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It has been observed experimentally that when a free shear layer is perturbed by
a disturbance consisting of two waves with frequencies ω0 and ω1, components
with the combination frequencies (mω0 ± nω1) (m and n being integers) develop
to a significant level thereby causing flow randomization. This spectral broadening
process is investigated theoretically for the case where the frequency difference
(ω0 − ω1) is small, so that the perturbation can be treated as a modulated
wavetrain. A nonlinear evolution system governing the spectral dynamics is derived
by using the non-equilibrium nonlinear critical layer approach. The formulation
provides an appropriate mathematical description of the physical concepts of sideband
instability and amplitude–phase modulation, which were suggested by experimentalists.
Numerical solutions of the nonlinear evolution system indicate that the present theory
captures measurements and observations rather well.
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1. Introduction
Free shear layers such as mixing layers and wakes exist in many engineering

applications as well as in natural environmental flows. The instability of these flows
has been studied extensively for many decades as a classical prototype problem for
understanding shear-induced transition to turbulence. As well as being of fundamental
importance, the instability and the resulting transition are of great practical relevance;
they are, for instance, closely related to chemical reactions in combustion chambers
and mass/momentum exchange in atmospheric and oceanographic flows.

The velocity profile of a free shear layer possesses an inflectional point, and
hence supports essentially inviscid Rayleigh instability waves. The initial stage is
predominantly two-dimensional, and the stability characteristics (e.g. growth rate,
phase speed and modal shape) are well predicted by the linear stability theory
based on the Rayleigh or Orr–Sommerfeld equation (Sato 1956, 1959; Sato & Kuriki
1961; Michalke 1965; Freymuth 1966; Mattingly & Criminale 1972). As a dominant
instability wave propagates and amplifies downstream, it rolls up due to nonlinear
effects, and forms concentrated spanwise vortices or ‘rollers’, which represent the most
prominent feature of transition (Ho & Huerre 1984). Such roller structures persist even
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when the free shear layer has become fully turbulent (Brown & Roshko 1974; Liu
1989).

As is common with open-flow systems, a free shear layer acts as a noise amplifier,
which means that its transition to turbulence is greatly affected by external or initial
forcing imposed on the flow (Huerre & Monkewitz 1990). By externally exciting
disturbances at suitable discrete frequencies in a controlled manner, one may make a
detailed study of the ensuing transition process. In many experiments, the disturbance
introduced consists of a single frequency ω0 and the concomitant subharmonic
component ω0/2; the latter is often introduced in mixing layers in order to study
vortex pairing (Winant & Browand 1974; Ho & Huerre 1984).

Sato & Kuriki (1961) were probably the first to consider the nonlinear interaction
in a planar wake of two spectral components satisfying no harmonic relation. In
addition to the dominant naturally occurring mode with a frequency ω1, another
mode of a different frequency, ω0 < ω1, was introduced by acoustic excitation. They
found that when the magnitude of the latter is sufficiently large, the mode ω1 is
inhibited. The transition initiated by such two spectral components was investigated
experimentally by Sato (1970) and Miksad (1973) for a planar wake and a mixing
layer respectively. The measurement of spectral evolution indicated that the mode
with a larger amplitude suppresses the one with a smaller amplitude, confirming
the ‘suppressing effect’ found earlier by Sato & Kuriki (1961). Harmonics of each
component are generated downstream due to nonlinear self-interactions. The most
significant finding is that the mutual interaction generates a component with the
difference frequency ων ≡ (ω0 − ω1); this difference mode has an exceptionally large
magnitude, and interacts, in turn, with the harmonics to excite components with
combination frequencies (mω0 ± nω1), or (mω0 + nων) (m, n = 1, 2, . . .). Distinct
peaks appear at these frequencies leading to gradual filling in of the spectrum and
eventually to flow randomization (Motohashi 1979). The time series reveal that in the
early nonlinear stage the disturbance is in the form of a wavetrain whose amplitude
and phase are modulated on the (relatively long) time scale ω−1

ν . The fluctuation
becomes increasingly irregular further downstream. Further study by Miksad et al.
(1982) showed that the spectral broadening and the associated energy cascade can be
attributed to amplitude and phase modulations. In all these experiments, the frequency
difference (ω0 − ω1) is fairly small, prompting the authors to interpret their findings
qualitatively in terms of sideband interaction/instability. A similar mechanism appears
to operate in both natural transition and controlled transition initiated by harmonic
excitation (Sato & Saito 1975; Miksad, Jones & Powers 1983) because sideband
components are always present near to the most amplified mode or to the seeded mode.
Measurements of the so-called quadratic transfer function by Ritz et al. (1988) suggest
that the filling in of the spectrum is mainly caused by three-wave interactions of the
sideband type. This gradual, and primarily two-dimensional, randomization process
through ‘frequency mixing’ was once regarded as being different from the abrupt burst
of three-dimensional fluctuations characterizing boundary-layer transition (Sato 1970),
but Kachanov, Kozlov & Levchenko (1979) observed later that a fairly similar spectral
broadening process took place in a Blasius boundary layer, where transition is induced
by the viscous Tollmien–Schlichting instability.

The concepts of amplitude–phase modulations and sideband interactions, suggested
by experimentalists (Sato & Saito 1975; Miksad et al. 1982), are in fact interlinked.
They appear to describe, and to some extent explain, key features of transition in
free shear layers. There have been a few attempts to put these physical arguments
on a mathematical footing. Miksad (1973) tried to model the interaction of two
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modes using the classical weakly nonlinear theory, and accordingly proposed two
coupled amplitude equations of Landau type. However, the binary interaction cannot
represent sideband interactions, which necessarily involve three modes because the
interaction between two modes generates the third component. Kim, Khadra &
Powers (1980) established an explicit mathematical relation between the amplitudes
of sideband components and the temporal amplitude–phase modulations of a carrier
wave. Using model amplitude equations for the coupling among sideband components
via the low-frequency difference mode of a fixed amplitude, they also discussed
the relation between the amplitude–phase modulations and the coefficients in the
amplitude equations. The relevance of the model and results to the experimental
observations mentioned above is rather indirect. This is because the amplitude
equations were proposed on the basis of the classical weakly nonlinear theory, which
was formulated for finite Reynolds numbers; it is now realized that this theory is not
applicable to unbounded shear flows (Goldstein & Leib 1988; Wu 2004). Mankbadi
(1991) investigated the evolution of multiple interacting modes using the integral
energy method (Liu 1989), but their frequencies are assumed to satisfy a harmonic
relation, and thus the interaction is not of the sideband form. Further more, to derive
the amplitude equations using the energy method one has to make a number of
approximations, and appeals to physical arguments for their justification. As will be
shown in this paper, for free shear layers the evolution system governing the amplitude
and phase modulations are much more complex than those given by Kim et al. (1980)
and Mankbadi (1991).

In order to shed light on the role of low-frequency components in transferring
energy to sideband components, Hajj (1997) considered the stability of a hypothetical
unsteady mixing layer with the streamwise velocity profile U(y, t) = (1 + εeiωmt)U(y),
where y and t stand for the transverse coordinate and the time variable respectively,
and ωm and ε are the modulation frequency and amplitude. Since the base flow
is time-periodic, the stability problem is in general governed by a parametrically
excited system. However, for the chosen profile of variable separation form, a suitable
transformation of the time variable reduces the stability equation to the standard
one for a steady flow U(y). The amplitude and phase of the instability mode are
modulated on the time scale ω−1

m , and accordingly sideband components appear in the
spectrum. While the model was able to capture qualitatively one aspect of the spectral
broadening in free shear layers, it is rather ad hoc because (a) the assumed profile is
completely artificial, and (b) in experiments low-frequency components are continually
generated by interactions of sideband components and evolving, as opposed to having
a prescribed amplitude.

In the present paper, we undertake to develop a theoretical description of the
above observations, and to put the related physical concepts of sideband instability
and amplitude–phase modulation into an appropriate mathematical form. The problem
concerned involves nonlinear interactions of multiple instability modes on a spatially
developing shear flow. A multitude of competing factors, such as nonlinearity,
viscosity and non-equilibrium, operate. In order to account for their effects in a
systematic manner, a high-Reynolds-number asymptotic approach has been developed,
leading to the nonlinear non-equilibrium critical layer theory; for reviews see Cowley
& Wu (1994) and Goldstein (1994). This approach was based on the crucial
observation that as a small-amplitude instability mode propagates downstream, its
linear growth rate diminishes due to the gradual spreading of the shear layer, and a
critical layer emerges in the vicinity of the transverse location where the mean velocity
Ū equals the phase speed of the instability mode. Dominant nonlinear interactions first
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become significant in this layer, causing the instability wave to evolve nonlinearly,
while the non-equilibrium effect associated with the slow growth of the mode
also appears at leading order. The resulting nonlinear evolution equations may take
different forms depending on the nature of the instability mode(s) under consideration
(Cowley & Wu 1994; Sparks & Wu 2008). For a two-dimensional Rayleigh instability
mode of a given frequency, the evolution is governed by an amplitude equation
coupled with an equation for the vorticity in the critical layer (Goldstein & Hultgren
1988; Goldstein & Leib 1988). An important feature is that the evolution is strongly
nonlinear, and as a result all harmonics appear simultaneously at the same order
and an initially sinusoidal disturbance rolls up as observed in experiments. The
predicted amplitude development was found to be in good quantitative agreement
with experiments (Hultgren 1992).

Since the frequencies of the two modes involved in spectral broadening differ by
a small amount, they may be viewed as within the sideband of a main carrier wave.
The disturbance may thus be represented by a wavetrain with an envelope function
that depends on a suitable slow time variable and a slow streamwise variable. The
formulation and ensuing analysis involve extending the work of Goldstein & Leib
(1988) and Goldstein & Hultgren (1988) to a wavetrain that is modulated in both
space and time.

The present work is also motivated by the relevance of wavepackets of instability
modes to sound generation in subsonic jets. Such a wavepacket radiates little sound
directly, but the spatially and temporally modulated mean-flow distortion, generated
by the self-interaction of the wavepacket, acts as a non-compact source to emit low-
frequency sound (Wu & Huerre 2009). In the simple case of two waves, the emission
is from the nonlinearly generated beating component with the difference frequency.
This was demonstrated by Sandham, Morfey & Hu (2006) and Suponitsky, Sandham
& Morfey (2010), who used the acoustic analogy and compressible DNS respectively
to obtain the acoustic far field. A first-principles theoretical description was given by
Wu & Huerre (2009) for a wavepacket of a pair of interacting helical modes, in which
case a weakly nonlinear critical layer theory is appropriate. The present work forms
a prerequisite for ultimately formulating a first-principles theory for acoustic radiation
of a wavepacket of axisymmetric or planar modes, for which the strongly nonlinear
critical layer theory is required.

The paper is organized as follows. The problem is formulated in § 2, where
appropriate scalings are specified. The disturbance in the main part of the flow
and within the critical layer are then analysed. Matching the solutions in these
two regions leads to the nonlinear evolution system. The initial and boundary
conditions are derived in § 3 by considering respectively the linear regime upstream
and the far-field asymptote of the vorticity in the critical layer. A single-frequency
disturbance undergoing roll-up represents a ‘base state’. Its linear instability to
sideband perturbations is analysed in § 4. The linearized evolution problem describing
the sideband instability and the fully nonlinear system, subject to the initial condition
mimicking the two-frequency excitation in the experiments, are solved numerically for
both a mixing layer and a planar wake. The results are presented and interpreted in § 5.
A summary and concluding remarks are given in § 6.

2. Formulation
We consider a spatially developing mean shear layer, perturbed by a small-amplitude

two-dimensional disturbance. The flow, assumed to be incompressible, is to be
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described by Cartesian coordinates (x, y), where x and y are in the streamwise and
transverse directions respectively. They are non-dimensionalized by δ∗, the thickness of
the shear layer at a typical location, which is taken to be the origin of the coordinate
system. The time t, the velocity (u, v) and the pressure p are normalized by δ∗/U0, U0

and ρU2
0 respectively, where U0 is a reference velocity and ρ is the density of the fluid.

The Reynolds number

R= U0δ
∗/ν, (2.1)

where ν is the kinematic viscosity. We assume that R� 1 in order to present a
self-consistent asymptotic description of the nonlinear development of the disturbance.

