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Abstract

In open Kelly and Jackson networks, servers are assigned to individual stations, serving
customers only where they are assigned. We investigate the performance of modified net-
works where servers cooperate. A server who would be idle at the assigned station will
serve customers at another station, speeding up service there. We assume interchange-
able servers: the service rate of a server at a station depends only on the station, not the
server. This gives work conservation, which is used in various ways. We investigate three
levels of server cooperation, from full cooperation, where all servers are busy when there
is work to do anywhere in the network, to one-way cooperation, where a server assigned
to one station may assist a server at another, but not the converse. We obtain the same
stability conditions for each level and, in a series of examples, obtain substantial per-
formance improvement with server cooperation, even when stations before modification
are moderately loaded.
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1. Introduction

An open queueing network with Poisson arrivals at one or more stations, independent expo-
nential service, and general routes of customers through the network is called a Kelly network
[6]. Kelly networks are a generalized model of Jackson networks [5], where customers have
Markovian paths. We consider Kelly and Jackson networks with k single-server stations, where
server i is assigned to station i, and only serves customers there. (Kelly and Jackson networks
may be closed.)

We will treat modified networks where servers cooperate. When station i is empty (of cus-
tomers), or, in some cases, even when it is busy, server i may assist a busy server at another
station, increasing the service rate there. Intuitively, we expect server cooperation to improve
system performance. We will model server cooperation and obtain results about the extent of
any improvement over original networks.
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We measure system performance by the reduction in the average number of customers in
system. Of course, from Little’s law, there is a comparable reduction in the average waiting
time in system.

Since Jackson, there has been a substantial literature on queueing networks under weaker
(or different) stochastic assumptions, with research monographs by Bramson [3] and Meyn
[8]; the former is primarily concerned with stability, the latter with control. Neither considers
models where servers cooperate.

For (stable) original Kelly networks, the joint stationary distribution of the number of cus-
tomers in system at each station has a well-known and simple product form. For modified Kelly
networks, the stationary distribution is unknown and will not in general have a simple form.
Analyzing the performance of modified networks is difficult. Most existing results on these
networks are limited to Jackson networks with k = 2 stations and are about what are called
asymptotic decay rates. See [9] for results of this nature and discussion of earlier literature.

In that literature, the increase in service rate at a station where two servers cooperate is
treated as an arbitrary parameter. Our approach is different. We assume that servers are inter-
changeable: the service rate of a server depends only on the station, not the server. For an
original network, the total remaining work to be performed on every customer at each station
is defined in Section 2. When servers are interchangeable and the network is modified, these
quantities may change for Kelly networks, but do not change for Jackson networks.

Flexible servers is a related term usually referring to servers who can perform more than
one task. See, for example, [2]. In the network context, they can serve customers at more than
one station. They may or may not be interchangeable.

In Section 2, we review some basic properties of Kelly networks with single-server first-
in-first-out (FIFO) stations. In Subsection 2.1 we introduce the modified networks with
interchangeable servers that are determined by some stationary policy, and in Subsection 2.2
we derive special results for Jackson networks.

In Section 3, we treat modified networks under full cooperation (FC), which means that all
servers are busy when there is work to do anywhere in the network. We define the total-work-
in-system process and show under FC that when servers are interchangeable, this process is
invariant to how the network is modified. This is work conservation; it enables us to obtain a
simple if-and-only-if condition for the entire modified network to be stable and an expression
for the time average of the (total) work in system (TAWS) for the modified networks. With a
scale factor, the TAWS for the modified network is the same as that for a corresponding M/G/1
queue. When the original network is stable, we present examples where server cooperation
reduces the average number of customers in system by a large factor. Of course, when the
original network is unstable, the improvement may be much larger.

In Section 4, we make an assumption which we call AA: we assume that a customer may be
served by only one server at a time, and that all servers are busy when the number of customers
in system is at least as large as the number of servers. The method of analysis and results in
Section 3 provide the basis for the analysis and results in this section. In particular, TAWS
under FC is a lower bound for the corresponding quantity under AA. It is then shown that the
stability condition (12) for FC also holds under AA. However, we do not have an expression
for TAWS under AA as we do under FC. Observing that the rules for how many servers are
busy under AA are the same as for a standard M/G/k queue, we propose an approximation for
TAWS. Using this approximation, examples similar to those in Section 3 may be investigated
under AA.
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In Section 5, we assume that in the original network, some stations are stable and some are
unstable, and we have one-way cooperation (OWC). Under OWC, servers assigned to stable
stations may assist servers assigned to unstable stations, but not the converse. We show that
the modified networks in Section 5, restricted to what we call preemption, are stable under the
same condition we found for FC and AA.

A tandem queue of single-server stations was analyzed in [11], where there is only a sin-
gle server, who allocates a fraction of the service capacity to each station. As the service
rate at each station depends on the station, not the server, the single server is in effect inter-
changeable. Work conservation was a key property in the analysis. A large number of related
papers referenced in [11] (in particular, see [10]) analyze this model under particular stochastic
assumptions, without either formally recognizing the interchangeable property or making use
of work conservation. For a different purpose, the authors of [1] considered modified Jackson
networks where the service rate at a station either depends only on the station (interchangeable
servers) or only on the server. They did not make use of work conservation.

In another relevant study, [7] compared the performance of a Jackson network to a system
where the queues at each station are pooled into a single queue, and the servers are pooled into
a single server with service rate equal to the sum of the service rates at the individual stations
in the Jackson network (complete pooling). This results in a system where all customers are
served at a single-server FIFO queue where the service time of a customer is the sum of the
service times the same customer would have at the various stations visited in the Jackson
network. It is easily shown that in some cases, for example that of tandem queues, the single-
server queue performs much better than the Jackson network. The authors of [7] also show and
explain cases where the single-server queue performs much worse.

In our approach, we don’t collapse the network; servers move around. Because, under FC,
all servers are busy when there is any work to do, our work-in-system process is the same
as that for the single-server queue in [7]. However, because of our network structure, other
quantities are quite different.

2. Kelly networks

We consider an open Kelly network with k single-server stations and R customer routes,
where the arrival processes of customers on route r are independent and Poisson at rate λr,
r = 1, . . . , R, and we let the combined arrival rate of routes be λT = λ1 + · · · + λR. Note that
R may be infinite.

Customers on route r visit the stations in the network in some finite deterministic
sequence,

v(r, 1), v(r, 2), . . . , v(r, e(r)),

before they leave the system. We say a customer on route r visits station i on stage s if v(r, s) =
i, for s = 1, 2, . . . , e(r). We assume that every station is visited on at least one route. When
necessary, we use station 0 to denote ‘out of the system’. Because R may be infinite, a Jackson
network is a special case.

