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Abstract We construct a cohomology theory using quasi-smooth derived schemes as generators and an

analog of the bordism relation using derived fiber products as relations. This theory has pull-backs along
all morphisms between smooth schemes independent of any characteristic assumptions. We prove that,

in characteristic zero, the resulting theory agrees with algebraic cobordism as defined by Levine and

Morel. We thus obtain a new set of generators and relations for algebraic cobordism.
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1. Introduction

In his treatise on the universality of the formal group law of complex oriented

cobordism [13], Quillen introduced a geometric set of generators and relations for complex

oriented cobordism. He viewed complex cobordism as the universal contravariant functor

on smooth manifolds endowed with Gysin homomorphisms for proper oriented maps.

The distinctive feature of complex cobordism is that it comes equipped with a first

Chern class operator for complex line bundles, and this Chern class operator satisfies the

universal formal group law. Quillen’s construction of this theory is surprisingly simple.

In his geometric description, cobordism classes in the cobordism group U q(X) can be

represented by proper complex oriented maps Z → X , and two such maps give the same

cobordism class if they arise as fibers of a proper complex oriented map W → X ×R.

The construction of pull-backs in this geometric description for all maps between smooth

manifolds relies on Thom’s transversality theorem. Since any two maps between manifolds

can be moved by a homotopy until they are transversal, the pull-back of any generator

Z → X will again be a proper complex oriented map between smooth manifolds.

A corresponding algebraic theory was introduced by Levine and Morel [6]. Compared

to complex cobordism, it has a distinctly different flavor in two ways. First of all, the

formal group law controlling the first Chern class operator does not appear in a natural
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way. In the algebraic setting, the formal group law corresponds to a rule on how to

take a divisor consisting of several components apart. Surprisingly enough, as shown by

Levine and Pandharipande in [7], imposing a rule on the simplest possible configuration

of divisors is already sufficient to obtain a formal group law for the first Chern class

operator. Alternatively, the formal group law can be imposed formally, as done in [6]. On

this issue, derived algebraic geometry does not offer any insight. The second difference

to the topological theory arises in the construction of pull-backs along all morphisms

between smooth schemes. Since algebraic geometry is by nature much more rigid, two

morphisms between smooth schemes can in general not be arranged to be transversal.

Taking smooth schemes as representatives of algebraic cobordism classes, it therefore

is difficult to obtain pull-backs in algebraic cobordism. In fact, this is by far the most

difficult part in the construction of [6], and it is only carried out in characteristic zero.

After these difficulties are out of the way, the resulting theory has a close resemblance

to Quillen’s theory of complex oriented cobordism. For instance, algebraic cobordism

satisfies a similar universal property, and the cobordism ring of a point is isomorphic to

the Lazard ring.

A natural idea how to obtain a cohomology theory having pull-backs along all

morphisms between smooth schemes is to enlarge the class of schemes allowed as

generators of the theory. Staying in the realm of algebraic geometry, it is unclear though

which class of schemes to pick. The least complicated schemes after smooth schemes

are local complete intersections, and these are also not stable under pull-backs between

morphisms of smooth schemes. Here, derived algebraic geometry offers a natural solution.

The class of quasi-smooth derived schemes is a mild generalization of smooth schemes

and local complete intersections. It satisfies excellent stability properties under all derived

pull-backs of morphisms between smooth schemes, so that any cohomology theory defined

with quasi-smooth derived schemes as generators will automatically have pull-backs along

such morphisms. The class of quasi-smooth schemes offers a natural algebraic–geometric

analog of moving by a homotopy to transversal intersection; see, for example, the work

of Ciocan-Fontanine and Kapranov in [2]. Quasi-smooth schemes are also not too far

a generalization from schemes. For instance, the simplicial commutative rings giving

the local theory of quasi-smooth schemes only have finitely many homotopy groups.

Furthermore, locally every quasi-smooth derived scheme can be written as the derived

fiber product of underived schemes.

The aim of this paper is to study the theory obtained by using an algebraic version of

Quillen’s construction with quasi-smooth derived schemes replacing smooth manifolds

as representatives of bordism classes, and by replacing deformation to transversal

intersection by derived fiber products in the definition of the bordism relation. The

resulting theory is called derived algebraic cobordism. By construction, the resulting

cohomology theory will have pull-backs along all morphisms between smooth manifolds,

independent of any characteristic assumption on the base field. In particular, we obtain a

first Chern class operator for line bundles. As in the algebraic theory of Levine and Morel,

it is too much to expect that this operator will satisfy a formal group law. After imposing

this formal group law, we obtain a theory that resembles the theory of Levine and Morel.

In characteristic zero, we prove that there is a natural comparison map between algebraic
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bordism and derived algebraic bordism, and this map is in fact an isomorphism. We thus

obtain a new set of generators and relations for algebraic cobordism.

The motivation came from finding an analog of Spivak’s [15] and Joyce’s [5] results

in derived differential geometry and d-manifolds, respectively. Using generators and

relations as prescribed above, Joyce and Spivak define derived cobordism for any smooth

manifold, and both are able to prove that derived cobordism agrees with classical

cobordism. Our result is slightly stronger in that it shows that, for any quasi-projective

derived scheme (including both singular and derived), the aforementioned isomorphism

exists.

This result also provides a conceptual explanation why the virtual fundamental classes

of Behrend and Fantechi [1] and Li and Tian [8] exist. It implies that every quasi-smooth

derived scheme of virtual dimension d is in fact bordant to a smooth scheme of

dimension d.

The method of proof employed here is remarkably similar to that of the proofs of Joyce

and Spivak. For those acquainted with the proof, we have the following rough analogies.