The velocity field of the shear layer can be written as
(
Ū(y; x3),R−1V̄(y; x3)

)
, where

x3 = x/R is the variable describing the slow streamwise variation of the base flow. The
perturbed flow field may be written as

(u, v)= (Ū(y; x3),R−1V̄(y; x3))+ (ũ, ṽ). (2.2)

Since the disturbance is two-dimensional, it is convenient to introduce a
streamfunction ψ such that ũ = ψy and ṽ = −ψx. Substitution into the Navier–Stokes
equations yields the perturbation equation(

∂

∂t
+ Ū

∂

∂x

)
52ψ − Ū′′

∂ψ

∂x
− 1

R
54ψ = J(ψ,52ψ), (2.3)

where J(ξ, η) is the standard Jacobian operator. We remind the reader that the terms
associated with the non-parallel-flow effect, which is negligible to the order of interest
for the present study, are dropped for brevity.

Before presenting the formulation for the nonlinear interaction and development of
two instability waves, we consider first the case of a single mode, with a frequency
ω0 say. The mode initially follows linear stability theory, amplifies exponentially and
becomes neutral at a streamwise position xn say. The shear-layer thickness at xn

is taken to be the reference length δ∗ mentioned earlier. In the vicinity of xn, the
disturbance nearly attains its maximum, and moreover a critical layer emerges, where
nonlinear interactions take place first to affect the overall development. Goldstein &
Leib (1988) showed that the disturbance enters a nonlinear stage in a region upstream
of xn, corresponding to x3− xn = O(ε1/2), where ε is a measure of the magnitude of the
disturbance. The normalized frequency deviates from the local neutral frequency, α0c,
by O(ε1/2), and thus we may write

ω0 = α0c+ ε1/2S0, (2.4)

where α0 and c denote the wavenumber and phase speed of the local neutral mode
respectively, and S0 is a measure of the scaled frequency deviation. The nonlinear
evolution may be described by a slow variable

x̄= ε1/2c−1x, (2.5)

where c is introduced for convenience. The disturbance in the main part of the shear
layer may be represented, to leading-order accuracy, as

ψ = εA†(x̄)φ(y)ei(α0x−ω0t) + c.c., (2.6)

where A†(x̄) and φ represent the scaled amplitude and eigenfunction respectively. The
critical layer is non-equilibrium, strongly nonlinear and also viscous if the generic
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scaling R= O(ε−3/2) is taken, and so we write (Goldstein & Hultgren 1988)

R−1 = ε3/2λ, (2.7)

where λ= O(1) is the Haberman (1972) parameter.
We now turn to the case of two instability waves with frequencies ω0 and ω1.

If ω1 − ω0 = O(ε1/2), then the corresponding wavenumbers, α0 and α1, differ also
by O(ε1/2), i.e. α1 − α0 = O(ε1/2). The eigenfunctions are the same to leading order,
and the two modes would enter the nonlinear stage and evolve on the scale x̄. The
streamfunction ψ in the main part of the shear layer is, to leading order, represented
by

ψ = εA†
0(x̄)φ(y)e

i(α0x−ω0t) + εA†
1(x̄)φ(y)e

i(α1x−ω1t) + c.c.

= ε
[
A†

0(x̄)e
−ε1/2S0t + A†

1(x̄)e
i(α1−α0)x−i(ω1−ω0)t−ε1/2S0t

]
eiα0(x−ct)φ(y)+ c.c. (2.8)

Upon introducing the slow time variable τ and the coordinate ζ (which moves with
the phase speed of the neutral mode),

τ = ε1/2t, ζ = x− ct, (2.9)

we may rewrite (2.8) as

ψ = εA†(x̄, τ )φ(y)eiα0ζ + c.c.+ o(ε), (2.10)

which represents a wavetrain or wavepacket with its amplitude A†(x̄, τ ) being
modulated simultaneously in time and space. This form of disturbance has, in general,
a continuous spectrum of sideband components centred at the carrier-wave frequency
ω0, and is thus more general than the two-mode perturbation (2.8) in that the latter
may be viewed as a special case with a spectrum that is a linear combination of
δ(ω − ω0) and δ(ω − ω1), where δ denotes the Dirac delta function.

The analysis leading to the final evolution system is quite similar to that of
Goldstein & Leib (1988) and Goldstein & Hultgren (1988), and so we shall only
present the main steps, omitting the details involved. The present work extends
the nonlinear critical layer analysis to higher order so that the disturbance can be
determined up to O(ε1/2) accuracy.

2.1. Outer expansion

In the main part of the shear layer, the streamfunction ψ has the expansion

ψ = εA†(x̄, τ )φ1eiαζ + ε3/2
∞∑

m=1

φ
(m)
2 eimαζ + ε2

∞∑
m=0

φ
(m)
3 eimαζ + c.c.+ · · · . (2.11)

Hereafter we write α0 as α for brevity. The eigenfunction φ1 satisfies the Rayleigh
equation and the boundary condition,

L (α)φ1 = 0, φ1→ 0 as y→±∞, (2.12)

where the Rayleigh operator

L (α)=
(
∂2

∂y2
− α2

)
− Ū′′

Ū − c
. (2.13)
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Let yc denote the critical level, i.e. Ū(yc) = c, and η̂ = y − yc. As η̂→ 0, φ1 has the
asymptote,

φ1 ∼ 1+ 1
2

(
α2 + Ū′′′c

Ū′c

)
η̂2 + 1

12
Ūiv

c

Ū′c
η̂3 + a1

[
η̂ + 1

6

(
α2 + Ū′′′c

Ū′c

)
η̂3

]
+ · · · , (2.14)

where a1 is a constant. Note that we have normalized the eigenfunction such that
φ1 = 1 at y= yc. As y→±∞,

φ1 ∼ c±∞e−α|y|. (2.15)

The constants c±∞ and a1 are determined once φ1 is obtained globally. The function
φ
(1)
2 is governed by the inhomogeneous Rayleigh equation

L (α)φ
(1)
2 =−2iαc−1 ∂A†

∂ x̄
φ1 − (iα)−1 D0A† Ū′′

(Ū − c)
2φ1,

φ
(1)
2 → 0 as y→±∞,

 (2.16)

where we have introduced the differential operator

D0 = ∂

∂τ
+ ∂

∂ x̄
. (2.17)

As y→ yc,

φ
(1)
2 ∼ b(1)2

[
1+ 1

2

(
α2 + Ū′′′c

Ū′c

)
η̂2

]
+ a(1)±2

[
η̂ + O(η̂3)

]+ iŪ′′′c

αŪ′2c
D0A†η̂ log |η̂|

+
[
−iαc−1 ∂A†

∂ x̄
+ 1

2
iŪ′′′c

αŪ′2c
χaD0A†

]
η̂2 + O(η̂3 ln η̂), (2.18)

where b(1)2 and a(1)±2 are functions of x̄ and τ , and χa = a1 + (1/2)Ūiv
c /Ū

′′′
c . The jump

(a(1)+2 − a(1)−2 ) is to be determined by analysing the critical-layer dynamics. For the
boundary-value problem (2.16) to have a solution, a solvability condition

a(1)+2 − a(1)−2 =−iα−1J2A†
τ + i(2αc−1J1 − α−1J2)A

†
x̄ (2.19)

must be satisfied, where

J1 =
∫ ∞
−∞
φ2

1 dy, J2 =
∫ ∞
−∞

Ū′′φ2
1

(Ū − c)
2 dy. (2.20)

By the standard method of order reduction, the general solution for y = O(1) can be
expressed as

φ
(1)
2 = B†φ1 + C±F0 − 2iαc−1A†

x̄F1 − (iα)−1 D0A†F2, (2.21)

where B†(x̄, τ ) is a function of x̄ and τ to be determined at the next order, and

F0 = φ1

∫ y

yc

1
φ2

1

dy, (2.22a)

F1 = φ1

∫ y

yc

1
φ2

1

dỹ
∫ ỹ

∞
φ2

1(ξ) dξ, F2 = φ1

∫ y

yc

1
φ2

1

dỹ
∫ ỹ

∞

Ū′′φ2
1

(Ū − c)
2 dξ. (2.22b)
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In order for φ(1)2 to satisfy the boundary conditions that φ(1)2 → 0 as y→±∞, we have
to set

C+ = 0, C− =−2iαc−1J1A†
x̄ − (iα)−1 J2D0A†. (2.23)

Taking the limit y→ yc in (2.21) and comparing the result with (2.18), we find that

b(1)2 = B†, a(1)±2 = C± + a1B† − 2iαc−1A†
x̄

∫ yc

∞
φ2

1 dy− (iα)−1 D0A†J0, (2.24)

where

J0 =
∫ â

∞

Ū′′φ2
1

(Ū − c)
2 dy+

∫ yc

â

[
Ū′′φ2

1

(Ū − c)
2 −

Ū′′′c

Ū′2c (y− yc)

]
dy− Ū′′′c

Ū′2c
ln |â− yc|, (2.25)

with â 6= yc an arbitrary constant.
The harmonic components φ

(m)
2 satisfy homogeneous Rayleigh equations and

boundary conditions

L (mα)φ(m)2 = 0, φ
(2)
2 → 0 as y→±∞ (m= 2, 3, . . .), (2.26)

and as η̂→ 0,

φ
(m)
2 ∼ b(m)2

{
1+ 1

2

(
m2α2 + Ū′′′c

Ū′c

)
η̂2 + · · ·

}
+ a(m)±2 η̂ + O(η̂2). (2.27)

It should be noted that despite being governed by homogeneous equations, φ(m)2
are not eigenfunctions because there is a forcing from the interaction within the
critical layer through the jumps (a(m)+2 − a(m)−2 ), rendering the boundary-value problem
inhomogeneous. An important fact of a strong nonlinear critical layer is that all
harmonics are generated simultaneously at the same order rather than successively at
higher orders as in the classical weakly nonlinear theory.

At O(ε2), the component with the fundamental frequency, φ(1)3 , satisfies the equation

L (α)φ
(1)
3 =−

2iα
c

B†
x̄φ1 − (iα)−1 D0B† Ū′′φ1

(Ū − c)
2 −

2iα
c

C±x̄ F0 − (iα)−1 D0C±
Ū′′F0

(Ū − c)
2

− 4α2c−2A†
x̄x̄F1 + 2c−1D0A†

x̄

{
F2 + Ū′′F1

(Ū − c)
2

}
− α−2D2

0 A† Ū′′F2

(Ū − c)
2

− 1
c2

A†
x̄x̄φ1 − α−2D2

0 A† Ū′′φ1

(Ū − c)
3 − α−2c−1D0A†

x̄

Ū′′φ1

(Ū − c)
2 . (2.28)

As y→ yc,

φ
(1)
3 ∼ b(1)3

{
1+ 1

2

(
α2 + Ū′′′c

Ū′c

)
η̂2 + · · ·

}
+ a(1)±3 η̂ + Ū′′′c

α2Ū′3c
D0A† ln η̂

+
{

iŪ′′′c

αŪ′2c
D0B† − Ū′′′c

α2Ū′3c

[
χaD

2
0 A† + Ū′c

c
D0A†

x̄

]}
η̂ ln η̂ + O(η̂2 ln η̂). (2.29)
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The solvability of (2.28) yields the equation for B†

a(1)+3 − a(1)−3 =−iα−1J2
∂B†

∂τ
+ i(2αc−1J1 − α−1J2)

∂B†

∂ x̄

− γ11
∂2A†

∂ x̄2
− γ12

∂2A†

∂τ∂ x̄
− γ22

∂2A†

∂τ 2
, (2.30)

where use has been made of (2.24), and we have put

γ11 = −4α2c−2(J1H1 + I1)+ 2c−1(J2H1 + J1H2 + I2 + G1)

−α−2(J2H2 + G2 + J3 + J2/c)− c−2J1, (2.31a)

γ12 = 2c−1(J2H1 + J1H2 + I2 + G1)− α−2(2J2H2 + 2G2 + 2J3 + J2/c), (2.31b)
γ22 =−α−2(J2H2 + G2 + J3), (2.31c)

with

Ij =
∫ ∞
−∞
φ1Fj dy, Gj =

∫ ∞
−∞

Ū′′φ1Fj

(Ū − c)
2 dy (j= 1, 2), (2.32)

H1 =
∫ yc

−∞
φ1F0 dy, H2 =

∫ yc

−∞

Ū′′φ1F0

(Ū − c)
2 dy, J3 =

∫ ∞
−∞

Ū′′φ2
1

(Ū − c)
3 dy. (2.33)

2.2. Inner expansion: critical layer analysis

The strongly nonlinear critical layer has a width of O(ε1/2) (Goldstein & Leib 1988),
suggesting the local transverse variable

Y = η̂/ε1/2 = (y− yc)/ε
1/2. (2.34)

The streamfunction ψ expands as

ψ = εΨ0 + ε3/2Ψ1 + ε2 ln ε1/2Ψ2L + ε2Ψ2 + ε5/2Ψ3 + · · · . (2.35)

The first three terms are the straightforward continuation of the outer solution, namely,

Ψ0 = A†eiαζ + c.c., Ψ1 =
∑

b(m)2 eimαζ + a1A†Yeiαζ + c.c.,

Ψ2L = iŪ′′′c

αŪ′2c
D0A†Y + c.c.,

 (2.36)

and it can be easily checked that they satisfy the required equations.
Substituting the expansion (2.35) with (2.36) into (2.3), and making use of (2.5),

(2.7), (2.9) and (2.34), we obtain the equation for Ψ2. That equation can be simplified
by introducing

Ω† = Ψ2,YY −
(
α2 + Ū′′′c

Ū′c

)
(A†eiαζ + c.c.). (2.37)

It follows then that

LN Ω† =− Ū′′′c

Ū′c
(D0A†eiαζ + c.c.), (2.38)
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where the nonlinear operator

LN =
(
∂

∂τ
+ ∂

∂ x̄
+ Ū′cY

∂

∂ζ

)
− (iαA†eiαζ + c.c.)