Service times at station i are independent and identically distributed (i.i.d.) exponential at
rate μi, i = 1, . . . , k. They do not depend on route information. We assume first-in-first-out
(FIFO); Kelly’s formulation includes FIFO as a special case, and is not limited to single-server
stations. Under FIFO, arrivals at each station join the end of the queue, the customer at the
front of the queue is served, and on service completion, the customers that remain in the queue
each move up one position.
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By letting the state of the system contain the information of route, stage, and position (in the
queue) of every customer in the system, a Kelly network is an irreducible (continuous-time)
Markov chain.

Let #(r, i) be the number of times a route-r customer visits station i, and define �i as

�i =
∑
r∈R

#(r, i)λr, i = 1, 2, . . . , k. (1)

We require that �i < ∞ for all i, which implies that λT < ∞. For a stable (positive recurrent)
network, where all arrivals are eventually served, �i is the composite (external plus internal)
arrival rate at station i.

Note that the �i do not depend on the service rates (of course, having stability does depend
on the service rates).

Because we will be comparing various quantities for original and modified networks, it will
be important to distinguish the one from the other. We will do this with the superscripts o

and m. For example, the average numbers of customers at station i in the original and some
corresponding modified network we denote by Lo

i and Lm
i , respectively.

Similarly, let Lo
T = Lo

1 + . . . + Lo
k and Lm

T = Lm
1 + . . . + Lm

k be the average number of
customers in system in the original and modified networks, respectively. Our goal is to
reduce Lm

T .
For an original stable Kelly network, let Ni denote the stationary number of customers at

station i. Below we state an important result (Corollary 3.4 on p. 63 of [6]).

Corollary 1. Given Ni = n, the probability that a route-r, stage-s customer is in position l ≤ n
at station i is λr/�i, provided that v(r, s) = i.

Let Wo
i be the total remaining work (TRW) to be performed on any of the Ni customers at

station i, that is, the remaining service time at station i plus the sum of the service times on this
customer at all stations to be visited until departure. (From Corollary 1, they all have the same
distribution.) Note that in a Kelly network, the TRW of any customer at station i depends on
his route and the present stage.

From Corollary 1, the expected TRW (ETRW) to be performed on any customer at
station i is

wo
i =

R∑
r=1

λr

�i

e(r)∑
s=1

I{v(r, s) = i}
e(r)∑
j=s

E[Sv(r,j)], (2)

where Sv(r,j) is the service time of a customer on route r at stage j.
In [6], Kelly defines φi(l) to be the service rate provided at station i when l customers are

there, and he shows (see p. 61 of [6]) that the network is stable if and only if

∞∑
n=0

�n
i∏n

l=1 φi(l)

is finite for every i = 1, . . . , k. For the network of single-server stations considered here,
φi(l) = μi for all l ≥ 1 and all i. Letting ρi = �i/μi, the above stability condition is
reduced to

ρi < 1, i = 1, . . . , k. (3)
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2.1. Modified networks with interchangeable servers

We will consider modified networks where servers are interchangeable. This means that a
server at station i has service rate μi, regardless of where that server was originally assigned.
When c servers are working at station i, their combined (exponential) service rate is cμi. In
Section 3, this holds even when the number of customers at station i is less than c, and all
servers are busy whenever there is work to do at any station. In Section 4, we assume that a
customer may be served by only one server at a time, and some servers are idle only when
the total number of customers in system is less than k. These assumptions are not the only
possibilities. For example, cooperation may be one way, where, as in Section 5, server i may
serve customers at station j when station i is idle, but not the converse.

Under any of these possibilities, we assume that the network operates under some stationary
assignment policy (SAP). We only consider the simplest case of an SAP, called preemption:
the assignment of servers to stations is a deterministic function of the state of the system. For
Kelly networks, an SAP also determines the service rate assigned to each customer at every
station. The assignment of servers changes only when there is a change of state, which occurs
when there is either an arrival or a service completion. When there is a change of state, under
preemption, a server may be assigned to a different station, even when this would interrupt a
service that is underway. For any SAP, the service rate on each customer at every station is
fixed, as long as there is no change in state.

Let ni be the number of customers at station i and n = (n1, . . . , nk). For a Jackson network,
the state space is the collection of vectors n. For a Kelly network, the state space is large. It
includes route, stage, and position information about every customer in system. The modified
network is a Markov chain with the same state space as the original network, but the transition
rates depend on the SAP.

An alternative to preemption we call completion: a server may be reassigned only when idle
or on service completion by that server.

When (3) is satisfied in the original network, the joint stationary distribution of the number
of customers at each station is the product of the marginals (has product form), where the
marginal distributions are geometric with mean at station i given by

Lo
i = ρi/(1 − ρi), i = 1, . . . , k. (4)

For an original or modified network, we define (total) work in system (TAWS) at time t,
Vo(t) or Vm(t), as the sum of the TRW to be performed on every customer at each station, and
over every station, at time t, with (when stable) finite TAWS E(Vo) and E(Vm). We write

E(Vo) =
k∑

i=1

wo
i Lo

i . (5)

Thus (4) and (5) determine E(Vo), but it is of much greater interest to turn this around
for particular modified networks, analyzing E(Vm) directly and using it to determine or
approximate Lm

i .

2.2. Results for the case of Jackson networks

When we have a Jackson network, formulating it as a Kelly network is awkward,
particularly when, as is usually the case, the number of routes is infinite.
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When the routing of customers is Markovian, with the transition probability pij being the
probability that on completion of service at station i, a customer goes to station j next, inde-
pendent of the past, we have a Jackson network. We let pi0 be the probability of departure from
the network. For Jackson networks only, let γi be the (external) arrival rate to station i; that is,
γi is the arrival rate of all routes where station i is visited first. The �i, as defined before, now
are the unique solution to

�i = γi +
k∑

j=1

�jpji, i = 1, . . . , k. (6)

When the network is transient, the actual arrival rate of customers at station i may be smaller
than that given by (1) and (6).

Note that because of Markovian paths and exponential service, TRW is independent of prior
history, including prior states visited and the time spent in service at station i by this customer.
Hence, Wo

i and Wm
i have the same distribution. We will use Wi for both here, with wi =E(Wi),

but note that the analysis below is for the original network.
Given that a customer at station i (with Wi, composed partly of remaining service Si there)

goes next to station j, Wi has the same distribution as Si + Wj, where Si has distribution
exp (μi), Si and Wj are independent, and we define W0 = 0. With this information, we write
that with probability pij,

Wi has the same distribution as Si + Wj, j = 0, . . . , k.