Differential geometric Algebro geometric

Manifold Smooth scheme
Derived manifold Quasi-smooth derived scheme

Tubular neighborhood Deformation to the normal cone
Thom’s transversality Levine’s moving lemma

More precisely, following ideas from [11], we introduce orientations for quasi-smooth

morphisms in algebraic bordism. In the case of a quasi-smooth derived scheme mapping

to a point, this gives exactly the virtual fundamental class. Using the tools summarized in

the above table, we then prove a Grothendieck–Riemann–Roch result stating that these

orientations are compatible with the orientations defined for derived algebraic bordism

(Corollary 5.11). As a consequence, we obtain that the natural transformation

ϑ� : d�∗ −→ �∗

obtained from the universal property of d�∗ is an isomorphism.

An immediate consequence of this Grothendieck–Riemann–Roch result is that derived

bordism and classical bordism coincide as homology theories on the category of

derived quasi-projective schemes.

Theorem 5.12. For all X ∈ dQPrk the morphism

ϑd� : �∗(X) −→ d�∗(X)

is an isomorphism.

To emphasize the analogy between derived fiber products and deformation to

transversal intersection, we prove the following formula for the intersection product in

derived algebraic cobordism.

Theorem 6.1. Let X ∈ Smk . Then the intersection product is represented by the homotopy

fiber product:

[Y ] · [Z ] = [Y ×h
X Z ] ∈ d�∗(X).
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We briefly review the argument and the contents of the paper.

In § 2, we introduce the abstract notion of an oriented Borel–Moore functor of geometric

type with quasi-smooth pull-backs. We then define derived algebraic bordism in § 3,

and show that it is the universal oriented Borel–Moore functor of geometric type with

quasi-smooth pull-backs. In § 4, we study some properties of the underived bordism �∗.
We first extend �∗ to a homology theory on derived quasi-projective schemes and verify

that is the universal oriented Borel–Moore homology theory of geometric type. This yields

a natural transformation ϑd� : �∗→ d�∗. The remainder of the section is devoted to

constructing pull-backs along quasi-smooth morphisms in �∗. Once this is done, we

obtain, using the universal property of d�∗, a natural transformation ϑ�∗ : d�∗→ �∗
in the opposite direction. Finally, in § 5, we show that these natural transformations are

inverse to each other using a Grothendieck–Riemann–Roch type theorem.

Notation. We will work throughout over a base field k. Starting from § 4, this field will

be of characteristic zero.

For any scheme or derived scheme X we will denote by QCoh(X) the ∞-category of

quasi-coherent sheaves on X introduced by Lurie in [10]. Roughly, objects of QCoh(X)
correspond to possibly unbounded complexes of quasi-coherent sheaves on X .

We have adopted using L for the Lazard ring and L X for the cotangent complex of a

scheme X .

In the text, various categories of schemes and derived schemes are encountered. We have

used bold font with hopefully self-explanatory names for these categories. For instance,

dQPrk denotes the category of derived quasi-projective schemes over k, Smk denotes the

category of smooth quasi-projective schemes over k, and so forth.

Given a scheme X and the data of an effective Cartier divisor on X , D, we do not

distinguish between the Cartier divisor and the natural subscheme it generates. We let

OX (D) be the associated line bundle on X , with the natural section implicit. We let |D|
denote the support of the Cartier divisor. This is the reduced subscheme of D.

Similar to Fulton’s convention [4, Convention 1.4], if i : Y ↪→ X is a closed embedding

and α ∈ d�∗(Y ), when no confusion can arise we write α ∈ d�∗(X) rather than i∗α.

Throughout this text, f : X → Y is transverse to g : Z → Y if they are Tor-independent

and X ×Y Z → Z is smooth. Here, Tor-independence means that TorOY
i (OX ,OZ ) = 0 for

all i > 0.

2. Oriented Borel–Moore functors on derived schemes

In this section, we introduce oriented Borel–Moore functors on quasi-projective derived

schemes which have quasi-smooth pull-backs. We believe this is the right setting for

studying virtual fundamental classes, since for any quasi-projective quasi-smooth derived

scheme X we can then define the virtual fundamental class via π∗X [1], where πX : X → pt
is the structure morphism.

Following Levine and Morel [6], we first introduce oriented Borel–Moore functors with

product. In these theories, one has no control over the behavior of the first Chern class

operator. We later pass to oriented Borel–Moore functors of geometric type. There, the

first Chern class satisfies a formal group law.
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2.1. Oriented Borel–Moore functors with product

The definition of an oriented Borel–Moore functor with product on derived schemes is an

immediate generalization of the original definition of Levine and Morel in [6] for schemes.

Let dQPrk denote the category of quasi-projective derived schemes over k. Let dQPr′k
denote the subcategory of dQPrk with proper morphisms.

Definition 2.1. An oriented Borel–Moore functor with product on dQPrk is given by the

following.

(D1) An additive functor A∗ : dQPr′k → Ab∗.
(D2) For each smooth morphism f : X → Y in dQPrk of pure relative dimension d, a

homomorphism of graded abelian groups

f ∗ : A∗(Y ) −→ A∗+d(X).

(D3) For each line bundle L on X , a homomorphism of graded abelian groups

c1(L) : A∗(X) −→ A∗−1(X).

(D4) For each pair (X, Y ) in dQPrk , a bilinear graded pairing

× : A∗(X)× A∗(Y ) −→ A(X × Y )

which is commutative, associative, and admits a distinguished element 1 ∈ A0(pt)
as a unit.

These data are required to satisfy the following axioms.