∂

∂Y
− λ ∂

2

∂Y2
. (2.39)

Matching with the outer solution for the fundamental component at O(ε3/2) gives the
jump (a(1)+2 − a(1)−2 ), which is inserted into (2.19) to obtain

α

2π

∫ ∞
−∞

∫ 2π/α

0
Ω†e−iαζ dζ dY =−iα−1J2

∂A†

∂τ
+ i(2αc−1J1 − α−1J2)

∂A†

∂ x̄
. (2.40)

Matching the harmonic components determines the jumps

a(m)+2 − a(m)−2 = α

2π

∫ ∞
−∞

∫ 2π/α

0
Ω†e−imαζ dζ dY (m= 2, 3, . . .). (2.41)

Once Ω† is known, the harmonics in the main part of the shear layer can be obtained
by solving (2.26) subject to (2.27) and (2.41).

At O(ε5/2), we obtain the equation for Ψ3

LN Ψ3,YY = 1
2

Ūiv
c Y2Ψ0,ζ + c−1

[
Ū′′′c Y − Ū′cY

∂2

∂ζ 2
− 2

(
∂

∂τ
+ ∂

∂ x̄
+ Ū′cY

∂

∂ζ

)
∂

∂ζ

]
Ψ0,x̄

−
(
∂

∂τ
+ ∂

∂ x̄
+ Ū′cY

∂

∂ζ

)
Ψ1.ζ ζ + Ū′′′c YΨ1,ζ − c−1Ū′cYΨ2,YYx̄

+ (Ψ1,ζ + c−1Ψ0,x̄)Ψ2,YYY − Ψ1,YΨ2,YYζ + Ψ0,ζΨ1,Yζ ζ − Ψ1,YΨ0,ζ ζ ζ . (2.42)

Upon introducing Ω†
3 via the substitution

Ω
†
3 = Ψ3,YY −

{[
1
2

Ūiv
c

Ū′c
+
(
α2 + Ū′′′c

Ū′c

)
a1

]
Y(A†eiαζ + c.c.)

−
∑

m

(
m2α2 + Ū′′′c

Ū′c

)
(b(m)2 eimαζ + c.c.)

−
[
−2iαc−1 ∂A†

∂ x̄
+ iŪ′′′c

αŪ′2c
χaD0A†

]
eiαζ + c.c.

}
, (2.43)

equation (2.42) simplifies to

LN Ω
†
3 =−

Ū′′′c

Ū′c
D0

[∑
b(m)2 eimαζ + c.c.

]
− iŪ′′′c

αŪ′2c
χaD

2
0 A†eiαζ + c.c.

− c−1Ū′cY
∂Ω†

∂ x̄
+
[∑

m

imαb(m)2 emiαζ

+
(

iαa1YA† + c−1 ∂A†

∂ x̄

)
eiαζ + c.c.

]
∂Ω†

∂Y

− (a1A†eiαζ + c.c.)
∂Ω†

∂ζ
+ 1

2
Ūiv

c

Ū′c
(iαA†2e2iαζ + c.c.). (2.44)
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Matching of the O(ε2) streamwise velocity of the fundamental component leads to

α

2π

∫ ∞
−∞

∫ 2π/α

0
Ω

†
3 e−iαζ dζ dY =

{
−iα−1J2

∂B†

∂τ
+ i(2αc−1J1 − α−1J2)

∂B†

∂ x̄

}
− γ11

∂2A†

∂ x̄2
− γ12

∂2A†

∂τ∂ x̄
− γ22

∂2A†

∂τ 2
. (2.45)

The system (2.44)–(2.45) determines the function B†, which is needed in order to
obtain the streamwise velocity accurate up to O(ε1/2).

3. The coupled evolution systems
Equations (2.38) and (2.40) form the system that governs the nonlinear evolution of

the disturbance. It is convenient to introduce the normalized variables

η̄ = αŪ′cY, ζ̄ = αζ, λ̄= (αŪ′c)
2
λ, Ω =Ω† (αŪ′c)

2
/Ū′′′c , Ā= α2Ū′cA

†, (3.1)

where we assume that Ū′c > 0. Then (2.38) and (2.40) become[
∂

∂τ
+ ∂

∂ x̄
+ η̄ ∂

∂ζ̄
− (iĀeiζ̄ + c.c.)

∂

∂η̄
− λ̄ ∂

2

∂η̄2

]
Ω =−(D0Āeiζ̄ + c.c.),

1
2π

∫ ∞
−∞

∫ 2π

0
Ωe−iζ̄ dζ̄ dη̄ =Λ1

∂Ā

∂τ
+Λ2

∂Ā

∂ x̄
,

 (3.2)

where we have put

Λ1 =−iJ2Ū′2c /Ū
′′′
c , Λ2 = i(2α2c−1J1 − J2)Ū

′2
c /Ū

′′′
c . (3.3)

The most significant feature of the present theory is the combined non-equilibrium
and nonlinear effects: the transverse distribution of the disturbance (e.g. the critical-
layer vorticity) is continually distorted and evolves nonlinearly over the same time
and length scales as the amplitude does. Now if we write the complex amplitude
A as A = aeip, the modulations of the real amplitude a and phase p are mutually
coupled, and both play an active role in the nonlinear evolution. This is contrast to
the classical weakly nonlinear theory and the energy method, which form the basis
of some previous models for spectral dynamics. There the transverse shape of the
disturbance is given by the eigenfunction and remains invariant during the evolution,
and the phase modulation is dynamically passive in the sense that it is completely
determined by the amplitude (Wu 2004).

3.1. Upstream condition
Let us now consider what condition could be imposed upstream as an ‘initial
condition’. As x̄→−∞, the disturbance is small so that the nonlinear term in the
first equation of (3.2) can be neglected. Solving the linearized equation, we find that

Ω ∼
{
−
∫ ∞

0
D0Ā(x̄− ξ, τ − ξ)e−(1/3)λ̄ξ3−iη̄ξ dξ

}
eiζ̄ + c.c., (3.4)

from which it follows that ∫ ∞
−∞
Ω dη̄ =−πD0Ā. (3.5)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

26
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.262


442 X. Wu and F. Tian

This result is inserted into the second equation of (3.2) to give

∂Ā

∂τ
+ cg

∂Ā

∂ x̄
= 0, (3.6)

where the group velocity

cg = 1− 2α2c−1J1

/{
iπŪ′′′c

Ū′c|Ū′c|
+ J2

}
. (3.7)

Note that since cg is a complex number, it is impossible to introduce a coordinate
moving with the group velocity. As such the modulation equation must be of first
order rather than second order, as would have been the case if the group velocity were
real.

A particular case where the disturbance has a discrete spectrum corresponds to the
initial perturbation consisting of three waves of the sideband type. Then

Ā∼
{

a+0 eκ
+ x̄−i1τ + a0eκ x̄ + a−0 eiϕ0eκ

− x̄+i1τ
}

e−iS0τ , (3.8)

where κ = iS0/cg, and κ± = i(S0 ± 1)/cg with S0 representing the scaled deviation
of the central mode frequency from the neutral frequency α0c; see (2.4). With the
carrier-wave factor taken into account, the above initial condition represents three
waves with frequencies ω0 = (α0c + ε1/2S0) and ω± = (ω0 ± ε1/21); the frequency
difference ων = ε1/21. The constants a0 and a±0 are the re-scaled initial amplitudes,
while ϕ0 characterizes the phase difference. If only two of these three waves are
excited, as in the experiments of Sato (1970) and Miksad et al. (1982), we may set
one of a±0 to zero or a small value. Substitution of (3.8) into (3.4) yields

Ω ∼
(

a+0 Π
+
0 eκ

+ x̄−i1τ + a0Π0eκ x̄ + a−0 eiϕ0Π−0 eκ
− x̄+i1τ

)
e−iS0τ+iζ̄ + c.c., (3.9)

where

Π±0 =−
[
κ± − i(S0 ±1)

] ∫ ∞
0

exp
{
−1

3
λ̄ξ 3 − i[η̄ − (S0 ±1)− iκ±]ξ

}
dξ,(3.10)

and Π0 has the same expression as above provided that 1 is set to zero.
As x̄→−∞, A and Ω are approximated respectively by (3.8) and (3.9), which

represent the appropriate upstream condition pertaining to the experiments of Sato
(1970) and Miksad et al. (1982). The objective of the present paper is to investigate
how this form of disturbance evolves nonlinearly, with the particular interest in the
generation of different spectral components and their role in flow randomization.

3.2. Fourier decomposition of the solution and boundary condition

It is convenient to write the the solution for Ā and Ω as

Ā= Ae−iS0τ , Ω =
∞∑

n=−∞
Qn(τ, x̄, η)ein(ζ̄−S0τ) with Q−n = Q∗n, (3.11)

where η = η̄ − S0. Then Qn (n= 0, 1, 2, . . .) satisfy the coupled system of equations,(
∂

∂τ
+ ∂

∂ x̄
+ inη − λ̄ ∂

2

∂η2

)
Qn + i

∂

∂η
(A∗Qn+1 − AQn−1)=−δn1(D0 − iS0)A, (3.12)∫ ∞

−∞
Q1 dη =−iS0Λ1A+Λ1

∂A

∂τ
+Λ2

∂A

∂ x̄
. (3.13)
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It follows from (3.12) that as η→±∞,

Q1→
{

i
η
− D0

η2
− iD2

0

η3

}
(D0 − iS0)A+ O(η−4), (3.14)

Q0→−|A|
2

η2
+ 2i
η3

{
AD0A∗ − A∗D0A+ iS0 |A|2

}+ O(η−4), (3.15)

Q2→− i
2η3

A(D0 − iS0)A+ O(η−4). (3.16)

Due to the slow decay of Q1, the integral in (3.13) must be interpreted as a Cauchy
principal value. The infinite domain in the η-direction is truncated to a large but finite
interval −H 6 η 6 H. Then (3.13) can be written as

−iS0Λ1A+Λ1
∂A

∂τ
+Λ2

∂A

∂ x̄
= I10 − 2

H
D0(D0 − iS0)A+ O(H−3), (3.17)

where we have defined

Ink =
∫ H

−H
ηkQn dη. (3.18)

The second-order derivative with respect to x̄ in (3.17) is inconvenient for numerical
integration. Using a similar procedure to that in Goldstein & Hultgren (1988), we
obtain a first-order system with respect to x̄ (see appendix A for the derivation):

Λ̃1
∂A

∂τ
+ Λ̃2

∂A

∂ x̄
−
(
Λ̃d,1

∂2

∂τ 2
+ Λ̃d,2

∂2

∂τ∂ x̄

)
A+ Λ̃0A

=
(

q− 2Λd

HΛ2

∂

∂τ

)
I10 + 2i

H
I11 − 4

H2Λ2
(I12 − A∗I20), (3.19)

where

Λ̃1 =
(
Λ1 − 2iS0

H

)
q− 2

[
2− iS0Λ1

H
+ 4iS0

Λ2H

]
+ 2iS0Λ1Λd

HΛ2
, (3.20)