It follows that expected values wi satisfy

wi = 1/μi +
k∑

j=1

pijwj, i = 1, . . . , k. (7)

Note that Wi has the form of a finite sum over all stations of a geometric sum of exponential
service times at each station, and has finite moments of all orders. Later, we will need a way
to find second moments E(W2

i ). Squaring Si + Wj, and using independence, we find that they
satisfy

E
(
W2

i

) = 2/μ2
i +

k∑
j=1

pij
[
2wj/μi +E

(
W2

j

)]
, i = 1, . . . , k. (8)

For (6) and arguments that equations of form (6), (7), and (8) have unique solutions, see
[12], p. 319 and Theorem 8 on p. 167.

3. Full cooperation, a conservation law

We now consider modified networks with what we call full cooperation (FC): all servers are
busy whenever there is work to do, anywhere in the network.

Let Tr be the total work (TW) to be performed on a route-r customer, that is, the sum of
the service times at all stations to be visited in this route until departure; and let Ta be the total
work to be performed on an arriving customer. Thus the distribution of Ta is a mixture of the
Tr distributions with mixture probabilities fr = λr/λT . In particular, we write

E(Ta) =
R∑

r=1

frE(Tr) and E
(
T2

a

) =
R∑

r=1

frE
(
T2

r

)
. (9)
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It is easy to find an expression for E(Ta) and show that it is finite by equating two ways of
representing the arrival rate of work to the system:

λTE(Ta) =
k∑

i=1

�i/μi, (10)

which shows that E(Ta) < ∞.
Note that the amount of work brought by an arrival is defined as the amount of time it would

take one server to do that work. Hence all servers work (do work) at rate 1.
Our use below of total work in system under FC also requires that E(T2

a ) < ∞. However,
this may not be true for Kelly networks. (Note that infinite E(T2

a ) cannot occur for Jackson
networks.) In Subsection 3.1, we obtain as (19) an if-and-only-if condition for E(T2

a ) = ∞,
and investigate what happens when this is true.

The total-work-in-system process {Vm(t);t ≥ 0} has i.i.d. jumps (increases) distributed as
Ta at the arrival times of external arrivals to the entire network (at rate λT ). Between jumps,
the process decreases at rate −k when positive, because all servers are busy, and each server
reduces total work at rate −1. Thus process {Vm(t)/k}, with i.i.d. jumps distributed as Ta/k,
and decreases at rate −1, is equivalent to the work-in-system process for an M/G/1 queue with
arrival rate λT and service times distributed as Ta/k, where this queue is stable if and only if

λTE(Ta)/k < 1. (11)

From (10), (11) is equivalent to

ρ1 + ρ2 + · · · + ρk < k. (12)

When (12) holds, this queue has time-average work

λTE(T2
a )/k2

2(1 − λTE(Ta)/k)
.

Hence the modified network is stable if and only if (12) holds, and in this case, {Vm(t)} has
time average

E
(
Vm

FC

) = λTE
(
T2

a

)
2k(1 − λTE(Ta)/k)

. (13)

We have added the subscript FC to the left-hand side of (13) to distinguish it from a
corresponding time average in Section 4, under an alternative to FC that we call AA.

For t ≥ 0 and i = 1, . . . , k, let Vm
i (t) be the portion of Vm(t) associated with customers at

station i at time t, and let Nm
i (t) be the number of customers at station i at time t. Vm

i (t) is the
sum of the total remaining work on each of the Nm

i (t) customers at station i at time t.
When (12) holds, {Nm

i (t)} has finite time average Lm
i . When we also have E(T2

a ) < ∞,
{Vm

i (t)} has finite time average E(Vm
i ), where

k∑
i=1

E
(
Vm

i

) =E
(
Vm

FC

)
. (14)

For every i, we now define wm
i to be

wm
i =E

(
Vm

i

)
/Lm

i . (15)
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Thus wm
i is no longer a property of a particular customer. It is an average. Actually, this is also

true for wo
i for Kelly networks. It is an average over the possible routes and stages a particular

customer may be on.
From (13), (14), and (15), we have the following theorem.

Theorem 1. Under FC, and when (12) holds and E(T2
a ) < ∞, the wm

i and Lm
i are finite and

satisfy

λTE
(
T2

a

)
2k(1 − λTE(Ta)/k)

=
k∑

i=1

wm
i Lm

i . (16)

Suppose a modified Jackson network is stationary at time t. At station i,

Vm
i (t) =

Nm
i (t)∑

j=1

Wm
ij (t),

where, summed in any order, Wm
ij (t) is the TRW to be performed on the jth customer at station

i at time t. Because of Markovian paths, the Wm
ij (t) are i.i.d., independent to Nm

i (t), with mean
wo

i . Taking expectations,

E(Vm
i ) = wo

i Lm
i , i = 1, . . . , k,

and we have the following result.

Corollary 2. For modified Jackson networks, Theorem 1 holds, where for every i, wm
i = wo

i ,
i = 1, . . . , k.

For modified Kelly networks, we don’t expect wm
i = wo

i . However, if the modified net-
work doesn’t change the ‘mix’ of customers at each station very much, wo

i may be a good
approximation of wm

i . See Example 2, where this turns out to be true.
In other circumstances, wm

i and wo
i may be quite different. We return to this issue at the end

of Subsection 3.2.
For a Jackson network, computation of the moments of Ta via (9) would be an arduous

task. Instead, suppose that the arriving customer arrives at station i. Then Ta has the same
distribution as Wi, and thus the distribution of Ta is a mixture of the Wi distributions with
mixture probabilities gi = γi/�i. In parallel to (9), we write

E(Ta) =
k∑

i=1

giE(Wi) and E(T2
a ) =

k∑
i=1

giE(W2
i ),

and these are determined by the solutions to (7) and (8).
We have already seen that server cooperation can transform an unstable original network to

a stable modified network, and we expect that large improvements in performance measures
can be achieved for stable original networks when some but not all stations are heavily loaded.

We now illustrate that large improvements in performance measures are obtained even when
the original-network stations are equally loaded. To make comparisons easier, these exam-
ples have symmetric stations, meaning that the stations are stochastically equivalent. The term
symmetric queue has a different meaning; see Section 3.1.
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For the Jackson-network examples, we have not only symmetric stations, but also wm
i =

wo
i = wi in (16). This greatly simplifies our analysis. For Kelly networks, wm

i and wo
i are not,

in general, equal. In Example 2, we bound wm
i and approximate it by wo

i .

