt

= −μP�
m′
l (ρP) +μσ


m′
l (ρP) −μβBm′

l (ρP), (3.20)

wherein (3.19) may be inserted. On the other hand, the functions �m
l (ρP), 
m

l (ρP) and Bm
l (ρP)

are the coefficients of Sm
l (μ, ν) in the ellipsoidal expansions of P(r), σ (r) and β(r) given in

(3.14), (3.12) and (3.13), respectively, at the specific point r = rP = (ρP,μ, ν) and we recall that
the prime denotes differentiation with respect to the argument. Relationship (3.19) comprises the
evolution equation, while (3.20) stands for the compatibility condition, which must be readily
secured. Furthermore, equation (3.20) splits to the following two independent restrictions, i.e.

−μP�
m′
l (ρP) +μσ


m′
l (ρP) −μβBm′

l (ρP) = 0, (3.21)

when l> 0 and m = 1, 2, . . . , 2l + 1 but (l, m) /∈ {(2, 1) , (2, 2)}, while for l = 2, m = 1 and l = 2,
m = 2, we readily obtain

−μP

(
�2

2
′
(ρP) + E1

2(ρP)

E2
2(ρP)

�1
2
′
(ρP)

)
+μσ

(

2

2
′
(ρP) + E1

2(ρP)

E2
2(ρP)


1
2
′
(ρP)

)

−μβ

(
B2

2
′
(ρP) + E1

2(ρP)

E2
2(ρP)

B1
2
′
(ρP)

)
= 0. (3.22)
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The latter is a consequence of the division by parts of the initial relation (3.20), written for
(l, m)= (2,1) and for (l, m)= (2,2) in order to eliminate the term dρP

dt . On the other hand, both
(3.21) and (3.22) need to specify the coefficients of the mean curvature (2.21), entered into
expansion (2.22), whereas in view of the orthogonality relation (3.4), they admit

jm
l

(
ρj

)= 1

γ m
l

∫∫
Sρj

Sm
l (μ, ν) J (ρj,μ, ν)

ds(μ, ν)√
ρ2

j −μ2
√
ρ2

j − ν2
with j = P, E (3.23)

for every l ≥ 0 and m = 1, 2, . . . , 2l + 1.
As can be seen from (3.21) and (3.22), in view of (3.12) and (3.14), the system of equa-

tions described by (3.20) implies restrictions between the nutrient supply and the pressure field
imposed by the tumour’s surrounding medium, as dictated in (2.5) and (2.6), respectively. Thus,
it is clear that a tumour will exhibit such ellipsoidal growth only if the nutrient supply responds
to the pressure imposed in accordance with equation (3.20) or equivalently with (3.21) and
(3.22). This remark is important, as both ellipsoidal tumours do appear in vivo, for example
in soft tissues as in breast cancer [5] and also because a response of the nutrient supply to the
environment’s pressure may suggest vascularisation of the tumour.

Equation (3.19), on the other hand, offers the nonlinear ordinary differential equation that
determines the evolution of the ellipsoidal tumour boundary SP, with respect to all the other
boundaries, SN , SQ and SE, which synchronously evolve. Thanks to equations (3.15)–(3.17),
their evolution is coupled to the evolution of SP, as can be seen, for example, in (3.16), which
provides ρQ as a function of ρN and in (3.17) which couples them with ρP, while equation (3.15)
provides ρE with respect to ρN , ρQ and ρP. Introducing these functions into (3.19) results in a very
intricate nonlinear ordinary differential equation, demanding numerical aid for its solution. The
uniqueness of its solution is secured by the initial condition ρP (0)= RP > h2, which corresponds
to the exterior boundary of the ellipsoidal tumour at the time that it was initially observed. The
task of implementing numerically the solution of (3.19) will be accomplished in Section 5. Before
that, it is worth to provide the necessary tools for reducing the above results to more degenerate
models, a process that leads to recovering the results obtained from the spheroidal models [18,
23, 24] and also from the spherical models [6, 17, 22].

4 Reduction to degenerate geometries

The strict inequalities 0<α3 <α2 <α1 <+∞ form the basic reason why the triaxial ellipsoid
reflects the general geometric anisotropy of the 3D space. As it is well known, the reduction of
general results from the ellipsoidal to the spheroidal or to the spherical geometry is not straight-
forward, since certain indeterminacies appear during the limiting process. This is due to the fact
that the spherical system springs from a zero-dimensional manifold, i.e. the centre, while the
ellipsoidal system springs from a 2D manifold, i.e. the focal ellipse.

The equality of two out of three axes within (4.1) causes the degeneration of an ellipsoid to a
spheroid, whose axis of symmetry coincides with the third axis. More specific, a prolate spheroid
can be obtained whenever 0<α3 = α2 <α1 <+∞, while an oblate spheroid corresponds to
0<α3 <α2 = α1 <+∞, where the axis of symmetry is the x1-axis for the prolate spheroid and
the x3-axis for the oblate spheroid. The interesting asymptotic case of the needle can be reached
by a prolate spheroid whenever we have 0<α3 = α2 
 α1 <+∞, whilst in the case where
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0<α3 
 α2 = α1 <+∞, the oblate spheroid takes the shape of a circular disc. As far as the
semi-focal distances are concerned, we have that h1 = 0 and h2 = h3 = c with c> 0 for the case
of a prolate spheroid with semi-focal distance c, while h3 = 0 and h1 = h2 = c̄ with c̄> 0 for the
case of an oblate spheroid with semi-focal distance c̄. The simple transformation c → −ic̄ with
c, c̄> 0 allows the transition from the prolate to the oblate spheroid, while the replacement c̄ → ic
with c, c̄> 0 secures the converse. In terms of 1 ≤ τ := cosh η <+∞, −1 ≤ ζ := cos θ ≤ 1 and
ϕ ∈ [0, 2π) for the prolate spheroid, the corresponding results for the oblate spheroid can be
obtained through τ → iλ with 1 ≤ τ <+∞, where 0 ≤ λ := sinh η <+∞ is the characteristic
variable of the oblate system. Obviously, the inverse transformation λ→ −iτ with 0 ≤ λ<+∞
leads to the converse result. Consequently, from this point on we shall refer to the prolate
spheroidal geometry, since the oblate spheroidal geometry is recovered via

τ → iλ and c → −ic̄. (4.1)

In terms of the unit normal vector τ̂ for the prolate spheroidal coordinates, the ellipsoidal
variables are connected with the corresponding prolate spheroidal ones by

