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An assessment of the turbulent boundary layer flow structure, which is coherent with
the near-wall region, is carried out through a spectral coherence analysis. This spectral
method is applied to datasets comprising synchronized two-point streamwise velocity
signals at a near-wall reference position and a range of wall-normal positions spanning
a Reynolds-number range Reτ ∼ O(103)–O(106). Within each dataset, a self-similar
structure is identified from the coherence between the turbulence in the logarithmic
region and at the near-wall reference position. This self-similarity is described by a
streamwise/wall-normal aspect ratio of λx/z≈ 14, where λx and z are the streamwise
wavelength and wall-normal distance respectively.
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1. Introduction and context

An objective in turbulent boundary layer (TBL) research has been to identify the
flow structure and associate it with turbulence statistics. Our present study considers
the conceptual aspects of self-similar and wall-attached motions in TBL flows,
specifically in the outer region where the motions are inertia-driven. Throughout
this work, ‘self-similar’ will refer to the feature of geometrical self-similarity of
various-sized turbulent motions. ‘Wall-attached’ will refer to the energy portions of
turbulent fluctuations in the outer region, which are coherent with the wall-shear
stress signature or the velocity fluctuations at a reference position deep within the
near-wall region.

A proposed structure for the energy-containing motions was described by Townsend
(1976) in his attached-eddy hypothesis (AEH) as a hierarchy of geometrically
self-similar eddying motions that are inertially dominated, attached to the wall
and scalable with their distance from the wall. Many studies have presented results
that support the presence of self-similar wall-attached eddies. For example, Klewicki,
Fife & Wei (2009) revealed from the Navier–Stokes equations that a self-similar

† Email address for correspondence: wbaars@unimelb.edu.au

c© Cambridge University Press 2017 823 R2-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

35
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/jfm-rapids
http://orcid.org/0000-0003-1526-3084
mailto:wbaars@unimelb.edu.au
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2017.357&domain=pdf
https://doi.org/10.1017/jfm.2017.357


W. J. Baars, N. Hutchins and I. Marusic

101

102

103

104
10010–110–2 101

104103 106105102

N
yq

ui
st

 fr
eq

.
Wake
region

Self-sim. scaling

Broad outer peak

O
uter regionInner region

Log
region

Near-wall
region

Coherence

Wall

z

(a) (b)

(Nickels et al. 2005)

FIGURE 1. (a) Premultiplied energy spectrogram kxφuu/U2
τ (levels: 0.2 : 0.2 : 1.8) at Reτ ≈

14 000 (Baars, Hutchins & Marusic 2017), alongside a spectrogram of the surrogate
dissipation k3

xφuu (at each z, the dissipative spectrum is normalized by its maximum value;
levels: 0.15 : 0.15 : 0.9). The dashed line closely resembling the ridge in the dissipation
spectrogram is λx = 35η, where η≡ (ν3/ε)1/4, with ε ≡ 15ν

∫
k3

xφuu d log(kx). (b) Regions
in a TBL with a systems diagram depicting the coherence between a reference position,
zR, and a range of z positions.

hierarchical structure is required for invariant solutions of the leading-order mean
dynamics; transient growth and resolvent analysis has also revealed self-similar
behaviour (e.g. del Álamo & Jiménez 2006; McKeon & Sharma 2010); using direct
numerical simulation (DNS), Lozano-Durán, Flores & Jiménez (2012) described
various statistics of the Reynolds stress transport via self-similarity of an ‘attached’
structure and Hwang (2015) revealed a self-similar structure in self-sustaining motions.
High-Reynolds-number experiments have provided support for a logarithmic scaling
of the streamwise variance, u2, predicted by the AEH (Marusic et al. 2013). It
is intriguing that v2 and w2 tend to obey the predicted behaviour of the AEH
over a longer wall-normal range than u2 and start to hold at considerably lower
Reynolds numbers (e.g. Talluru et al. 2014; Lee & Moser 2015; Örlü et al. 2017).
Here, u, v and w are the streamwise, spanwise and wall-normal components of
velocity respectively, with associated coordinates x, y and z. Finally, Hellström,
Marusic & Smits (2016) employed velocity correlations via proper orthogonal
decomposition (POD) of radial–azimuthal planes of pipe flow data, and thereby
revealed a geometrical self-similarity of the POD modes over one decade of length
scales.