Example 1. Consider a Jackson network with two symmetric stations, γ1 = γ2 = γ , μi = μ,
and p12 = p21 = p10 = p20 = 1/2. We have �1 = �2 = 2γ and ρi = ρ = 2γ /μ < 1 for all i. It
is easy to see that each Wi is exponentially distributed with mean 2/μ, as is Ta. We assume
cooperation is also symmetric. For example, when an arrival occurs at an empty station while
the other is busy, a server returns immediately to that station (the assumption in [4]). This
implies Lm

1 = Lm
2 . Evaluating the left-hand side of (16), we get

Lm
i = ρ/2(1 − ρ) = Lo

i /2, i = 1, 2,

half the corresponding original quantities.

We now generalize the result under FC in stages. For a k-station network, suppose μi = μ

and pi0 = α ∈ (0, 1) for every station i. Ta and the Wi are random sums of i.i.d. exponential ser-
vice times, where the probability that a customer leaves the system after n service completions
is α(1 − α)n−1, n ≥ 1.

To preserve symmetry in the modified network when k > 2, we allocate servers to busy
stations symmetrically, where if b stations are busy, (k − b)/b servers from empty stations are
allocated to each busy server; this number may not be an integer. Splitting a server’s service
capacity between stations is done in [10] and [11].

The following is easily shown.

Lemma 1. For a k-station Jackson network with μi = μ and pi0 = α for every station i, Ta and
the Wi have the same exponential distribution, with mean

E(Ta) =E(Wi) = 1/αμ.

For this result, the transition probabilities between stations within the network are irrelevant.
If the stations are symmetric, the Lm

i are equal; under FC, we evaluate (16) to obtain

Lm
i = Lo

i /k (17)

for a k-station network. On reflection, this is obvious. The original network has what amounts
to k M/M/1 queues, each with arrival rate �i = γ /α, service rate μ, and ρi = γ /αμ. The mod-
ified network operates like one M/M/1 queue with arrival rate kγ , service rate (of Ta/k) kαμ,
and ρ = kγ /kαμ = γ /αμ. The same ρ!

We now obtain a similar result for a Kelly network.

Example 2. Consider a Kelly network with k FIFO symmetric stations and k routes, where
service rate at every station is μ, Route 1 = (1, 2), Route 2 = (2, 3), . . ., Route k = (k, 1), and
every route has arrival rate λ. Then Ta is 2-Erlang(μ) and ρi = ρ = 2λ/μ.

Under FC, the right-hand side of (16) can be computed to be 3ρ/2μ(1 − ρ), but the wm
i

may not satisfy (2) and are unknown. From these simple routes, however, we have the bounds
1/μ < wm

i < 2/μ.
From these and the obvious fact that Lm

1 = Lm
2 = · · · = Lm

k , we get

Lo
i /1.33k ≤ Lm

i ≤ Lo
i /0.67k, i = 1, . . . , k.
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TABLE 1: Results from 2.5 × 105 busy cycles for 2-station Kelly network.

Original Kelly Modified Kelly

ρ Exact Lo
T Estimated Lm

T ± 95% c.i.

0.1 0.222 0.111 ± 0.001
0.5 2.000 1.017 ± 0.003
0.9 18.00 9.23 ± 0.03
0.95 38.00 19.84 ± 0.07

TABLE 2: Results from 2.5 × 105 busy cycles for 4-station Kelly network.

Original Kelly Modified Kelly

ρ Exact Lo
T Estimated Lm

T ± 95% c.i.

0.1 0.444 0.112 ± 0.001
0.5 4.000 1.019 ± 0.003
0.9 36.00 9.09 ± 0.03
0.95 76.00 19.13 ± 0.07

For an approximation, we use (2) with wm
i ≈ wo

i = 3/2μ to obtain

Lm
i ≈ ρ/k(1 − ρ) = Lo

i /k,

which is exact in (17) for a corresponding Jackson network.
To explore the accuracy of the approximation wm

i ≈ wo
i for Kelly networks, we present the

results of two simulation experiments. Table 1 is for the model with k = 2 stations. Because
of the narrow range of possible values of wm

i in that example, we simulated, with the results
in Table 2, a symmetric network with k = 4 stations, with routes (1, 2, 3, 4), (2, 3, 4, 1), (3,
4, 1, 2), and (4, 1, 2, 3). Results are presented for L•

T ≡ L•
1 + · · · + L•

k , where • denotes either
o or m.

All point estimates are remarkably close to Lo
T/k, which is exact for corresponding Jackson

networks, and the confidence intervals are narrow. Except for ρ = 0.1, however, the confidence
intervals do not cover this quantity, and all the estimates are on the high side. This is strong
evidence that wm

i is (slightly) smaller than wo
i .

3.1. How infinite E(T2
a ) occurs; implications for Kelly networks

We will find it useful to call the collection of service times on a route a batch, and the
number of these service times a batch size. The effect of batch size variance here is similar to
what happens at a single-server FIFO queue when we have batch arrivals.

We now sort routes by their length (batch size). Let ab be the combined arrival rate of all
routes of batch size b, b = 1, 2, . . ., where

∑∞
b=1 ab = λT , and cb = ab/λT . Let B be a random

batch size with distribution P(B = b) = cb, b = 1, 2, . . ..
Let STb be the sum of the b service times in the batch. First consider the special case where

all service times in the batch have the same rate μ (when the k stations all have the same service
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rate). In this case, STb is the sum of b i.i.d. exponential random variables. When we write out
the b2 terms in S2

Tb, there are b terms that are squared exponentials and b(b − 1) cross-product
terms. It follows that

E
(
S2

Tb

) = 2b

μ2
+ b(b − 1)

μ2
= b(b + 1)

μ2
.

In general, the μi will be different. As there is a fixed number of stations, there will be a
maximum and minimum service rate μM and μm that are upper and lower bounds on all service
rates in a batch, independent of b. In terms of these quantities, we have the upper and lower
bounds

b(b + 1)

μ2
M

≤E(S2
Tb) ≤ b(b + 1)

μ2
m

. (18)

Now, E
(
T2

a

) =E
[
E

(
T2

a

∣∣B)]
, where E

(
T2

a

∣∣B) =E
(
S2

TB

)
, and hence from (18),

E
(
B2

) +E(B)

μ2
M

≤E(T2
a ) ≤ E

(
B2

) +E(B)

μ2
m

.