Λ̃2 =
(
Λ2 − 2iS0

H

)
q− 2

[
2− iS0Λ1

H
+ 4iS0

Λ2H

]
, (3.21)

Λ̃d,j = 2Λd

H

[
1− 2iS0

HΛ2
+ Λj

Λ2

]
(j= 1, 2), Λ̃0 =−iS0Λ1q+ 4iS0, (3.22)

q=Λ2 − 2iS0

H
− 4
Λ2
+ 2iS0Λ1

HΛ2
. (3.23)

For the initial perturbation of the sideband form (3.8), A and Qn take the form

A=
∞∑

m=−∞
Am(x̄)e−im1τ , Qn =

∞∑
m=−∞

Q(m)
n (x̄, η)e−im1τ . (3.24)
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Substitution of (3.24) into (3.12) and (3.19) gives the equations for Q(m)
n and Am,

[
−im1+ ∂

∂ x̄
+ inη − λ̄ ∂

2

∂η2

]
Q(m)

n − i
∞∑

k=−∞
(AkQ

(m−k)
n−1,η − A∗kQ(m+k)

n+1,η)

=−δn1

[
∂

∂ x̄
− i(S0 + m1)

]
Am,

(Λ̃2 + imΛ̃d,21)
∂Am

∂ x̄
+ (Λ̃0 − imΛ̃11+ m2Λ̃d,11

2)Am

=
[

q+ 2Λd

HΛ2
(im1)

]
I(m)10 +

2i
H

I(m)11 −
4

H2Λ2

{
I(m)12 −

∞∑
k=−∞

A∗kI(m+k)
20

}
,


(3.25)

where I(m)10 , I(m)11 , I(m)12 and I(m)20 denote the Fourier series coefficients of Ink defined by
(3.18). It follows from Q−n = Q∗n that Q(m)

−n = Q(−m)∗
n , and so it is only necessary to

solve the system for n > 0.
The evolution system (2.44)–(2.45) for B† and Ω

†
3 can be re-scaled accordingly.

The solution form as well as the boundary and initial conditions are discussed in
appendix B.

4. Linear sideband instability

Amplification of sideband components due to their mutual interactions is a rather
generic instability that may occur in a great variety of wave systems. As was
demonstrated by Stuart & Diprima (1978), it can be studied most conveniently by
using the appropriate nonlinear evolution equations for the modulated wavetrain or
wavepacket (e.g. nonlinear Schrödinger equation for water waves). The monochromatic
wave serves as the base state, and is perturbed by disturbances in its spectral sideband.
The equations for the disturbances follow from linearizing the modulation equation
about the base state. Sideband interaction/instability has been suggested as a possible
mechanism responsible for the observed spectral broadening in transitional free shear
layers. We now study this instability mathematically using the evolution system
presented in the previous section.

The monochromatic wave corresponds to a single-frequency disturbance, for which
Ā= A0(x̄)e−iS0τ . The amplitude A0(x̄) and the associated vorticity Ω0 are then governed
by the limiting form of (3.2) in which ∂/∂τ is replaced by (−iS0). This is the case
studied by Goldstein & Leib (1988) and Goldstein & Hultgren (1988), who solved the
resultant system by expressing Ω0 as a Fourier series,

Ω0 =
∞∑

n=−∞
Q(0)

n (x̄, η)e
inζ̃ with ζ̃ = ζ̄ − S0τ. (4.1)

Their results show that the disturbance rolls up to form concentrated vortices, or
spanwise ‘rollers’. Now we study the linear stability of these vortices by writing

Ā= A0(x̄)e−iS0τ + δÃ(τ, x̄)e−iS0τ , Ω =Ω0 + δΩ̃ with δ� O(1). (4.2)
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Then we obtain the linearized system[
∂

∂τ
+ ∂

∂ x̄
+ η ∂

∂ζ̄
− (iA0eiζ̃ + c.c.)

∂

∂η
− λ̄ ∂

2

∂η2

]
Ω̃ −Ω0,η(iÃeiζ̃ + c.c.)

=−
(
∂

∂τ
+ ∂

∂ x̄
− iS0

)
Ãeiζ̃ + c.c.,

1
2π

∫ ∞
−∞

∫ 2π

0
Ω̃e−iζ̃ dζ̃ dη =−iS0Λ1Ã+Λ1

∂Ã

∂τ
+Λ2

∂Ã

∂ x̄
.


(4.3)

For a disturbance of the sideband type (3.8), we may write (see Stuart & Diprima
1978)

Ã= Ã+e−i1τ + Ã−ei1τ , Ω̃ = Ω̃+(ζ̃ , x̄, η)e−i1τ + Ω̃−(ζ̃ , x̄, η)ei1τ . (4.4)

Substitution of (4.4) into (4.3) yields the equations governing Ã± and Ω̃±,[
∂

∂ x̄
+ η ∂

∂ζ̃
∓ i1− (iA0eiζ̃ + c.c.)

∂

∂η
− λ̄ ∂

2

∂η2

]
Ω̃± − i(Ã±eiζ̃ − Ã∓∗e−iζ̃ )Ω0,η

=−
[
∂

∂ x̄
− i(S0 ±1)

]
Ã±eiζ̃ −

[
∂

∂ x̄
+ i(S0 ∓1)

]
Ã∓∗e−iζ̃ ,

1
2π

∫ ∞
−∞

∫ 2π

0
Ω̃±e−iζ̃ dζ̃ dη =−i(S0 ±1)Λ1Ã± +Λ2

∂Ã±

∂ x̄
.


(4.5)

It is of interest to compare the present sideband instability with the more familiar
one for an equilibrium wave. Firstly, since the basic state, the roller structure, evolves
on the same length scale as the perturbation, the instability must be formulated as an
initial-value rather than an eigenvalue problem. Secondly, due to the strongly nonlinear
nature of vorticity rollers, the evolution of the sideband perturbation is governed by a
parametrically excited system as opposed to a system with constant coefficients. Note
that the central mode acts, through A0eiζ̃ and Ω0,η, as the ‘parametric excitation’ in
the system, while the difference mode, represented by Q±0 , is continually generated by
the interaction and evolves as part of the sideband perturbation. The present theory is
therefore conceptually different from the model of Hajj (1997), where the difference
mode was specified as part of the base state and contributes the parametric excitation.

The equations for Ω̃± are the complex conjugate to each other, consistent with
Ω̃− = Ω̃+∗ for reality of Ω̃ . The function Ω̃± may further be decomposed into a
Fourier series

Ω̃± =
∞∑

n=−∞
Q±n einζ̃ , (4.6)

with the coefficients obeying the relation, Q+−n = Q−∗n , in order for Ω̃± to be real.
Inserting into the vorticity equation in (4.5), we obtain[

∓i1+ ∂

∂ x̄
+ inη − λ̄ ∂

2

∂η2

]
Q±n − (iA0Q±n−1,η − iA∗0Q±n+1,η)

= (iÃ±Q(0)
n−1,η − iÃ∓∗Q(0)

n+1,η)− δn1

[
∂

∂ x̄
− i(S0 ±1)

]
Ã± (n= 0, 1, 2, . . .). (4.7)
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It follows from (3.19) that the equations for Ã± may be approximated as

(Λ̃2 ± iΛ̃d,21)
∂Ã±

∂ x̄
+ (Λ̃0 ∓ iΛ̃11+ Λ̃d,11

2)Ã±

= [q± i1Λd/(HΛ2)] I±10 +
2i
H

I±11 −
4

H2Λ2

{
I±12 − (Ã∓∗I(0)20 + A∗0I±20)

}
. (4.8)

The boundary condition for Q±n is derived by inserting (4.2) and (4.4) with (4.6) into
(3.14)–(3.16). We find that for η� O(1),

Q±1 ∼
i
η

(
∂

∂ x̄
∓ i1− iS0

)
Ã± − 1

η2

(
∂

∂ x̄
∓ i1

)(
∂

∂ x̄
∓ i1− iS0

)
Ã±, (4.9a)

Q±0 ∼−
1
η2
(A∗0Ã± + A0Ã∓∗)

+ 2i
η3

{
Ã±
∂A∗0
∂ x̄
+ A0

(
∂

∂ x̄
∓ i1

)
Ã∓∗ − c.c.+ iS0(A

∗
0Ã± + A0Ã∓∗)

}
, (4.9b)

Q±2 ∼−
i

2η3

{
Ã±
∂A0

∂ x̄
+ A0

(
∂

∂ x̄
∓ i1

)
Ã± − 2iS0A0Ã±

}
. (4.9c)

The nonlinear evolution system governing the base state, (Ω0,A0), could be solved
beforehand, but it is more convenient to solve it simultaneously with the linearized
system (4.7)–(4.8) for the sideband perturbations.

5. Numerical results
The numerical work consists of solving (3.25) and (4.7)–(4.8). A predictor–corrector

method was employed, and is now explained with reference to the former system
since the latter may be treated as a special case. The amplitude equations for
Am are discretized using the fourth-order explicit (Adams–Bashforth) and implicit
(Adams–Moulton) schemes to construct the predictor and corrector respectively. The
integrals are evaluated using Simpson’s rule. The vorticity equations for Q(m)

n are
discretized by the Crank–Nicolson scheme. The boundary conditions are imposed
according to the far-field behaviour (3.14)–(3.16). A new feature for a modulated
wavetrain is that the equations and boundary conditions involve products of the
series with respect to e−im1τ , and these were evaluated by using the fast Fourier
transform algorithm. The system (3.25) is truncated with 0 6 n 6 N and −M 6 m 6 M,
and solved in a large but finite domain −H 6 η 6 H. The calculations were mostly
performed for M = 20, N = 8, H = 60, the ‘time’ step 1x̄ = 2 × 10−3 and the spatial
mesh size 1η = 0.1. For the mixing layer and planar wake under consideration, the
resolution proves adequate for x̄ up to ∼15; within this range, increasing M, N and
H respectively to 25, 16 and 80, or halving the ‘time’ step/mesh size, does not cause
appreciable change to the results. The accuracy, however, deteriorates when x̄> 15.

Before presenting numerical results, we list several relevant flow quantities. In
addition to the amplitude function A, another quantity of interest is Ω†

c , defined as (see
Goldstein & Leib 1988)

Ω†
c = 1

2 Ū′′′c Y2 + (Ψ2,YY + Ψ0,ζ ζ )= 1
2 Ū′′′c Y2 +Ω† + (Ū′′′c /Ū

′
c)A

†eiζ̄ + c.c. (5.1)
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It will be referred to as the ‘critical-layer vorticity’ since Ū′c+εΩ†
c represents the total

vorticity within the critical layer. For convenience, we will present the renormalized
critical-layer vorticity,

Ωc ≡Ω†
c (αŪ′c)

2
/Ū′′′c = 1

2 (η + S0)
2+Aeiζ̃ + c.c.+Ω, (5.2)

where use has been made of (3.1).
The streamwise velocity profiles of the harmonics within the critical layer

ûn ≡ ε3/2

[
a(n)2 + Ū′′′c / (αŪ′c)

3
∫ η

−∞
Qn dη

]
(n= 2, 3, . . .), (5.3)

and the mean-flow distortion

û0 ≡ ε3/2

∫ Y

−∞
Q†

0 dY = ε3/2Ū′′′c / (αŪ′c)
3
∫ η

−∞
Q0 dη. (5.4)

The streamwise velocity of the fundamental component is given by

û1 = εa1/(α
2Ū′c)A+ ε3/2

{
(α2 + Ū′′′c /Ū

′
c) (αŪ′c)

−3
(η + S0)A+ a(1)−2

}
+ ε3/2Ū′′′c / (αŪ′c)

3
{

q1 ln
[
ε1/2/(αŪ′c)

]+ lim
H→∞

[
q1 ln |H| +

∫ η

−H
Q1 dη

]}
, (5.5)

where q1 = i(D0 − iS0)A. For each n, ûn has a Fourier representation, ûn =∑
mû(m)n e−im1τ . The instantaneous velocity in the critical layer is given by

ũc(η)=
∑

n

ûneinζ̃ =
∑
m,n

û(m)n exp{i(nζ − (nS0 + m1)τ)}. (5.6)

5.1. Mixing layer
The calculations are to be performed for the profile

Ū = Ūc + tanh y with Ūc = (U1 + U2)/(U1 − U2), (5.7)

where U1 and U2 represent the velocities of the two oncoming streams. For this
profile,

Ū′c = 1, Ū′′′c =−2, φ1 = sech y, α = 1, c= Ūc, J1 = 2, J2 = 0. (5.8)

The equation (2.26) can be solved to obtain the solution for the harmonics φ(m)2 in the
main layer (Goldstein & Leib 1988),

φ
(m)
2 = J(m)(x̄, τ )e−m|y|

(
1+ 1

m
tanh |y|

)
(m= 2, 3, . . .), (5.9)

where by matching J(m) is found as

J(m) = mU′′′c

2(1− m2) (αU′c)
3

∫ ∞
−∞

Qm dη. (5.10)

Using (2.21), we can find the solution for φ(1)2 , which is equivalent to (3.19) of
Goldstein & Leib (1988).