(A1) Let f : X → Y and g : Y → Z be smooth morphisms in dQPrk of pure relative

dimension. Then

(g ◦ f )∗ = f ∗ ◦ g∗.

Moreover, id∗X = idA∗(X).

(A2) Let f : X → Z and g : Y → Z be morphisms in dQPrk , where f is proper and g
is smooth of pure relative dimension. Let

W
g′ //

f ′
��

X

f
��

Y g
// Z

be the resulting Cartesian square. Then

g∗ f∗ = f ′∗g′∗.

(A3) Let f : X → Y be proper, and let L → Y be a line bundle. Then

f∗ ◦ c1( f ∗L) = c1(L) ◦ f∗.
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(A4) Let f : X → Y be smooth of pure relative dimension, and let L → Y be a line

bundle. Then

c1( f ∗L) ◦ f ∗ = f ∗ ◦ c1(L).

(A5) For all line bundles L and M on X ∈ dQPrk , we have

c1(L) ◦ c1(M) = c1(M) ◦ c1(L).

If L and M are isomorphic as line bundles on X , then c1(L) = c1(M) holds.

(A6) For proper morphisms f and g, we have

×◦ ( f∗× g∗) = ( f × g)∗ ◦×.
(A7) For smooth morphisms f and g, we have

×◦ ( f ∗× g∗) = ( f × g)∗ ◦×.
(A8) For X, Y ∈ dQPrk and L → X a line bundle, we have

(c1(L)(α))×β = c1(p∗1(L))(α×β).

Remark 2.2. It might seem surprising that in (A2) the square is only required to be

Cartesian and not homotopy Cartesian. But in this case the Cartesian product is a

homotopy fiber product since g is assumed to be smooth and thus flat.

The following lemma follows immediately from the definitions.

Lemma 2.3. An oriented Borel–Moore functor with product on dQPrk restricted to QPrk
is a Borel–Moore functor with product on QPrk .

For a general oriented Borel–Moore functor, one has no control over the behavior of the

first Chern class operator. The next better behaved type of homology theory introduced

by Morel and Levine is an oriented Borel–Moore functor of geometric type. For such

a theory, the first Chern class operator is controlled by a formal group law. Since the

conditions only involve smooth schemes and a smooth derived scheme is always classical,

the definition carries over immediately to derived schemes. We briefly recall the notion

for the reader’s convenience.

Recall that an oriented Borel–Moore R∗-functor with product is an oriented

Borel–Moore functor A∗ equipped with a graded ring homomorphism R∗→ A∗(k). Here,

R∗ is graded unital commutative ring.

Definition 2.4. Let L∗ be the Lazard ring, graded such that the universal formal group

law has total degree −1. An oriented Borel–Moore functor of geometric type is an oriented

Borel–Moore L∗-functor A∗ on dQPrk satisfying the following additional axioms.

(Dim) For a smooth scheme X and line bundles L1, . . . , Lr on X with r > dim(X), we

have

c1(L1) ◦ · · · ◦ c1(Lr )(1X ) = 0 ∈ A∗(X).
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(Sect) For a smooth scheme X and a section s : X → L of a line bundle L on X
transverse to the zero-section, we have

c1(L)(1X ) = i∗(1Z ),

where Z is the zero-set of s and i : Z → X is the inclusion.

(FGL) for a smooth scheme X and line bundles L ,M on X , we have

FA(c1(L), c1(M))(1X ) = c1(L ⊗M)(1X ) ∈ A∗(X),

where FA is the image of the universal formal group law on L under the

homomorphism given by the L∗-structure.

Remark 2.5. In [6], Borel–Moore functors satisfying more axioms than those of a functor

of geometric type are considered. One of the axioms for a weak homology theory is a

weak localization axiom closely related to axiom (Sect) of a functor of geometric type.

(Loc) Let L be a line bundle on a scheme X admitting a section s : X → L which is

transverse to zero. Let i : Z → X be the inclusion of the zero-set of s. Then the

image of c1(L) : A∗(X)→ A∗−1(X) is contained in the image of i∗ : A∗−1(Z)→
A∗−1(X).

Again, the following lemma is immediate from the definitions.

Lemma 2.6. An oriented Borel–Moore functor of geometric type on dQPrk restricted to

QPrk is a Borel–Moore functor of geometric type on QPrk .

If, in addition to axiom (Loc) of Remark 2.5, one requires the projective bundle

theorem, and an extended homotopy relation, then one obtains the definition of a

weak homology theory. From there, one can further ask for pull-back along locally

complete intersection morphisms and certain cellular decomposition formulas to obtain

a well-behaved functor called a Borel–Moore homology theory.

2.2. Borel–Moore functors with quasi-smooth pull-backs

To introduce virtual fundamental classes in an oriented Borel–Moore functor it is

necessary to define orientations, i.e. pull-backs, for quasi-smooth morphisms. We first

recall some basic notions on quasi-smooth morphisms.

Definition 2.7. A morphism f : X → Y of derived schemes is quasi-smooth if f is locally

of finite presentation and the relative cotangent complex L X/Y is of Tor-amplitude 61.

Example 2.8. Let f : X → Y be a local complete intersection morphism of schemes. Then

f is quasi-smooth.

Remark 2.9. Note that being locally of finite presentation as a morphism of derived

schemes is in general a stronger condition than requiring the underlying morphism of

schemes to be locally of finite presentation in the usual sense. For instance, being locally

of finite presentation as a morphism of derived schemes implies that the relative cotangent
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complex is perfect. This is only true for local complete intersection morphisms of classical

schemes.

For any point p : Spec A→ X the above condition implies that p∗L X/Y is locally

isomorphic to a two-term complex of vector bundles. This leads to the definition of

virtual dimension.