ρ = cτ and ρ̂ → τ̂, where ρ ∈ [h2, +∞) with 1 ≤ τ <+∞, (4.2)

while

μν

h2h3
= ζ , (4.3)

√
μ2 − h2

3

√
h2

3 − ν2

h1h3
=
√

1 − ζ 2 cos ϕ (4.4)

and √
h2

2 −μ2
√

h2
2 − ν2

h1h2
=
√

1 − ζ 2 sin ϕ, (4.5)

whereas μ2 ∈ [h2
3, h2

2

]
, ν2 ∈ [0, h2

3

]
and 1 ≤ τ <+∞, ϕ∈ [0, 2π). For α2 = α3 (prolate spheroid)

the constants appearing within (3.6) yield lim
α2→α3

�= 2α2
1+α2

2
3 and lim

α2→α3
�′ = α2

2. On the other

hand, the elliptic integrals (3.3) in prolate spheroidal geometry (α2 = α3) read as

lim
α2→α3

Im
l (ρ) =

+∞∫
ρ

dt[
lim
α2→α3

Em
l (t)

]2 (
t2 − α2

1 + α2
2

) for ρ ∈ [h2, +∞) (4.6)

for l ≥ 0 and m = 1, 2, . . . , 2l + 1 and they are no more elliptic, while they can be evaluated with
analytic manipulations. Specifically, the determination of I1

0 (ρ) demands the calculation of the
corresponding integral (4.6) for l = 0 and m = 1 in terms of the variable τ , i.e.

lim
α2→α3

I1
0 (ρ) = 1

2c
ln
τ + 1

τ − 1
for ρ ∈ [h2, +∞) with 1 ≤ τ <+∞ and c> 0. (4.7)

The other elliptic integrals, which concern the exterior ellipsoidal harmonic eigenfunctions for
degree l ≥ 1 and order m = 1, 2, . . . , 2l + 1, are given explicitly in terms of the lim

α2→α3
I1
0 (ρ) in
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their prolate spheroidal expressions for α2 = α3. As far as the interior solid ellipsoidal harmon-
ics is concerned, their Cartesian representation implies easily a relative reduction procedure,
even though only few ellipsoidal harmonics are given in closed compact fashion. Finally,
the limiting cases of the needle and of the disc are asymptotic reductions of the prolate and
the oblate spheroidal geometry, respectively. Therefore, for the needle we obtain α1/α2 =
τ/

√
τ 2 − 1 → +∞, where 1 ≤ τ <+∞ and for the disc we arrive at the limiting condition

α3/α2 = λ/
√
λ2 + 1 → 0+, where 0 ≤ λ<+∞.

If we change our perspective and demand to reduce our results to the spherical case, where the
complete isotropy of the 3D space is considered, we proceed as follows. The sphere corresponds
to α1 = α2 = α3 = α, where α is the radius of the sphere, where the reference ellipsoid reduces.
In this case, hκ = 0 for κ = 1, 2, 3, which means that all the semi-focal distances of the ellipsoid
coincide at the origin. Defining the limit from the ellipsoid to the sphere as ‘lim

e→s
’, the constants

into (3.6) give lim
e→s

�= lim
e→s

�′ = α2. The intervals of variation of the variables μ and ν imply

that in this particular case lim
e→s

μ= lim
e→s

ν = 0 for κ = 1, 2, 3. In terms of the unit normal vector

r̂ of the spherical coordinate system, the connection between the ellipsoidal variables and the
corresponding spherical ones r ≥ 0, −1 ≤ ζ := cos θ ≤ 1 and ϕ ∈ [0, 2π) is met by

lim
e→s

ρ = lim
e→s

(√
ρ2 − h2

2

)
= lim

e→s

(√
ρ2 − h2

3

)
= r and ρ̂ → r̂ where ρ ∈ [h2, +∞) with r ≥ 0

(4.8)
for the radial component and, as previously,

μν

h2h3
= ζ ,

√
μ2 − h2

3

√
h2

3 − ν2

h1h3
=
√

1 − ζ 2 cos ϕ and

√
h2

2 −μ2
√

h2
2 − ν2

h1h2
=
√

1 − ζ 2 sin ϕ,

(4.9)
for the angular dependence. The elliptic integrals (3.3) assume the values

lim
e→s

Im
l (ρ) = 1

(2l + 1) r2l+1
, (4.10)

where l ≥ 0 and m = 1, 2, . . . , 2l + 1 for every ρ ∈ [h2, +∞) and r ≥ 0.
By virtue of the previous analysis about the reduction rules to the spheroidal (relations (4.1)–

(4.7)) or to the spherical (expressions (4.8)–(4.10)) geometry, the manipulation of our main
results for the nutrient concentration (3.12), the inhibitor concentration (3.13), the pressure field
(3.14), the relationships for the critical values (3.15)–(3.17) and the evolution equation (3.19) is
a straightforward task and leads to recovering the corresponding and already known results from
the literature [22–24].

5 Numerical implementation

The ellipsoidal coordinate system provides the appropriate means for solving classical boundary
value problems involving cancerous tumour growth. However, this is amenable to analytical
techniques and provides closed form exact solutions only if we impose particular conditions
as already discussed extensively in the previous sections or if we work within the frame of
simple orthogonal geometries. Hence, as a fair approximation to real-life situations, we adopt this
genuine 3D system that reflects the complete geometrical anisotropy of the 3D space to obtain
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analytical results for the corresponding fields, i.e. the nutrient (3.12), the inhibitor (3.13) and the
pressure (3.14). We emphasise here that we do not refer to the anisotropy imposed by the physical
characteristics of the phenomenon under consideration, which, for the purpose of the present
work, we choose to restrict to the simplest description of the piecewise isotropic characteristics.
Therefore, we refer to a geometrically anisotropic model, while the model equations in each
compartment are isotropic.

Nevertheless, fully analytical solutions do not always meet the required accuracy or it is diffi-
cult to be manipulated numerically. Even in simple geometries as the spherical, the spheroidal or
the ellipsoidal one whereas the Laplace’s and the Poisson’s partial differential equations admit
standard separation of variables, the semi-analytical approach is inherited. Indeed, the ordinary
differential equation describing the evolution of the tumour’s exterior boundary (3.19) is highly
nonlinear and its solution needs numerical implementation. To this purpose, there is always room
for pure numerical analysis or better for sophisticated computational treatment of our analytical
results. Under this useful aspect, we inherit the semi-analytical attribute to our method, in order
to validate the behaviour of our analytical formulae and predict the evolution in time of the
tumour under the physical constraints (3.21) and (3.22), as well as the helpful critical conditions
(3.15)–(3.17).