When focusing on spectra of the streamwise velocity fluctuations, it is predicted
via dimensional analysis and a spectral overlap that the energy spectra follow a k−1

x
dependence in the inertial range (Perry & Abell 1975; Perry, Henbest & Chong 1986;
Davidson & Krogstad 2009); this is consistent with self-similar and wall-attached
turbulent motions in the logarithmic region, as conceptualized in the AEH. In this
regard, figure 1(a) displays the spectral energy density of u in a premultiplied form,
kxφuu/U2

τ , as a function of streamwise wavelength, λx ≡ 2π/kx, for 10.5 < z+ < δ+.
Superscript ‘+’ signifies a viscous scaling with the friction velocity Uτ and length
scale ν/Uτ (ν is the fluid kinematic viscosity), whereas the boundary layer thickness
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Dataset:
Label: S1 S2 E1 E2 E3

Facility: DNS (raw) DNS (filt.) Melbourne lab. Melbourne lab. SLTEST atm.
Study: Sillero, Jiménez Sillero et al. Hutchins et al. Baars et al. Marusic & Heuer

& Moser (2013) (2013) (2011) (2017) (2007)
Reτ ≈ 2000 2000 13 500 14 000 1.4× 106

Near-wall reference sensor:
Sensor: — — Hotfilm Hotwire Shear
z+R ≈ 4.3 4.3 Wall 4.4 Wall
1y+ ≈ 3.7 41 39 41 723

Wall-normal range survey:
Sensor: — — Hotwire Hotwire Sonic
z+min ≈ — — 10.5 10.5 3500
z+max ≈ — — 1.45Reτ 1.45Reτ 0.03Reτ
1y+ ≈ 3.7 22 22 22 1450

TABLE 1. Experimental parameters of studies containing multipoint synchronized data at
a near-wall reference position (zR) and a wall-normal range of locations (z+min–z+max).

δ is employed for outer scaling. Accordingly, Reτ ≡ δUτ/ν is the friction Reynolds
number (Reτ ≈ 14 000 in figure 1a). A second spectrogram in figure 1(a), following
k3

xφuu, serves as an indicator of the surrogate dissipation ε ≡ 15ν
∫

k3
xφuu d log(kx).

Here, we adopted the local isotropy hypothesis, which is valid only well into the
logarithmic region. See Jiménez (2012) for further details on the dissipation in the
context of the turbulence cascade. In premultiplied form, the k−1

x scaling should
appear as a plateau of kxφuu/U2

τ in a region of (λx, z)-space, obeying inner and outer
scaling (and where the dissipation is zero). Figure 1(a) shows that region as identified
by Nickels et al. (2005); one should note the zero-valued dissipation spectrogram
at these scales. Due to the limited region of k−1

x scaling, convincing support for
a self-similar range remains elusive, even in higher-Reτ pipe flow data (Rosenberg
et al. 2013). The true k−1

x scaling region is presumably larger, but is obscured due to
spectral aliasing (Davidson, Nickels & Krogstad 2006) and the presence of detached
eddies (Marusic & Perry 1995) and (very) large-scale motions (e.g. Adrian, Meinhart
& Tomkins 2000; Hutchins & Marusic 2007) accumulated in a broad outer peak.