Definition 2.10. Let f : X → Y be a quasi-smooth morphism, and let p : Spec k → X be

a k-point of X . Then the virtual dimension of f at p is defined as

virdim( f, p) = H0(p∗L X/Y )− H1(p∗L X/Y ).

Remark 2.11. The virtual dimension of f at p ∈ X is a locally constant function.

For later uses we will introduce quasi-smooth morphisms that admit a factorization

into a quasi-smooth embedding followed by a smooth morphism. In the case of local

complete intersection morphisms of schemes this is often built into the definition. As a

rule of thumb, in English texts a local complete intersection has a global factorization by

definition (see, e.g., [4, 6]), whereas in French texts this is an additional property (see,

e.g., [3]).

Definition 2.12. We say that a morphism f : X → Y of derived schemes is smoothable

if it factors as closed embedding followed by smooth morphism. Such a factorization is

called a smoothing.

Remark 2.13. Let f : X → Y be a quasi-smooth morphism, and let X
i
↪→ M

p−→ Y be a

smoothing. It then follows that i : X ↪→ M is a quasi-smooth embedding.

Remark 2.14. Locally a smoothing exists for any quasi-smooth morphism.

Example 2.15. Any morphism f : X → Y with X, Y ∈ dQPrk admits a smoothing.

Once we have pull-backs along quasi-smooth morphism, we will, in particular, have

fundamental classes for local complete intersections. We need a normalization property

for these fundamental classes to ensure compatibility with fundamental classes for local

complete intersections in other homology theories. This normalization is automatically

satisfied for Borel–Moore homology theories.

To state the desired normalization property, we first borrow notation from [6, § 3.1].

Given a formal group law F(u, v) ∈ R[[u, v]] for some commutative ring R, there exists

the difference group law

F−(u, v) ∈ R[[u, v]].
If we let χ(u) denote the unique inverse power series satisfying F(u, χ(u)) = 0, this

difference group law is defined by the equation

F(u, v) = F−(u, χ(v)).
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Often the suggestive notation +F is used in place of the formal group law and −F for

the difference. Given an integer n, denote

[n]F · u :=
{

u+ F . . .+ F u n > 0,
u− F . . .− F u n < 0,

where the operation is performed |n| times, and given integers n1, . . . , nm ,

Fn1,...,nm (u1, . . . , um) := [n1]F · u1+ F [n2]F · u2 · · · + F [nm]F · um .

One can guess many identities among the formal power series with this notation. For

instance,

(u+ Fv)− (0+ Fv) = u

translates to the formal power series identity

F−(F(u, v), F(0, v)) = u

used in Lemma 3.17.

Let E be a strict normal crossing divisor on a smooth scheme X with support |E |.
Following [6], if A∗ is any Borel–Moore functor with first Chern classes obeying a formal

group law and having proper push-forwards (this included Borel–Moore functors of

geometric type), there exists a class [E → |E |] ∈ A∗(|E |) defined as follows. Writing

E =∑m
j=1 n j E j with each E j integral, for any index J = ( j1, . . . , jm) with ‖J‖ 6 1,1

let E J :=⋂i, ji=1 Ei be the J th face, and let i J : E J → |E | be the natural inclusion. If

L i = OX (Ei ) and L J
i = (i J )∗L i , define

[E → |E |] =
∑

J,‖J‖61

i J∗
(
[Fn1,...,nm

J (L J
1 , . . . , L J

m)]
)
. (1)

With the notation now set, we define the central notion of this section.

Definition 2.16. An oriented Borel–Moore functor with quasi-smooth pull-backs (also

referred to as ‘with quasi-smooth orientations’, or ‘with quasi-smooth Gysin-maps’) on

dQPrk consists of an oriented Borel–Moore functor A∗ of geometric type equipped with

the following.

(B1) For each equi-dimensional quasi-smooth morphism f : Y → X of relative virtual

dimension d, a homomorphism of graded abelian groups

f ∗ : A∗(X) −→ A∗+d(Y ).

These pull-backs should satisfy the following axiom.

(QS1) Let s : L → X be a section of a line bundle. Then c1(L) = s∗s∗.
(QS2) Let f : X → Y and g : Y → Z be quasi-smooth morphisms of pure relative

virtual dimension. Then

(g ◦ f )∗ = f ∗g∗.

1Here, ‖J‖ := Supi ( ji ).
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(QS3) Let f : X → Z and g : Y → Z be morphisms giving the homotopy Cartesian

square

W
g′ //

f ′
��

X

f
��

Y g
// Z

with f proper and g quasi-smooth and virtually equi-dimensional. Then

g∗ f∗ = f ′∗g′∗.

(QS4) For quasi-smooth morphisms f and g, we have

×◦ ( f ∗× g∗) = ( f × g)∗ ◦×.
(QS5) For any strict normal crossing divisor E in a smooth scheme X , we have

π∗E ([1]) = (ζE )∗([E → |E |]).
Here, πE : E → pt is the structure morphism of E , which is a local complete

intersection morphism, and ζE : |E | → E is the natural embedding.

Remark 2.17. Axiom (QS5) is likely equivalent to the extended homotopy property.

In particular, by [6, Chapter 7], it is satisfied by all Borel–Moore homology functors.

As mentioned previously, it is directly related to the universal morphism from regular

bordism commuting with locally complete intersection pull-back (a priori, it only

commutes with smooth pull-back). Since we want our derived bordism group to extend

bordism (it will in fact be an isomorphism), it is a requirement. This hypothesis will

likely be relegated irrelevant with more investigation in properties of the ‘naive’ derived

bordism groups.