In view of the numerical treatment of the aforementioned fields, the values for the parameters
and constants involved are mostly taken from the bibliography [2, 3, 5, 6, 16, 17, 21, 30]. Initially,
we assume an ellipsoidal system which springs out from a given and fixed triaxial reference ellip-
soid (2.1) with basic semi-axis α1 = 0.9 × 10−2 m, α2 = 0.6 × 10−2 m and α3 = 0.4 × 10−2 m,
providing the related semi-focal distances h1 = 0.447 × 10−2 m, h2 = 0.806 × 10−2 m and
h3 = 0.671 × 10−2 m. Next, we confine the boundaries of the compartments of the tumour
with respect to the ‘radial’ ellipsoidal variable ρ ∈ [h2, ρE) [=] m (note that μ ∈ [h3, h2] and
ν ∈ [−h3, h3]). To achieve that, we inherit the behaviour of the already examined symmetric
models for sphere-type and spheroidal-type tumours [24]. Specifically, for the complete isotropic
case and in order to evaluate ρN , ρQ, ρP and ρE, we assume that an ellipsoidal and a spherical
tumour occupy approximately the same space, hence their volumes must be equal, i.e. VS = VE or

equivalently saying r3
j = ρj

√
ρ2

j − h2
3

√
ρ2

j − h2
2 for j = N , Q, P, E, which a solvable equation for

each boundary ρj, when the corresponding spherical radii rj are known. A typical set of spherical
boundary values that are taken from [24] represent the standard geometrical structure of a tumour,
those being rN = 0.647 × 10−2 m, rQ = 0.763 × 10−2 m, rP = 0.851 × 10−2 m and rE = 0.987×
10−2 m. They lead to the equivalent ellipsoidal variables, by solving the cubic equation with
respect to ρ2

j and choosing the real solutions that satisfy the sequence of inequalities ρE >ρP >

ρQ >ρN > h2, those being met by the values ρN = 0.927 × 10−2 m, ρQ = 1.002 × 10−2 m,
ρP = 1.066 × 10−2 m and ρE = 1.173 × 10−2 m, all above referring to the equilibrium state sizes
of the tumour’s compartments.

In the sequel, we provide the necessary physical parameters that appear in every involved
quantity. Therein, for the nutrient field σ [=] kg/m3 we use γN = 5 kg/m5, γQ = 20 kg/m5

and γP = 50 kg/m5, for the inhibitor field β[=] kg/m3 we insert pN = −40 kg/m5 and pL =
−20 kg/m5, while for the pressure field P [=] kg/ms2 we assume that FN = 20 kg/m3s2, FQ =
30 kg/m3s2 and FP = 40 kg/m3s2, as well as the constants αE = 1.4 × 10−6 kg/s2 and αP = 1.0 ×
10−6 kg/s2. A detailed dimensionless analysis secures the validity of the aforementioned values,
which is verified by the proper behaviour of the corresponding fields given below. Additionally,
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with respect to the parameters σm
∞,l(ρE) and pm

∞,l(ρE) for l ≥ 0 and m = 1, 2, . . . , 2l + 1, which
are subject to the exterior conditions (2.5) and (2.6), respectively, we deal with two different
cases. The first one refers to the application of a constant pressure p1

∞,0(ρE) = 15 × 10−4 kg/ms2

and the use of the full expansion (2.5) for the nutrient external supply, where the first term
is σ 1

∞,0(ρE) = 2.5 × 10−4 kg/m3. The second situation refers to an exterior constant nutrient
concentration σ 1

∞,0(ρE) = 2.5 × 10−4 kg/m3 and the utilisation of the complete series (2.6) for
the exterior pressure, where the first term is p1

∞,0(ρE) = 15 × 10−4 kg/ms2. These values in
both cases are arbitrarily chosen without loss of generality and comprise the first terms of
the series expansions (2.5) and (2.6). Once we imply σ 1

∞,0(ρE) = 2.5 × 10−4 kg/m3, then the
critical values of the nutrient and the inhibitor fields are directly derived from (3.15)–(3.17)
as σ ∗

N = 1.25 × 10−4 kg/m3, σ ∗
Q = 1.4 × 10−4 kg/m3 and β∗ = 1.6 × 10−4 kg/m3, respectively.

Next, for the evaluation of the physical proportionality parameters μP, μσ and μβ that reflect
the cells motility into the evolution equation (3.19), we demand such values so as to sustain a
steady state for the physical system, by imposing the equilibrium state condition dρP

dt = 0 within
relation (3.19) and requiring μP, μσ and μβ to satisfy such equality for the choice of ρN , ρQ,
ρP and ρE defined earlier. This procedure leads to the choice of μP = 1.33 × 10−6 m3s/kg,
μσ = 6.77 × 10−7 m5/kgs and μβ = 8.04 × 10−7m5/kgs. Finally, the coefficients jm

l (ρj) of the
mean curvature (2.21) defined in (2.22), for every l ≥ 0 and m = 1, 2, . . . , 2l + 1 at rj =(
ρj,μ, ν

) ∈ Sj with j = P, E, are provided via the integral (3.23).
Consequently, we are now ready to provide plots, concerning the equilibrium state, for the

nutrient and the inhibitor concentrations, as well as for the pressure field, given via the derived
analytical expressions (3.12)–(3.14), respectively, considering either constant pressure or con-
stant nutrient concentration on the exterior boundary ρ = ρE, as discussed earlier. To do so, we
evaluate the series terms up to a certain order of the ellipsoidal harmonic eigenfunctions, until
convergence is obtained. Therein, the expansions are taken for l = 0, 1, 2, . . . , M , M being suffi-
ciently large to obtain the desired accuracy, while m = 1, 2, . . . , 2l + 1. This computational work
is based on the proper numerical calculation of ellipsoidal harmonics of any order [8], which is
the key method for the implementation of the analytical results. Besides, physical parameters or
characteristics secure the sufficient determination of this upper limit M , depending on the kind
of exterior fields σ∞ (rE) and P∞ (rE) with rE = (ρE,μ, ν), as well as on the assumed Young–
Laplace equation’s constants, etc. Additionally, we note that all calculations are compatible with
the two main independent restrictions, imposed by relationships (3.21) and (3.22).

