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The linear stability threshold of the Rayleigh-Bénard configuration is analysed
with compressible effects taken into account. It is assumed that the fluid under
investigation obeys a Newtonian rheology and Fourier’s law of thermal transport
with constant, uniform (dynamic) viscosity and thermal conductivity in a uniform
gravity field. Top and bottom boundaries are maintained at different constant
temperatures and we consider here mechanical boundary conditions of zero tangential
stress and impermeable walls. Under these conditions, and with the Boussinesq
approximation, Rayleigh (Phil. Mag., vol. 32 (192), 1916, pp. 529-546) first obtained
analytically the critical value 27n*/4 for a dimensionless parameter, now known as
the Rayleigh number, at the onset of convection. This paper describes the changes
of the critical Rayleigh number due to the compressibility of the fluid, measured by
the dimensionless dissipation parameter D and due to a finite temperature difference
between the hot and cold boundaries, measured by a dimensionless temperature
gradient a. Different equations of state are examined: ideal gas equation, Murnaghan’s
model (often used to describe the interiors of solid but convective planets) and
a generic equation of state with adjustable parameters, which can represent any
possible equation of state. In the perspective to assess approximations often made
in convective models, we also consider two variations of this stability analysis. In a
so-called quasi-Boussinesq model, we consider that density perturbations are solely
due to temperature perturbations. In a so-called quasi-anelastic liquid approximation
model, we consider that entropy perturbations are solely due to temperature
perturbations. In addition to the numerical Chebyshev-based stability analysis, an
analytical approximation is obtained when temperature fluctuations are written as a
combination of only two modes, one being the original symmetrical (between top
and bottom) mode introduced by Rayleigh, the other one being antisymmetrical. The
analytical solution allows us to show that the antisymmetrical part of the critical
eigenmode increases linearly with the parameters a and D, while the superadiabatic
critical Rayleigh number departs quadratically in @ and D from 27n*/4. For any
arbitrary equation of state, the coefficients of the quadratic departure are determined
analytically from the coefficients of the expansion of density up to degree three in
terms of pressure and temperature.
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1. Introduction

Thermal, or natural, convection results from a complex interaction between
dynamical principles and the thermodynamics of a fluid. This complexity was
an obstacle to the analysis of even the most idealized configurations. A great
simplification, assumed to be valid when compressibility effects can be ignored,
was put forward by Oberbeck (1879), then Boussinesq (1903), at the expense
of thermodynamic coherence. Using Boussinesq’s equations, Rayleigh (1916) was
able to solve the problem of the stability of a fluid layer heated from below,
and obtained a critical value, now expressed as a dimensionless number named
after him, the Rayleigh number. For boundary conditions of no shear stress with
imposed temperatures, the critical Rayleigh number is 27m*/4. Thanks to the
Oberbeck—Boussinesq model, this stability analysis can be done analytically, with
a simple eigenvector spatial structure for temperature perturbations of the form of
plane waves, with lateral wavenumber equal to 7t/+/2 and a cosine dependence along
the vertical direction.

Meanwhile, Schwarzschild (1906) proved that a sufficient condition for stability in
a compressible fluid was obtained when the temperature gradient does not exceed the
adiabatic gradient, which can equivalently be stated as the non-decrease of entropy
with height. Then Jeffreys (1930) showed that, in the limit of small compressibility
effects, the critical threshold for convection instability was identical to the original
critical Rayleigh number, as long as the temperature difference is replaced by the
excess temperature difference above the adiabatic temperature difference (usually
called the superadiabatic temperature difference).

Since these pioneering works, the stability of compressible convection has continued
to be an active subject of research. Spiegel (1965) has been studying the convective
instability of a layer of ideal gas. A single small parameter was identified, equivalent
to the dissipation number. It was found that the critical superadiabatic Rayleigh
number does not depend on that parameter at order one (when evaluated in the
middle of the layer), so that the first deviation is of order two. Giterman & Shteinberg
(1970) and, more recently, Bormann (2001) argue essentially that Jeffreys (1930) is
correct and that the superadiabatic critical Rayleigh number has small deviations
from its Boussinesq value 277*/4. Other papers have attempted to evaluate the
change in critical superadiabatic Rayleigh number, when compressibility effects are
negligible but when the temperature difference is large (Busse 1967; Paolucci &
Chenoweth 1987; Frohlich, Laure & Peyret 1992). They show that the deviation from
the Boussinesq value scales as the square of the dimensionless temperature difference
between the bottom and top boundaries, (Tpouom — T1op)/To (Where Ty is the average
temperature (Tponom + Trop) /2).

A category of research work is related to the formal derivation of the Boussinesq
equations from the general equations. Spiegel & Veronis (1960) use one small
parameter Ap/p; Mihaljan (1962) uses two small parameters, o7 and the ratio
between the dissipation number and the dimensionless temperature difference; while
Malkus (1964) considers the vanishing limit of the dissipation parameter and of
the dimensionless temperature difference: we shall here choose the same small
parameters as Malkus. Other research is highly relevant to the present study, namely
the derivation of intermediate models between the exact and Boussinesq models. A
number of ‘soundproof’ models have been proposed whose first motivation was to
remove sound waves from the set of solutions to the convection equations. Otherwise,
one would like the anelastic models to be able to model accurately convective
phenomena. The anelastic model was derived first for atmospheric studies by Ogura
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& Phillips (1961), then for the Earth’s core by Braginsky & Roberts (1995) and then
for stellar convection by Lantz & Fan (1999). The anelastic model is basically a linear
expansion of the general equations around an isentropic profile. This is in complete
correspondence with Jeffreys (1930), as the reference takes into account the adiabatic
profile already, and only superadiabatic quantities are computed. The anelastic liquid
approximation (ALA) was proposed later by Anufriev, Jones & Soward (2005), where
the contribution of pressure fluctuations are neglected compared to that of entropy
fluctuations. In the present work, we shall test one aspect only of these models:
their ability to provide a good approximation of the critical superadiabatic Rayleigh
number. It should be noted however that we will have to make changes to these
approximation models in order to study their stability: essentially, instead of an
adiabatic base profile, we will need to take a conductive base profile. The adiabatic
profile is indeed unconditionally stable. Other soundproof models (Durran 1989; Lipps
1990), used preferentially in stratified cases, will not be considered in this paper.

The structure of the present work is the following. Section 2 will be devoted to the
geometry, notation, governing equations and boundary conditions. Dimensional scales
and dimensionless equations will be defined in § 3, and base profile solutions in §4.
In §5, we present the linear stability analysis and the determination of eigenvalues
using the tau-Chebyshev expansion. An approximate stability analysis is performed
in §6 using two modes only for temperature disturbances (with vertical dependence
in cos(mz) and sin(2mz), where —1/2 < z < 1/2 is the range of the dimensionless
vertical coordinate z), allowing us to obtain analytical equations for the critical
superadiabatic Rayleigh number up to degree two in the dissipation number and in the
dimensionless temperature difference. In § 7 we introduce the approximation models
that will be tested compared to the exact stability analysis: the quasi-Boussinesq
and quasi-anelastic liquid approximation (quasi-ALA): they have the same features
as the Boussinesq and ALA models, but the base profile is the conduction profile
with compressibility taken into account (for the determination of the profile of
density, pressure, entropy, ... ). In § 8, we consider different equations of state (ideal
gas, Murnaghan’s equation for condensed matter, and a generic equation of state) and
solve the linear stability analysis. We compare the numerical Chebyshev results to the
analytical expressions obtained from the two-mode analysis. Those expressions allow
us to predict, for each equation of state, the accuracy achieved by the approximation
models considered, as far as the critical superadiabatic Rayleigh number is concerned
(see §9). In the same section, we discuss the validity of the approximation models
in geophysical objects. In § 10, the current state of our knowledge is summarized.
The routines and files necessary to obtain the numerical results presented in this
paper are available at https://doi.org/10.1017/jfm.2017.108. The file README.txt
provides explanations on how to run the Chebyshev eigenvalue calculations and how
to compute the two-mode results, using octave for instance.

2. Rayleigh-Bénard configuration and governing equations

A horizontal fluid layer of thickness L, in a uniform gravity field g = —ge., is
heated from below: the lower and upper boundaries are maintained at Ty, and
T,,p, respectively. The fluid is a Newtonian fluid and obeys the Fourier law of heat
conduction. Its dynamic viscosity p and thermal conductivity k& are taken to be
uniform, independent of pressure and temperature, for simplicity. The mechanical
boundary conditions are stress-free, impermeable, on the upper and lower planar
boundaries. The governing equations for convection consist of the equations of
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FIGURE 1. Rayleigh-Bénard configuration, with imposed temperatures and tangential
stress-free boundary conditions.

continuity, momentum conservation (Navier—Stokes with no bulk viscosity), entropy
balance and an equation of state:

ap

5 +V.-(pu)=0, 2.1
Du ) 1
IoE:—Vp—Fpg—FM \Y% u+§V(V-u) , (2.2)
DT Dp
- Ti = c . kva, 2.3
P o~ Dr T 2
p=p(p,T), (2.4)

where t, p, u, p, T, ¢,, a, € and 7 are the time, density, velocity vector, pressure,
temperature, heat capacity at constant pressure, expansion coefficient, deformation rate
tensor and stress tensor, respectively. A vertical coordinate axis z is defined with its
origin on the mid-plane of the layer (see figure 1). Horizontal coordinates x and y
form an orthogonal unit reference frame. The boundary conditions associated with the
governing equations are the following:

L
u, <z= :I:) =0, (2.5)
2
T _L =T, T|z= L =T, (2.6a,b)
= D) — Ltops = D) — L bottom» -Oa,
ou, L
=+— | =0, 2.7
L <z 2) @7
(L —xE) o (2.8)
0z EEy )T ’

The initial condition considered will be a quiescent state and will be described in § 4.
The mass of fluid per horizontal unit surface area is set when the density of the base
profile py is specified at z=0.
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3. Dimensionless formulation

The dimensional quantities will be made dimensionless with the help of the
quiescent base solution. The density, thermal expansion coefficient and specific
heat capacity at constant pressure of the base solution at z = 0, i.e. pg, ¢y and
¢y respectively, will be the scales for density, thermal expansion coefficient and
specific heat capacity at constant pressure, and T = (T, + Tponom)/2 Will be the scale
for temperature. Pressure p, velocity u, time ¢t and spatial coordinates x are made
dimensionless using pogL, k/(poc,oL), L?pocyo/k and L, respectively. The governing
equations take the following dimensionless form:

9
8—’;+V.(pu)=o, 3.1)
Prip2t - _Ra,Vp—R Vit vy 3.2
P = ~RanVp — Raype.+ Viu+ 2V(V -u), (3.2)
DT D
per s, — DaTFIZ =é:T+ VT, (3.3)

where Pr = pcy/k is the Prandtl number, Ray, = pigc,oL’/(uk) is called here
the thermodynamic Rayleigh number and D = ogL/c, is the dissipation number.
The thermal boundary conditions necessitate an additional dimensionless parameter
and we choose the ratio of the temperature difference to the average temperature
a =2Tyorom — Trop) / (Tborom + Tiop), s0 that the boundary conditions (2.6) become

(o= Vo129 (=) oq14@ (3.4a.b)
i=5)= 5 === 5 A4a,

From our choice of dimensional scales, another dimensionless number is obtained
from the product oyTy. The equations of state will also be made dimensionless
when they are considered in § 8. Depending on the equation of state, dimensionless
parameters other than the four numbers listed above may or may not be necessary.
We have not specified how the viscous dissipation term ¢ : T was made dimensionless
because this term is quadratic in terms of velocity disturbances, hence will play no
role in the linear stability analysis.