We choose parameters pertaining to the experiments of Miksad (1972, 1973),
where U∗1 = 201 cm s−1 and U∗2 = 38 cm s−1. The amplitude ε = 0.2 and Haberman
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FIGURE 1. Development of the central mode |A0| and the sideband perturbations |Ã±| for
a+0 /a

−
0 = 0.1 and different phase lag ϕ0. (a) Solid lines, ϕ0 = π; dash-dotted lines, ϕ0 = π/2.

(b) Solid lines, ϕ0 = 0; dash-dotted lines, ϕ0 = −π/2. The dashed lines represent the
exponential growth of each component.

parameter λ̄ = 0.0154 were estimated from the fact that the maximum magnitude of
the perturbation at x∗ = 5 cm is approximately 0.06, as can be deduced from figure 18
of Miksad (1972). The frequency of the base wave is taken to be ω0 = 5(αc)/6,
i.e. ε1/2S0 = αc/6. The difference frequency ων = ε1/21 = αc/12, giving a relative
frequency difference of 10 %. This is considerably smaller than the experimental value
of 25 %, but is chosen in order to apply the theory within its expected validity range.
To study the sideband instability, we take a−0 = 1.0 but first set a+0 = 0.1, a much
smaller value in order to mimic two-frequency excitation experiments. The phase
difference ϕ0 is taken to be π, π/2, 0 and −π/2. In the following, the wave with the
frequency ω0 will be referred to as the ‘central mode’, while waves with frequencies
ω±, or more generally with ω0 ± mε1/21, will be referred to as lower-band (minus
sign) and upper-band (plus sign) components respectively. For brevity, we shall also
refer to different components simply by their frequencies.

The first set of results to be presented (in figures 1–6) is concerned with the linear
sideband instability. Figure 1 shows the development of the central mode amplitude
A0 and the sideband components Ã±. Following an initial exponential growth in the
linear stage, the base wave ω0 saturates in a mildly oscillatory manner, as was found
previously (Goldstein & Hultgren 1988). Meanwhile the sideband components start
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to interact with each other through the central mode. As a result, the upper-band
component ω+, which has a smaller amplitude, is enhanced, while the initially stronger
lower-band component ω− is suppressed. We would like to point out that effects of
‘enhancement’/‘suppression’ are distinguished according to whether the mode acquires
at sufficiently large distances downstream an amplitude greater/smaller than could
be reached via its linear growth. Consistent with experimental observations, the
development of the sideband components is found to depend on the phase difference
ϕ0. Transient decay may occur for certain values of ϕ0. For example, when ϕ0 = 0,
Ã+ drops abruptly (figure 1b). However, in all cases the transient decay is more than
compensated by the subsequent rapid growth. At large distances, the two sideband
modes are ‘synchronized’, amplifying at the same rate, which is greater than κ+ but
less than κ−. However, despite being promoted by the the interaction Ã+ does not
catch up with Ã−, which remains the dominant mode.

As the central mode ω0 evolves in a strongly nonlinear manner, the harmonics mω0

appear simultaneously at the same order in its vorticity field Ω0. Since the latter
acts as the base state, the sideband perturbation consists of Fourier components with
frequencies mω0 ± ων , where m is an integer. Figure 2 shows contours of Ω0,c, the
critical-layer vorticity of the central mode, at two typical locations x̄ = −2 and 5.
The vorticity field features a fairly regular pattern that is characteristic of a viscous
dominant critical layer. Also shown in the figure are streamwise velocity profiles of the
sideband components mω0 ± ων (m= 0, 2, 3), which are defined as

u±m =
[

a(n)2 + Ū′′′c / (αŪ′c)
3
∫ η

−∞
Q±m dη

]
(m= 2, 3),

u0 = Ū′′′c / (αŪ′c)
3
∫ η

−∞
Q+0 dη.

 (5.11)

Clearly, the low-frequency component ων and the lower-band component 2ω0 − ων of
the first harmonic acquire much larger amplitudes than others. At x̄= 5, the magnitude
of 2ω0 − ων is about three times that of 2ω0 + ων .

The initial amplitude ratio a+0 /a
−
0 has a significant effect on the evolution of the

sideband perturbations, as shown in figure 3. As a+0 /a
−
0 is increased, ω+ is less

enhanced. For a+0 /a
−
0 = O(1), ω+ is actually suppressed for a considerable distance,

over which its amplitude is smaller than would be gained through its linear growth
(figure 3a). The ω− mode is also inhibited, but over a less extended distance
(figure 3b). When a+0 /a

−
0 is appreciably larger than unity (e.g. a+0 /a

−
0 = 3), mode

ω+ remains suppressed, while mode ω− might briefly amplify faster than its linear
growth. In all cases, Ã− overtakes Ã+, although this is shown in figure 3(c) only for
a+0 /a

−
0 = 0.6 and 3.

In experiments often only two modes are excited, and this corresponds to either
a+ = 0 or a− = 0. The development of the sideband perturbations in these two
special cases is shown in figure 4. The comparison with the corresponding results
for a+/a− = 0.1 and a−/a+ = 0.1 indicates that these are regular limiting cases,
approached as a+/a−→ 0 and a−/a+→ 0 respectively. When a+ = 0 (a− = 0), the
third component Ã+ (Ã−) is generated by the nonlinear interaction, reaffirming the
triadic nature of the sideband interaction. Once Ã+ (Ã−) acquires a large enough
magnitude, the evolution becomes quite similar to that in three-mode excitation.

Several important and general features of the sideband interaction may be noted.
The evolution of sideband perturbations is highly non-equilibrium in the sense that
their instantaneous amplification varies considerably and exhibits rather complex
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FIGURE 2. Contours of critical-layer vorticity Ω0,c of the central mode and the streamwise
velocity profiles u±m (see (5.11)) of sideband components (mω0 ± ων) at (a) x = −2 and (b) 5.
Solid lines, difference-frequency component |u0|; dashed lines, |u±2 |; dash-dotted lines, |u±3 |.

behaviours. The sideband interaction tends to suppress the sideband mode with a
larger amplitude while moderately enhancing the other mode, unlike the conventional
sideband interaction where both sideband modes are destabilized and amplify at a
constant rate. Since the suppression is exerted by the central mode, which always
has the largest amplitude, the present result must be interpreted as the component
with a larger amplitude (i.e. the central mode) inhibiting the component with a
smaller amplitude (i.e. stronger one of the two sideband modes), consistent with
the experimental finding. For any a+0 /a

−
0 , it is the lower-band component ω− that

is dominant over the upper-band component ω+; this is so even when the latter
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FIGURE 3. Development of the sideband perturbation for different initial amplitude ratios
a+0 /a

−
0 = 0.3, 0.6, 1 and 3. The phase difference ϕ0 = π. The dashed lines in (a) and (b)

represent the exponential growth of each sideband component.

initially has a larger magnitude. The self-interaction of the central mode leads to
attenuation of itself, but its interaction with the sideband modes causes the latter to
amplify eventually at a synchronized rate. It is primarily in this sense that the present
sideband instability exists. The non-equilibrium effect is instrumental for the sideband
interaction to exhibit the suppression effect on one hand, and to act as an instability
mechanism on the other.
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FIGURE 4. Development of the sideband perturbation in the cases of two-mode excitation:
(a) a+ = 0 and (b) a− = 0. The dashed lines represent the results for a+/a− = 0.1 and
a−/a+ = 0.1 respectively.
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FIGURE 5. Development of the central mode and sideband perturbations for a small
Haberman parameter λ̄= 1.54× 10−3: solid lines, ϕ0 = π; dash-dotted lines, ϕ0 = π/2.

Calculations are also performed for a Haberman parameter that is a tenth of that
corresponding to the experimental condition of Miksad (1973). The development of the
centre mode and sideband perturbations is displayed in figure 5. Clearly, the qualitative
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FIGURE 6. Contours of the critical-layer vorticity Ω0,c of the central mode and profiles u±m
(see (5.11)) of sideband components (mω0 ± ων) for λ̄= 1.54× 10−3 at (a) x=−2 and (b) 5.
Solid lines, difference-frequency component |u0|; dashed lines, |u±2 |; dash-dotted lines, |u±3 |.

feature is the same as shown in figure 1, that is, the sideband interaction promotes
the amplification of ω0 + ων but inhibits ω0 − ων . Compared with the regular cat’s
eye structure, the vorticity field of the central mode rolls up to form a much more
complicated pattern (figure 6). The result in the figure indicates that the sideband
interaction generates a significant level of difference-frequency component ων and
lower-band component 2ω0 − ων .

The fully nonlinear system (3.25) is solved for the (scaled) initial amplitudes a0 = 1,
a−0 = 0.3 (an estimate based on the data in figure 7 of Miksad (1973)), a+0 = 0.03
and the phase difference ϕ0 = π, where a very small a+0 was specified in order to
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FIGURE 7. Development of Am, the amplitudes of components ω0 ± mων (m = 0, 1, 2, 3).
Solid line with squares, ω0 − 2ων ; solid line with diamonds, ω0 − 3ων ; dashed line with
squares, ω0 + 2ων ; dashed line with diamonds, ω0 + 3ων . The dash-dotted lines represent the
prediction of the linear sideband analysis (ϕ0 = π).

mimic the two-mode excitation by ω0 and ω0 − ων . The development of Am is shown
in figure 7. In the initial stage, the central mode ω0 evolves primarily under the
influence of its own nonlinearity, but it inhibits ω0 − ων and promotes ω0 + ων . The
latter two seeded modes follow the prediction of linear sideband instability analysis,
indicating that their back action is negligible despite that mode ω0 − ων has a finite
amplitude ∼1/3 of that of ω0 mode. The fully nonlinear stage commences from x̄ ≈ 2.
The back action comes into play, inhibiting ω0 and ω0 + ων modes and eventually
causing them to decay. The ω0 − ων mode, however, continues to grow and overtakes
the central mode by x̄ ≈ 8.5; it is little affected by the back action until x̄ ≈ 10.
The overall behaviour of ω0 and ω0 ± ων modes is quite similar to that shown
in figure 7 of Miksad (1973). The fully nonlinear interaction generates components
ω0 ± 2ων , ω0 ± 3ων , etc., leading to broadening of the spectral band centred at ω0.
While ω0 + 2ων and ω0 + 3ων initially have somewhat larger amplitudes than those of
ω0 − 2ων and ω0 − 3ων modes, it is the latter that amplify over a longer distance to
gain amplitudes comparable with that of the central mode. Within the sideband of ω0,
there seems to be a local cascade of energy towards lower-frequency components. A
similar process occurs among the components in the band centred at 2ω0 as shown in
figure 8(a). The first harmonic 2ω0 initially has a larger amplitude, but it is overtaken
by 2ω0 − ων when x̄≈ 4. The latter is surpassed by 2ω0 − 2ων at x̄≈ 13. This general
trend is in qualitative agreement with the measurements of Miksad (1973). We have
also performed the calculation for a+ = 0, but the results are not presented since
they are close to what is shown above (except that the upper-band component, being
forced by nonlinear interactions, has a very small amplitude in the earlier stage of
the evolution).

In addition to the local cascade, a non-local cascade appears to take place, namely,
interactions of components within the sideband of nω0 generate components mων in
the low-frequency band. Figure 8(b) shows the development of u(m)0 , the maximum
streamwise velocity of these components. Among these the mean-flow distortion ω = 0
is the strongest. The difference-frequency mode is also significant, consistent with the
experimental observation of Miksad (1973).