First we examine the circumstance of imposing a constant pressure p1
∞,0(ρE) = 15 ×

10−4 kg/ms2 on the tumour’s exterior boundary, whereas pm
∞,l(ρE) = 0 for l ≥ 1 and m =

1, 2, . . . , 2l + 1. From the compatibility relationships (3.21) and (3.22), we calculate the coef-
ficients of the nutrient’s concentration onto ρ = ρE from (2.5), i.e. σm

∞,l (ρE) for l ≥ 0 (up to
l = 10) and m = 1, 2, . . . , 2l + 1, additionally to the case l = 0 and m = 1, where, as we have
discussed earlier, σ 1

∞,0(ρE) = 2.5 × 10−4 kg/m3. The numerical experiments have shown that
the values of σ and P become stable for l = lmax ≡ M = 4 (note that actually β in (3.13) does
not involve infinite series expansion but a finite expression). Also, it is readily observed that by
setting smaller values of the implicated constants in the Young–Laplace equation (2.20), e.g.
αE = 0.2 × 10−6 kg/s2 and αP = 0.2 × 10−6 kg/s2, then convergence is obtained almost imme-
diately for l = lmax ≡ M = 2. In Table 1, we present the nutrient’s supply coefficients σm

∞,l (ρE)

up to the critical l = 4 ( m = 1, 2, . . . , 2l + 1).
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Table 1. The coefficients of the nutrient’s exterior supply σm
∞,l (ρE) up to l = 4

(m = 1, 2, . . . , 2l + 1) (10−4kg/m2l+3)

l

m 0 1 2 3 4

1 2.50000 × 10+00 −1.37307 × 10−12 −1.33686 × 10+01 1.48132 × 10−11 −5.22043 × 10+01

2 2.31318 × 10−18 2.00456 × 10+01 −6.77570 × 10−12 1.15506 × 10+02

3 2.80091 × 10−19 1.85615 × 10−18 1.01594 × 10−18 −7.30038 × 10+01

4 −5.24876 × 10−20 −3.19852 × 10−20 −1.77154 × 10−19

5 −1.90069 × 10−19 −2.39349 × 10−19 1.18059 × 10−19

6 −3.61413 × 10−19 2.98807 × 10−20

7 2.27508 × 10−19 1.83067 × 10−18

8 −1.41602 × 10−20

9 4.70412 × 10−21

FIGURE 2. Nutrient concentration at constant pressure application p1
∞,0(ρE) = 15 × 10−4 kg/ms2 for

different intersections with the (a) x1x2-plane and (b) x1x3-plane.

Considering the values for l up to lmax ≡ M = 4 (m = 1, 2, . . . , 2l + 1), we plot the nutrient
concentration and the pressure field from expansions (3.12) and (3.14), respectively. The numer-
ical implementation is obtained for two different intersections of the tumour’s structure with the
coordinate planes, i.e. with the x1x2 -plane (see Figures 2(a) and 3(a)) and the x1x3-plane (see
Figures 2(b) and 3(b)).

We observe that in Figure 2 the nutrient concentration values are higher in regions of low
curvature and lower in regions of high curvature, as in the vicinity of the x1-axis. On the other
hand, the pressure field in Figure 3 is increasing as we move outwards from the necrotic region
to the external surface SE, which is an expected result, since we imply a uniform constant high
pressure field on ρ = ρE and sink terms in the corresponding partial differential equations. The
obvious discontinuity ‘ring’ at the domain �E is due to the Young–Laplace condition (2.20). A
discussion on these findings is attempted below, together with the results of the following case.
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Table 2. The coefficients of the pressure’s exterior application pm
∞,l (ρE) up to l = 4

(m = 1, 2, . . . , 2l + 1)
(
10−4kg/m2l+1s2

)
l

m 0 1 2 3 4

1 1.50000 × 10+01 6.95991 × 10−13 6.77623 × 10+00 −7.50844 × 10−12 2.64611 × 10+01

2 −7.90147 × 10−20 −1.01606 × 10+01 3.43444 × 10−12 −5.85472 × 10+01

3 −2.93012 × 10−18 −3.07941 × 10−19 −3.46695 × 10−20 3.70038 × 10+01

4 −2.41002 × 10−19 −1.23844 × 10−20 −2.11371 × 10−19

5 9.57613 × 10−20 7.93579 × 10−20 3.06794 × 10−19

6 −1.42574 × 10−20 7.66247 × 10−20

7 −2.27122 × 10−19 8.43165 × 10−19

8 −3.83254 × 10−20

9 4.55415 × 10−22

FIGURE 3. Pressure distribution at constant pressure application p1
∞,0 (ρE)= 15 × 10−4kg/ms2 for

different intersections with the (a) x1x2-plane and (b) x1x3-plane.

In the next case we consider constant nutrient supply σ 1
∞,0(ρE) = 2.5 × 10−4 kg/m3 on SE,

whereas σm
∞,l(ρE) = 0 for l ≥ 1 and m = 1, 2, . . . , 2l + 1. Again, from (3.21) and (3.22), we

evaluate the coefficients of the pressure’s field on ρ = ρE from (2.6), those being pm
∞,l(ρE)

for l ≥ 0 (up to l = 10) and m = 1, 2, . . . , 2l + 1, setting p1
∞,0(ρE) = 15 × 10−4 kg/ms2, conver-

gence being attained at l = lmax ≡ M = 4 for the pressure’s field and at l = lmax ≡ M = 2 for the
nutrient’s and inhibitor’s field. In Table 2, we present the corresponding pressure’s coefficients
pm

∞,l(ρE) up to the maximum value of l = 4 (m = 1, 2, . . . , 2l + 1).
Plotting the nutrient and the pressure from series expansions (3.12) and (3.14) up to l = lmax ≡

M = 4 and l = lmax ≡ M = 2, respectively (m = 1, 2, . . . , 2l + 1), we take the two tumour’s inter-
sections, i.e. with the x1x2-plane (see Figures 4(a) and 5(a)) and the x1x3-plane (see Figures 4(b)
and 5(b)).

Comparing the behaviour of the nutrient concentration depicted in Figure 4 and the pressure
field as shown in Figure 5 with the corresponding situation described earlier for a constant pres-
sure imposition, we observe that for the present case of a constant nutrient supply on the exterior
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FIGURE 4. Nutrient concentration at a constant nutrient supply σ 1
∞,0(ρE) = 2.5 × 10−4 kg/m3 for

different intersections with the (a) x1x2-plane and (b) x1x3-plane.