From this set of dimensionless numbers, it is possible to express the classical
Rayleigh number, Ra, as follows:

Ra = RthO[O(Tbottom - Ttop) = RagagToa. (35)

4. Motionless base solution

The base solution is a pure conduction, hydrostatic state. The dynamic and thermal
equations (3.2) and (3.3) lead to the following equations for p,, p, and T, the base
pressure, density and temperature solutions, which are functions of z only:

dpy

2. 4.1

dz Pb 4.1)
&7y _ 0 4.2)
dz2 '

The boundary condition (3.4) for temperature needs to be satisfied. The conduction
solution can be expressed as

T,=1—az. 4.3)
The opposite of the temperature gradient is @ and the bottom to top temperature ratio
Tbnttom/Ttnp iS r= (2 + a)/(z - a)-
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5. Eigenvalue equations for infinitesimal disturbances
Infinitesimal disturbances, denoted by primes, are added to the base solution and the

temporal linear stability is analysed. The governing equations are linearized around the
base solution and the resulting problem can be written as

CLA 5.1)
=-V . (o), )
91 1%
—1 au/ / / 2.7 1 ’
Pr="p, o —RayVp — Ragpe,+Vu + *V(V ‘u), (5.2)
T’ ap AT, d
prco s = DayT, ; —prept Y 4 Da, Ty, f by ver, (5.3)

where ¢,, and o, are the heat capacity and thermal expansivity along the base profile.
The problem does not explicitly depend on time ¢, nor on the horizontal directions x
and y. Thus general solutions can be sought in the linear space of plane waves:

T' =T(2) exp(ot + ikx + ik,y), (5.4)

and so on for all variables, where o is the growth rate of the disturbance, and k, and
ky its horizontal wavenumbers. As rotation along a vertical axis leaves the problem
unchanged, we can restrict the analysis to k, = O without any loss of generality.
Equations (5.1), (5.2) and (5.3) are then changed into the following eigenvalue
problem:

o p = —ikcpplt, — pb(gl; - (ZZ’% (5.5)

o Pr pyit, = —Rayik,p — 3k§ 1’; ‘Z“ + ‘gz", (5.6)
oPrpyit. = —Ra,h(;[z — Rayp — kKu, + % (Zx + : ((112;2, 5.7
Upbcpr — 0Da,Tpp = —ppcpplt; ddT + DayTyu, (szh KT + ((112; (5.8)

Finally, the density disturbance p is expanded linearly in terms of temperature T and
pressure p disturbances in (5.7) when a particular equation of state will be considered:

- dp
p= =

.
T+ 2
o7 |,

| P (5.9)

T

Our objective is to obtain the critical value of the thermodynamic Rayleigh number
Ra,, as a function of the other dimensionless numbers. We restrict our analysis
to the critical threshold, Re(o) = 0. The eigenvalue problem is not self-adjoint in
general, unlike the classical Boussinesq problem; however, the imaginary part of
the critical eigenvalue is always found to be zero in our numerical calculations.
The first instability takes the form of a stationary pattern, not a travelling wave. A
consequence is that the Prandtl number is irrelevant in our study, since it appears
only as the product o Pr~! in the eigenvalue problem, in (5.6) and (5.7).

The eigenvalue problem is solved and the critical Rayleigh number for neutral
stability is obtained. The method is that of Chebyshev collocation expansion and we
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use the differentiation matrices provided by the DIFFMAT suite (Weideman & Reddy
2000). The computations are run in GNU Octave on a laptop. The results of the
stability analysis will be presented in terms of the superadiabatic Rayleigh number,
defined as

RaSA = Rath()IQToATSA, (510)

where ATy denotes the dimensionless superadiabatic temperature difference. The
imposed total dimensionless temperature difference is a, but there are actually
different possibilities to define the dimensionless adiabatic temperature difference.
Here, we simply take the product of the adiabatic gradient ag7/c, at z = 0 (at
conditions p = py and T =T,) with the thickness L, which provides a dimensionless
adiabatic temperature difference equal to D, so that we define ATg, as

ATSA =a-—7D. (511)

We could have taken the total temperature difference calculated across a complete
adiabat, instead. Then, again, different choices of adiabatic profiles are possible: the
profile passing through the same conditions as the conduction profile at z = 0, the
profile with the same total mass, ... . Each choice of an adiabatic temperature profile
leads to a different value of the superadiabatic jump. Because a difference in z? in
the adiabatic temperature makes no contribution between z = —1/2 and 1/2, other
definitions would have led to temperature jumps departing from (5.11) by a cubic
expression in terms of a and D. Anticipating the rest of the analysis, this would
change the departure of the critical Rayleigh number from the Boussinesq limit by
quadratic terms in a and D. This is also the order of departure of the critical Rayleigh
number from the Boussinesq limit that we compute in the following. However,
differences of superadiabatic Rayleigh numbers from different approximations (exact,
quasi-ALA and quasi-Boussinesq) will not depend on that choice of superadiabatic
temperature difference, as its contributions will essentially cancel out.

6. An approximate analysis with two modes

We assume that the imaginary part of the eigenvalue is zero at critical conditions,
o =0, and (5.5), (5.6), (5.7) and (5.8) take the form:

0 = —ik,ppity — ppDu, — pyit;, 6.1)
U | SN
0 = —Rayikp — gkx”x + ?DuZ + D*u,, (6.2)
N ap| ~ p|l - . ke 4.
0 = —Ray,Dp — Ray, 87;)" T Ray al B- Kii, + 5'Dii, + 3D, (63)
0= (—ppep T} + Day Tpp))ii, — KT + D°T. (6.4)

The primes denotes z derivatives of the base solution profiles, while the symbol D
(respectively D?, D, ... ) denotes z derivatives (respectively second, third, ...

derivatives) of the perturbation variables. Then u, is substituted using the first
equation, and a function of z is introduced, g(z) = (opc,pT), — DayTpp,)~", in order
to simplify the fourth equation, which takes the form u, = g(z)(D* — kfﬁ". Note that
2(0) = (T,(0) — Dp,(0))"' = (—a+ D)~'. The pressure term is substituted using the
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second equation into the third one and u, is expressed in terms of T using the fourth
equation. Finally, we get a single differential equation for the perturbation T

’ _ P _ »
0= —(D*— k5D (D + pb) g(D* — DT — Pl T+ 12D - 1)g(D? — kAT
Pb »
9 / N
p [ kﬁp” (D* — i) — (D* — &) <D+'O”> g(DZ—k’f)] T (6.5)
aplr 13 ' Pb ’

We now introduce f(z) = ATsag(@) = ATsa/(ppcppT, — Doy,Tppy,), where the
superadiabatic temperature difference ATs4, has been defined in (5.11). As a
consequence of the choice of superadiabatic temperature difference (5.11), we obtain
the value of f at z=0:

flo=—L (6.6)

The critical disturbance equation can be written:

0 = —(D*—K)D (D+ Py )f(D2 T

k2 - ~
_ & e, 0P T+ 12D — IAf (D> — k)T
aoTO 8T P
9 ; 7
+ 2 [ el ”f(D2 — (D= i) (D + "")f(DZ - kb} r. (6.7
ap T Pb

This equation depends on several functions of z, computed along the base profile,
namely f, p,/pp, (3p/0T)|, and (dp/dp)|r, all depending on the equation of state
considered and on the dimensionless governing parameters a and D. In the limit of
vanishing temperature difference across the convecting layer, a < 1, the temperature
becomes nearly homogeneous T >~ T,. The variation of density with pressure at z=0,
(0p/9p)|r0=po/Kro (Kro is the isothermal incompressibility at z=0) can be expressed
in the following dimensionless form:

ap

| =DayTy, (6.8)
ap |70
using the general Mayer’s relation
(XZKTT
Cp—Cy= . (6.9)

where c, is the heat capacity at constant volume, and defining, for the sake of brevity,

~ D
D= 1 Yo = @ and & = a()T(). (61061—C)
1 - Yo Cvo

Note that D can also be written as

~ 1 pogL
,D:?/)Og '
a Ko

(6.11)

The parameter D is therefore the ratio of compressible to thermal effects. There is no
surprise in that it will be the central parameter to discuss the compressible effects in
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thermal convection. In the limit of a vanishing compressibility (D <« 1 or D < 1),
the base density becomes independent of pressure. Therefore, when both a and D
are small, the temperature becomes constant, the density independent of pressure and
f=-1p,/p=0, (3p/3T)|, = —Ty and (3p/dp)|r =0, and the critical equation
becomes the well-known dispersion relation for Rayleigh—Bénard stability:

(D* — k2)°T + k’Rasy T =0, (6.12)

in accordance with Jeffreys’ analysis (Jeffreys 1930). Under the additional assumption
of a negligible adiabatic gradient compared to the imposed temperature difference,
D « a, the superadiabatic Rayleigh number Rag, is replaced by the classical Rayleigh
number (3.5) in (6.12), which then becomes the exact equation solved by Rayleigh
(1916) in the Boussinesq approximation. The thermal perturbation 7 satisfies 7=0 in
z==%1/2 (fixed temperatures), DT =0 (u, =0) and DT =0 (no-stress conditions).
It has non-zero solutions for a minimal value of Ragy =277*/4 and a corresponding
wavenumber k, = 1t/+/2. The corresponding eigenvector is a cosine function cos(mz).

Now, for a finite temperature gradient a or dissipation number D, the functions
f and (0p/9dT)|,, have some z dependence and the functions p,/p, and (dp/dp)|r
are not zero. As a consequence, when an even function of z is initially considered
for the temperature eigenvector, there are odd contributions generated in (6.7). Hence,
the eigenvectors must be a combination of at least an even and an odd contribution.
Hence, we decided to expand the eigenmodes as

T= cos(mz) + € sin(27z). (6.13)

The motivation for this particular choice sin(2mz) of odd function of z is that it
satisfies the boundary conditions and that it is the second least dissipative harmonic
mode after cos(mz). In addition, we have checked on some eigenvectors obtained
using Chebyshev expansion that they could be written as the sum of two such modes
(6.13) with negligible residuals (see § 8 and figure 9).