Although the aforementioned studies of turbulence statistics may reveal trends that
support a self-similar attached-eddy structure, correlations of the TBL flow with the
near-wall region are needed for an assessment of the wall-attached aspect (preferably
in a way that also allows inspection of the self-similarity). This requires at least two-
point data separated in the wall-normal direction. Two-point correlations in z have
been studied (e.g. Tutkun et al. 2009, and references therein), but have generally been
limited to physical space–space/time domains. In § 3, we apply a spectral coherence
method to multipoint data (figure 1b and § 2), covering Reτ ∼ O(103)–O(106), for
simultaneous assessment of the self-similar and wall-attached nature of the flow.

2. Experimental and numerical data

The TBL data, comprising synchronized two-point u velocity signals at a near-wall
reference position (denoted as zR) and a range of wall-normal positions (from zmin

to zmax), are taken from DNS and three experiments (table 1). From the DNS by

823 R2-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

35
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.357


W. J. Baars, N. Hutchins and I. Marusic

Sillero et al. (2013), streamwise/wall-normal planes of data were extracted. These
planes span the entire TBL in z and extend ∼11.9δ in x to include large-scale motions,
while maintaining an acceptable Reynolds-number increase from Reθ ≡ θU∞/ν≈ 5110
to 6010, where θ is the momentum thickness (Reτ ≈ 1992 at the streamwise centre
of the planes). A modified Coles law of the wake fit (Jones, Marusic & Perry 2001),
with log-law constants κ = 0.41 and A = 5.0, is used to obtain δ (all values for δ
quoted in our work are found via this fit). The raw flow fields (S1) comprise the
spanwise resolution of the DNS (1y+ ≈ 3.72), whereas the filtered data (S2) are
constructed using spanwise box filters of 1y+ ≈ 41 and 1y+ ≈ 22 for reference zR

and range z respectively. These spanwise resolutions, and the viscous scaled reference
position z+R ≈ 4.3, are chosen to match the experimental dataset E2 (described next).

The two temporal datasets (E1 and E2 in table 1) acquired at Melbourne’s boundary
layer facility correspond to Reτ ≈ 13 500 (Hutchins et al. 2011) and Reτ ≈ 14 000
(Baars et al. 2017). Both datasets employed a hotwire for mapping out a range of z
positions, which was synchronously acquired with a fixed near-wall reference sensor
at the same (x, y) position. Since the objective of our current study involves an
analysis of what portion of the outer-region turbulence is coherent with the wall (e.g.
wall-attached), the near-wall reference position should resemble the wall-shear stress
signature. For practical reasons, the reference hotwire for dataset E2 was positioned
at z+R ≈ 4.4, which is nominally within the linear region. The reference position of
the DNS data (S1 and S2) was chosen to match this position (z+R ≈ 4.3) to allow for
a one-to-one comparison. For dataset E1, the near-wall reference sensor comprised a
skin-friction hotfilm at the wall (providing large-scale friction velocity fluctuations,
see Hutchins et al. 2011). As discussed in § 3.3, the coherence between the turbulence
at z+ & 80 and at the near-wall reference position zR, computed from the DNS data,
was unaffected for 0< z+R . 15. Likewise, for our experimental data, the results of the
coherence are nearly identical when the near-wall reference signature is the wall-shear
stress (E1) or the velocity signal at z+R ≈ 4.4 (E2).

Our highest-Reynolds-number data at Reτ ≈ 1.4× 106 encompass the u fluctuations
in the atmospheric surface layer under near-neutrally buoyant conditions at SLTEST
in Utah (E3 in table 1). These data were synchronously acquired using a wall-normal
array of five sonic anemometers and one purpose-built wall-shear stress sensor situated
under the array (Marusic & Heuer 2007).