FIGURE 5. Pressure distribution at a constant nutrient supply σ 1
∞,0(ρE) = 2.5 × 10−4 kg/m3 for

different intersections with the (a) x1x2-plane and (b) x1x3-plane.

tumour’s compartment the relative distribution occurs in a quite different way. In fact, the nutri-
ent concentration field is positive and increasing in the outward direction, while the pressure field
is also an increasing function, which is larger on the tips of the x1-axis, where the mean curvature
is higher.

As a short comment to these findings, we note that the observed distributions are due to cor-
responding imposed nutrient and pressure field data. For example, in the first set of numerical
experiments, we see that the imposed nutrient supply exhibits higher concentration in regions
with less curvature and vice versa. The continuity of the normal flow of nutrient produces the
rather surprising concentration profile especially along the x1-axis. For example, regions of very
low nutrient concentration occur in living layers along the x1-axis, or regions of high nutrient
along x3-axis, easily explained as reflections of the corresponding profile of the nutrient field
supplied externally. Nevertheless, biologically speaking, this is not so easily explained in accor-
dance to the model assumptions since, the low concentration values in regions along x1-axis do
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FIGURE 6. Inhibitor concentration either at a constant pressure application p1
∞,0(ρE) = 15 × 10−4 kg/ms2

or with a constant nutrient supply σ 1
∞,0 (ρE)= 2.5 × 10−4 kg/m3 for different intersections with the (a)

x1x2-plane and (b) x1x3-plane.

not support cell survival, yet referring to living layers while, along x3-axis, one could observe
regions with nutrient values high enough to sustain cell life even if included in the necrotic core.

Having no available biological reference to support such findings in our knowledge, we
suggest two scenarios to explain them, in biological terms. The first one suggests that we
are confronted with a model artefact which indicates that the imposed data do not produce a
physically acceptable solution. In this case, the fragility of the existence of the model’s solution
according to the model parameters is pointed out as well as the need for further investigation
on the conditions that secure a physically concise solution to the model under consideration. A
second scenario suggests that the model’s layered structure should be considered as a geomet-
rical configuration, corresponding to a more blurred material one, where the material layers are
separated with layer boundaries rather than by strict boundary surfaces. In the transition zones,
cells can be in either state, with respect to the nutrient or the inhibitor.

Referring to the pressure field’s outwardly increasing profile, a supporting biological argument
would suggest that, under the certain parameter values used for the numerical experiments pre-
sented (FN = 20kg/m3s2, FQ = 30kg/m3s2 and FP = 40kg/m3s2), the net cell gain ratio in each
region together with the externally supplied pressure values provides pressure gradient directed
towards the more active proliferating cells and the corresponding more populated layer.

Independently of the imposed exterior conditions of either constant pressure application
or constant nutrient supply, the inhibitor concentration (3.13) remains unaffected for both
cases, as it is readily expected. Hence, since this field is finite, needing only l = 0, 1, 2 and
m = 1, 2, . . . , 2l + 1, accuracy is then achieved immediately and the numerical plotting of β
is depicted in Figure 6.

The inhibitor concentration field (3.13) admits a uniform behaviour shown in Figure 6, where
obviously this field, on the contrary to the nutrient, decreases as we move outwards to the
tumour’s structure.

Our final task is to numerically solve the evolution equation in order to predict the evolution
of the tumour’s exterior boundary ρP = ρP (t), which comprises relationship (3.19). In order to
accomplish that, we have to take into consideration that the boundaries ρN , ρQ, ρP and ρE are
now time-dependent, a fact that did not enter the previous calculations, since the corresponding
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FIGURE 7. Time dependence of ρN , ρQ, ρP and ρE for different values of the proportionality
constants (a)

(
μσ ,μβ ,μP

)= (
6.77 m5/kgs, 8.04 m5/kgs, 13.3 m3s/kg

)× 10−7 and (b)
(
μσ ,μβ ,μP

)=(
2.25 m5/kgs, 2.77 m5/kgs, 4.54 m3s/kg

)× 10−6.

boundary value problems described static processes. But they are also dependent among
each other via (3.15)–(3.17). Hence, now, we work as follows. We assume the known values
of σ ∗

N = 1.25 × 10−4 kg/m3, σ ∗
Q = 1.4 × 10−4 kg/m3 and β∗ = 1.6 × 10−4 kg/m3, while we

solve numerically the nonlinear system of (3.15)–(3.17) for σ 1
∞,0 (ρE)= 2.5 × 10−4 kg/m3,

in order to define ρN , ρQ and ρE as a function of ρP. Then, we substitute these into the
evolution equation (3.19), where one has to solve a nonlinear ordinary differential equation
with respect to ρP = ρP (t) with an initial condition ρP (0)= 0.97 × 10−2 m. The curves
for the set (μσ ,μβ ,μP) = (

6.77 m5/kgs, 8.04 m5/kgs, 13.3 m3s/kg
)× 10−7, used in all the

previous calculations, are drawn in Figure 7(a). In order to further validate our modelling
method, we proceeded to the implementation of all fields for slightly different (equilib-
rium state) boundaries ρN = 0.918 × 10−2 m, ρQ = 1.053 × 10−2 m, ρP = 1.053 × 10−2 m
and ρE = 1.159 × 10−2 m, as well for a different set of the aforementioned constants
(μσ ,μβ ,μP) = (

2.25 m5/kgs, 2.77 m5/kgs, 4.54 m3s/kg
)× 10−6, keeping all the other parame-

ters the same. For reasons of clarity, we omit the presentation of the nutrient’s and the inhibitor’s
concentrations, as well as the pressure field, since they behave similarly to those as demonstrated
in Figures 2–6. However, we provide within Figure 7(b) the time-evolution of the corresponding
tumour’s boundaries.

The results demonstrate the evolution of the tumour’s boundaries with respect to time and
show excellent accordance with theory, since as the time increases, the boundaries ρN , ρQ, ρP and
ρE reach limiting constant values, which coincide with those of the equilibrium stage, validating
our approach.

6 Conclusions

In the present work, we presented a continuous non-symmetrical model of avascular tumour
growth that evolves maintaining an ellipsoidal multilayer structure, lying inside a finite confocal
ellipsoidal host layer and enjoying piecewise constant physical parameters, as tissue densities,
diffusion constants, chemical consumption or production rates, cell motility parameters, cell
proliferation or cell loss rate. This model belongs to a series of analytical works [9, 18, 22–24]
on studying analytically the effect of geometric symmetry on modelling avascular growth,
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adopting the above simplifications in order to make the geometric effect clearer. Dropping such
simplifications in favour of more realistic modelling is part of our future investigation.