We wish to achieve a second-order accuracy, in the base temperature gradient a and
in the dissipation number D, so that we can evaluate the change in critical Rayleigh
number to a similar degree. We thus expand the functions of z related to the base
profile f, p,/ps, (3p/3T)|, and (dp/9dp)|r in Taylor expansions of degree two, for
instance:

df

f(Z)ZfO‘f‘(T

Z

1 d*f
0 ) dz?
and similarly for the others. The introduction of the expansions of the form (6.14) and
(6.13) into the critical equation (6.7) generates terms that are products of trigonometric
functions and powers of z. We project these functions back on the two chosen modes
cos(mz) and sin(27z). The projection is that associated with the L? functional space on
[—1/2, 1/2] (see table 1). The change in the reference profiles due to the dissipation
parameter D and finite temperature gradient a affects not only € but also the critical
Rayleigh number by a quantity dRasy,

2, (6.14)
0

Ragy = 3 1" + dRag,. (6.15)
For any equation of state from which the stable basic state can be computed and
Taylor-expanded (as in (6.14)), our eigenmodes (6.13) introduced into the critical
equation (6.7) lead to two equations (i.e. the terms in cos(mz) and sin(2mz)) whose
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cos(mz) sin(27z)
8
sin(7z) 0 —
31
in(7mz) ! 0
sin(T —
z z o
1
zcos(27z) 0 -
47t
4
cos(2mz) — 0
3n
(12) 0 16
cos(m —
z z o2
in(27z) 16 0
in(27w —
zs Z o2
2n? -3
2 sin(27z 0 _
z- sin(2mz) i
2 cos(2) 2 —6 0
cos(m —_
‘ . 1272
2 Sin(n2) 0 187 — 112
¢ ¢ 277
9% — 104
2 2 _— 0
z-cos(2mz) T

TABLE 1. Projection coefficients of some functions on the modes cos(mz) and sin(2mz).

solutions are the eigenmode amplitude € (from the sin(2mwz) part) and the perturbation
of the critical Rayleigh number dRass (from the cos(mz) part). A close look at the
equations indicates that € depends linearly on the parameters describing the distance of
the problem from the classical Boussinesq problem (mainly a and D, the temperature
gradient and dissipation number) while dRas4 is only affected by terms of order
two. Similarly the horizontal wavenumber k, is also affected by terms of order two.
Moreover, because the critical Rayleigh number is also such that dRags/dk, = 0
(minimal Rayleigh number over wavenumbers), the quadratic disturbance of k, does
not affect the evaluation of the quadratic disturbance of Rags. It is hence correct to
use a constant value k, = 1t/+/2 for this analysis.

Let us now provide some details on how the equations for € and dRas, are derived.
We introduce 7 = f(D* — kf)T, a — D times the vertical velocity component u,, and
v =D + p,/pp)u, which is i(a — D)/k, times the z derivative of the horizontal
velocity component (from (6.1)). Using variables T, % and ¥, the critical equation (6.7)
takes the form:

8/)

k ~
O=—(D2—kf.)'6—ax Rass —| T+ K (D* — k)i +-

{ kz'o"~ D? + k2Dii| .

3 X
_ (6.16)
Both u and v satisfy the same boundary conditions as T (zero in z = 41/2) so that
they are also projected on the same modes defined in (6.13):

u=U,cos(nz) + U, sin(27z), (6.17)
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v =V, cos(mz) + V,sin(2mz). (6.18)

From the definition 7 =f(D? — kﬁ)i we have

3n? df w3\ df
U=—"fy—8 — ——+) =, 6.19
2 /0 Edzo+( 16+8) 2 |, (€19
72 8 df
U=-9—efy— = —| , 6.20
. > < 3 dz), (6.20)

where the projections determined in table 1 have been used. Using Maxima, software
for formal manipulations, we shall obtain the Taylor coefficients for f and other
quantities, once an equation of state is specified. Next, from v=D(D + p,/p,)u, and
using table 1 again, we obtain:

1 d(p] 8 o]
V.= (—rﬁ 1 L de/o) ) v+ s 2| o, 6.21)
8 /
V,=—4n’U,— > 2| U (6.22)
3 Lo o

Before we can write (6.16) using our two base functions, we need to define two
auxiliary variables with the same zero boundary conditions as 7T in z==41/2:

90l -
PV F = A, cos(nz) + A, sin(272). (6.23)
o7 |,
P — B, cos(nz) + B, sin(272). (6.24)
Pb

with coefficients

1 1\ d*@p/dT 16 d(dp/dT
A= (Lo L) dOp/DL 16 d@p/AD,| o)
24 4x? dz? o 9m? dz 0
16 d(dp/oT
=2 d6p/0Dl| 4 (6.26)
9n? dz 0
/ 16 d(p;
B.=2 v+ 2 dioy/ ) U., (6.27)
P o 9n2  dz |,
/ 16 d(p;
B, = & U+ — M U,, (6'28)
where we have used (9p/97T)|,0 = —¢&. We can now write the projection of (6.16) on

cos(mz) and sin(2mz) keeping only the terms of appropriate order:

3 2y (27wt +dR A 3JT4U N ap 27[23 8V N 4752U
Ve — < a c c a.. c L Vs s
2 2% \ 4 A 4 plol 3 3 3
d@p/ap)lr| [1 7
Ly _™ul=o 6.29
* dz o L2 4 6.29)
9 , w2 27m? 9n? ap 8 47?
STV — == Ay ——Us+ — =V.——U.| =0. 6.30
2" 2a 4 4 + ap |0 13 3 (6.30)



https://doi.org/10.1017/jfm.2017.108

https://doi.org/10.1017/jfm.2017.108 Published online by Cambridge University Press

Rayleigh-Bénard stability and validity of approximations 275

Equation (6.30) is used to determine the coefficient € (see 6.13). This coefficient
€ depends linearly on the parameters describing the distance of the problem from
the classical Boussinesq problem, a and D, the temperature gradient and dissipation
number. Equation (6.29) is then solved to obtain dRass, the change in critical
Rayleigh number compared to the classical critical Rayleigh number 27m*/4 for
no-stress boundary conditions. This change is thus quadratic in a and D: the terms of
order zero cancel out (Boussinesq limit), the terms of order one are found in (6.30)
used to determine the coefficient € of the sin(21z) mode, and the terms of order two
balance dRass in (6.29), with A, containing a term of order zero in a and D.
Equation (6.30) and then (6.29) are solved explicitly in terms of the quantities f,
df/dz, &f/dz%, p,/ps, d(py/p)/dz, (3p/0T), d((0p/dT),)/dz, d*((3p/0T)|,)/d2?,
d(p/dp)|r and d((dp/dp)|r)/dz, evaluated at z=0. Equation (6.30) leads to

8 d 1 do 0 ,
c— o U L dopp dp) Sm| | (6.31)
1172 dzf, @& dzdT|,, 9plp P |o
With this value for €, dRag, is obtained from (6.29):
9 d p, 64] o 64 d ;
dRagy = —-7* b <36the + {21‘52—1— } ey = ¢ ) Ly
4 dzps|, 31 0plry 3 dziy/ polo

N ot 27x? 1 d ap d’f
32 16 & dz?dT |, dz?

)

df| 12 dd 9
Y A I VA TR i
dz|, «a dzdT|, op |70
9n® d 9 op| d
Jm doadp 9p l ) (6.32)
4 dzap|p op |0 dz|,

7. The quasi-Boussinesq and quasi-ALA models

We refer to the stability analysis presented in §§5 and 6 as to the exact model
for Rayleigh—Bénard stability, since it is based on the continuity, Navier—Stokes and
entropy equations without any approximation. In the exact model the linearized density
perturbation is therefore
00| i 0P

aT |, ap

like in (5.9). We will now introduce two models, corresponding to changes in the
governing equations, with different assumptions on compressibility. For both models,
the base solution is kept unchanged, which means that compressible effects are fully
taken into account. Consequently, the energy equation for the fluctuations is not
changed. The assumptions only concern the density fluctuations in the momentum
equation. The quasi-Boussinesq model consists in neglecting the pressure dependence
of the density fluctuations in (7.1) and therefore in using

P (7.1)

T

0

,_0p

= T'. 7.2
T, (1.2)

P

The quasi-Boussinesq critical superadiabatic Rayleigh number RaZ, is obtained from
the same Chebyshev collocation expansion as described in §5. This model is not
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called a Boussinesq model, because the base profile takes into account compressibility
effects, contrary to the original Boussinesq model. Similarly, the quasi-ALA model is
reminiscent of but not identical to the ALA as described in (Anufriev et al. 2005), as
the base profile is the conduction profile, not the adiabatic profile. Density fluctuations
are first expressed in terms of fluctuations of pressure and entropy, instead of pressure
and temperature in (7.1):

9 9
_ o) L 9P

= . 7.3
op Sp os| " 73

p

0

Then two assumptions are made. The first term is evaluated as though the base density
gradient were close to the adiabat, and the pressure dependence of entropy fluctuations
are neglected compared to their temperature dependence:

—_Ldo 00

T. 7.4
Pb dZ P oT ( )

p

The first assumption on the density gradient does not need to be made in the
classical ALA model, where the solutions are indeed expanded from the (hydrostatic)
adiabatic profile, which is not possible in a stability analysis, as the adiabatic profile
is always stable. The quasi-ALA critical Rayleigh number Ra§i* is obtained from
a similar analysis as described in §5. In summary, the terms —Vp' — p’e, in (5.2)
are changed into —Vp' — (dp/dT)|,T’e, in the quasi-Boussinesq model and into
-V (P'/p») — (3p/0T)|,T'e, in the quasi-ALA model.