3. Coherence structure of self-similar wall-attached eddies

3.1. Linear coherence spectrum
To inspect the linear coupling between u fluctuations of each scale – at a near-wall
reference position zR and at a position z in the TBL (see figure 1b) – we compute
the linear coherence spectrum (LCS), defined as

γ 2
L (z, zR; λx)≡

|〈Ũ(z; λx)Ũ∗(zR; λx)〉|
2

〈|Ũ(z; λx)|2〉〈|Ũ(zR; λx)|2〉
=
|φ′uu(z, zR; λx)|

2

φuu(z; λx)φuu(zR; λx)
. (3.1)

Here, Ũ(z; λx) = F [u(z)] is the Fourier transform of u(z), in either x or time,
depending on the data. For temporal data, we transform frequency to wavelength using
Taylor’s hypothesis, where the local mean velocity is taken as the convection velocity.
The asterisk ∗ indicates the complex conjugate, 〈 〉 denotes ensemble averaging and
‖ designates the modulus. It is noted that by definition 0 6 γ 2

L 6 1, and that γ 2
L may
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FIGURE 2. (a) Premultiplied energy spectra of u at z+O ≈ 473 and z+R ≈ 4.4 (dataset E2)
and (b) the corresponding LCS; it should be noted that λx ≡ U(zO)/f . (c) Coherence
spectrogram (levels: 0.1 : 0.1 : 0.9) for dataset E2, following γ 2

L (z, zR; λx), overlaid on the
energy spectrogram of figure 1(a) (the triangle is described in §§ 3.2–3.4).

be interpreted as the square of a scale-specific correlation coefficient (fraction of
common variance shared by u fluctuations at zR and z). In (3.1) only the magnitude
of φ′uu(z, zR; λx) ∈ C is considered, meaning that a consistent stochastic phase shift
between u(zR) and u(z) cannot be deduced from the LCS. Scale-dependent phase
information is explicitly embedded in the phase of the cross-spectrum φ′uu. However,
the LCS may be interpreted as an indirect measure of the phase consistency across
ensembles of u(zR) and u(z), with concurrent amplitude covariations. That is, if each
ensemble used to construct the cross-spectrum contains a different random phase
shift for a certain scale (a non-consistent phase shift), that scale is not correlated and
hence γ 2

L ≈ 0.
To illustrate the LCS, we consider one arbitrary velocity–velocity combination from

dataset E2: an outer-region signal at z+O ≡ 3.9Re1/2
τ ≈ 473 with its associated reference

signal at z+R ≈ 4.4. The energy spectra and the LCS are shown in figures 2(a) and
2(b) respectively (all spectral quantities are bandwidth filtered at 20 %, meaning that
the filtered quantity at wavelength λxi is averaged over λxi± 20 %). Evidently, the LCS
reveals that the largest energetic scales are correlated to a degree of roughly 0.8, while
the correlation drops below 0.1 for λ+x . 104 (for this specific wall-normal separation
between zO and zR). Application of (3.1) to the full z range of dataset E2 provides an
LCS for each u(zR)–u(z) combination. These γ 2

L spectra are shown in figure 2(c) as
a coherence spectrogram – an isocontour map of γ 2

L (z, zR; λx) as function of λx and
z – overlaid on the energy spectrogram of figure 1(a).

3.2. Physical underpinning of the coherence spectrogram

In this section, we focus on the topography of the γ 2
L isocontours in the logarithmic

region. A conceptual reconstruction of the γ 2
L isocontours is performed from an
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FIGURE 3. (a) Schematic of four successive self-similar hierarchies of attached-eddy
structures in an (x, z) plane, with its associated trend in the γ 2

L contours shown in (b).
(c) Extension of (b) to 10 discrete hierarchies (the triangle is described in §§ 3.2–3.4).