The pull-back f ∗ is called an orientation of the quasi-smooth morphism. In any oriented

Borel–Moore functor with quasi-smooth pull-backs or orientations we can define virtual

fundamental classes.

Definition 2.18. Let X be a quasi-projective quasi-smooth derived scheme, and let A∗
be an oriented Borel–Moore functor with quasi-smooth pull-backs. Then the virtual

fundamental class is defined as

π∗X ([1]) ∈ A∗(X).
Here, πX : X → pt is the structure morphism, and π∗X is quasi-smooth pull-back.

The following definition summarizes all desirable properties a homology theory with

quasi-smooth pull-backs should have.

Definition 2.19. An oriented Borel–Moore homology theory with quasi-smooth pull-backs

on dQPrk is given by an additive functor A∗ : dQPr′k → Ab∗ equipped with quasi-smooth

pull-backs and an external product, such that the following hold.
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(BM1) Axioms (QS2), (QS3), and (QS4) hold.

(BM2) The projective bundle theorem of [6, Definition 5.1.3] holds.

(BM3) The extended homotopy relation of [6, Definition 5.1.3] holds.

(BM4) The cellular decomposition relation of [6, Definition 5.1.3] holds.

3. Derived algebraic bordism

In this section, we define derived algebraic bordism by generators and relations. Derived

algebraic bordism will turn out to be the universal oriented Borel–Moore functor of

geometric type with orientations for quasi-smooth morphisms. Since a quasi-smooth

morphism of schemes is a local complete intersection morphism, derived algebraic bordism

has pull-backs for local complete intersection morphisms. Besides all the axioms necessary

for an oriented Borel–Moore functor of geometric type, derived algebraic bordism

additionally satisfies axiom (Loc) of Remark 2.5, although we will not use this.

We begin with the generators of our theory.

Definition 3.1. Let X be a quasi-projective derived scheme over k. Denote by Mn(X)+
the free abelian group generated by proper morphisms

f : Y −→ X,

where Y ∈ QSmk is irreducible and of virtual dimension n. We will refer to elements of

M∗(X) as derived bordism cycles.

We next introduce relations among the generators.

Definition 3.2. Let X ∈ dQPrk , and denote by p : X ×P1 → P1 the projection onto the

second factor. Let Y ∈ dQPrk be quasi-smooth of pure virtual dimension, and let

g : Y → X ×P1

be a proper morphism. We can then form the homotopy Cartesian square

Y0 //

��

Y

g

��

Y∞

��

oo

X //

��

X ×P1

p

��

X

��

oo

0 // P1 ∞.oo

The associated homotopy fiber relation then is

[Y0 → X ] − [Y∞→ X ].
Let R∗(X) ⊂M∗(X)+ be the subgroup generated by all homotopy fiber relations.
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Remark 3.3. It follows from basic properties of homotopy fiber products that Y0 and Y∞
are quasi-smooth derived schemes without any assumptions on 0 and ∞ being regular

values of p ◦ g.

We can now define a naive version of derived algebraic bordism.

Definition 3.4. Let X ∈ dQPrk . Then naive derived algebraic bordism is defined by

d�naive∗ (X) =M∗(X)+/〈R∗(X)〉.

Remark 3.5. Let [Y → X ] and [Y ′→ X ] be generators of d�naive∗ (X), where Y is weakly

equivalent to Y ′. Using the homotopy fiber relation, it follows that [Y → X ] = [Y ′→ X ]
in d�naive∗ (X).

The functor d�naive∗ already has some of the requisite structure of an oriented

Borel–Moore functor. In particular, we can immediately define push-forward along proper

maps and pull-back along quasi-smooth morphisms (which includes smooth morphisms).

Let g : X → X ′ be a proper map in dQPrk . The map

g∗ :M∗(X)+ −→M∗(X ′)+

is given by

g∗([ f : Y → X ]) = [g ◦ f : Y → X ′].
It is immediate that this descends to a functorial push-forward

g∗ : d�naive∗ (X)→ d�naive∗ (X ′).

Definition 3.6. Let g : X → X ′ be a quasi-smooth morphism between quasi-projective

derived schemes. The quasi-smooth pull-back

g∗ :M∗(X ′)+ −→M∗(X)+

is given by

g∗([ f : Y → X ′]) = [Y ×h
X ′ X → X ].

Again, it is immediate that this descends to a functorial pull-back

g∗ : d�naive∗ (X ′) −→ d�naive∗ (X).

Remark 3.7. When g is smooth and thus flat, the usual fiber product is a homotopy fiber

product, and we arrive at

g∗([ f : Y → X ′]) = [Y ×X ′ X → X ].

Since we have defined pull-backs for quasi-smooth morphisms, we automatically have

first Chern class operators.
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Definition 3.8. Let X ∈ dQPrk , let L be a line bundle on X , and let s0 : X → L be the

zero-section. We can then define the first Chern class operator via

c1(L)([Y → X ]) = s∗0 (s0)∗([Y → X ]).
More generally, for any vector bundle E → X of rank r , we define the Euler class or top

Chern class as

cr (L)([Y → X ]) = s∗0 (s0)∗([Y → X ]).

Lemma 3.9. Given a line bundle L on X ∈ QPrk and any s : X → L, define cs
1(L) :

d�∗(X)→ d�∗(X) as s∗0 s∗([Y f−→ X ]). Then cs
1(L) = cs0

1 (L) = c1(L).