For the quasi-Boussinesq and quasi-ALA models, a two-mode approximation
analysis is also carried out (see § 6), providing €® and €4, the sin(2mz) contributions
of the eigenmodes of the quasi-Boussinesq and quasi-ALA approximations, as well
as dRa%, and dRagk*, the departures from 27n*/4 of the critical Rayleigh numbers
for each approximation, respectively. Equations (6.29) and (6.30) are modified in the
following way. For the quasi-Boussinesq approximation, all terms involving (dp/dp)|r
or its derivative with respect to z are removed, while for the quasi-ALA approximation,
(0p/0p)|r is replaced by —p;/p, and d((dp/dp)|r)/dz by —d(p,/ps)/dz. The same
changes are therefore made to the solutions for € and dRags in (6.31) and (6.32).
The differences §e® =€® — e and §e*” = e — ¢ can then be expressed as

seP— o 001 (7.5)
11772 93p |4
seta =S (9p) P (7.6)
1772 \p |l ovlo/) '

The differences of dRass induced by the quasi-Boussinesq and quasi-ALA approxi-
mations, §Ra%, = dRa8, — dRags and SRait* = dRa{t* — dRas,, take the following

form:
647 9 /
SRa®, = — (36]‘[2363— [2n2+ ] o ) 2
3 8p 70/ Pblo
d 12 da 9
(e Y| _12 4900 ) am 108 2P| 2
dz|, «a dzdT|, p |0
9n2 d 9 ap| d
9t dop) 0 I , (7.7)
4 dzop|p op |70 dz|,
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641 [ / /
SRaMA = — (363125&“‘— [27[24-] [p 2 D 2
31Loplre Polol/ Polo
d 12 da 9 4
_ (36 Y| 12 000 ) asean 4 joga2 (p et 2 eALA>
dz|, a dzdT|, P |10 P o
on? /d 9 d o 9 1\ d
_R<P %>_M<ﬂ %)f, (7.8)
4 dzop |y dz p» o oplro Polo/ dz|,

8. Stability results for various equations of state

We now consider different equations of state and perform the stability analyses,
numerical Chebyshev expansion and two-mode analysis, for the exact, quasi-
Boussinesq and quasi-ALA approximations.

8.1. Ideal gas equation of state
The following dimensional equation of state is considered:

p=pRT, (8.1)

where R="R/M is the gas constant, while R and M are the universal gas constant and
molar mass of the gas, respectively. In addition, ideal gases are characterized by the
choice of a constant heat capacity at constant volume c,. It can then be shown that c,
is constant as well and obeys Mayer’s relation: ¢, — ¢, =R. The ratio of heat capacities
is ¥y =c¢,/c,. Using the scales already defined, pogL for pressure, p, for density and
T, for temperature, the equation of state takes the following dimensionless form:
1—y= ' pT
D D

p=pT (8.2)

Finally, for ideal gases, the marginal stability problem depends on four dimensionless

numbers: Ray, D, a and D. It can be shown that the product o7 is always unity
for an ideal gas. The base thermal profile is given by (4.3). Then the dimensionless
hydrostatic equation dp,/dz = —p, is used with the equation of state (8.2) to derive
the density and pressure profiles:

dp, 1 (dpb dTb)
= (2T 4 0—2 ) == 8.3
FEa S Gl Ob & P (8.3)

Having already derived the temperature profile (4.3), this is a differential equation for
pp. With p, =1 when z=0, imposed by our normalization, the solution is

op=T," 7" (8.4)
The corresponding pressure profile can then be derived from the equation of state:

m=5UW. (8.5)

Every quantity related to the base profile and needed in the eigenvalue problem
(5.5), (5.6), (5.7) and (5.8) is now available and we can solve exactly for the critical
Rayleigh number using a Chebyshev collocation expansion.
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Expression Value
daf
dz
d’f

dz?

0

0
Py
Pb |
dn
dz pp
ap
aT 20
d dp
dz 0T
d? ap
dz2 T

0

—Za—l—ﬁ

PO

—6a% + 54D — D?

p0

9
op D

P |10
d dp
dz dp

TABLE 2. Some quantities related to the base flow, needed for the two-mode
approximation, for the equation of state of an ideal gas.

aD

70

In addition to this exact problem (no approximation was made in the governing
equations), two models are considered: quasi-Boussinesq and quasi-ALA, described in
§7 and using, respectively, the approximated density variations (7.2) and (7.4). The
critical Rayleigh number is expressed through the superadiabatic Rayleigh number
(5.10). The critical (superadiabatic) Rayleigh numbers for the exact, quasi-Boussinesq
and quasi-ALA models are denoted Ra%,, Ras, and Raji*, respectively.

We also apply the analysis based on just two eigenmodes (cos(mz) and sin(2mz)),
leading to (6.29) and (6.30), which are themselves issued from the critical relation
(6.16). We need to derive some expressions from the equation of state: they are values
of quantities at z =0, relative to the base profile f, p,/pp, (3p/0T)|,, (3p/0p)|r and
their derivatives at z=0. They are listed in table 2 for the case of an ideal gas. The
expressions for the base profile in table 2 are simple enough to be substituted in the
two-mode general solutions (6.31) and (6.32). The sin(2mz) contributions €, €? and
€4 to the exact model, quasi-Boussinesq and quasi-ALA approximations take the
form

64 -
=2 (4—D .
€= =—a—D), (8.6)
64 7 ~
B— —-D 8.7
T e (“ 8 )’ ®-7
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FIGURE 2. (Colour online) Asymmetrical contribution € of the sin(2mz) mode to the
critical eigenmode, for an ideal gas as a function of the temperature gradient a of the
base linear solution, for a negligible D =10~ and a ratio of heat capacities y equal to
5/3. The label ‘Chebyshev exact’ denotes the numerical solution of the exact model using
a Chebyshev expansion (usually 17 polynomials), while the label ‘Chebyshev quasi-ALA’
corresponds to the solutions of the quasi-ALA model. The labels “Two-mode exact’ and
‘Two-mode quasi-ALA’ correspond to the approximate two-mode analytical solutions for
the exact and quasi-ALA models. Note that when the dissipation number is negligible, the
quasi-Boussinesq model and the exact model coincide.

a0 <9a—25) . (8.8)

T 117 \8

The corresponding critical superadiabatic Rayleigh number is obtained from (6.32)
as an expansion of degree two in a and D. We also obtain approximate critical
Rayleigh numbers in the quasi-Boussinesq and quasi-ALA approximations. The
differences between these critical Rayleigh numbers and the classical Boussinesq
value 277t*/4 are denoted dRaj,, dRa8, and dRati*:

3207 ~, [9m* 17m® 512] ~ [277* 63w 1216
dRal, = |2n° — —| D? o 2 p |2 0T 2,
39 8 4 13 | 16 8 39
~ 11.53D? +107.02aD — 117.834%, (8.9)
736 ~ ont  9n2 6407 ~ [277* 63m> 1216
dRa?A — P2 i — i — | aD — T — T + az,
39 8 2 13 |16 8 39
~ —18.87D + 114.40aD — 117.834%, (8.10)
3207 ~ ot 2572 647 ~ [27n* 6ln® 544
dRa*™ = |2m*— | D24+ | — 1 aD - - i R
4 [’T 39} +[8 s T3 [16 8 +39]“
~ 11.53D% +69.23aD — 103.074>. 8.11)

The eigenmode odd contribution € obtained from the Chebyshev analysis is
compared to that obtained from the two-mode analysis in figure 2 and for an
ideal gas. As it is much easier experimentally to impose a large temperature gradient
than large compressible effects, we first consider the case of a negligible dissipation
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FIGURE 3. (Colour online) Linear stability critical threshold for the Rayleigh number for
an ideal gas as a function of the temperature gradient a of the base linear solution, for a
negligible D =108 and a ratio of heat capacities y equal to 5/3. Labels and line styles
correspond to those of figure 2.

number (D = 107%). Exact and approximate eigenmode odd contributions are very
similar throughout the whole range of a (between O and 2). Figure 3 shows how
the critical Rayleigh number depends on the dimensionless temperature difference,
a, imposed between the bottom and the top. The Boussinesq value 277t*/4 is
obtained in the limit @ = 0 (corresponding to a unity temperature ratio, r = 1).
Increasing a causes a decrease in the value of the superadiabatic critical Rayleigh
number Rag,. The approximate analysis (8.9) with two eigenmodes (cos(mz) and
sin(2mz)) fits the numerical solution very well up to @ = 1.5 (corresponding to
r=7). With a negligible D, the quasi-Boussinesq approximation is identical to the
exact analysis. The quasi-ALA approximation results are also plotted in figure 3,
although this approximation is clearly not best at small D. Again, the quadratic
two-mode approximation is very good for small values of a. The results in figure 3
are independent of the ratio of heat capacities y, as can be seen also on the two-mode
approximations (8.9), (8.10) and (8.11).

Figures 4 and 5 show how the asymmetrical contribution € and the critical Rayleigh
number depend on the dissipation number D for a fixed value of a = 0.4. The
maximum value for D is 0.4 so that superadiabaticity is ensured: for an ideal gas
equation of state, this happens exactly when D < a, since the adiabatic gradient is
uniform d7,/dz = —D. At small D, the critical Rayleigh numbers increase with D
and that tendency is enhanced as y becomes closer to unity. We can see in figure 5
that the two-mode results (8.9), (8.10) and (8.11) are in excellent agreement with the
Chebyshev calculations.

We shall now consider the results from a different point of view. Instead of looking
at the Rayleigh number dependence, we shall plot the differences between the critical
Rayleigh numbers of the quasi-Boussinesq and exact models and between the quasi-
ALA and exact models: §Ra%, = Ra%, — Ra}, and SRai:* = Raik* — Rat,. From (8.9),
(8.10) and (8.11), we can extract the two-mode approximations for these differences:

6n2+3252 1312 =512 ~

SRab, = — 3 > aD ~ —30.41D* + 7.38aD, (8.12)
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FIGURE 4. (Colour online) Asymmetrical contribution € of the sin(2wz) mode to the
critical eigenmode, for an ideal gas as a function of the dissipation number D, for
a fixed temperature gradient a = 0.4 (corresponding to a temperature ratio r = 1.5).
The labels Chebyshev exact, quasi-ALA and quasi-Boussinesq correspond to numerical
solutions obtained using the Chebyshev collocation eigenvalue calculations described in
§ 5, for the exact equations, quasi-ALA and Boussinesq models, respectively. The lines
are the approximate two-mode analytical solutions described in § 6. Solid, dashed and
dash-dotted lines correspond to three different values of the heat capacity ratio y =5/3,
9/7 and 13/11, respectively.
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Chebyshev exact
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FIGURE 5. (Colour online) Linear stability critical threshold for the Rayleigh number
for an ideal gas as a function of the dissipation number D, for a fixed temperature
gradient a =0.4 (corresponding to a temperature ratio r =1.5). The labels and line styles
correspond to those of figure 4.

78724704 ~ 1372 —896 N
—%w _ T[Taz ~ _37794D + 14.764>.  (8.13)

ALA _
O0Rag,” =

Plotting these differences provides an assessment of the quasi-Boussinesq and
quasi-ALA models. Moreover, as we are interested in evaluating small departures
from the exact model, we plot the absolute value of these differences in logarithmic
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FIGURE 6. (Colour online) Absolute difference between the quasi-ALA critical Rayleigh
number and the exact critical Rayleigh number, for an ideal gas as a function of a, for
D =107 and three values of the ratio of heat capacities, y =5/3, 9/7 and 13/11. The
results using these three values are indistinguishable as expected from the approximate
solutions (8.12) and (8.13).