These studies share the following features. First, inhomogeneous nutrient and pressure data,
imposed by the tumour’s microenvironment, are taken under consideration. Moreover, the
degrees of freedom implied by non-symmetric geometries allow for improving the geometri-
cal modelling by better fitting to a solid tumour. Especially, the ellipsoidal geometry offers the
best fitting by allowing an appropriate adjustment of the two eccentricities of the ellipsoid and
of its orientation to the tumour structure at hand. These two features, assigned to the ellipsoidal
model presented in this work, make it the most general analytic model in studying the avascular
tumours under a certain class of assumptions. Second, a homogeneous layer of healthy tissue,
affected by the cancerous growth and lying in its immediate vicinity, is considered to follow the
growth, being stiffer and denser than the rest of the host environment. Consequently, this healthy
compartment is incorporated in the tumour’s structure, its growth is also studied and moreover
the model does not fail to consider it as a fluid of different phase than both the cancer tumour and
the host surrounding medium. Finally, the cell movement is considered both as passively driven
from the pressure gradients and as an active chemotactic response to the chemicals present to the
cell’s microenvironment, namely the nutrient and the inhibitor.

These features are all reflected in the results obtained for the nutrient field, the internally pro-
duced inhibitor field and the pressure field throughout the ellipsoidal tumour, as well as in the host
layer in terms of ellipsoidal expansions. Connection formulae between all the tumour’s interfaces
are provided by means of the model’s critical concentration values. The model predicts the evo-
lution of the tumour’s compartments in terms of a nonlinear ordinary differential equation with
respect to the tumour’s exterior boundary. The evolution equation is studied numerically and the
corresponding numerical results are also included, for two special cases that the imposed pressure
field and/or the nutrient field attribute ellipsoidal characteristics. It turns out that the deviation
from the spherical symmetry and from the surrounding medium’s homogeneity, as depicted in
the aforementioned previous works and confirmed in this context, exhibits the following three
characteristics.

First, the geometrical interfaces that distinguish the different tumour compartments cannot be
defined by constant concentration values of the nutrient and of the inhibitor, as dictated by the
physical model. Therefore, they have to be considered as ideal surfaces that do not coincide with
the material interfaces, which are defined as the locus of the points that attribute the constant
critical concentration values.

In the sequel, a special condition should hold between the nutrient data and the pressure data
imposed by the tumour’s surrounding medium, in order for the non-symmetrical growth to be
realisable in a configuration that may depart significantly from being spherical. This feature
is also present in more symmetrical models describing spheroidal or spherical tumour growth.
In particular, the less symmetrical is the geometrical model, the more intricate this condition
becomes. Nevertheless, this condition is not present when small perturbations from the spherical
structure is considered, restricting asymmetrical growth to a slight deviation from the radial
development, as shown in several works by stability analysis – see e.g. [6] and [28].

The third characteristic is that the non-symmetrical models offer the rather realistic feature
that the tumour colony springs out from a group of cells, occupying a dimensional region, rather
than a single cell, as demanded in the case of the spherically symmetric modelling. From the
geometrical point of view, this is due to the fact that the ellipsoidal system springs out from the
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2D focal ellipse, as well as the oblate spheroidal system, that springs out from the focal circle,
modelling a mutated cell membrane that can start the building of a cancerous colony. Similarly,
the prolate spheroidal model inherits the model a cell fibre initiating the tumour, by means of
the focal segment of the system, while a spherical tumour can only be arisen from a single cell
located at the centre of the colony. From a biological point of view, such characteristic may reflect
both the hypothesis of polyclonic origin of some preneoplastic lesions, which involve several
mutations in many cells before a cancer tumour occurs [34], and the spread of the mutated clone
of a single cell as it evolves and establishes itself in the host tissue, appealing to the hypothesis of
monoclonic origin of tumours [14]. In any case, using a manifold in R

n with n ≥ 1, for modelling
the spatial origin of tumour development, rather than a non-dimensional central point offers,
to our opinion, a modelling advantage for incorporating the hypothesis of either a monoclonic,
polyclonic or patch spread scenario for the origin of the tumour colony.
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Appendix A

In the interest of making this work complete and independent, we provide here some basic
steps concerning specific analytical manipulations to obtain the particular solutions, given by
expression (3.5) with (3.6) and the main implicated fields, provided via the compact series forms
(3.12)–(3.14) with (3.7)–(3.11).

A1 Poisson’s equation particular solution

Each Poisson’s partial differential equation (2.8), (2.9) and (2.16), has a constant non-
homogeneous term, whereas since the Laplace’s operator possesses partial derivatives up to the
second order, the general form of the most simple particular solution that should be used is a
quadratic-form polynomial up to order two in terms of the three Cartesian coordinates x1, x2 and
x3, i.e.

fpart, j (r)= a11x2
1 + a22x2

2 + a33x2
3 + 2a12x1x2 + 2a13x1x3 + 2a23x2x3 + b1x1 + b2x2 + b3x3,

(A1)

where a11, a22, a33, a12, a13, a23, b1, b2 and b3 are arbitrary constants to be calculated accord-
ingly. The ellipsoidal representation of the Cartesian variables within (A1) is the key in finding
the appropriate particular solution. In details, the Lamé functions of degree two [8] are given by

E1
2(x) = x2 +�− a2

1, (A2)

E2
2(x) = x2 +�′ − a2

1, (A3)

E3
2(x) = x

√∣∣x2 − h2
3

∣∣, (A4)

E4
2(x) = x

√∣∣x2 − h2
2

∣∣ (A5)
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and

E5
2(x) =

√∣∣x2 − h2
3

∣∣√∣∣x2 − h2
2

∣∣, (A6)

where � and �′ are the roots of the equation

3∑
i=1

1

�− α2
i

= 0, (A7)

from which we obtain

(x −�)
(
x −�′)= x2 − 2

(
α2

1 + α2
2 + α2

3

)
3

x + α2
1α

2
2 + α2

2α
2
3 + α2

3α
2
1

3
= 0. (A8)

Bearing in mind (A2) and (A3), the corresponding surface ellipsoidal harmonics read as