AEH point of view, which assumes the existence of a wall-attached structure with
an embedded self-similar hierarchy of scales. However, alternative but equally valid
explanations may exist for the empirically observed trends of the γ 2

L isocontours. Four
discrete successive hierarchies of randomly positioned attached eddies are drawn in
(x, z)-space in figure 3(a), with each consecutive hierarchy being subject to a doubling
in self-similar size and a halving of the number of eddies in this two-dimensional
plane (it should be noted that the typical forward-leaning nature of the structures is
neglected since a consistent phase shift is irrelevant in the context of the LCS; see 3.1).
Self-similarity implies that each eddy hierarchy is associated with the same ratio of
the minimum streamwise wavelength at which energetic variance still appears relative
to its wall-normal extent. We refer to this ratio as the streamwise/wall-normal aspect
ratio, denoted as A ≡ λx/z. Due to the streamwise repetition of eddies associated
with one specific hierarchy, say ones with a wall-normal extent of z = l, energetic
variance may appear for all scales larger than the smallest energetic scale, e.g. energy
appears for λx>A · l. Therefore, for hierarchy with a wall-normal extent of 2(i−1)l,
a non-zero coherence in (λx, z)-space appears for z< 2(i−1)l and λx >A · 2(i−1)l (see
figure 3b). The energy spectrum of the streamwise velocity fluctuations corresponding
to one hierarchy of attached-eddy structures is likely non-uniform with λx and may
depend on the z position within the hierarchy. The magnitude of γ 2

L (the coherence
between two locations separated in the wall-normal direction) may also vary with λx
and z (relative to zR). That is, the coherence may depend on λx within that particular
hierarchy of eddies, and within the wall-normal range spanned by the hierarchy, the
coherence with the wall may vary. However, for simplicity, we idealize a uniform
coherence magnitude in figure 3(b), e.g. the coherence magnitude for one hierarchy
is drawn with a uniform greyscale. It should be noted that even if the coherence
magnitude for one hierarchy is non-uniform, we would still obtain the same final
structure of the reconstructed coherence spectrogram in the limit of infinite Reynolds
number (a limitless increase of the number of hierarchies). When superposing each
hierarchy of self-similar scales, coherence contours are additive (see hierarchies 1 – 4
in figure 3b), as each attached-eddy structure is, on average, randomly positioned
(Woodcock & Marusic 2015). When increasing the number of hierarchies to 10 in
figure 3(c), the contour clearly reflects a discrete version of the smooth γ 2

L isocontours
in figure 2(c). Within a triangular region in (λx,z)-space, bounded by a wall-normal
height z= l (the smallest self-similar structure in the eddy hierarchy), an inner limit
(constant λx/z) and an outer limit (constant λx/δ), the γ 2

L isocontours align with lines
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of constant λx/z (see the contours within the triangle in figure 3c). The quantitative
boundaries of this triangular region are discussed in § 3.4. Within the triangle, the
magnitude of γ 2

L increases linearly with log(λx) (for constant z) and decreases with
log(z) (for constant λx), which is the natural artefact of a geometrically self-similar
structure. Seemingly, the coherence magnitude obeys γ 2

L = C1x ln(λx)+ C1z ln(z)+ C2.
Since the aspect of self-similarity implies that constant C1x=−C1z=C1, the coherence
magnitude within the self-similar region adheres to

γ 2
L =C1 ln

(
λx

z

)
+C2. (3.2)

Evidently, a self-similar attached-eddy structure is ingrained within the TBL flow
where the wall-coherent structure is described by (3.2); its universality is examined
in § 3.4. It should be noted that the sole dependence of γ 2

L on λx/z follows a
similarity hypothesis already proposed by Davenport (1961) in an investigation of the
square-root coherence, γL, in meteorological boundary layers. Morrison & Kronauer
(1969) studied the same similarity hypothesis in pipe flow, which Bullock, Cooper &
Abernathy (1978) supported via two-point radial correlations of turbulence in narrow
frequency bands. del Álamo et al. (2004) used the square-root coherence between
two wall-normal locations as a function of both streamwise and spanwise wavelengths
to also highlight an ‘attached’ self-similar structure.