103 = ,
e Chebyshev quasi-ALA
102 1 A Chebyshev quasi-Boussinesq
----- y=5/3
---y=9/7
10 l— y =13/11
_< o 9
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ST 0 L
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D

FIGURE 7. (Colour online) Absolute difference between the Boussinesq approximation
critical Rayleigh number and the exact critical Rayleigh number, and absolute difference
between the quasi-ALA and exact Rayleigh numbers, for an ideal gas as a function of D,
for a=0.4 and three values of the ratio of heat capacities, y =5/3, 9/7 and 13/11.

coordinates. Figure 6 shows the difference between the quasi-ALA approximation and
the exact models, for D =108, as a function of a. This difference is quadratic in a,
in agreement with (8.13).

In figure 7, we plot the differences between the quasi-ALA and exact models and
between the quasi-Boussinesq and exact models, for a constant value of a = 0.4, as
a function of D. Plotting these differences in terms of D instead of D removes the
dependence on y that was observed in figure 5. All points collapse onto a single curve
(for each model, quasi-Boussinesq and quasi-ALA) and the two-mode approximations
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FIGURE 8. (Colour online) Similar to figure 7, but with a temperature ratio r=7 (a=1.5)
instead of r=1.5 (a=0.4).

(8.12) and (8.13) are in very good agreement with those obtained through the
collocation Chebyshev eigenvalue solutions. These differences are quadratic in a and

D, hence our plot for a constant a and varying D can exhibit constant values (a?
contribution), linear regimes (aﬁ contribution) or quadratic regimes (152 contributions).
Indeed, the quasi-Boussinesq model differs first linearly from the exact model at small
D, then quadratically when D exceeds a = 0.4. The quasi-ALA model is different
from the exact model at D = 0, so that SRajt* is first constant as a function of

D, and is then a linear function of D because it has no quadratic contribution (see
(8.13)). A cusp between different regimes indicates simply a change of sign, as we
plot the absolute value of the differences: use (8.12) and (8.13) to deteimine the

sign. Figure 7 shows that the quasi-Boussinesq model is better at small D and the
quasi-ALA model is better at larger values. For a given value of the dissipation
parameter D, decreasing the heat capacity ratio y towards unity has the effect of

increasing D, so that the quasi-ALA model may be better than the quasi-Boussinesq
model even for a relatively small dissipation parameter, provided y is close enough
to unity. Figure 8 corresponds to a larger temperature ratio of r =7 (a = 1.5), for
which the quadratic two-mode approximation is less good, although still acceptable.

Figure 9 shows an eigenmode, for temperature, corresponding to the critical
threshold, obtained for a temperature ratio equal to 7 and a dissipation number
equal to 1.3. The value of the ratio of heat capacities is y =5/3. The eigenmode is
projected on cos(mz) and sin(27mz) using the standard L? inner product on the interval
—0.5 <z <0.5. The L? norm contributions of the cos(mz) and sin(27z) modes are
98.456 % and 1.541 %, respectively, while the rest is 0.003 % only. This example is
chosen so that the sin(2mz) contribution can be seen easily, i.e. with large values of
the temperature gradient a = 1.5 (corresponding to a temperature ratio of » =7) and
D = 1.3. For small values of a and D, suitable for our expansion near a = 0 and
D =0, the modes are closer to a pure cos(mwz) function and the sin(2wz) function
captures even better the difference between the mode and its cosine part. The example
in figure 9 shows that the two functions cos(mz) and sin(2mz) are a good choice for
an approximate representation of the eigenmodes.
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FIGURE 9. Temperature eigenmode, at the critical threshold for an ideal gas of y =5/3,
a=1.5 (equivalently r =7), D =1.3. Its cos(mz) and sin(2wz) parts represent 98.456 %
and 1.541% of its L* norm. The rest (0.003 %) can hardly be distinguished from zero.

8.2. Murnaghan’s equation of state

Let us now consider an equation of state suitable for condensed matter, liquid or solid,
proposed by Murnaghan (1951) with a temperature dependence appropriate for models
of solid-state planetary interiors (Ricard 2007). This equation of state can be written
as

<p> =1+ 2 (T — Ty, (8.14)

Po Ky

with n = 3 or n = 4 for most solid materials, and K, and «, are constants. The
reference density p, is obtained for the reference temperature 7, and pressure p =0
(the reference pressure is irrelevant as only pressure gradients play a role in the
dynamical equations). This equation reproduces the observations that, for liquids and
solids, the isothermal incompressibility Ky = p(dp/dp)|r increases with compression,

Kr =K, <’°> : (8.15)
Po

and that the coefficient of thermal expansion diminishes with compression,

o =g <'O°> . (8.16)
0

We also need to derive the heat capacity from the equation of state. The
thermodynamic relation (dc,/dv)|; = T(3’p/dT?)|, (where v is the specific volume
1/p) indicates that, for a solid following (8.14), ¢, is not a function of p, as the
pressure is linear in 7 for a given density. So ¢, can only be a function of temperature
T: any choice is valid in principle. We make the choice of a constant c,y, which is
in agreement with the Dulong and Petit rule for condensed matter. It follows then
from Mayer’s relation (6.9) that

K0T [ po\”
¢y = Cup + 220 <p°> . (8.17)
p \p
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With notation (6.10), using our dimensional scales, Murnaghan’s equation of state
therefore takes the following dimensionless form:

0" =14 a&Dnp —n&(T — 1). (8.18)

The base profile is determined as follows. The temperature base profile is independent
of the equation of state, hence (4.3) is still valid. The derivative of (8.18) and the
hydrostatic equation dp,/dz= —p, lead to a differential equation for the base density
profile p,:
dd/;b =—aDp; "+ &ap, ™" (8.19)
This equation is integrated numerically, under the condition that p, =1 at z =10
in accordance with our choice for the dimensional reference density p,. The base
pressure profile p;, is then obtained from the equation of state (8.18).

In the resolution of the eigenvalue problem (5.5), (5.6), (5.7) and (5.8), we also
need to determine the base profile for the dimensionless specific heat capacity c,, and
expansivity «,. After non-dimensionalization, (8.16) can be written as

o= p;", (8.20)

and (8.17) as
Cpp = L (8.21)
Yo Yo

In table 3, we show the expression of all quantities needed for the approximate
two-mode analysis: the derivatives of the function f(z) at z=0, and other quantities,
can then be determined using (8.20) and (8.21) up to degree two in a and D. From
these expressions, using (6.29) and (6.30), we obtain the approximate expressions for
the critical Rayleigh numbers with and without the effect of compressibility for the
small disturbances.

With table 3 and the general solutions (6.31) and (6.32), we have the quadratic
departure of the superadiabatic critical Rayleigh number in terms of the parameters
a and D. It would actually take too much space to display dRass once the quantities
in table 3 are substituted in those general equations. However, it is possible to do so
for the sin(2mz) contributions. The coefficients € (coefficient of sin(2mz)) obtained by
the two-mode analysis (6.31), (7.5) and (7.6) are the following, for the exact model,
quasi-Boussinesq and quasi-ALA approximations:

P o _ _ -1l A1y ., A1y
._8ala—D] { (n=DD—[(1 -y, Yn+a™")—y, ]“—n—z] _ 8D L (822)
117m2 a—D 117m2

Al . _ -l A—1y .,
632805[0 D] [9(’1 DD —[(I1—y Yn+a™) — v ]a—n—Z}, (8.23)
117n2 a—"D
aa 88la=DI[ n=DD—[1-yHn+a ) —y'la
M= {9 > n—1{. (8.24)

Similarly, the differences between critical superadiabatic Rayleigh numbers obtained
from the quasi-Boussinesq or quasi-ALA approximations and the exact model (7.7)
and (7.8) are also short enough to be shown explicitly:

On —1 2 256n — 128 82aD — 9n — 1TE2 _ 256n —416
4 39 4 39

SRd, = [ ] &’D?, (8.25)
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Expression Value
dr a=D (. . 1 a
dizo a_D(oe(n—l)D—((noH—l)(1—7/())—)/0)61)
at@=D). ([anBQ2+a)y — 4@ + 1)
V(D —ay? an a)yo a
. —2(0— D+ (v — 26 +4a(yo — 1) 1 &
s T+ [an(=2(5+@&)yo + 6+ 3@)
dz?

0 + (1 — 1’2 — &%) +206(1 — y) 1aD
+[an((d — &)y +6& —2) + & @ +2)(yo — D21D?
+2an(@n(y — 1) — i) (a — D)}

Ph

Pb |9

dp

dz pp

a(a—1D)

&%(a —D)((n— 1D — na)

0
ap
aT |,
d dp
dz oT

(n— 1)a%(a — D)

po
d* ap

= _ ~3 _~ B ~_ _
dz2 9T n—1D&@—D)2n—1)D—(2n—1)a)

PO

3 ~

o0 aD

P |70

d dp

dz ap

TABLE 3. Coefficients of Taylor expansion of some quantities related to the base flow,
for Murnaghan’s equation of state, for arbitrary values of yy=cy/c,o and @ = aTy.