The conclusion from above is that

E(T2
a ) = ∞ if and only if B has infinite variance. (19)

When E(T2
a ) = ∞, the modified network has infinite time-average work. As work in the

modified network is a lower bound, work in the original Kelly network also is infinite. The
only way this can happen is if wo

i = ∞ for at least one station in the original network. We now
present an example where this happens, using only the Kelly formulation and results.

Example 3. Consider a 2-station Kelly network with service rate μi = μ, i = 1, 2, and
infinitely many customer routes with arrival rates {λr, r ≥ 1}. In particular, for every odd r,
a customer on route r visits stations 1 and 2 alternately r times each, and on every even route
r + 1 a customer visits stations 2 and 1 alternately r times each.

B, the route length (batch size) of a randomly arriving customer, has distribution

P(B = 2r) = (λr + λr+1)/λT , r = 1, 2, . . . ,

and consequently

E(B) =
∞∑

r=1

2(2r − 1)(λ2r−1 + λ2r)/λT ,

where finite �i implies B has finite first moment, but it may have an infinite variance.
Note that Wo

1 is a random sum of i.i.d. exponential service times, Wo
1 = ∑Z

i=1 Si, where Z
is the number of remaining stages on the route of a randomly selected customer at station 1.
We have

wo
1 =E(Z)/μ.

To access E(Z), we first note that

�1 =
∞∑

r=1

(2r − 1)(λ2r−1 + λ2r) = λTE(B)/2.
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Then, from Corollary 1, we have

P(Z = n) =
∞∑

r=	n/2


λr

�1
= 1

�1

λTP(B ≥ n)

2
= P(B ≥ n)

E(B)
, n = 1, 2, . . . . (20)

It is easily shown from (20) and a standard result that

E(Z) =E[B(B + 1)]/2E(B).

Thus E(Z) and hence wo
1 are infinite if and only if B has an infinite variance.

In Kelly networks, we found that time-average work may be infinite when Lo
T is finite. This

possibility occurs throughout the earlier related literature. For example, an M/G/1 queue with
server utilization ρ < 1 that operates as a symmetric queue (see [6, p. 72]) has L = ρ/(1 − ρ).
The remaining service of a customer in service has equilibrium distribution with infinite mean
when the corresponding service distribution G has infinite variance. Note that preemptive last-
in-first-out and processor sharing (called server-sharing in [6]) are examples of a symmetric
queue, but FIFO is not.

From the exclusion of FIFO in the preceding paragraph, one may wonder how FIFO is
allowed in Kelly’s formulation in [6, Chapter 2], where service times are exponential. ‘For
simplicity’ (see [6, p. 57]), Kelly does not allow customers to visit the same station twice in a
row. So on completion of service at one station, a customer either departs or (under FIFO) joins
the end of the queue at another station. Suppose we allow this, and a twice-in-a-row customer
at station i completes service there for the first time. What happens? If this customer is served
again immediately, Kelly’s results do not hold. If instead this customer joins the end of the
queue at station i, they do.

For example, consider a network with one station and one route of length 2. If on the first
service completion a customer is served again immediately, we have an M/E2/1 queue. Kelly’s
results do not hold.

3.2. Optimal SAP and a counterexample

When we don’t have symmetry, (16) is still valid, and a severe restriction on the Lm
i . Time-

average work in system is substantially reduced. Now we have an interesting problem: how
should servers be allocated to stations so as to reduce or even minimize Lm

T ? Because the
wm

i are unknown for Kelly networks and depend on the SAP, we now consider only Jackson
networks; we briefly return to Kelly networks at the end of this section.

Intuitively, reducing the Lm
i with small wi will increase the Lm

j with large wj, but not by as
much. This suggests the following policy.

Definition 1. The SETRW rule assigns, at all times, all the servers to the non-empty station
where customers have the shortest expected TRW.

In [11], it was shown that for a tandem queue, allocating all the service capacity to the
last station that has work to do minimizes the waiting time in system of every customer. (At
every station, FIFO was assumed.) This policy is the SETRW rule. This result holds on sample
paths, without making any stochastic assumptions, and implies that the number of customers
in system is minimized at every time t, and of course Lm

T is minimized. The service capacity
of a single server was allocated over the network, but the same argument holds for multiple
servers. Hence SETRW is optimal in this strong sense for tandem queues.
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We now briefly investigate when SETRW is optimal in the sense that it minimizes Lm
T . In

Example 4, we show that for a k-station network and an arbitrary station i, allocating all the ser-
vice capacity to station i whenever it is busy minimizes Lm

i . Showing this is trivial when station
i only has external arrivals. More care is required when station i also has internal arrivals. We
then use this result for an easy proof that SETRW is optimal for 2-station networks. In Example
5, we present a counterexample where SETRW is not optimal for a 3-station network.

Example 4. For a k-station Jackson network that is stable under FC, let P be an FC policy that
allocates all the service capacity to an arbitrary station i whenever it is busy. The allocation of
service capacity to other stations when station i is empty is unspecified.

We assume FIFO order of service at station i. This is convenient in the analysis but not
a restriction, because under Markovian paths, the stochastic evolution of the number-of-
customers-in-system vector n is not affected by order of service.

We need some additional notation. Let dm
i be the average delay in queue at station i, and let

dem
i and dim

i be the same quantity for external and internal arrivals at station i. Let Qm
i be the

average number of customers in queue and Lm
si the average number of customers in service at

station i.
Under policy P, dm

i is the weighted average

dm
i = (γi/�i)d

em
i + (1 − γi/�i)d

im
i , (21)

where, because internal arrivals occur at station i only when it is empty,

dim
i = 0. (22)

From PASTA and under P, the service rate on a customer in service is kμi, so

dem
i = Lm

i /kμi. (23)

From Little’s law (twice) and (21), (22), and (23),

Qm
i = �id

m
i = (γi/kμi)L

m
i , and

Lm
i = Qm

i + Lm
si = (γi/kμi)L

m
i + �i/kμi. (24)

From (24), we now solve for Lm
i . Under P,

Lm
i = �i/(kμi − γi) ≡ LmP

i , (25)

the average number of customers at station i under policy P.
Now repeat the steps for any FC policy. Equation (21) is the same, but dim

i ≥ 0 in (22).
Dropping the second term on the right in (21) gives

dm
i ≥ (γi/�i)d

em
i . (26)

From PASTA and that the service rate is ≤ kμi, we have

dem
i ≥ Lm

i /kμi. (27)

From Little’s law, (26) and (27), and Lm
si ≥ �i/kμi,

Qm
i = �id

m
i ≥ (γi/kμi)L

m
i , and

Lm
i = Qm

i + Lm
si ≥ (γi/kμi)L

m
i + �i/kμi. (28)
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From (25) and (28), we have that Lm
i under any FC policy has as a lower bound the quantity

found in (25),
Lm

i ≥ LmP
i .