3.3. Remarks about spanwise resolutions and temporal data limitations
Coherence spectrograms for all data listed in table 1 are shown in figure 4 (in
the same way as in figure 2c). A comparison of datasets S1 and S2 (figure 4a,c)
demonstrates that coarser spanwise resolutions (at least to the same degree as the
laboratory experiments, simulated by S2) do not affect the coherence spectrograms
in our region of interest (z+ & 80 per our discussion later on). The decrease in
coherence for the filtered data S2, in close proximity to zR, is an artefact of the
different 1y resolutions of the z range and zR reference data (table 1). From
figure 4(b,d), it can be concluded that the frequency attenuation in the hotfilm
reference signal of E1 – compared with the hotwire reference of E2 – does not
affect the coherence spectrogram. This insensitivity to spectral attenuation (or
amplification) is an inherent advantage of the per-scale normalization in (3.1).
Two-point correlation coefficients in the physical domain are fundamentally different
in this regard, since the normalization utilizes the root mean square of all fluctuations
via ρuu(z, zR, τ )=F−1

[φ′uu(z, zR; λx)]/[urms(z)urms(zR)]. As such, ρuu will differ for E1
and E2 since urms(zR) of the attenuated hotfilm sensor signal includes more coherent
energy (relative to the total resolved energy) in comparison to the hotwire reference
signal (E2). Even though phase information is embedded within the two-point
correlation coefficient via the time shift τ , a scale-dependent phase may also be
considered directly from the complex cross-spectrum φ′uu (e.g. Baars, Hutchins &
Marusic 2016; Baars et al. 2017). A noticeable difference in γ 2

L from datasets S2,
E2 and E3 (figure 4c,d) is the vanishing coherence in temporal data (E2), compared
with spatial data (S2), for λ+x . 7000. Recently, Baars et al. (2017) showed that the
characteristic temporal frequency of the small scales (generally λ+x < 7000) exhibits
an enhanced large-scale (e.g. λ+x > 7000) modulation in comparison with the spatial
frequency modulation. This strengthening arguably arises from a varying convection
velocity of the small scales via Uc(z, t) ∝ [U(z) + uL(z, t)]1/2 (uL is the large-scale
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FIGURE 4. Coherence and energy spectrograms, following γ 2
L (z, zR; λx) (levels:

0.1 : 0.1 : 0.9) and kxφuu(z; λx)/U2
τ (levels: 0.2 : 0.2 : 1.8) for all datasets listed in table 1.

The triangles (and the regions identified with the dashed lines) are described in § 3.4 (it
should be noted that the inner and outer limits of the triangle are listed in panel a).

velocity), which to a fixed-observer sensor appears as an additional modulation to
the already spatially modulated scales. Since this effect is driven by the amplitude
of uL (varying in z and time), the modulation is inconsistent across z and therefore
suppresses the phase-consistent coherence.

3.4. Universality of self-similar wall-attached eddies
As reasoned in the lead-up to (3.2), the coherence is anticipated to be a sole function
of λx/z in a triangular region bounded by z = l, an inner limit λx/z and an outer
limit λx/δ. We here perform a fit of (3.2) to dataset E2, since its corresponding
coherence spectrogram contains a larger self-similar range in the logarithmic region
than its DNS counterparts (datasets S1 and S2) and captures all energy in the largest
scales (the large scales in the atmospheric surface layer data, E3, were affected by
filtering procedures to eliminate variations in the free-stream velocity; see Marusic &
Heuer 2007; Hutchins et al. 2012). All γ 2

L -spectra from dataset E2 (used in creating
the isocontour in figure 4d) are replotted in figure 5(a) with the wavelength axis
predivided by z. To fit (3.2) to the coherence spectra – and thus determine C1
and C2 – we select portions of the spectra within the logarithmic region, taken as
3Re1/2

τ < z+ < 0.15Reτ (Marusic et al. 2013), and within a region bounded by inner
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FIGURE 5. (a) Coherence spectrogram of dataset E2 (with the wavelength axis predivided
by z). The thicker portions of the curves correspond to 3Re1/2

τ < z+ < 0.15Reτ and 20z<
λx < 6δ. It should be noted that the inclined plane with the solid boundary (bounded by
γ 2