When the shear layer is excited by a disturbance consisting of two frequencies, the
vorticity field is modulated slowly on the time scale 2π/ων . For the present form of
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FIGURE 8. Development of (a) the maximum streamwise velocity û(m)2 of the first harmonic
2ω0 and the sideband components 2ω0 ± mων , and (b) the maximum streamwise velocity
û(m)0 of the mean-flow distortion (m = 0) and the low-frequency sideband components mων
(m = 1, 2, 3). (a) Solid line with squares, 2ω0 − 2ων ; solid line with diamonds, 2ω0 − 3ων ;
dashed line with squares, 2ω0 + 2ων ; dashed line with diamonds, 2ω0 + 3ων .

disturbance, the modulation is periodic in τ with a period T = 2π/1. In figure 9,
vorticity contours at the streamwise location x̄ = 15 are displayed for different instants
τ = 0, 0.25T , 0.5T and 0.75T . The vorticity is somewhat redistributed during the
modulation cycle, but the roller retains its topological feature. Figure 10 shows the
streamwise velocity profiles û(n)0 of low-frequency components nων (n = 1, 2, 3) and
the mean-flow distortion (n = 0). They have different distributions at x̄ = 10, but
farther downstream (e.g. x̄ = 15) they acquire a broadly similar shape with two peaks
above and below the critical level. The mean-flow distortion is clearly dominant, but
the non-zero frequency components reach a significant level. Profiles of sideband
components of the first harmonic 2ω0, are also displayed in figure 10. At x̄ = 10,
the lower-band component 2ω0 − ων is much stronger than the first harmonic. At
x̄ = 15, a range of lower-band components 2ω0 − mων (m = 1, 2, 3) have overtaken
2ω0. Upper-band modes 2ω0 + mων (m > 0) have amplified too but are weaker than
the first harmonic. It is interesting to note that the lower-band components 2ω0 − mων
have larger amplitudes than the upper-band components 2ω0 + mων , an indication of
local ‘back scattering’, i.e. energy cascade into lower-frequency modes.

The discrete spectrum û(ω) of the streamwise velocity at the critical level follows
from the Fourier representation (5.6). Figure 11 shows the evolution of û(ω). When
x̄ = 0, the spectrum consists of well-defined peaks at the fundamental and harmonic
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FIGURE 9. Contours of the critical-layer vorticity Ωc at x̄= 15 and τ = 0, 0.25T , 0.5T and
0.75T .

frequencies. The low-frequency components are already significant, as indicated by
the peak centred at ω = 0. As x̄ increases (e.g. x̄ = 5), the width of each peak
widens, and the ‘troughs’ between the peaks are gradually filled up due to interactions
of low-frequency components with the fundamental and harmonic components. By
x̄ = 15, only the peaks at zero and the fundamental frequencies remain discernable
while those at harmonics have almost disappeared. The corresponding time traces at
these locations are displayed in figure 12. To aid the interpretation, we extract the
real amplitude a and phase p by writing the complex amplitude function as A = aeip.
The modulation of the phase, p′, represents the frequency shift. Modulations of a, p
and p′ are displayed in figure 12(b). At x̄ = 0, the disturbance exhibits the character
of a wavepacket, with its envelope and phase modulated gradually on the time scale
of 2π/ων . The modulation becomes more abrupt and intermittent as the wavetrain
propagates downstream (e.g. at x̄ = 5). Interestingly, between the two consecutive
modulations, the amplitude and the frequency shift remain almost constant. At x̄ = 13,
oscillations occur between the abrupt adjustments, and correspondingly the time signal
appears quite ‘irregular’ or ‘chaotic’. The result indicates that spectral broadening
is indeed associated with amplitude and phase modulations as was suggested by
experimentalists.

5.2. Planar wake
For the case of a planar wake, calculations will be performed for the profile

Ū = U0 − sech2y, (5.12)

where U0 is the free-stream velocity normalized by the deficit velocity. Two types
of modes, sinuous and varicose, exist, and they may interact nonlinearly (Leib &
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FIGURE 10. Streamwise velocity profiles, û(n)0 and û(n)2 , of the components nων and 2ω0+nων
at (a) x̄ = 10 and (b) 15. Solid lines: dots, n = 0; squares, n = −1; triangles, n = −2;
diamonds, n=−3. Dashed lines: squares, n= 1; triangles, n= 2; diamonds, n= 3.
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FIGURE 11. Spectrum of the streamwise velocity at three streamwise locations: dashed line
with triangles, x̄= 0; solid line with dots, x̄= 5; solid line with diamonds, x̄= 13.
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FIGURE 12. (a) Time trace of ũc, the instantaneous streamwise velocity at the critical level,
and (b) amplitude–phase modulations at x̄= 0, 5 and 13.

Goldstein 1989; Wu 1996). We shall consider only sinuous modes, which represent the
dominant instability. For the neutral mode,

α = 2, c= U0 − 2
3
, φ = 3

2
sech2y, J1 = 3, J2 = 18

[
1√
3

ln(2+√3)+ 2
]
.

(5.13)

The two critical layers are located at y±c =±(1/2) ln(2+√3), and

U′(y+c )=−U′(y−c )= 4
√

3/9, U′′′(y+c )=−U′′′(y−c )=−16
√

3/9. (5.14)

The vorticity Q±n in the upper and lower critical layers is governed by nonlinear
evolution equations like (3.12). It may be inferred by an inspection of the equations
that Q±n is symmetric/antisymmetric if n is odd/even. By using this symmetry, it
suffices to solve the equations for Q+n only. The amplitude equation remains the same
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as (3.19) provided that the coefficients are replaced by

Λ̃1 =
(
Λ1 − 4iS0

H

)
q− 4

[
4− iS0Λ1

H
+ 16iS0

HΛ2

]
+ 4iS0Λ1Λd

HΛ2
, (5.15a)

Λ̃2 =
(
Λ2 − 4iS0

H

)
q− 4

[
4− iS0Λ1

H
+ 16iS0

Λ2H

]
, (5.15b)

Λ̃d,j = 4Λd

H

[
1− 4iS0

HΛ2
+ Λj

Λ2

]
(j= 1, 2), Λ̃0 =−iS0Λ1q+ 16iS0, (5.15c)

q=Λ2 − 4iS0

H
− 16
Λ2
+ 4iS0Λ1

HΛ2
. (5.15d)

The symmetry property of Q±n implies that the streamwise velocity of the even/odd
order harmonics would be symmetric/antisymmetric respectively, consistent with the
observation of Sato & Saito (1975).

The harmonic components in the main layer have to be found numerically. This
can be done most efficiently by introducing functions hm(y), which are defined by the
boundary-value problem consisting of the homogeneous Rayleigh equation

L (mα)hm = 0, (5.16)

and the jump and boundary conditions

hm(y
+
c )− hm(y

−
c )= 0, h′m(y

+
c )− h′m(y

−
c )= 1, (5.17)

hm(0)= 0 (for even m), h′m(0)= 0 (for odd m), hm→ 0 as y→∞; (5.18)

here we have used the fact that hm are symmetric/antisymmetric with respect to y for
odd/even m > 2 because Qm are. Now that hm are independent of x̄ and τ , they can be
computed once for all. The solution for φ(m)2 can then be written as

φ
(m)
2 (y, x̄, τ )= Jm(x̄, τ )hm(y), (5.19)

which is of variable separation form. Clearly, the shape of harmonic components
in the main layer, characterized by hm(y), remains unchanged during the evolution.
However, the distribution within the critical layer is continuously distorted because of
the combined nonlinear and non-equilibrium effects.

The solution for φ(1)2 is given by (2.21) with C+ = 0, but the constant C− must
instead be determined by the symmetric condition about y = 0, which leads to a value
half that given by (2.23). The streamwise velocity at an arbitrary position y 6= y±c is
found as

ũ= εA†φ′1eiζ̄ + ε3/2

{
φ
(1)′
2 eiζ̄ +

∑
m=2

h′m(y)Jm(x̄, τ )eimζ̄

}
+ c.c. (5.20)

For the planar-wake profile (5.12), a1 = −2/
√

3 6= 0 and so it follows from
(5.3)–(5.5) and (5.6) that ũc, the total streamwise velocity of the perturbation within
the critical layer, is dominated by the fundamental to leading order, with harmonic
contents contributing an O(ε1/2) correction. In fact, the streamwise velocity of the
leading-order fundamental attains its maximum at the critical level, in contrast to
the case of a mixing layer, for which the same quantity vanishes at yc (i.e. a1 = 0).
Therefore ũc would exhibit less temporal complexity in a planar wake than in a mixing
layer. This expectation is consistent with experimental data (shown for example in
figures 5 and 7 of Miksad et al. 1982), and will be confirmed by our numerical
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FIGURE 13. Development of Am, the amplitudes of components ω0 ± mων (m = 0, 1, 2, 3).
Solid line with squares, ω0 − 2ων ; solid line with diamonds, ω0 − 3ων ; dashed line with
squares, ω0 + 2ων ; dashed line with diamonds, ω0 + 3ων . The dash-dotted lines represent the
prediction of the linear sideband analysis (ϕ0 = π).

calculations. Equation (5.5) and (5.20) indicate that in order to obtain the velocity
of the perturbation to O(ε1/2) accuracy, it is necessary to compute B by solving the
system (B 4)–(B 5).

The values of the parameters for the calculation were chosen to mimic the
experiments of Miksad et al. (1982). The central mean velocity is taken to be
0.6U∞, and the Reynolds number based on the wake half-width and the free-
stream velocity U∞ is 1575, which corresponds to R = 714 for the profile and the
normalization adopted in the present paper. The root-mean-square value of 0.08U∞
was used as a reference to set the disturbance amplitude ε = 0.122 and accordingly a
Haberman parameter λ̄ ≈ 0.077. Unlike the mixing-layer experiments (Miksad 1973),
the frequencies of the two seeded modes differ only by 5.5 %. In our calculations, we
take the central mode frequency ω0 = 0.8αc, i.e. ε1/2S0 = αc/5, and set ων = αc/20,
which gives a 6.7 % frequency difference, very close to the experimental value. The
initial condition corresponds to a0 = 1, a+0 = 1/3 and a−0 = 1/30 to approximate
a forced two-frequency excitation by ω0 and ω+. It should be pointed out that
differences still exist between the calculation and the laboratory condition: the
experiments investigated the disturbance development in the region fairly close to
the trailing edge, where the mean flow differs from (5.12), and the Reynolds number
in the experiments is quite low. Nevertheless, we believe that key physical mechanisms
are captured, at least qualitatively, by the present theory.

Figure 13 shows the development of the amplitudes of sideband components
ω0 ± mων (m = 1, 2, 3) including the central mode ω0. Similar to the mixing-layer
case, of the main two seeded modes the one with a larger amplitude (i.e. the central
mode ω0) suppresses the mode with a smaller amplitude, which is ω0 + ων in the
present case. The lower-band component ω0 − ων is promoted initially by the sideband
interaction, and grows rather rapidly to exceed the amplitude of the seeded upper-band
mode ω0 + ων . Both modes eventually attenuate. Comparison with the prediction of
linear sideband instability indicates that the nonlinearity of ω0 ± ων modes hardly
affects the evolution of themselves or the central mode ω0. However, when all self
and mutual nonlinear effects are included, further sideband components, ω0 ± mων ,
2ω0 ± mων , etc., are generated. Lower-band components ω0 − mων evolve to acquire
larger amplitudes than those of upper-band modes, ω0 + mων (m = 2, 3). Figure 14(a)
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FIGURE 14. Development of (a) the maximum streamwise velocity û(m)2 of the first harmonic
2ω0 and the sideband components 2ω0 ± mων , and (b) the maximum streamwise velocity
û(m)0 of the mean-flow distortion (m = 0) and the low-frequency sideband components mων
(m = 1, 2, 3). (a) Solid line with squares, 2ω0 − 2ων ; solid line with diamonds, 2ω0 − 3ων ;
dashed line with squares, 2ω0 + 2ων ; dashed line with diamonds, 2ω0 + 3ων .

shows the evolution of the first harmonic 2ω0 and its sideband components 2ω0 ± mων .
The lower-band components are much stronger than their corresponding upper-band
counterparts. A strong mean-flow distortion and low-frequency components mων are
generated, as indicated by figure 14(b).