Now consider a 2-station Jackson network with stations 1 and 2, where w1 < w2. Policy
P applied to station 1 is an SETRW policy. Under any FC policy, we have from (16) and
wm

i = wi for Jackson networks that w1Lm
1 + w2Lm

2 is a constant; decreasing Lm
1 by � increases

Lm
2 , but not by as much, so LT = Lm

1 + Lm
2 also decreases. Minimizing L1 minimizes LT . Hence,

SETRW is optimal for 2-station networks.

Example 5. Consider a 3-station network with 1/μ1 = 1, 1/μ2 = 3, 1/μ3 = 80, p10 = 0.1,
p12 = 0.9, p20 = 0.9, p23 = 0.1, and p30 = 1. External arrivals enter the system at station 1
at rate γ1. The value of γ1 is arbitrary except that it must be small enough for the 3-state
network to be stable under FC. From (7), w1 = 10.9, w2 = 11, and w3 = 80, so that SETRW
assigns service priority order to be 123. In what follows, we are comparing policies 123
and 213.

Under any FC policy, replacing the wi by their numerical values, we have

10.9Lm
1 + 11Lm

2 + 80Lm
3 = K1, (29)

a constant. Observe that under either policy, customers at station 3 are served only when there
are no customers at stations 1 and 2.

Hence the time-average performance of the 2-station network consisting of stations 1 and
2 may be analyzed separately from station 3 by this simple change in the network: change
transition probabilities out of station 2 to p′

20 = 1 and p′
23 = 0. We ‘prime’ the other quantities

that change, namely the expected total remaining work, w′
1 and w′

2, which are easily found to
be w′

1 = 3.7 and w′
2 = 3.

Under any FC policy for this new network,

3.7Lm
1 + 3Lm

2 = K2, (30)

a constant.
We know that policy 213 minimizes Lm

2 . We now show that it also minimizes Lm
T . Let Lma

i
and Lmb

i , i = 1, 2, 3, be the average number of customers at station i under policies a = 123
and b = 213, respectively, where Lma

2 − Lmb
2 ≡ � > 0. Then, from (30), we get Lmb

1 = Lma
1 +

(3/3.7)�. We plug these results into (29) to find Lmb
3 = Lma

3 + 0.03�. Combining these results,
we have

Lmb
T − Lma

T = −0.16� < 0,

which shows that 213 is better than the SETRW policy 123.
The model in Example 5 helps verify that Equation (25) is correct. Under 123, we are

applying P to station 1, which has no internal arrivals. We have �1 = γ1, and (25) becomes
γ1/(3μ1 − γi). This is correct because station 1 operates as an M/M/1 queue with these arrival
and service rates. Under 213, we are applying P to station 2, where γ2 = 0, and (25) becomes
�1/3μ2. This is correct because at all times there is at most one customer at station 2, and Lm

2
is the fraction of time station 2 is busy.

This example also shows that without special structure such as tandem queues, using the wi

alone to allocate service capacity may produce poor results. It fails to distinguish between two
situations: wi may be large simply because service at station i is very slow, or maybe station i
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conducts inspections that are performed quickly, and when necessary, a lengthy repair will be
done elsewhere. It may make sense to allocate more servers to inspections so that those that
pass leave the system as quickly as possible.

We now return to Kelly networks. If we know the route and stage of every customer, we can
allocate service capacity to customers with the shortest expected TRW. (We expect this would
greatly increase some of the wm

i .) Without special structure, it is unlikely that such a rule will
be optimal. However, because we are using more information than is available in a Jackson
network, the potential for improving performance may be greater in Kelly networks.

4. Another model of server cooperation

Under FC, all k servers are fully busy when there are fewer than k customers in system.
Sometimes this is unrealistic. Here we assume that a customer may be served by only one
server at a time, and that a server originally assigned to an idle station will serve a customer
somewhere else, if needed. Under our preemption assumption in Section 2, this server will
immediately return to the idle station when a customer arrives there.

Whatever the details, we make Assumption A (AA): the network operates under some SAP
such that at all times, the number of busy servers is the number of customers in system when
that number is less than k, and k when that number is at least k.

Note that in terms of whether servers are busy or not, AA operates the same as a standard
M/G/k queue. This observation is useful for approximating time-average work in system, but
as under FC, we still have a network. The flow of customers is different.

Under what conditions are these modified networks stable? Compared with FC, the total-
work-in-system process for these models has the same jumps at arrival times, but from time
to time will decrease at a rate less rapid than −k when positive. Hence total work in system
for these models will be larger (no smaller) at every time t than the corresponding quantity
under FC. This holds on sample paths, and hence for time averages. Actually, this is true under
any model of server cooperation with interchangeable servers. When the FC model is stable,
time-average work under FC is a lower bound on time-average work under AA.

It is immediate that (12) is necessary for modified networks under AA to be stable. We now
show that it is sufficient, but under a restriction that, as we will discuss, is of little practical
importance.

Theorem 2. Modified networks under AA are stable if and only if (12) holds for Jackson
networks and for Kelly networks when, in addition, the number of routes is finite.

Proof. We will show that when (12) holds under the stated conditions, the modified network
is a Markov chain that spends a strictly positive fraction of time in a finite set of states. This
implies the chain is stable (positive recurrent), and hence (12) is sufficient. We first prove the
result for Jackson networks and then extend it to Kelly networks.

Let S be the set of states {n : n1 + · · · + nk ≤ k − 1}, and let Sc be the set of states not in S .
For Jackson networks under preemption, the n are states and S is a finite set.

Each chain leaves S whenever an external arrival finds that chain in a state such that n1 +
· · · + nk = k − 1. Suppose such an event occurs at some arbitrary time t, and from that point
forward, let X be the first passage time of the chain from Sc to S . The duration of X depends
on the total work in system to be performed when X begins.

We represent this total work when X begins by Ta + Tf , where Ta is the total work to be
performed on the arriving customer and Tf is the sum of the TRW to be performed on each
of the k − 1 customers in system found by this arrival (called found customers). For a Jackson

https://doi.org/10.1017/apr.2020.63 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2020.63


478 C.-L. WANG AND R. W. WOLFF

network, a found customer at station i has TRW distributed as Wi, and Tf is the sum of k − 1
such quantities. Clearly, E(Ta + Tf ) < ∞. Note that the distribution of Tf depends on how
many found customers are at each station.