Proof. Let us first assume that L has two non-zero-sections, s and s′. Define Z → X ×P1

to be the derived scheme

Z //

f̃

��

Y ×P1

s̃◦( f×id)

��
X ×P1 s0 // L �OP1(1),

where s̃ = sx0+ s′x∞, and where x0, x∞ are the Cartier divisors corresponding to 0
and ∞ (they are both sections of OP1(1)). It is clear that Z is quasi-smooth and that

f̃ |0 = cs
1(L)∩ [Y

f−→ X ] and f̃ |∞ = cs′
1 (L)∩ [Y

f−→ X ], thus proving the claim.

For the case that s = s0, note that, if p : L → X is the natural projection, then

p∗L → L has two natural sections: the canonical section s̃ and p∗s′. These sections

are both non-zero-sections of the same line bundle, and thus, from the above, we have

the following diagram for any [X f−→ Y ]:

Y ′′ //

��

Y ′ //

��

Y ×X L ×P1

��
Z ′ //

��

Z //

��

L ×P1

��
X ×P1 // L ×P1 // L �OP1.

The bottom morphisms are quasi-smooth, and thus the quasi-smoothness of Y implies

that Y ′′ is quasi-smooth. We then have

[Y ′′|0 → X ] = cs0
1 (L)∩ [Y → X ]

and

[Y ′′|∞→ X ] = cs′
1 (L)∩ [Y → X ],

and thus the desired bordism.

Remark 3.10. The same proof works also works for any vector bundle of rank e > 1.
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To promote d�naive∗ to an oriented Borel–Moore functor with product, we define the

external product by

× :M∗(X)×M∗(X ′) −→M(X × X ′)
[Y → X ]× [Y ′→ X ′] 7−→ [Y ×k Y ′→ X ×k X ′].

Clearly this descends to d�naive∗ .

Proposition 3.11. d�naive∗ is an oriented Borel–Moore functor with product.

Proof. We have defined the projective push-forward, smooth pull-back, first Chern

classes, and the external product. The proof then is a long but simple check of the axioms

using properties of homotopy Cartesian squares. For instance, axiom (A2) follows from

the fact that, given a diagram

A′ //

��

A

��
W

g′ //

f ′
��

X

f
��

Y g
// Z ,

where the two inner squares are homotopy Cartesian, then the outer is also homotopy

Cartesian.

With these definitions, we can prove that d�naive∗ partially satisfies the properties of an

oriented Borel–Moore functor of geometric type.

Proposition 3.12. d�naive∗ satisfies axiom (Sect).

Proof. Let X be a smooth scheme, let L be a line bundle on X , and let s : X → L be

a section which is transverse to the zero-section. Since the first Chern class operator is

independent of the choice of section, we can take c1(L)(1X ) = 0∗s∗(1X ), where 0 : X → L
is the zero-section. Since the section is assumed to be transverse to zero, the first Chern

class operator is then given by the Cartesian square

Z //

id

��

X
id

��
Z //

i

��

X
s

��
X

0
// L .

Here, Z is the zero-set of s. We now have

c1(L)(1X ) = 0∗s∗(1X ) = 0∗([X id−→ X
s−→ L])

= [Z id−→ Z
i−→ X ] = i∗([Z id−→ Z ]).
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Remark 3.13. In fact, replacing [X → X ] with [Y → X ] in the proof above shows that

d�naive∗ satisfies axiom (Loc) of Remark 2.5.

Remark 3.14. Using the homotopy zero-set, Proposition 3.12 is even true without the

transverse to zero assumption.

This is as far as one can get by using the homotopy fiber relation. It seems impossible

to show further properties of the first Chern class operator of Definition 3.8, for example,

that it satisfies a formal group law and axiom (Dim). To go any further, one must

artificially impose a formal group law. This requires that we first know that c1 acts

nilpotently.

In the following propositions, following the arguments of [7], we will show that it is

enough to show nilpotence of c1 for globally generated bundles. Once this is shown, it

then is legal to impose the formal group law for globally generated bundles. We are then

left to prove that axioms (FGL) and (Dim) hold for all line bundles.

Proposition 3.15. Let X be a smooth scheme, and let L1, . . . , Lr be globally generated

bundles with dim(X) < r . Then
r∏

i=1

c1(L i ) = 0.

Proof. By Proposition 3.12, c1(L1) ◦ c1(L2) ◦ · · · ◦ c1(Lr )(1X ) set-theoretically can be

arranged to be the empty set. Any morphism factoring through the empty set is zero.

We now impose the formal group law on these globally generated line bundles. Recall

that L∗ denotes the Lazard ring, graded such that the universal formal group law has

total degree −1. Define a new oriented Borel–Moore functor by

X 7−→ L∗⊗Z d�naive∗ (X).

For any smooth scheme X , set

RFGL∗ (X) ⊂ L∗⊗Z d�naive∗ (X)

to be the subset of elements of the form

FL(c1(L), c1(M))(1X )− c1(L ⊗M)(1X )

for globally generated line bundles L ,M on a smooth scheme X . Here, FL is the universal

formal group law.

Recall from [6, § 2.1.5] that, given an oriented Borel–Moore functor with product A∗
and a subset of homogeneous elements R∗(X) ⊂ A∗(X) compatible with the external

product, it is possible to define the quotient Borel–Moore homology functor A∗/R∗.

Definition 3.16. Define derived algebraic pre-bordism as

d�pre
∗ = d�naive∗ /〈RFGL∗ 〉.

https://doi.org/10.1017/S1474748014000334 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748014000334


422 P. E. Lowrey and T. Schürg

Using the notation for the formal group law set in the previous section, we now have

to show that (Dim) and (FGL) hold for all line bundles. The proofs proceed exactly as

in [7].