S1
2(μ, ν) := E1

2(μ) E1
2(ν) =μ2ν2 + (

�− α2
1

) (
μ2 + ν2

)+ (
�− α2

1

)2
(A9)

and

S2
2(μ, ν) := E2

2(μ) E2
2(ν) =μ2ν2 + (

�′ − α2
1

) (
μ2 + ν2

)+ (
�′ − α2

1

)2
, (A10)

which leads to the expression

μ2ν2 = (
�− α2

1

) (
�′ − α2

1

) [
1 − S1

2(μ, ν)(
�−�′) (�− α2

1

) + S2
2(μ, ν)(

�−�′) (�′ − α2
1

)
]

. (A11)

But, from (A8), via the substitution x = α2
1, it follows that

(
α2

1 −�
) (
α2

1 −�′)= 1

3

(
α2

1 − α2
3

) (
α2

1 − α2
2

)= 1

3
h2

2h2
3, (A12)

hence, taking into account that S1
0(μ, ν) = 1, relation (A11) is written as

μ2ν2 = 1

3
h2

2h2
3

[
S1

0(μ, ν) − S1
2(μ, ν)(

�−�′) (�− α2
1

) + S2
2(μ, ν)(

�−�′) (�′ − α2
1

)
]

, (A13)

which, by substitution in (2.2), gives

x2
1 = ρ2

3

[
S1

0(μ, ν) − S1
2(μ, ν)(

�−�′) (�− α2
1

) + S2
2(μ, ν)(

�−�′) (�′ − α2
1

)
]

. (A14)

Similarly, it can be shown that

x2
2 = ρ2 − h2

3

3

[
S1

0(μ, ν) − S1
2(μ, ν)(

�−�′) (�− α2
2

) + S2
2(μ, ν)(

�−�′) (�′ − α2
2

)
]

(A15)

and

x2
3 = ρ2 − h2

2

3

[
S1

0(μ, ν) − S1
2(μ, ν)(

�−�′) (�− α2
3

) + S2
2(μ, ν)(

�−�′) (�′ − α2
3

)
]

. (A16)
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Next, from (A4)–(A6) with respect to (2.2)–(2.4) and straightforward calculations, it is valid that

x1x2 =
ρ

√∣∣ρ2 − h2
3

∣∣
h1h2h2

3

S3
2(μ, ν), (A17)

x1x3 =
ρ

√∣∣ρ2 − h2
2

∣∣
h1h2

2h3
S4

2(μ, ν) (A18)

and

x2x3 =
√∣∣ρ2 − h2

3

∣∣√∣∣ρ2 − h2
2

∣∣
h2

1h2h3
S5

2(μ, ν). (A19)

On the other hand, using the Lamé functions of the first degree [8]

E1
1(x) = x, (A20)

E2
1(x) =

√∣∣x2 − h2
3

∣∣ (A21)

and

E3
1(x) =

√∣∣x2 − h2
2

∣∣, (A22)

then, from (2.2)–(2.4), we readily obtain

x1 = ρ

h2h3
S1

1(μ, ν), (A23)

x2 =
√∣∣ρ2 − h2

3

∣∣
h1h3

S2
1(μ, ν) (A24)

and

x3 =
√∣∣ρ2 − h2

2

∣∣
h1h2

S3
1(μ, ν). (A25)

Consequently, with respect to (A14)–(A16), (A17)–(A19) and (A23)–(A25), the Cartesian rep-
resentation (A1) admits an equivalent ellipsoidal form. However, all the terms are not needed,
since if we demand (A1) to satisfy each similar Poisson’s equations (2.8), (2.9) and (2.16), we
implement trivial calculations, showing that a11 + a22 + a33 = Aj/2, in terms of Aj ≡ γj, pj, Fj,
respectively for j = N , Q, P, E, while a12, a13, a23, b1, b2 and b3 can take any value in R. Though
we search for one particular solution, we may set a22 = a33 = a12 = a13 = a23 = b1 = b2 = b3 = 0
and a11 = Aj/2, as it is obvious to look for a simple expression. Henceforth, gathering the above
information for the arbitrary constants in (A1), it becomes

fpart, j (r)= Ajρ
2

6

[
E1

0(μ) E1
0(ν) − E1

2(μ) E1
2(ν)(

�−�′) (�− α2
1

) + E2
2(μ) E2

2(ν)(
�−�′) (�− α2

1

)
]

for j = N , Q, P, E,

(A26)
which is actually the expressions (3.5) with (3.6), expressed in terms of surface ellipsoidal
harmonics.
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A2 Model’s boundary value problems

Under the aim to show the main analytical steps in order to reach the final expressions for the
nutrient concentration (3.12), the inhibitor concentration (3.13) and the pressure field (3.14),
we are initially dealt with the determination of the nutrient concentration field. It is assumed to
satisfy the boundary value problem

�σj(r) = γj for r ∈�j with j = N , Q, P, (A27)

while

�σE(r) = 0 for r ∈�E, (A28)

with boundary conditions

σQ(r) = σN (r) for r ∈ SN , (A29)

∂

∂ρ
σQ(r) − ∂

∂ρ
σN (r)= 0, for r ∈ SN , (A30)

as well as

σP(r) = σQ(r) for r ∈ SQ, (A31)

∂

∂ρ
σP(r) − ∂

∂ρ
σQ(r) = 0 for r ∈ SQ (A32)

and

σE(r) = σP(r) for r ∈ SP, (A33)

∂

∂ρ
σE(r) − ∂

∂ρ
σP(r) = 0 for r ∈ SP, (A34)

whereas on the exterior boundary SE, we have the expansion

σE = σ∞(rE) = σ∞(ρE,μ, ν) =
∞∑

l=0

2l+1∑
m=1

σm
∞,l(ρE) Sm

l (μ, ν), (A35)

as (2.5) dictates, where in view of the orthogonality relationship (3.4), it holds

σm
∞,l(ρE) = 1

γ m
l

∫∫
SρE

Sm
l (μ, ν) σ∞(ρE,μ, ν)

ds(μ, ν)√
ρ2

j −μ2
√
ρ2

j − ν2
. (A36)

The expansions of the nutrient concentration in each domain are written as

σN (r) = fpart,N (ρ,μ, ν) +
∞∑

l=0

2l+1∑
m=1

a(i)mσ ,l Em
l (ρ) Sm

l (μ, ν) for r ∈�N , (A37)

σQ(r) = fpart,Q(ρ,μ, ν) +
∞∑

l=0

2l+1∑
m=1

[
b(i)mσ ,l + b(e)mσ ,l (2n + 1) Im

l (ρ)
]