L = 1) reflects (3.2) with C1≈ 0.302 and C2≈−0.796 determined from fitting (3.2) to the
thick portions of the coherence spectra. Relation (3.2) has a region of validity bounded by
an inner limit of λx/z≈14, an outer limit of λx/δ≈10 and a wall-normal height of z+=80
(this region is also indicated in figure 4d). (b) Linear coherence spectra γ 2

L (z, zR;λx) for all
datasets listed in table 1 for wall-normal positions within the range 3Re1/2

τ < z+< 0.15Reτ .

and outer limits, 20z < λx < 6δ (chosen by visual inspection). These portions are
highlighted with thicker curves in figure 5(a) and are surrounded by the dashed
lines indicating the bounds. It should be noted that these bounds for fitting (3.2) are
redrawn on all panels in figure 4 for reference, and that the choice of lower limit
z+ = 3Re1/2

τ avoids the region where the spatial/temporal coherence discrepancy was
observed (§ 3.3). A linear least squares fitting of (3.2) to the γ 2

L -spectra of E2 in
the fitting region results in C1 ≈ 0.302 and C2 ≈−0.796. The corresponding surface
represented by (3.2) is shown with the inclined triangular plane in figure 5(a) and
is bounded by γ 2

L = 1. Now, the inner-scaling limit of this plane may be taken as
the λx/z value for which γ 2

L = 0 (see § 3.2); note this simultaneously exposes the
aspect ratio of a self-similar attached-eddy structure. Hence, we obtain a stochastic
streamwise/wall-normal aspect ratio of

A≡
λx

z

∣∣∣∣
γ 2

L=0

= exp
(
−C2

C1

)
≈ 14, (3.3)

indicated by the solid boundary of the triangle in the γ 2
L = 0 plane in figure 5(a).

At scales beyond an outer limit λx/δ, the coherence is scale-independent, as is
observed in figure 5(a). It should be noted that these scales are not part of the
(3.2)-compatible self-similarity, because self-similar growth of these structures in z is
bounded by the boundary layer thickness; this results in scale-independent contours
of γ 2

L (see the conceptual reconstruction of the coherence magnitude in figure 3c).
From (3.2), it follows that the scale-independent coherence should now adhere to
γ 2

L = −C1 ln(z) + C3. This equation is fitted to the data of E2 within the range
0.07 < z/δ < 0.50 (plateau values of γ 2

L are indicated with the open circles in the
λx/z= 104 plane in figure 5a). The fit, indicated with the dashed line in the λx/z= 104

plane, intersects γ 2
L =0 at z/δ≈0.710. Judiciously, an outer-scaling limit for (3.2) may

be taken as λx/δ=A · 0.71≈ 10 and represents the transition in the coherence from
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a self-similar scaling via (3.2) to a scale-independent trend at λx/δ� 10. Vassilicos
et al. (2015) emphasized that an outer-scaling limit is required for modelling suitable
subranges in (λx, z)-space where the spectral energy density adheres to the AEH; our
identified limit of λx/δ ≈ 10 supports this.

Finally, regarding the wall-normal extent l of the smallest eddying motions in
the self-similar hierarchy, results (not explicitly shown) suggest that l+ ≈ 80 for all
Reynolds numbers. It should be noted that a Reynolds-number dependence in the
lower limit of a logarithmic layer, such as the ∼Re1/2

τ dependence (Klewicki et al.
2009), may be equally valid but is simply dependent on what types of motions
are included in an analysis, namely self-similar or non-self-similar motions. Recent
support for self-similar behaviour down to l+ ≈ 80 was presented by Agostini &
Leschziner (2017) through examining subranges in (λx,z)-space of isotropic (associated
with detached eddies) and anisotropic scales (associated with attached eddies) in
Reτ ≈ 4200 channel flow. A lower bound for the validity of (3.2) cannot be deduced
by fitting a proposed relation to the coherence spectra. First of all, the spatial/temporal
coherence discrepancy affects the γ 2

L -spectra of dataset E2 at z+ . 3Re1/2
τ (see § 3.3).