Lemma 3.17. Let X ∈ Smk , let L be a line bundle on X , and let M be a globally generated

line bundle such that L ⊗M is globally generated. Then

c1(L) = F−L (c1(L ⊗M), c1(M)).

Proof. The proof follows from the power series identity

F−(F(u, v), F(0, v)) = F−(u, 0) = u.

Proposition 3.18. d�pre
∗ satisfies axiom (Dim).

Proof. Let X be a quasi-projective scheme, and let L1, . . . , Lr be a sequence of line

bundles with r > dim(X). By the previous lemma, we have

c1(L i ) = F−L (c1(L i ⊗M), c1(M)),

where M is globally generated and chosen such that L i ⊗M is globally generated. The

proof then is the same as [7, Lemma 9.3].

Proposition 3.19. d�pre
∗ satisfies axiom (FGL).

Proof. Let X be a smooth scheme, and let L ,M be line bundles on X . Choose globally

generated bundles N1, N2 such that L ⊗ N1 and L ⊗ N2 are globally generated. The proof

then follows from the formal power series identity

F− (F(u1, v1), F(u2, v2)) = F
(
F−(u1, u2), F−(v1, v2)

)
combined with Lemma 3.17 and the formal group law for globally generated bundles.

Lastly, we ensure that strict normal crossing divisors in a smooth scheme have the

correct fundamental class. For any smooth scheme X and any strict normal crossing

divisor E in X , set

RSNC∗ (E) ⊂ d�pre
∗ (E)

to be the subset of elements of the form

π∗E ([1])− (ζE )∗[E → |E |].
Here, πE : E → pt is the structure morphism of the support of E , ζE : |E | → E is the

natural closed embedding, and [E → |E |] is the class defined in (1).

Definition 3.20. Define derived algebraic bordism as

d�∗ = d�pre
∗ /〈RSNC∗ 〉.

Remark 3.21. Instead of taking the axiomatic approach to obtaining a formal group law,

it should be possible to impose some form of the double point relations of [7] to obtain

the formal group law and the correct fundamental class for strict normal crossing divisors

in one step.
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We are now ready to prove the universality of derived algebraic bordism.

Theorem 3.22. d�∗ is the universal oriented Borel–Moore functor with quasi-smooth

pull-backs of geometric type.

Proof. By Propositions 3.11, 3.12, 3.18, and 3.19, d�∗ is an oriented Borel–Moore functor

of geometric type and has orientations for quasi-smooth morphisms. The normalization

property (QS5) is clear by construction. We are left to show universality. The proof of

universality is the same as that for [13, Proposition 1.10]. Let A∗ be another oriented

Borel–Moore functor of geometric type with quasi-smooth pull-backs. Then we can define

a natural transformation

ϑA : d�∗ −→ A∗
by

ϑA([Y f−→ X ]) = f∗π∗Y [1].
Here, as before, πY : Y → pt is the structure morphism of Y . The proof that ϑ is

compatible with the structures of an oriented Borel–Moore functor of geometric type

is straightforward.

Remark 3.23. Further examples of oriented Borel–Moore functors with quasi-smooth

pull-backs are discussed in [9]. There, using the quasi-smooth pull-backs defined by [11],

Chow homology is extended to derived schemes. This theory has the additive formal

group law. As another example, G-theory with quasi-smooth pull-backs is introduced.

This carries the multiplicative formal group law.

4. Quasi-smooth pull-backs in algebraic bordism

We now restrict consideration to the case that k is of characteristic zero. We begin by

extending the classical underived bordism �∗ to a functor on the category of derived

quasi-projective schemes dQPrk with proper morphisms using the same generators and

relations as for classical schemes. By abuse of notation, we will still denote this extended

functor by �∗. Given a derived quasi-projective scheme X , we then have the closed

embedding of the underlying scheme ιX : t0(X) ↪→ X . In particular, this is a proper map,

and there exists a push-forward on associated bordism groups.

Lemma 4.1. Let X ∈ dQPrk . Then the inclusion of the classical part ιX : t0(X) ↪→ X
induces an isomorphism

ιX∗ : �∗(t0(X)) −→ �∗(X).
Proof. This is clear, since the generators of �∗(X) are given by morphisms f : Y → X
with Y smooth, and every such map factors through the truncation t0(X).

Using the above lemma, it is immediate to equip the extended functor �∗ with

pull-backs along smooth morphisms of derived quasi-projective schemes. Since the

truncation of a smooth morphism f : X → Y is again smooth, we can define f ∗ by

the composition

�∗(Y ) ∼= �∗(t0(Y )) t0( f )∗→ �∗(t0(X)) ∼= �∗(X).

https://doi.org/10.1017/S1474748014000334 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748014000334


424 P. E. Lowrey and T. Schürg

Along the same lines, we can define a first Chern class operator for a line bundle L on

a derived scheme X for the extended functor �∗ by the composition

�∗(X) ∼= �∗(t0(X))
c1(ι
∗
X L)→ �∗−1(t0(X)) ∼= �∗−1(X).

Almost by definition, this makes the extended functor �∗ an oriented Borel–Moore

functor of geometric type. The same proof as in the discrete case shows that it is in fact

the universal such functor.

Corollary 4.2. There is a canonical classifying morphism

ϑd� : �∗ −→ d�∗.