The evolution of the spectrum of the streamwise velocity at the critical level
is shown in figure 15. For 3 6 x̄ 6 12, the fundamental and harmonics have
almost saturated, but their sideband components amplify to fill in the spectral gaps
between the harmonics. The mean-flow and low-frequency components do not appear
prominent in this plot. This is because their amplitudes happen to reach local minima
near η = 0. Though not shown, the spectrum at η = 5 features a clear peak centred
at zero frequency as well as those at the fundamental and harmonics. The spectral
broadening process is qualitatively similar to the measurements presented in figure 6
of Miksad et al. (1982).

Figure 16 shows the time series and the amplitude–phase modulation. At x̄ = 3,
both the amplitude a and phase p are modulated slowly, leading to a smooth
frequency shift p′. The corresponding time trace appears as a modulated wavetrain.
At downstream locations (e.g. x̄ = 8) the modulation becomes more intermittent and
abrupt, and in between the two consecutive modulations the amplitude and frequency
remain almost constant so that the time trace appears almost as a monochromatic
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FIGURE 15. Spectrum of the streamwise velocity at three streamwise locations: dashed line
with triangles, x̄= 3; solid line with dots, x̄= 8; solid line with diamonds, x̄= 12.
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FIGURE 16. (a) Time trace of ũc, the instantaneous streamwise velocity at the critical level,
and (b) amplitude–phase modulations at x̄= 3, 8 and 12.
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wave. Farther downstream, several oscillations occur between the major modulations,
and accordingly the time-domain signal becomes less regular. The amplitude–phase
modulation is very similar to that occurring in a mixing layer (see figure 12). However,
for the reason explained earlier, the time signature is not as ‘chaotic’. The predicted
characteristics of time traces and the amplitude–phase modulation as well as their
evolution sequence are in good qualitative agreement with the experimental data
presented in figures 5–7 of Miksad et al. (1982), suggesting that the present theory
captures the key physical mechanisms involved.

6. Summary and conclusions
The present theoretical work is intended to offer a theoretical explanation for

experimental observations concerning nonlinear dynamics of a free shear layer when it
is excited by a disturbance consisting of two waves with nearly equal frequencies, ω0

and ω1. Since the frequency difference ων = ω0 − ω1 is typically small, one wave is a
sideband component of the other, and a dynamical model was therefore proposed, in
which the disturbance is represented by a wavetrain, which is spatially and temporally
modulated on the (non-dimensional) length and time scales of order ω−1

ν . This is
a more general form of disturbance since it has a continuous sideband spectrum
containing the two waves. The evolution system governing the nonlinear development
of the wavetrain is derived by using the nonlinear, non-equilibrium critical layer
approach. In the special case of a single-frequency disturbance, the system reduces to
that derived by Goldstein & Leib (1988) and Goldstein & Hultgren (1988), and as has
been shown by these authors, the dominant instability wave saturates, and the vorticity
field rolls up to form the distinctive pattern of ‘rollers’. In order to shed light on the
nonlinear dynamics in the presence of two-frequency excitation, we first consider the
linear instability of the dominant wave (with frequency ω0) to sideband perturbations
with frequencies ω0 ± ων . Compared with the conventional sideband instability of
an equilibrium wave, which is usually governed by an eigenvalue problem and
destabilizes both sideband components, the sideband instability in the present context
exhibits quite different features. As the base wave is spatially evolving, the sideband
instability must be formulated as an initial-value problem. The latter is governed by
a parametrically excited system because the vorticity ‘roller’ is strongly nonlinear.
Numerical solutions indicate that due to the non-equilibrium effect, evolution of the
sideband perturbations may exhibit rather complex transient behaviours depending on
their phase relation and initial amplitude ratio. When the ratio differs appreciably
from unity, the base (central) wave suppresses the stronger one of the two sideband
modes, but may enhance the other; when the initial amplitude ratio is of O(1),
both sideband modes are inhibited. However, regardless of the amplitude ratio, the
two sideband modes would eventually amplify at a synchronized rate, which turns
out to be between their linear growth rates, and the lower-band perturbation always
evolves to acquire a larger amplitude. The sideband interaction leads to generation of
a strong difference-frequency mode ων , and because of parametric excitation, sideband
components mω0 ± ων (m = 0, 1, 2, . . .) are generated too. Precisely owing to these
unique features, the present sideband interaction can explain the seemingly conflicting
observations: the ‘suppressing’ effect and the appearance of sideband components,
which cannot be explained by the conventional sideband instability.

The nonlinear evolution system is solved numerically for the case where the
perturbation consists of two modes with comparable magnitudes. Two types of shear
layers were considered: a mixing layer and a planar wake, and the results turned out
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to be broadly similar. The central mode ω0 and its sideband components ω0 + nων are
most dominant. Due to strongly nonlinear effects within the critical layer, components
with the combination frequencies mω0 + nων (m > 2) are generated simultaneously at
the same order. As the disturbance evolves downstream, low-frequency fluctuations
nων and the mean-flow distortion attain quite large amplitudes, and so do the
harmonics mω0 (m > 2) and the sideband components in their vicinities. The spectrum
of the disturbance therefore broadens progressively, and the corresponding time trace
of the perturbation appears to be increasingly irregular. Within each sideband of mω0,
the components in the lower-band (n < 0) become stronger than those in the upper
band (n > 0). This may be an indication of local inverse energy cascade or ‘back
scattering’, whereas the occurrence of large low-frequency components is suggestive
of a global energy cascade. These theoretical results are broadly in agreement with
experimental measurements.

It was pointed out by Sato (1970) and Miksad et al. (1982) that much of the
observed temporal dynamics of the disturbance, especially the spectral broadening, was
associated with simultaneous amplitude and phase modulations over the time scale of
order 2π/ων . Measurements of bi-coherency spectrum by Miksad et al. (1982) and
Ritz et al. (1988) indicate that dominant nonlinear interactions contributing to the
modulations include (i) the self-interaction of ω0, generating harmonics mω0, (ii) the
mutual interaction between ω0 and ω1, which produces the difference mode ων , and
(iii) further interactions between ων and mω0 to generate mω0 + nων . A dynamical
model based on first principles was, however, not available. The present work provides
precisely such a model, which accounts for those interactions. The predicted amplitude
and phase modulations exhibit characteristics similar to experimental observations
(Miksad et al. 1982).

In the last two decades or so, the method of parabolized stability equations (PSE)
(Herbert 1997) has emerged as an effective tool to predict linear and nonlinear
development of instability modes in nearly parallel shear flows, including free shear
layers; e.g. Sandham & Salgado (2008), Cheung & Lele (2009), and references therein.
This approach has, to some extent, taken over the role of (weakly) nonlinear instability
theory. The crucial approximation, parabolization, is made on the assumption that the
shape of the disturbance evolves slowly so that a local wavenumber may be defined.
However, short of specifying the distinct scales unambiguously, the wavenumber has to
be determined in a rather ad hoc manner. The step size of marching for solving the
resultant PSE cannot be refined indefinitely. In contrast, the present nonlinear critical
layer theory is a completely self-consistent asymptotic formulation with clearly defined
scales. It leads to a parabolized system, which imposes no lower limit on permissible
step size. The theory has been adapted to nonlinearly modulated wavetrains/packets,
whereas the PSE approach has, to the best of our knowledge, been restricted to
sinusoidal disturbances consisting of a single frequency or frequencies satisfying
harmonic relations. Therefore, not only will nonlinear critical layer theory itself remain
an important tool, but hopefully it may also stimulate further developments of the
PSE methodology, such as finding a better way to define the local wavenumber and
broadening its scope of application (e.g. to wavepackets).

As mentioned in § 1, lower-frequency components may radiate a significant amount
of noise in subsonic jets. Work is in progress to develop a first-principles theory for
predicting the far-field acoustic field.
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Appendix A. Derivation of (3.19)
Let D0 = ((∂/∂τ) + (∂/∂ x̄)) act on both sides of (3.17) with the O(1/M) terms

omitted. Then(
−iS0Λ1 +Λ1

∂

∂τ
+Λ2

∂

∂ x̄

)
D0A=

∫ H

−H
D0Q1 dη

=−2H(D0 − iS0)A− iI11 + O(H−1), (A 1)

where use has been made of (3.12) and (3.14). The above equation may be rewritten
as

Λ2D
2
0 A=−

(
−iS0Λ1 +Λd

∂

∂τ

)
D0A− 2H(D0 − iS0)A− iI11 + O(H−1), (A 2)

where we have put Λd =Λ1 −Λ2. Using (A 2) in (3.17) to eliminate D2
0 A, we have

−iS0Λ1A+Λ1
∂A

∂τ
+Λ2

∂A

∂ x̄
= I10 + 2iS0

H
D0A+ 2

HΛ2

(
−iS0Λ1 +Λd

∂

∂τ

)
D0A

+ 4
Λ2
(D0 − iS0)A+ 2iI11

HΛ2
+ O(H−2), (A 3)

which may be arranged to

D1D0A= I10 −
(
−iS0Λ1 +Λd

∂

∂τ

)
A− 4iS0

Λ2
A+ 2iI11

HΛ2
+ O(H−2), (A 4)

where

D1 =Λ2 − 2iS0

H
− 4
Λ2
− 2

HΛ2

(
−iS0Λ1 +Λd

∂

∂τ

)
. (A 5)

Note that the equation (A 4) is first-order with respect to ∂/∂ x̄, and the truncation error
is O(H−2).

Applying D0 to (A 4) again leads to

D1D
2
0 A=−2H

(
∂

∂τ
+ ∂

∂ x̄
− iS0

)
A− iI11 −

(
−iS0Λ1 +Λd

∂

∂τ

)
D0A− 4iS0

Λ2
D0A

+ 2i
HΛ2

{
−iI12 − i

∫ H

−H
η
∂

∂η
(A∗Q2 − AQ0) dη + O(H−1)

}
=
{
−2H −

(
−iS0Λ1 +Λd

∂

∂τ

)
− 4iS0

Λ2

}
D0A+ 2HiS0A− iI11

+ 2
HΛ2

(I12 − A∗I20)+ O(H−2). (A 6)

In the last step above, integration by parts is performed. Let D1 act on (3.17),
and combine the resulting equation with (A 6) to eliminate the term D2

0 A. After
rearranging, we finally obtain (3.19).
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Appendix B. Evolution equations for B and Ω3

In terms of the re-scaled variables

Ω3 =Ω†
3 (αŪ′c)

2
/Ū′′′c , B= α2Ū′cB

†eiS0τ , b̂(n)2 = α2Ū′cb
(n)
2 eiS0τ , (B 1)

the evolution system (2.44)–(2.45) may be rewritten as

LNΩ3 =−D0

∑
b̂(m)2 eimζ̃ − iχa

αŪ′c
D2

0 Aeiζ̃ + 1
2

Ūiv
c

αŪ′cŪ′′′c

(iA2e2iζ̃ + c.c.)+ c.c.

− (αc)−1(η + S0)
∂Ω

∂ x̄
− a1

αŪ′c
(Aeiζ̃ + c.c.)

∂Ω

∂ζ̃

+
{∑

m

imb̂(m)2 emiζ̃ +
[

ia1

αŪ′c
(η + S0)A+ (αc)−1 ∂A

∂ x̄

]
eiζ̃ + c.c.