Second, within the near-wall region, the coherence spectra are not only influenced by
a self-similar wall-attached structure but also by the strong coherent near-wall streaks.
This is particularly clear from the high magnitude of the coherence in the spatial
DNS dataset, S1, shown in figure 4(a).

To summarize the expected region of validity of (3.2), we drew a triangular plane
in figure 5(a) with a lower limit of z+= 80, an inner-scaling limit of λx/z=A≈ 14
and an outer-scaling limit of λx/δ ≈ 10 (it should be noted that the coherence is
bounded by γ 2

L = 1). The same triangular region is drawn on all panels in figure 4
(with the bounds summarized in figure 4a). Intriguingly, the coherence spectrograms
of the DNS data (S1 and S2) and atmospheric surface layer data (E3) in figure 4(a,c)
appear to adhere to these inner- and outer-scaling limits determined from dataset E2

(similarly for dataset E1 in figure 4b, although this is expected due to the almost
identical Reynolds number between E1 and E2). To inspect the universality of (3.2)
further, all γ 2

L -spectra within the range 3Re1/2
τ < z+ < 0.15Reτ (the same wall-normal

range as used for fitting (3.2)) are plotted as a function of λx/z in figure 5(b). A
simultaneous increase in the greyscale and decrease in the line thickness indicates an
increasing z location of the coherence spectra. Relation (3.2), with C1 and C2 solely
determined from dataset E2, is superposed on all data. By inspection, we observe that
the Reτ ≈ 2000 data from DNS contain the same self-similar streamwise/wall-normal
structure of wall-attached turbulence as found in the laboratory (Reτ ≈ 14 000) and
atmospheric data (Reτ ≈ 1.4× 106). This furthermore suggests the universality of (3.2)
with constants C1 ≈ 0.302 and C2 ≈ −0.796, and the associated region of validity
drawn in figure 4.

Finally, in the context of self-similar structure identified in DNS of turbulent
channel flow, our universal streamwise/wall-normal aspect ratio of A ≈ 14 resides
between two distinct self-similar components, described by Hwang (2015) as long
streaky structures (λx/z' 100) and shorter vortex packet-type structures (λx/z' 3∼ 6).
Hwang’s observations are consistent with earlier work by, for instance, del Álamo
et al. (2006). The self-similar components in DNS data have typically been extracted
via asymptotic behaviours seen in unfiltered energy (co)spectra of velocities, which
may obscure an underlying self-similarity (see § 1). del Álamo et al. (2004) showed,
using the square-root coherence, that an inner limit of λx/z ≈ 10 separates the
wall-attached and wall-detached eddies, closely resembling (3.3).
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4. Concluding remarks

A universal wall-attached self-similar structure has been identified in TBL flows
over a Reynolds-number range Reτ ∼O(103)–O(106), and has been explained through
the existence of an attached-eddy structure as conceptualized by the AEH of Townsend
(1976). The wall-attached eddy structure has been quantified in terms of a single
streamwise/wall-normal aspect ratio of λx/z ≈ 14. Evidence of the wall-attached
nature of this self-similar structure follows directly from our spectral coherence
analysis, applied to data comprising synchronized two-point streamwise fluctuating
velocity signals at a near-wall reference position and a range of wall-normal positions.
The results show that the wall-attached self-similar structure is ingrained in our data
in a region defined by an inner-scaling limit of λx/z≈ 14 and an outer-scaling limit
of λx/δ ≈ 10, and may persist down to a lower limit of z+ = 80. Further research is
required to reveal whether an unobstructed view of a k−1

x scaling – consistent with
such a self-similar wall-attached eddy structure – will appear in a similar subrange
of (λx, z)-space.
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