—(n—1)&*D(a — D)

70

&%aD. (8.26)

sppih _ [9n 8 o 256n—416] ., , [9n+8 , 256n—704
SA 4 39 1 2

Figure 11 shows the dependence of the critical Rayleigh numbers for the exact
model and quasi-ALA approximation on the base temperature gradient a for a
negligible dissipation parameter D = 10"% and a constant y, = 1.03 and n = 3. These
critical Rayleigh numbers are also obtained with the two-mode analysis with an
excellent accuracy. Two different values of & are considered and we can see that the
departure of the critical Rayleigh numbers from 27n*/4 gets smaller as & diminishes.
Figure 12 shows the dependence of the asymmetrical contribution of the sin(2mz)
mode to the critical eigenmode on D for a fixed value of the base temperature
gradient a = 0.4. The ratio of heat capacities is kept constant at y, = 1.03 and two
values of & = ayTy, =0.03 and 0.01 are considered. The two-mode analysis provides
a good fit throughout the whole range of D. Correspondingly, figure 13 shows the
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FIGURE 10. (Colour online) Asymmetrical contribution of the sin(2mz) mode to the
critical eigenmode, for a Murnaghan equation of state as a function of the temperature
gradient a of the base linear solution, for a negligible D = 10~%. The label ‘Chebyshev
exact’ denotes the numerical solution of the exact model using a Chebyshev expansion
(usually 17 polynomials), while the label ‘Chebyshev quasi-ALA’ corresponds to the
solutions of the quasi-ALA model. The dashed and dash-dotted lines correspond to
the approximate two-mode analytical solutions for the exact and quasi-ALA models, at
& = agTy = 0.03 and 0.01, respectively. The ratio of heat capacities and integer n in
the equation of state (8.18) are kept constant, yy = 1.03 and n = 3. Note that, when
the dissipation number is negligible, the quasi-Boussinesq model and the exact model
coincide.
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FIGURE 11. (Colour online) Linear stability critical threshold for the Rayleigh number
for a Murnaghan equation of state as a function of the temperature gradient a of the base
linear solution, for a negligible D = 1078. The labels are similar to those of figure 10.

dependence of the critical Rayleigh numbers (exact, quasi-Boussinesq and quasi-ALA)
on D for the same conditions, with an equally good fit of the two-mode analysis to
the numerical data obtained using the Chebyshev expansion.
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FIGURE 12. (Colour online) Asymmetrical contribution of the sin(2mz) mode to the
critical eigenmode, for the Rayleigh number for a Murnaghan equation of state as
a function of the dissipation number D, for a fixed temperature gradient a = 0.4
(corresponding to a temperature ratio r = 1.5). The labels Chebyshev exact, quasi-ALA
and quasi-Boussinesq correspond to numerical solutions obtained using the Chebyshev
collocation eigenvalue calculations described in §5, for the exact equations, quasi-ALA
and Boussinesq approximations, respectively. The lines are the analytical two-mode
solutions described in § 6. Dashed and dash-dotted lines correspond to two different values
for the product of the expansion coefficient and temperature at z=0, & = a7y =0.03 and
0.01, while the heat capacity ratio at z=0 is kept constant yp =1.03 and n=3.
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FIGURE 13. (Colour online) Linear stability critical threshold for the Rayleigh number
for a Murnaghan equation of state as a function of the dissipation number D, for a fixed
temperature gradient a =0.4 (corresponding to a temperature ratio » = 1.5). The labels are
defined in figure 12.

A close-up around small values of D is shown in figure 14, emphasizing the quality
of the approximate analysis and its ability to recover small variations of the critical
Rayleigh numbers.

In figure 15, we plot the absolute difference of the quasi-ALA and exact critical
Rayleigh numbers, for a negligible dissipation parameter and varying temperature
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FIGURE 14. (Colour online) Same as figure 13 with a close-up around small values of
D, between 0 and 0.04. The difference dRagsy = Ragsy — 271*/4 is plotted instead of Ragy.
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FIGURE 15. (Colour online) Absolute difference between the critical Rayleigh number of
the quasi-ALA and exact model, with Murnaghan’s equation of state and for a negligible
dissipation number equal to D = 1078, The difference is plotted as a function of a, for
two values of oyTy =& (0.03 and 0.01) and y, = 1.03. The parameter n in Murnaghan’s
equation of state is equal to 3 in all cases.

gradients, which can be seen to be very well approximated by the two-mode analysis.
This is also the case, for a constant temperature gradient ¢ = 0.4 and varying
dissipation parameter, shown in figure 16. With a larger temperature gradient a=1.5,
and for the largest value of the dissipation parameter, we can detect a small deviation
from the two-mode analysis (see figure 17). These results, shown in figures 16 and 17,
confirm that the quasi-ALA approximation is much better than the quasi-Boussinesq

approximation when D is larger than a. Obviously, that condition is most easily
fulfilled when y; is very close to 1.

8.3. A generic equation of state

An examination of the previous results — for instance (8.25) or (8.26) — reveals that
the first derivatives of density with respect to temperature or pressure (related to
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FIGURE 16. (Colour online) Similar to figure 13 but in logarithmic coordinates and for
the absolute difference of the critical Rayleigh numbers between the approximations and
exact model, for two values of agTo=a (0.03 and 0.01) and y, = 1.03.
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FIGURE 17. (Colour online) Similar to figure 16 but the temperature ratio is r=7
(a=1.5) instead of r=1.5 (a=0.4).

& and D, respectively) are not the only parameters affecting the critical Rayleigh
numbers: the parameter n is not related to the first derivatives and yet affects the
critical Rayleigh numbers. The predictions of our two-mode semi-analytic model are
based on a set of quantities (those listed in tables 2 and 3, for the ideal gas and
the Murnaghan fluid). These quantities involve up to the third degree of the equation
of state in the terms d*((dp/ aT)|,0)/dz* and (d*f/dz?) o, because any differentiation
along z is a combination of derivatives with respect to temperature and pressure, and
because ¢, (in f) is itself already based on a derivative of the equation of state. A
generic equation of state that would completely determine the Rayleigh number with
a second-order precision should extend to degree three in p and T.

In fact, it turns out that it is mathematically more convenient to expand the specific
volume v = 1/p with respect to temperature and pressure, rather than density. So a


https://doi.org/10.1017/jfm.2017.108

https://doi.org/10.1017/jfm.2017.108 Published online by Cambridge University Press

Rayleigh-Bénard stability and validity of approximations 291
dimensionless equation of state can be written:

1 ~ ~ ~
v=—=14+a&T~—1)—aDp+a*E(T — 1)* +&*DFp(T — 1) + &*D*Gp*

R

+&I(T =1 +&*DKp(T — 1)> + &> D*Lp* (T — )+ &°D°Mp*.  (8.27)

The expression for the dimensionless derivative of v with respect to p is found
to be —aD and the coefficients E, F, G, J, K, L and M are dimensionless
parameters proportional to the second and third derivatives of the specific volume.
We have chosen to make these coefficients independent of gravity g by multiplying
systematically any occurrence of the dimensionless pressure p by the dissipation
parameter D.

We apply the same procedure for this generic equation of state as for the equations
of state considered previously. In order to obtain an expression for c,, we integrate
the relation

dcy,

ap

D 9%
——T

=——T—| , 8.28
. & aT? (82%)

p

which leads to
¢, =14 &A(T — 1)+ &B(T — 1) — &DT(2Ep + 6&Jp(T — 1) + @DKp?),  (8.29)

where the p-independent integration term has been expressed up to degree two by
introducing two extra coefficients A and B.
The reference temperature is still

Ty(2) =1—ag, (8.30)

with a uniform gradient.

All quantities needed in the approximate analysis have been determined and listed
in table 4. With table 4 and the general solutions obtained in §§ 6 and 7, the analytic
expressions for € and dRags (and corresponding results for the quasi-Boussinesq and
quasi-ALA approximations) are explicitly determined. Some results, like dRas4, would
take a page to display when the substitution is made. Others are shorter. For instance,
the relative amplitude of the sin(2mz) component relative to the cos(mz) component
can be written entirely in terms of the elementary governing coefficients:

_ 1 _
(1—-A)a*> —aD + [4E+A—2} aD + (F+2)DD
&

. 8 (1+2E)a+FD
€ = — — s
2 13(a — D) 117
N ! N (8.31)
%4 (1—A)a2—aD+[4E+A—2} aD + (F +2)DD
B _ o o
C TR 13(a—D)
1 +2E F—1)D
(0 +2E)a+( ) , (8.32)

117
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Expression Value
d o 1 ~ ~
4 * ((1—A)a2+ {4E—2+A] aD—aD+(2+F)DD)
dz|, a—"D a
a? ) 4 ~ 8
T 12A+B-A —E)d*+ (=1 -2FD+ (4— 2 ) ED
(a—D)? a

4D
—18/D+A (

&

+16ED — 6D — 25) - 231)} P

2 ~ ~
+ K2E+ <7—A) F+3—6K+2A(3+2F)> DD + (1 —2G)D?
o

&f 8 1\
a2 + —32E2+<14—A)E—2<A—1) +18J | D?
<7 o a o

+ [—(3 + F — 6G + 2L)DD?

a2

4 2 -

— <18E+ — — 2+ 16EF + <1+ > F—6K> Dzb} a
o o

—[4G +2F* 4+ 3F — 2L]D2152}

Po

a(a—D)
Pb 0
d pl - -
) &2[(—=2E + 1)a® — (2F 4+ 3)Da +2(1 — G)D?]
dz pp
op &
oT PO
da ~
a9 &[2(E — Da+ 2+ F)D]
dz oT 20
d 9 ~ ~
F;T; &3[(12E — 6 — 6J)a® + (OF — 8E + 14 — 4K)aD + (4G — 5F — 8 — 21)D?]
Z PO
o0 &D
p |7
da - -
2% &2[(F + 2)aD + 2(G — 1)D?]
dz 9p |70

TABLE 4. Coefficients of Taylor expansion of some quantities related to the base flow,
for a generic equation of state (8.27).

~ 1 ~
— 2 _ R ~
(1—-A)a"—aD + [4E+ 3 2} aD+ (F+2)DD 2Ea+ FD

- . (833
R) 13(a—D) 117 (8-33)



https://doi.org/10.1017/jfm.2017.108

https://doi.org/10.1017/jfm.2017.108 Published online by Cambridge University Press

Rayleigh-Bénard stability and validity of approximations 293

0.0040 T
= Chebyshev exact
0.0035 | o Chebyshev quasi-ALA |~
E=0,F=0,G=0
0.0030 | _ _ _ E=1,F=0,G=0 or:
0.0025 H - E=0.F=1.G=0 A e
......... E=0,F=0,G=1 A L
- a
€ 0.0020 [ A il
P g
y e Pl g :
0.0015 P ot M
: e g m
0.0010 oo i g M
o _N
% o
0.0005 - =&
0 05 1.0 1.5 20
a

FIGURE 18. (Colour online) Asymmetrical contribution of the sin(2mz) mode to the
critical eigenmode, for a generic equation of state (8.27) as a function of the temperature
gradient a of the base linear solution, for a negligible D = 108, The label ‘Chebyshev
exact’ denotes the numerical solution of the exact model using a Chebyshev expansion
(usually 17 polynomials), while the label ‘Chebyshev quasi-ALA’ corresponds to the
solutions of the quasi-ALA model. The solid, dashed, dash-dotted and dotted lines
correspond to the approximate two-mode analytical solutions for the exact and quasi-ALA
models, for different choices of the dimensionless parameters E, F and G, respectively.
The ratio of heat capacities and the product of temperature and the thermal expansion
coefficient are kept constant, 3o =1.03 and & =Ty = 0.03. When the dissipation number
is negligible, the quasi-Boussinesq model and the exact model coincide.