}
∂Ω

∂η
. (B 2)

The solution is expanded as a Fourier series

Ω3 =
∞∑

n=−∞
Ω̂n(τ, x̄, η)einζ̃ with Ω̂−n = Ω̂∗n . (B 3)

Then Ω̂n (n= 0, 1, 2, . . .) satisfies the equations

LN Ω̂n =−(D0 − niS0)b̂
(n)
2 − δ1n

iχa

αŪ′c
(D0 − iS0)

2 A+ δ2n
1
2

Ūiv
c

αŪ′cŪ′′′c

(iA2)

− (αc)−1(η + S0)
∂Qn

∂ x̄
+
∞∑

m=1

(
imb̂(m)2 Qn−m,η − imb̂(m)∗2 Qn+m,η

)
− a1

αŪ′c

[
i(n− 1)AQn−1 + i(n+ 1)A∗Qn+1

]
+
[

ia1

αŪ′c
(η + S0)A+ (αc)−1 ∂A

∂ x̄

]
Qn−1,η

+
[
− ia1

αŪ′c
(η + S0)A

∗ + (αc)−1 ∂A∗

∂ x̄

]
Qn+1,η. (B 4)

Equation (2.45) can be rewritten as∫ ∞
−∞
Ω̂1 dη =Λ1(∂τ − iS0)B+Λ2

∂B

∂ x̄

−αŪ′2c
Ū′′′c

[
γ11Ax̄x̄ + γ12(∂τ − iS0)Ax̄ + γ22 (∂τ − iS0)

2 A
]
. (B 5)

It may be deduced using (B 4) that as η→±∞,

Ω̂n ∼
{

i
nη
− D0

(nη)2

}
(D0 − niS0) b̂(n)2 − δ1n

i (αc)−1

η2
(D0 − iS0)Ax̄

+ δ1n

{
i
η
− D0

η2

}{
iχa

αŪ′c
(D0 − iS0)

2 A+ i (αc)−1(D0 − iS0)Ax̄

}
− δ2n

{
i

2η
− D0

(2η)2

}[
1
2

Ūiv
c

αŪ′cŪ′′′c

(iA2)

]
(n 6= 0), (B 6)
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Ω̂0 ∼ 1
η
(αc)−1 M1 + 1

η2

{
(αc)−1

[
S0M1 + (iM2 + c.c.)

]− (b̂(1)2 A∗ + c.c.)

+ Ūiv
c

αŪ′cŪ′′′c

[
iA∗D0A+ c.c.+ 2S0 |A|2

]}+ O(η−3), (B 7)

where we have put

M1 =
∫ ∞

0

∂

∂ x̄
|A(x̄− ξ, τ − ξ)|2 dξ, (B 8a)

M2 =
∫ ∞

0

[
A∗x̄D0A+ A∗D0Ax̄

]
(x̄− ξ, τ − ξ) dξ. (B 8b)

In the upstream region (x̄→−∞), nonlinear terms in (B 4) are negligible. The ‘initial
condition’ satisfied by Ω̂1 can be derived as

Ω̂1 ∼−
∫ ∞

0

{
(D0 − iS0)B(x̄− ξ, τ − ξ)+ iχa

αŪ′c
(D0 − iS0)

2A(x̄− ξ, τ − ξ)

+ i (αc)−1 (D0 − iS0)
∂

∂ x̄
A(x̄− ξ, τ − ξ)

}
e−1/3λ̄ξ3−iηξ dξ

+ i (αc)−1

∫ ∞
0
(D0 − iS0)

2 ∂

∂ x̄
A(x̄− ξ, τ − ξ)ξe−1/3λ̄ξ3−iηξ dξ

+ 1
3

i (αc)−1 λ̄

∫ ∞
0
(D0 − iS0)

∂

∂ x̄
A(x̄− ξ, τ − ξ)ξ 3e−1/3λ̄ξ3−iηξ dξ. (B 9)

Use of this expression in (B 5) leads to

∂B

∂ x̄
+ c−1

g

∂B

∂τ
=−πi

{
iχa

αŪ′c
(D0 − iS0)

2 A+ (αc)−1(D0 − iS0)Ax̄

}/
(Λ2 + π) (B 10)

+ αŪ′2c
Ū′′′c

[
γ11Ax̄x̄ + γ12(∂τ − iS0)Ax̄ + γ22 (∂τ − iS0)

2 A
]
/(Λ2 + π). (B 10)

The solution for B may be written as

B=
∑

n

Bneκ
(n)
0 x̄, (B 11)

substitution of which along with (3.24) into (B 10) shows that

B′n = κ (n)0 Bn + κ (n)1 An, (B 12)

where

κ
(n)
1 =−πi

{
χa

αŪ′c

[
κ
(n)
0 − i(S0 + n1)

]2 + (αc)−1
[
κ
(n)
0 − i(S0 + n1)

]
κ
(n)
0

}/
(Λ2 + π)

+ αŪ′2c
Ū′′′c

{
γ11κ

(n)2
0 − iγ12(S0 + n1)κ (n)0 − γ22 (S0 + n1)2

}/
(Λ2 + π). (B 13)

Since An = a(n)0 exp{κ (n)0 x̄}, the solution for Bn is

Bn = b(n)0 exp{κ (n)0 x̄} + κ (n)1 a(n)0 x̄ exp{κ (n)0 x̄}; (B 14)
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here the constant b(n)0 must be set to zero. The reason for this as well as for the
appearance of the factor x̄ in Bn transpires if one notes that the amplitude of the
instability mode, up to O(ε1/2) accuracy, is An + ε1/2Bn. Thus b(n)0 exp{κ (n)0 x̄} may be
absorbed into An so that the latter is precisely defined. Moreover, during the linear
stage upstream, or more precisely for 1� (−x̄)� ε−1/2,

An + ε1/2Bn = a(n)0 exp{(κ (n)0 + ε1/2κ
(n)
1 )x̄}, (B 15)

which indicates that κ (n)1 represents an O(ε1/2) correction to the linear growth rate.

R E F E R E N C E S

BROWN, G. L. & ROSHKO, A. 1974 On density effects and large structure in turbulent mixing
layers. J. Fluid Mech. 64, 775–816.

CHEUNG, L. C. & LELE, S. K. 2009 Linear and nonlinear processes in two-dimensional mixing
layer dynamics and sound radiation. J. Fluid Mech. 625, 321–351.

COWLEY, S. J. & WU, X. 1994 Asymptotic approaches to transition modelling. In Progress in
Transition Modelling, AGARD Report 793, Chapter 3, pp. 1–38.

FREYMUTH, P. 1966 On transition in a separated laminar boundary layer. J. Fluid Mech. 25,
683–704.

GOLDSTEIN, M. E. 1994 Nonlinear interactions between oblique instability waves on nearly parallel
shear flows. Phys. Fluids A 6, 724–735.

GOLDSTEIN, M. E. & HULTGREN, L. S. 1988 Nonlinear spatial evolution of an externally excited
instability wave in a free shear layer. J. Fluid Mech. 197, 295–330.

GOLDSTEIN, M. E. & LEIB, S. J. 1988 Nonlinear roll-up of externally excited shear layers. J. Fluid
Mech. 191, 481–515.

HABERMAN, R. 1972 Critical layers in parallel shear flows. Stud. Appl. Math. 51, 139–161.
HAJJ, M. R. 1997 Stability characteristics of a periodically unsteady mixing layer. Phys. Fluids A 9

(2), 392–398.
HERBERT, TH. 1997 Parabolized stability equations. Annu. Rev. Fluid Mech. 29, 245–283.
HO, C. M. & HUERRE, P. 1984 Perturbed free shear layers. Annu. Rev. Fluid Mech. 16, 365–422.
HUERRE, P. & MONKEWITZ, P. A. 1990 Local and global instabilities in spatially developing flows.

Annu. Rev. Fluid Mech. 22, 473–537.
HULTGREN, L. S. 1992 Nonlinear spatial equilibration of an externally excited instability wave in a

free shear layer. J. Fluid Mech. 236, 635–664.
KACHANOV, Y. S., KOZLOV, V. V. & LEVCHENKO, V. Y. 1979 Experiments on nonlinear

interaction of waves in boundary layer. In IUTAM Symposium on Laminar–Turbulent
Transition, Stuttgart, Germany (ed. E. Eppler & H. Fasel). Springer.

KIM, Y. C., KHADRA, L. & POWERS, E. J. 1980 Wave modulation in a nonlinear dispersive
medium. Phys. Fluids A 23 (11), 2250–2257.

LEIB, S. J. & GOLDSTEIN, M. E. 1989 Nonlinear interaction between the sinuous and varicose
instability modes in a plane wake. Phys. Fluids A 1, 513–521.

LIU, J. T. C. 1989 Coherent structures in transitional and turbulent free shear flows. Annu. Rev.
Fluid Mech. 21, 285–315.

MANKBADI, R. R. 1991 Multifrequency excited jets. Phys. Fluids 3 (4), 595–605.
MATTINGLY, G. E. & CRIMINALE, W. O. 1972 The stability of an incompressible wake. J. Fluid

Mech. 51, 233–272.
MICHALKE, A. 1965 On spatially growing disturbances in an inviscid shear layer. J. Fluid Mech. 22,

371–383.
MIKSAD, R. W. 1972 Experiments on the nonlinear stages of free-shear-layer transition. J. Fluid

Mech. 56, 695–719.
MIKSAD, R. W. 1973 Experiments on nonlinear interactions in the transition of a free shear layer.

J. Fluid Mech. 59, 1–21.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

26
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.262


Spectral broadening and flow randomization in free shear layers 469

MIKSAD, R. W., JONES, F. L., POWERS, E. J., KIM, Y. C. & KHADRA, L. 1982 Experiments on
the role of amplitude and phase modulations during transition to turbulence. J. Fluid Mech.
123, 1–29.

MIKSAD, R. W., JONES, F. L. & POWERS, E. J. 1983 Measurements of nonlinear interaction during
natural transition of a symmetric wake. Phys. Fluids 26 (6), 1402–1409.

MOTOHASHI, T. 1979 A higher-order nonlinear interaction among spectral components. Phys. Fluids
22 (6), 1212–1213.

RITZ, CH. P., POWERS, E. J., MIKSAD, R. W. & SOLIS, R. S. 1988 Nonlinear spectral dynamics
of a transitioning flow. Phys. Fluids 31 (12), 3577–3588.

SANDHAM, N. D., MORFEY, C. L. & HU, Z. W. 2006 Nonlinear mechanisms of sound generation
in a perturbed parallel jet flow. J. Fluid Mech. 565, 1–23.

SANDHAM, N. D. & SALGADO, A. 1876 Nonlinear interaction model of subsonic jet noise. Phil.
Trans. R. Soc. 366, 2745–2760.

SATO, H. 1956 Experimental investigation on the transition of laminar separated layer. J. Phys. Soc.
Japan 11, 702–709.

SATO, H. 1959 Further investigation on the transition of two-dimensional separated layer at subsonic
speeds. J. Phys. Soc. Japan 14, 1797–1810.

SATO, H. 1970 An experimental study of nonlinear interaction of velocity fluctuations in the
transition region of a two-dimensional wake. J. Fluid Mech. 44, 741–765.

SATO, H. & KURIKI, K. 1961 The mechanism of transition in the wake of a thin flat plate placed
parallel to a uniform flow. J. Fluid Mech. 11, 321–353.

SATO, H. & SAITO, H. 1975 Fine structure of energy spectra of velocity fluctuations in the
transition region of a two-dimensional wake. J. Fluid Mech. 67, 539–559.

SPARKS, C. A. & WU, X. 2008 Nonlinear development of subsonic modes on compressible mixing
layers: a unified strongly nonlinear critical-layer theory. J. Fluid Mech. 614, 105–144.

SUPONITSKY, V., SANDHAM, N. D. & MORFEY, C. L. 2010 Linear and nonlinear mechanisms of
sound radiation by instability waves in subsonic jets. J. Fluid Mech. 658, 509–538.

STUART, J. T. & DIPRIMA, R. C. 1978 The Eckhaus and Benjamin–Feir resonance mechanisms.
Proc. R. Soc. Lond. A 362, 27–41.

WINANT, C. D. & BROWAND, F. K. 1974 Vortex pairing: the mechanism of turbulent mixing-layer
growth at moderate Reynolds number. J. Fluid Mech. 63, 237–255.

WU, X. 1996 On an active resonant triad of mixed modes in symmetric shear flows: a plane wake as
a paradigm. J. Fluid Mech. 317, 337–368.

WU, X. 2004 Non-equilibrium, nonlinear critical layers in laminar–turbulent transition. Acta
Mechanica Sin. 20 (4), 327–339.

WU, X. & HUERRE, P. 2009 Low-frequency sound radiated by a nonlinearly modulated wavepacket
of helical modes on a subsonic circular jet. J. Fluid Mech. 637, 173–211.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

26
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.262

	Spectral broadening and flow randomization in free shear layers
	Introduction
	Formulation
	Outer expansion
	Inner expansion: critical layer analysis

	The coupled evolution systems
	Upstream condition
	Fourier decomposition of the solution and boundary condition

	Linear sideband instability
	Numerical results
	Mixing layer
	Planar wake

	Summary and conclusions
	Acknowledgement
	Appendix A. Derivation of (3.19)
	Appendix B. Evolution equations for B and Ω3 
	References