Let {Vm(t)} be the total-work-in-system process for a modified network. Because all servers
are busy during X, {Vm(t)/k} is equivalent during X to the work-in-system process for the
M/G/1 queue introduced in Section 3. Let Ba be an exceptional-first-service busy period (see
[12, p. 392]) for this queue that begins at t with exceptional first service Sa = (Ta + Tf )/k. As
the equivalent (11) holds, Ba is a proper random variable with expectation

E(Ba) = E(Sa)

1 − λTE(Ta)/k
< ∞.

It is also true and easily shown that if we replace Sa by S′
a, to generate B′

a,

Sa ≤ S′
a =⇒ Ba ≤ B′

a

Because Ba ends when work in system hits zero, and the number of customers in system
will fall below k earlier, we have

X ≤ Ba.

Now X is a generic member of a sequence {Xj} of first passage times from Sc to S , with
corresponding quantities Saj = (Taj + Tfj)/k and Baj. The Xj are not i.i.d., because the number
of found customers at each station may change. We want not only that E(X) < ∞, which now
is obvious, but also that

Xj ≤ B′
aj, (31)

where {B′
aj} is an i.i.d. sequence to be identified, with E(B′

aj) < ∞.
This is easily accomplished. Replace exceptional first service Saj with S′

aj = (Taj + Yj)/k,
where for each j, Yj is the sum over i, i = 1, . . . , k, of the sum of k − 1 i.i.d. replicates of Wi

for each station i. We have
Tfj ≤ Yj,

where the Yj are i.i.d. and E(Yj) < ∞. The S′
aj generate i.i.d. sequence {B′

aj}, and we have
(31). Whenever the chain visits the set S , it remains in S at least until the next arrival. These
results imply that the chain spends a strictly positive fraction of time in the finite set S , which
completes the proof for Jackson networks.

Now consider a Kelly network with a finite number of routes. For every customer found in
S , we must enlarge the state space to include the route, stage, and position of every customer
at each station. For the number of states in S to be finite, the number of routes must be finite,
which is required for our method of proof. With notation Xj, Taj, and Tfj, as defined earlier in
the proof, we proceed directly to obtain the upper bound Yj on Tfj.

The TRW on a found customer at some station is the remaining service time at that station
plus the service times at the stations on the remainder of the route it is on. That sum is bounded
above by the total of the service times of all stations visited on the same entire route.

Recall that e(r) is the length (number of service times) of route r, and let lR be the maximum
over r of e(r). Then (k − 1)lR is an upper bound on the total number of service times that remain
to be performed on all k − 1 found customers. We don’t have separate bounds on how many
of these service times are to be performed at each station i, but as we are only seeking an
upper bound, we use the same bound for it. Now define Y as the sum of k(k − 1)lR independent
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random variables, where (k − 1)lR of them have the service distribution at station i, exp (μi),
i = 1, . . . , k.

For Xj, let Yj be the jth replicate of Y . We have Tfj ≤ Yj where the Yj are i.i.d. and E(Yj) < ∞.
The remainder of the argument is the same as for Jackson networks, completing the proof. �

The restriction to a finite number of routes is not really a restriction. Jackson networks
usually have an infinite number of routes. Suppose we have R collections of customers, where
R is finite. Each collection, when served at a k-station network, is a Jackson network, where
all collections have the same service rate at each station, but each station, but each collection
has a different transition probability matrix. Now serve all R collections at the same k-station
network.

The final network is a Kelly network with a countable number of finite deterministic routes,
but with special structure. It is a Markov chain with states that specify station, position, and
transition probability matrix of every customer in system. Because R is finite, the number of
states in set S is finite, and the same result holds.

To distinguish it from time-average work under FC, given in (13), we denote time-average
work under AA by E(Vm

AA). While the first quantity is known, the second is not. Furthermore,
the second depends on the SAP, because the rate at which work in system declines under AA
at any time t depends on the number of customers in system at that time, which in turn depends
on the SAP.

To evaluate performance measures under AA for simple models with symmetric stations, as
was done under FC in Examples 1 and 2, we would need to approximate E(Vm

AA).
We obtained (13) by showing that, up to a scale factor, the work-in-system process for a

modified Kelly or Jackson network under FC is the same as that for an M/G/1 queue. Under
AA, the rate at which the work-in-system process decreases is the same function of the number
of customers in system as that for an M/G/k queue. Of course, the way the number of customers
in system decreases is much more complicated in the network case. Another complication is
that we don’t have exact expressions for M/G/k performance measures. We now propose an
approximation for time-average work under AA that combines time-average work under FC
with what amounts to an approximation of an M/G/k performance measure:

E(Vm
AA) ≈E(Vm

FC)
LM/M/k

LM/M/1
, (32)

where service rate for M/M/1 is k times service rate for M/M/k. Examples may exist where
(32) is very poor, but it works well in Example 1, where we have symmetric stations.

For Jackson networks with symmetric stations, Wi under AA and Wi under FC have the
same distribution, so that E(Vm

AA)/E(Vm
FC) = Lm

AA/Lm
FC. Furthermore, Lm

AA is the same as for
a corresponding standard M/M/k queue, while Lm

FC is that of a corresponding M/M/1 queue.
Thus (32) reduces to (33):

Lm
AA ≈ Lm

FC
LM/M/k

LM/M/1
. (33)

On the other hand, for Kelly networks with symmetric stations, we use the approximation
that worked well in Example 2, namely wm

i ≈ wo
i , to again reduce (32) to (33). It turns out that

the above approximation is pretty good for all values of ρ. A numerical example is below.

Example 6. Under AA, consider a 3-station Kelly network with symmetric stations, and with
routes (1, 2, 3), (2, 3, 1), and (3, 1, 2). We first estimate Lm

AA by simulation, then compare it to
the approximation (33). The results are in Table 3.
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TABLE 3: Results from 2.5 × 105 busy cycles for 3-station Kelly network.

ρ Lm
AA Approximation in (33)

0.1 0.289 0.302
0.5 1.652 1.789
0.9 9.619 9.985
0.95 19.41 20.33

5. One-way cooperation

For an original k-station network, we call each station i stable if ρi < 1, and unstable other-
wise. We now assume one-way cooperation (OWC): a server assigned to a stable station will,
when that station is empty, assist a server at some unstable station. Servers are interchangeable.
Multiple servers may serve the same customer, as under FC and in [4]. We assume preemption.