We can also expand the two-mode approximations (7.7) and (7.8), using table 4,
for the difference between the quasi-Boussinesq approximation and the exact model
8Ra8,, and between the quasi-ALA approximation and exact model SRagi:

SRal, = — [—§n2+%+§n2G+ %F} a2 D>
— [37* -2+ i0°F + 3FE] &%aD, (8.34)
LA 1.2 320 9.2 256 A2 1N
SRag" = [jm° —F + (37° = 53) F] 6%aD
1.2 224 9_2 512 ~2 2
+ [0+ 3+ (3 - 3F) E] &%’ (8.35)

The two-mode analysis and table 4 indicate that the quadratic departure of the
suparadiabatic threshold from the Boussinesq limit (6.32) depends on all coefficients
of the cubic expansion of the generic equation of state (8.27) and on the extra free
coefficients A and B in the expression for the heat capacity (8.29). Only M (related
to 0°v/dp*) has no influence, as expected, because that particular third derivative
is not involved in the relevant coefficients dz((E),o/E)T)I,,O)/dz2 and (d*f/dz?)|o. The
two-mode analyses of the quasi-Boussinesq and quasi-ALA models show that the
difference of the critical superadiabatic Rayleigh numbers depends entirely on the
second-order expansion of the equation of state: J, K, L and M do not affect the
differences (8.34) and (8.35), neither do A and B. B

With so many parameters (nine parameters without counting &, a and D), it is
impossible to show and explore all the possible cases. Similarly to what we have
computed for the ideal gas and the Murnaghan equations of state, we start by
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FIGURE 19. (Colour online) Linear stability critical threshold for the Rayleigh number
for a generic equation of state (8.27) as a function of the temperature gradient a of the
base linear solution, for a negligible D = 1073, The labels are identical to those defined
in figure 18.

depicting a few cases where the compressible effects are small, D = 103, but the
temperature difference large, which are conditions that could be easily reproduced
experimentally. In figures 18 and 19, we plot the asymmetrical contributions of the
critical eigenmode € and the corresponding changes in the critical Rayleigh number
when only the second-order coefficients of the generic equation of state (i.e. E, F' and
G) are changed. In agreement with (8.31) or (8.33), when D « 1 and A is constant, €
is a function only of E, which corresponds very precisely to the numerical estimates
(see figure 18). The Rayleigh numbers of the exact and ALA cases are also functions
only of E (see figure 18).

We then compute a few cases with a fixed temperature interval a = 0.4 but for
varying compressible effects. Like for the cases illustrated in the two previous figures,
we only vary the second-order coefficients of the equation of state. The asymmetrical
contributions of the critical eigenmode € and the corresponding change in the critical
Ra number are depicted in figures 20 and 21. In these two figures, an asymptote is
present at D = 0.4 because of the singular term in a — D in the various analytical
expressions. Here, again, the two-mode expansion captures reasonably accurately the
numerical results. However, the two-mode expansion is even better for small values
of D since it is a Taylor expansion of degree two. In figure 22, we show a close-up
of figure 21 at small D (between 0 and 0.04) and it is apparent that each coefficient
E, F and G has a specific influence on the critical Rayleigh number, which is very
accurately modelled by the two-mode analysis.

We now test the effects of the third-order terms (i.e. J, K, L and M, see (8.27))
as well as of the two terms controlling the heat capacity at reference pressure (A
and B, see (8.29)) in figures 23-25. In all these simulations the temperature gradient
is fixed to a = 0.4. We only compare the solutions of the exact equations solved
numerically (symbols) or using analytical two-mode approximations (dotted lines). In
agreement with (8.31), the analytical approximations for € are independent of all these
parameters. The fit to the numerical solutions is very good, although we notice a slight
difference between the numerical solutions when the parameters are varied, probably
due to the contributions of higher degrees above our second-order approximation. In
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FIGURE 20. (Colour online) Asymmetrical contribution of the sin(2mz) mode to the
critical eigenmode, for the Rayleigh number for a generic equation of state (8.27)
as a function of the dissipation number D, for a fixed temperature gradient a = 0.4
(corresponding to a temperature ratio r = 1.5). The labels Chebyshev exact, quasi-ALA
and quasi-Boussinesq correspond to numerical solutions obtained using the Chebyshev
collocation eigenvalue calculations described in §5, for the exact equations, quasi-ALA
and Boussinesq approximations, respectively. The lines are the analytical two-mode
solutions described in §6. Solid, dashed, dash-dotted and dotted lines correspond to
different selections of the parameters E, F' and G, while the heat capacity ratio and oT
at z=0 are kept constant, yp=1.03 and & = yTo =0.03, and the other parameters of the
generic equation of state are set to zero: J=K=L=M=A=B=0.
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FIGURE 21. (Colour online) Linear stability critical threshold for the Rayleigh number for
a generic equation of state (8.27) as a function of the dissipation number D, for a fixed

temperature gradient @ =0.4 (corresponding to a temperature ratio » = 1.5). The labels are
similar to those in figure 20.

agreement with (6.32) and table 4, the exact values of the critical Rayleigh numbers
are affected by each of these coefficients, except for M (see figure 24). This is more
obvious on the close-up (figure 25), for small values of D, as the second-order two-
mode analysis provides accurate estimates for the critical Rayleigh number: changing
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FIGURE 22. (Colour online) Same as figure 21 with a close-up around small values of
D, between 0 and 0.04.
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FIGURE 23. (Colour online) Same as figure 20, but only the results from the exact
governing equations are shown, along with its two-mode approximation. Now the
parameters E, F and G of the equation of state (8.27) are set to zero, while each of
the other parameters (J, K, L, M, A and B) is set to 1 in turn.

M from O to 1 does not affect the critical Rayleigh number, while changing any of
the other third-order coefficients J, K, L, A and B produces a change in Rag,.
Finally we compute the departures between the exact, Boussinesq and ALA
approximations, solved numerically (symbols) or analytically (lines). In figure 26,
we vary only the second-order coefficients, keeping D ~ 0. In agreement with the
analytical results (8.34), the exact and Boussinesq models coincide. The difference
between the ALA and exact solution (8.35) is a function of E only, i.e. independent
of F and G. To prove the quality of the analytical model, in figure 28 we maintain
a rather large temperature gradient a = 1.5 across the layer (i.e. a temperature ratio
r =7), and we vary the dissipation number and the second-order coefficients of
the equation of state. In figure 28, as in all the previous figures using the generic
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FIGURE 24. (Colour online) Same as figure 21, but only the results from the exact
governing equations are shown, along with its two-mode approximation. Now the
parameters £, F and G of the equation of state (8.27) are set to zero, while each of
the other parameters (J, K, L, M, A and B) is set to 1 in turn.
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FIGURE 25. (Colour online) Same as figure 24 with a close-up around small values of D,
between O and 0.04. It is clear that all parameters have an impact on the critical Rayleigh
number, except M (4+ and x symbols superimpose), as predicted by the approximate
analysis.

equation of state, the two-mode approximation gives an accurate fit to the numerical
computations. We performed a number of other simulations that we do not show here,
varying rather systematically all the parameters. All these simulations confirmed the
quality of the two-mode approximation.

8.4. Universality of the generic equation of state

The generic equation of state (8.27) is meant to represent any equation of state, as an
expansion up to degree three in temperature and pressure: the quadratic departure in a
and D from 271*/4 is recovered exactly. We test here its applicability, or universality,
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FIGURE 26. (Colour online) Difference between the critical Rayleigh number of the
quasi-ALA and exact model, with the generic equation of state (8.27) and for a negligible
dissipation number equal to D = 107, The difference is plotted as a function of a, for
different selections of the parameters E, F and G. The heat capacity ratio and a7 at z=0
are kept constant yp=1.03, @ =7 =0.03 and /J=K=L=M=A=B=0.
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FIGURE 27. (Colour online) Difference between the critical Rayleigh number of the
quasi-Boussinesq and exact model, and between the quasi-ALA and exact model, with the
generic equation of state (8.27), for a constant temperature gradient a=0.4, as a function

of the modified dissipation number D =D/(1 — ¥, '). The heat capacity ratio and aT at
z=0 are kept constant, yp=1.03, @ =T, =0.03, and J=K=L=M=A=B=0.

when compared to the ideal gas (8.2) and Murnaghan’s (8.18) equations. For the ideal
gas equation, ¢, is constant and we expand v=1/p around T =1 and p=1/D (the
pressure for the base profile at z=0) and identify the coefficients of equation (8.27).
We obtain

A=B=E=J=K=0, F=M=-1, G=L=1. (8.36a—c)
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FIGURE 28. (Colour online) Similar to figure 27, but with a temperature ratio r=7 (a=
1.5) instead of r=1.5 (a=0.4).

When these values are substituted in the expressions of table 4, we obtain exactly the
results obtained for the ideal gas in table 3.
For Murnaghan’s equation of state (8.18), the second-order expansion leads to

1 H@n+1
:n; , F=—(n+1), Le—K=3/=—3m=tbenth (8.37a—c)

E=G
2

and the expansion of ¢, implies that

A:g(& +an+1), B:i(&(Zn—i—l)—I—Z)(n—l—l). (8.38a,b)
aD 2aD
Again, when substituted in the expressions of table 4, we obtain exactly the
results obtained for the Murnaghan fluid in table 3. Hence all expressions for the
superadiabatic Rayleigh number are retrieved: equation (8.25) from (8.34) and (8.26)
from (8.35).

8.5. On the singularity at D=a

Singularities at D = a appear in the coefficients obtained for the Murnaghan and
generic equations of state (see tables 3 and 4). They lead to a divergence of the
sin(2mz) coefficient and of the Rayleigh departure dRas,. The physical interpretation
of this singular limit is related to the curvature of the adiabatic profile. The conduction
profile has no curvature because we have imposed a uniform thermal conductivity.
However, the adiabatic profile has a non-zero curvature in general, the ideal gas
case being an exception. So the difference between the conduction and adiabatic
profiles has a non-zero curvature. The case D =a corresponds roughly to a vanishing
superadiabatic temperature difference between the bottom and top of the cavity, but
the finite curvature implies that half of the layer is stably stratified and the other half
is unstably stratified, hence subjected to instability. When an instability is obtained
for a vanishing superadiabatic temperature difference, the (total) superadiabatic critical
Rayleigh number vanishes, hence the departure dRas, diverges.


https://doi.org/10.1017/jfm.2017.108

https://doi.org/10.1017/jfm.2017.108 Published online by Cambridge University Press

300 T. Alboussiére and Y. Ricard

9. Discussion of the stability analysis

Let us first analyse the departure dRaj, of the critical superadiabatic Rayleigh
number from the Boussinesq limit 27m*/4. The numerical (Chebyshev) results are
very well retrieved by the two-mode analytical results, when D and a are very
small, and still reasonably well retrieved over the whole range of a and D. From the
two-mode analysis result (6.32), we can see that those departures are quadratic in a
and D. A striking point is that D may reach much larger values than a: although
D is restricted to be less than a so that the configuration is superadiabatic — hence
prone to convective instability — the ratio of specific heat capacities may be very close

to one, which makes D much larger than D and potentially much larger than a. A
consequence is that pressure effects are significantly larger than temperature effects on
the departure from the Boussinesq stability threshold. The quadratic non-Boussinesq
departure depends on the structure of the equation of state: the expansion of density
in terms of pressure and temperature has to be made up to degree three (see (8.27)).
The fact that the degrees beyond three play no role is confirmed by the excellent
comparison between numerical Chebyshev results and the two-mode analytical results.