Em
l (ρ) Sm

l (μ, ν) for r ∈�Q,

(A38)
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σP(r) = fpart,P(ρ,μ, ν) +
∞∑

l=0

2l+1∑
m=1

[
c(i)mσ ,l + c(e)mσ ,l (2n + 1) Im

l (ρ)
]

Em
l (ρ) Sm

l (μ, ν) for r ∈�P

(A39)
and

σE(r) =
∞∑

l=0

2l+1∑
m=1

[
d(i)mσ ,l + d(e)mσ ,l (2n + 1) Im

l (ρ)
]

Em
l (ρ) Sm

l (μ, ν) for r ∈�E, (A40)

where fpart, j(ρ,μ, ν) is given by (3.5), substituting Aj = γj for j = N , Q, P. Applying boundary
conditions (A29)–(A35) into expansions (A37)–(A40) with (A36) and using the orthogonality
relation (3.4) and the notation (3.6), we obtain, respectively, for l ≥ 0 and m = 1, 2, ..., 2l + 1

Em
l (ρN )

(
a(i)mσ ,l − b(i)mσ ,l

)
− Fm

l (ρN ) b(e)mσ ,l = (
γQ − γN

)
ρ2

N dm
l , (A41)

Em′
l (ρN )

(
a(i)mσ ,l − b(i)mσ ,l

)
− Fm′

l (ρN ) b(e)mσ ,l = 2(γQ − γN ) ρN dm
l , (A42)

Em
l (ρQ)

(
b(i)mσ ,l − c(i)mσ ,l

)
+ Fm

l (ρQ)
(

b(e)mσ ,l − c(e)mσ ,l

)
= (
γP − γQ

)
ρ2

Qdm
l , (A43)

Em′
l (ρQ)

(
b(i)mσ ,l − c(i)mσ ,l

)
+ Fm′

l (ρQ)
(

b(e)mσ ,l − c(e)mσ ,l

)
= 2(γP − γQ) ρQdm

l , (A44)

Em
l (ρP)

(
c(i)mσ ,l − d(i)mσ ,l

)
+ Fm

l (ρP)
(

c(e)mσ ,l − d(e)mσ ,l

)
= −γPρ

2
Pdm

l , (A45)

Em′
l (ρP)

(
c(i)mσ ,l − d(i)mσ ,l

)
+ Fm′

l (ρP)
(

c(e)mσ ,l − d(e)mσ ,l

)
= −2γPρPdm

l (A46)

and

Em
l (ρE) d(i)mσ ,l + Fm

l (ρE) d(e)mσ ,l = σm
∞,l(ρE). (A47)

Solving the seventh-order linear system (A41)–(A47), with respect to the seven sequences of
unknown coefficients, we arrive at the nutrient concentration field σj (ρ,μ, ν) for each domain�j

with j = N , Q, P, E, which can be rewritten into a single expression using the Heaviside function
(3.7) as

σ (r) = σN (r) + H(ρ − ρN )
(
σQ (r)− σN (r)

)
+ H(ρ − ρQ)

(
σP(r) − σQ(r)

)+ H(ρ − ρP) (σE(r) − σP(r)) , (A48)

which using the notation (3.8)–(3.11), yields the nutrient concentration field (3.12). Following
exactly the same procedure as in the nutrient concentration, we obtain the inhibitor concentration
field (3.13), which satisfies the boundary value problems (2.9), (2.11) and (2.14), where βE = 0
on SE, using the non-trivial expansions

βN (r) = fpart,N (ρ,μ, ν)+
∞∑

l=0

2l+1∑
m=1

a(i)mβ,l Em
l (ρ)Sm

l (μ, ν) for r ∈�N , (A49)

βQ(r) = fpart,Q (ρ,μ, ν)+
∞∑

l=0

2l+1∑
m=1

[
b(i)mβ,l + b(e)mβ,l (2n + 1)Im

l (ρ)
]

Em
l (ρ) Sm

l (μ, ν) for r ∈�Q,

(A50)
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βP(r) = fpart,P(ρ,μ, ν) +
∞∑

l=0

2l+1∑
m=1

[
c(i)mβ,l + c(e)mβ,l (2n + 1) Im

l (ρ)
]

Em
l (ρ) Sm

l (μ, ν) for r ∈�P,

(A51)
and

βE(r) =
∞∑

l=0

2l+1∑
m=1

[
d(i)mβ,l + d(e)mβ,l (2n + 1)Im

l (ρ)
]

Em
l (ρ) Sm

l (μ, ν) for r ∈�E, (A52)

where Aj = pj for j = N , Q, P and pQ = pP := pL. In a very similar way, the boundary value
problem for the pressure field (2.16)–(2.20) yields the solution (3.14), where the corresponding
expansions read as

PN (r) = fpart,N (ρ,μ, ν) +
∞∑

l=0

2l+1∑
m=1

a(i)mP,l Em
l (ρ) Sm

l (μ, ν) for r ∈�N , (A53)

PQ(r) = fpart,Q(ρ,μ, ν) +
∞∑

l=0

2l+1∑
m=1

[
b(i)mP,l + b(e)mP,l (2n + 1) Im

l (ρ)
]

Em
l (ρ) Sm

l (μ, ν) for r ∈�Q,

(A54)

PP(r) = fpart,P (ρ,μ, ν)+
∞∑

l=0

2l+1∑
m=1

[
c(i)mP,l + c(e)mP,l (2n + 1) Im

l (ρ)
]

Em
l (ρ) Sm

l (μ, ν) for r ∈�P,

(A55)
and

PE(r) =
∞∑

l=0

2l+1∑
m=1

[
d(i)mP,l + d(e)mP,l (2n + 1) Im

l (ρ)
]

Em
l (ρ) Sm

l (μ, ν) for r ∈�E, (A56)

where Aj = Fj for j = N , Q, P, while the exterior pressure distribution P∞(rE) on SE is expanded
as

P∞(rE) =
∞∑

l=0

2l+1∑
m=1

pm
∞,l(ρE) Sm

l (μ, ν),

where pm
∞,l(ρE) = 1

γ m
l

∫∫
SρE

Sm
l (μ, ν) P∞(ρE,μ, ν) ds(μ, ν)√

ρ2
j −μ2

√
ρ2

j − ν2
. (A57)

Obviously, the procedure for the calculation of the unknown constant coefficients within the
inhibitor concentration (A49)–(A52) and the pressure field (A53)–(A56) leads to similar lin-
ear algebraic systems such as (A41)–(A47), the aforementioned fields are written in a concrete
formalism similar to (A48) for the nutrient concentration field.
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