We now investigate stability conditions for an entire OWC network (not individual sta-
tions, as defined above). For a stable Kelly network, ρi is the fraction of time station i is busy.
Whether stable or not, ρi is the offered load at station i, which is the expected number of (inter-
changeable) servers required to serve all the workload there. Summing over i, (12) means that
the total offered load to the network is less than the total number of servers; this is necessary
for stability.

A 2-station example of server cooperation was analyzed in [4], where ρ1 > 1 and
ρ2 < 1. Thus the original network is unstable (transient in this case). The queue length → ∞ at
station 1, but remains finite at station 2. The authors of [4] modify the original network as fol-
lows: when station 2 is empty, server 2 assists server 1 at station 1, increasing the (combined)
exponential service rate there to some value μ∗

1 > μ1. They show that the modified network is
stable when

μ∗
1(1 − ρ2) + μ1ρ2 > �1, (34)

that is, when the time-average available service rate at station 1 exceeds the composite arrival
rate there.

In this example, we have OWC with preemption. The authors of [4] show that server coop-
eration can improve system performance enormously, but the analysis is difficult and confined
to the 2-station case. Under our interchangeable assumption, we would set μ∗

1 = 2μ1 so that
servers are interchangeable. The stability condition (34) of [4] is now (35), and it is trivial to
show that this is the same as (12) when k = 2:

2μ1(1 − ρ2) + μ1ρ2 > �1. (35)

We present an elementary argument that (35) is sufficient for stability. If this model is unsta-
ble (either transient or null recurrent), the fraction of time station 1 is busy is 1, and the fraction
of time station 2 is idle is at least 1 − ρ2 (it could be larger if some service times intended for
station 2 never arrive there). Hence the departure rate of customers from station 1 is at least the
left-hand side of (35). But this is impossible because it cannot exceed the arrival rate of cus-
tomers at station 1, which is at most �1, the arrival rate there when all customers are served.
Applying the same argument to (34), we have that it is sufficient for the stability of the model
in [4], but without work conservation, our analysis does not show that it is necessary.

Now suppose that we have k stations, where at least one is stable and at least one is unstable,
and we have OWC with preemption. Let S be the set of stable stations and U the set of unstable
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ones. As defined in Subsection 2.1, we consider only stationary allocation policies (SAP).
Let G(n) be an SAP that determines which servers from stable stations are assigned to each
unstable station when the state is n.

Let gij be the fraction of time that server i spends at station j under G, where gii = ρi for i ∈ S.
It is immediate that

∑
j∈U gij = 1 − ρi for every i ∈ S. By the argument used for the 2-station

network, the sufficient sufficient condition of stability for every j ∈ U is

μj

(
1 +

∑
i∈S

gij

)
> �j,

or, equivalently,
1 +

∑
i∈S

gij > ρj.

Now, sum the associated inequalities over all unstable stations:

∑
j∈U

(
1 +

∑
i∈S

gij

)
>

∑
j∈U

ρj.

Interchanging the order of summation and rearranging, we have
∑
j∈U

(1 − ρj) +
∑
i∈S

(1 − ρi) > 0,

which is (12). We conclude the following.

Theorem 3. A k-station OWC network with preemption, where some stations are unstable and
the rest are stable, is stable if and only if (12) holds.

6. Concluding remarks

The use of work in system and the concept of work conservation have a long history in the
analysis of queues. Because our entire paper depends on an analysis of time-average work, it
was essential that we determine an if-and-only-if condition for it to be finite. The fact that this
is a new result for original Kelly networks should come as no surprise, because the analysis of
these networks makes no formal use of work. The only result about work is Corollary 1, which
determines the stationary distribution of the TRW of a customer at each station. The fact that
the mean of this distribution may be infinite is of little importance in original networks.

Now consider FC. Except in symmetric examples, and of course when some stations in the
original network are unstable, it is difficult to determine the extent to which a modified net-
work improves performance. Comparisons are easier for Jackson networks because wo

i = wm
i ,

and when we also have symmetric stations, reducing time-average work reduces the average
number of customers in system by the same factor. While comparisons are more difficult for
Kelly networks, we expect improvements to be comparable or even better. As the number of
stations increases, the reduction by a factor of k in the symmetric case suggests large reduc-
tions in other cases. In fact, when a few stations are initially heavily loaded, allocating more
idle servers to them may produce even better results.

FC gives greater potential improvement than AA. Under AA, in fact, it is easy to see that in
light traffic, there will be little improvement, as the time spent in queue will be small compared
with the time spent in service, while the time spent in service will not change. In heavy traffic,
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on the other hand, we expect the potential performance under AA to approach that under FC.
What is clear is the potential for large improvement, even for moderately loaded systems.

In terms of the applicability of the stochastic assumptions we have made, Poisson arrivals
will often be judged as reasonable, whereas Jackson’s Markovian paths have neither the mod-
eling flexibility nor the applicability that Kelly’s formulation has. Exponential service? Our
approach applies to general service distributions. Under FC, the work-in-system process will
still be that of an M/G/1 queue, and the stability condition will be the same. Of course,
investigating the performance improvement of our approach will be more difficult.

In [6, Section 3.3], beginning on p. 72, Kelly lets each station in the network operate as
a symmetric queue. As we discussed in Subsection 3.1, when individual stations in isolation
with Poisson arrivals operate this way, the stationary distribution of the number of customers in
system is insensitive to the service distribution (depends only on the mean). While Kelly does
not give a formal proof, his results carry over to general service distributions at those stations
that operate this way. However, as we remarked earlier, FIFO does not satisfy the assumptions
of a symmetric queue, and in fact, these assumptions are quite restrictive.

To illustrate that Kelly’s results don’t hold for general service distributions under FIFO,
consider a FIFO tandem queue of single-server stations with Poisson arrivals and constant
service times at each station. If the stations are arranged from longest to shortest service times,
queueing occurs only at the first station. The number of customers at each of the other stations
is either 0 or 1 at all times. For any other arrangement, this is clearly not so. Kelly’s results are
very different, and don’t depend on the arrangement of the stations.

Not only that, operating as a symmetric queue can lead to very poor performance when
service times are regular. For example, suppose we have a single-server queue in isolation
with Poisson arrivals and constant service, and we operate under processor sharing, where for
service rate μ, the remaining service of every customer in system decreases at 1/nμ when
there are n customers in system. Because service times are constant, customers will depart
FIFO, but when they do, some work will have been performed on the customers that remain
in the system. From work conservation, this implies that every customer departs later under
processor sharing than under (the usual) FIFO—strictly later, except for those who end busy
periods.

Finally, with interchangeable servers, our approach applies when multiple servers are
assigned to the stations or even when only one server is assigned to the entire network.
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