The difference of critical threshold between the approximation models and the
exact model are of special interest because we use them as a proxy for the validity
of the Boussinesq and ALA approximations. The corresponding two-mode analytical
differences, equations (8.12) and (8.13) for ideal gases, equations (8.25) and (8.26)
for a Murnaghan equation of state, and (8.34) and (8.35) for a generic equation of

state, have a simple analytical expression. They are quadratic in @ and D, but the

a* contribution is zero for the difference between the quasi-Boussinesq and exact

models, while the D? contribution is absent in the difference between quasi-ALA

and exact models. Both differences contain a cross-product contribution aD. As
expected, the quasi-Boussinesq approximation is better than the quasi-ALA when

D < O(a), and conversely for large D > O(a). Also, we observe that all analytical
threshold differences are proportional to (7;)*> =&>. This seems to indicate that the
approximations should always be much better for condensed matter than for gases,
but that conclusion must include a discussion on the Griineisen number.

We have not mentioned the Griineisen number so far in this paper. This parameter
is a dimensionless number associated with any equation of state, often denoted y,
sometimes I'. We choose the latter to avoid any confusion with the ratio of heat
capacities y = c,/c,, thus

poLip

9.1
> %), ©.1)

where e is the specific internal energy. Using the definition of ¢, and the triple product
identity, the Griineisen parameter can be written I" = «/(c,(dp/0dp)|r). Then using
Mayer’s relation, we obtain

—1 D
r=r"__"_Y2 (9.2)
T aD

For condensed matter, theoretical reasons, and more importantly experimental
measurements for a range of materials, pressure and temperature, converge towards
values of I' between 1 and 2 (Anderson, Isaak & Oda 1992), while Mayer’s
relation leads to y >~ 1. This implies that choosing a small value for the product oT
should imply that the ratio of specific heat capacities should be chosen accordingly,
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y — 1 ~al, ie. & ~ D/ﬁ. A decrease of & implies an increase of D for a
given dissipation number D. So, small values of & will be completely (for the
quasi-Boussinesq difference) or partly (for the quasi-ALA difference) compensated by

an increase in D. If the coefficient F is of order unity, and the Griineisen parameter
is of order unity /"~ 1, we may rewrite (8.35) as

SRagh* oc&aD. (9.3)

This does not apply to ideal gases. They can have a Griineisen number smaller than
unity, with @ = 1 and y — 1 <« 1 (polyatomic gases), so that the quasi-ALA may
still be a good approximation for them: an anelastic liquid approximation is indeed
an accurate approximation for a gas with molecules constituted by many atoms.

Let us consider typical results relevant to the mantle and core of the Earth. For
the mantle, we may consider typical values of «y7Ty = 0.03, y =1.03, D =0.5 and
a temperature ratio of 10 between the bottom of the mantle (core—-mantle boundary)
and the surface of the solid Earth. With a Murnaghan equation of state with n =3,
we obtain the following critical superadiabatic Rayleigh numbers:

Ray, =664.87, Raj, =650.23, Rag" =662.63. (9.4a—c)

Although the adiabatic temperature difference is only half the total temperature
difference, the quasi-ALA approximation is closer to the exact result than the
quasi-Boussinesq approximation by a factor 6 to 7. For the Earth’s core (assuming
that free—free top and bottom boundary conditions are appropriate), the adiabatic
temperature difference is very close to the total temperature difference: we choose
r=2 and D =0.6. Otherwise, we use the same parameters as for the typical mantle
above. The results are the following:

Ray, =927.97, Rai, =905.92, Raj* =926.90. (9.5a—c)

The difference between the critical quasi-ALA and exact Rayleigh numbers is
approximately 20 times smaller than the difference between the critical quasi-
Boussinesq and exact superadiabatic Rayleigh numbers.

10. Conclusions

We have made a contribution to the study of the convection stability beyond that
of Jeffreys. Using an approximate analysis based on two functions (cos(wz) and
sin(2mz)), we have shown that the critical superadiabatic Rayleigh number can be
expressed as the sum of the Boussinesq value 271*/4 and a quadratic function of the
dimensionless temperature gradient a and the dissipation number D. That quadratic
function is entirely dependent on the choice of the equation of state. Rayleigh
number may be split into an adiabatic part (based on the adiabatic gradient) and a
superadiabatic part:

Ra=Ra + Rasa. (10.1)

Denoting by AT,, the adiabatic temperature difference between bottom and top, and
by AT the imposed temperature difference (Tyoiom — T1op), We have Ra,s=RaAT,;/ AT

and (10.1) can be written:

Rasy
Ra = 1T,Tad . (102)

AT
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FIGURE 29. (Colour online) Typical representation of the quadratic dRass, in the plane
(a, D). The value of dRags, is related to the background colour: red (top right) is positive,
blue (bottom right) is negative. Solid lines are contours of constant positive values, while
dashed lines are contours of constant negative values. In the limit of small ¢ and D,
dRags, vanishes and the superadiabatic critical Rayleigh number is equal to the traditional
value 27m*/4 (Jeffreys 1930). In addition, the strict Boussinesq limit requires that the
superadiabatic Rayleigh number and the Rayleigh number coincide, corresponding to the
additional constraint D < a. Above D = a, the configuration is unconditionally stable
(Schwarzschild 1906).

In dimensionless terms, AT =a and AT,; =D, as defined in §5. Hence the critical
Rayleigh number can be expressed as

27t
~+ dRagy
Ra, ~ 4—17’ (10.3)
) -
a

where dRag, is evaluated correctly up to the second order in the parameters measuring
the distance to the Boussinesq limit, a and D. Note that, because of the singularity
at D =a, the departure of the superadiabatic Rayleigh number dRag, is not always a
quadratic polynomial in a and D. However, dRag, is always a homogeneous function
of degree two in a and D: when both parameters are multiplied by a real constant
&, dRag, is multiplied by &2. This is the case when dRas, is the ratio between a
polynomial of degree four in a and D, divided by a polynomial of degree two (see
(6.32), along with table 3 or table 4).

A typical representation of the departure of the critical superadiabatic Rayleigh
number is shown in figure 29, which serves here as a reminder for important features
of compressible convection. In the plane (a, D), the Schwarzschild criterion of stability
corresponds to D < a, the Jeffreys limit to small @ and D, and the Boussinesq limit
to the additional requirement D « a.

We have also studied two variants of the stability problem (quasi-Boussinesq
and quasi-ALA models), which are in the spirit of the Boussinesq and of the
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anelastic liquid models. Approximate analytical expressions have been obtained for
the discrepancy of the critical superadiabatic Rayleigh number obtained with these
two models (see the general expressions (8.34) and (8.35)). Although our study does
not provide any indication concerning the quality of the Boussinesq or anelastic
liquid approximations for developed convection, we have assessed them in terms
of a critical threshold for convection: the quasi-ALA approximation is in general
better than the quasi-Boussinesq approximation, except for very small values of the
dissipation parameter D. This tendency is even more pronounced as j, is closer to
unity.

Besides providing accurate estimates for the superadiabatic Rayleigh threshold, we
have used a two-mode analysis to obtain analytical expressions for the superadiabatic
critical Rayleigh number, depending explicitly on the governing physical parameters.
We have combined the two-mode analysis with a generic equation of state (8.27) to
prove that a cubic expansion of density (or specific volume) in terms of pressure
and temperature is needed for the evaluation of the quadratic departure, in terms
of a and D, of the superadiabatic critical Rayleigh number beyond the Boussinesq
limit. The first derivatives of density (or specific volume) with respect to temperature

and pressure are prescribed through the two dimensionless parameters @ and D.
The second derivatives are specified with the introduction of three dimensionless
parameters (E, F and G), while the third-order derivatives are defined with four
dimensionless parameters (J, K, L and M). We also needed to expand the temperature
dependence of the heat capacity ¢, up to degree two (8.29): dimensionless coefficients
A and B specify the linear and quadratic temperature dependence. We have shown that
only M (related to (3°p/0p®)|7) does not affect the superadiabatic critical Rayleigh
number. The superadiabatic Rayleigh number thus depends on 12 parameters: &,
a, D, D, E, F, G, J, K, L, A and B. The differences in critical suparadiabatic
Rayleigh numbers induced in the quasi-Boussinesq and quasi-ALA approximations
have been found to depend on fewer parameters, &, D, D, E, F and G, in effect on
the expansion of the specific volume up to degree two in temperature and pressure.
Let us summarize our main conclusions, as a list of key points.

(1) A projection of the eigenmode on just two modes, cos(mz) and sin(2mz), provides
a very good approximation of the critical superadiabatic Rayleigh number,
without any assumption on the equation of state.

(2) For small values of the dimensionless temperature gradient and dissipation
number, a and D, the two-mode analysis shows that the critical superadiabatic
Rayleigh number, Rag,, departs quadratically in a and D from Rayleigh’s value
27m /4.

(3) When comparing compressibility effects to thermal effects, one should in general

compare D to a (rather than D to a).

(4) Nevertheless, the specific quadratic departure of Ragy from 27m*/4 depends on
the expansion of the equation of state p(7, p) up to degree three in 7 and p.

(5) Quasi-anelastic liquid and quasi-Boussinesq approximations have been derived
and compared to the exact analysis. As soon as D exceeds a, the quasi-ALA
performs better than the quasi-Boussinesq approximation.

(6) The differences between the quasi-ALA or quasi-Boussinesq approximations with
the exact analysis depend on the expansion of the equation of state p(7, p) up
to degree two only.

(7) Those differences do not depend on the exact definition of the superadiabatic
temperature difference.
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Our results are in principle valid for any equation of state, hence the introduction
of a generic equation of state. We have tested it against the ideal gas equation and
Murnaghan’s equation of state for condensed matter. Other equations of state might
be considered, like those concerning fluids in the vicinity of the critical point, which
are the subject of a number of papers devoted to the threshold of convection (Mayer
& Kogan 2002; Ahlers et al. 2010).

A feature of our two-mode analysis is that we have treated the equations of
thermodynamics as rigorously as those of fluid mechanics. There are thermodynamic
relations between o, c¢,, y and other parameters (Alboussiere & Ricard 2013, 2014),
so that it is not exact to assume independent expansions of all parameters in terms of
temperature and pressure. Our analysis is based on the general form of an equation
of state with coherent associated expressions for the heat capacities.
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