Proof. Since d�∗ is an oriented Borel–Moore functor of geometric type on dQPrk ,

and since by the preceding discussion �∗ is the universal such Borel–Moore functor

of geometric type, we obtain a natural transformation

ϑd� : �∗ −→ d�∗
given by

ϑd�([Y f−→ X ]) = f∗π∗Y [1].
Here, πY : Y → pt is the structure morphism of Y , and the pull-back and push-forward

morphisms on the right-hand side are in d�∗.
The remainder of this section is devoted to constructing a classifying map in the

opposite direction. To construct this morphism, we want to use the universal property

of d�∗. Since d�∗ is universal with respect to quasi-smooth pull-backs, we first have to

construct quasi-smooth pull-backs in �∗. This will be done in this section.

More generally, it is possible to show this for any Borel–Moore homology theory that

has intersections with pseudo-divisors defined (in such a way as to commute with smooth

pull-back and proper push-forward) and that satisfies a homotopy invariance property.

In order to construct these quasi-smooth pull-backs, we first review some background

material on quasi-smooth embeddings.

4.1. Background on quasi-smooth embeddings

Let f : X ↪→ Y be a quasi-smooth closed embedding. Using the truncation functor, we

have a commutative diagram in dSchk :

X �
� f // Y

t0(X)
?�

ιX

OO

� �

t0( f )
// t0(Y ).
?�

ιY

OO

We have the following basic result.

Lemma 4.3. Let f : X ↪→ Y be a quasi-smooth embedding of virtual codimension d. Then

ι∗X L X/Y [−1] is a locally free sheaf of rank d on t0(X).
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Proof. Since f is quasi-smooth, L X/Y is perfect of Tor-amplitude 61. Furthermore, since

f is an embedding, L X/Y is in QCoh(X)>1 (homological grading). It thus follows that

ι∗X L X/Y [−1] is a locally free sheaf. The claim on the rank is clear from the definition of

virtual codimension.

Definition 4.4. Let f : X ↪→ Y be a quasi-smooth embedding. Define the virtual normal

bundle NX Y → t0(X) to be the geometric vector bundle corresponding to ι∗X L X/Y [−1]∨.

We now compare the virtual normal bundle NX Y to the normal cone CX Y of the

underlying embedding t0( f ) : t0(X) ↪→ t0(Y ). Recall that the normal cone is the scheme

over t0(X) given by SpecOt0(X)

(⊕
n>0 I n/I n+1), where I is the ideal sheaf of t0(X) in t0(Y ).

Using the functoriality properties of the cotangent complex, we have a morphism

ι∗X L X/Y −→ L t0(X)/t0(Y ).

Let I be the ideal sheaf of t0(X) in t0(Y ). It is a classical fact that π1(L t0(X)/t0(Y )) = I/I 2.

We thus obtain a morphism

i : CX Y → NX Y.

We have the following result, which will be the basis for the construction of

quasi-smooth pull-backs in �∗.

Lemma 4.5. The morphism

i : CX Y −→ NX Y

is a closed embedding.

Proof. The claim is local and will follow once it is shown that j∗X L X/Y −→ I/I 2

is surjective. Let f : A→ B be a 0-connective morphism of simplicial commutative

k-algebras. We then have the commutative diagram

A //

��

B

��
π0 A // π0 B.

This gives the following diagram of cofiber sequences:

L A⊗A π0 B //

��

L B ⊗B π0 B //

��

L B/A⊗B π0 B

��
Lπ0 A⊗π0 A π0 B //

��

Lπ0 B //

��

Lπ0 B/π0 A

��
Lπ0 A/A⊗π0 A π0 B // Lπ0(B)/B // M.

We have to show that M ∈ QCoh(π0 B)>2. Now recall that, since A→ π0 A is 1-connective,

Lπ0 A/A is in QCoh(π0 A)>2. Likewise, Lπ0 B/B is 2-connective. Since M is the cofiber of

2-connective objects, the claim follows.
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4.2. Deformation to the normal cone

We now introduce deformation to the normal cone for a quasi-smooth embedding X ↪→ Y .

We begin by reviewing the Rees construction for filtered simplicial modules over a

field k. Given a simplicial k-module M with filtration {Mi }i∈Z such that Mi ⊂ Mi+1 and

M = ∪Mi , we can form a simplicial graded k[t]-module
⊕

Mi t i . We call this association

the Rees construction.

We now review some facts from commutative algebra of simplicial rings [12]. Let

f : R→ S be a morphism of simplicial commutative k-algebras which is levelwise

surjective. We equip the categories of simplicial commutative k-algebras and simplicial

k-modules with their standard model structures. We then obtain a fiber sequence

I → R→ S

of simplicial k-modules, where I is a simplicial ideal in R. Now factor this morphism in

the model category of simplicial commutative k-algebras as R→ P → S, where R→ P
is a cofibration and P → S is a weak equivalence. Setting Q = P ⊗R S, we obtain a

multiplication map m : Q → S. This gives a fiber sequence

J → Q → S

in the category of simplicial k-modules, where J is a simplicial ideal in Q. The cotangent

complex L S/R can then be identified with J/J 2 in the homotopy category of simplicial

S-modules.

By identifying S with S⊗R R, it follows that the multiplication m : Q → S has a section

s = id⊗ f in the homotopy category of simplicial Q-modules. In particular, we obtain

an identification J ' I ⊗L
R S[1] as Q-modules. By adjunction, we have an identification

as S-modules J ⊗L
Q S ' I ⊗L

R S[1]. In particular, we have J/J 2 = I/I 2[1]. Combining

with the formula for the cotangent complex in the paragraph above, we obtain the

identification L S/R = I/I 2[1].
Now assume that A is a smooth discrete simplicial k-algebra and that f : A→ B

is quasi-smooth morphism which induces a surjective morphism π0 A→ π0 B. By first

factoring A→ B in the model category of simplicial k-algebras as A→ B ′→ B, where

A→ B ′ is a cofibration and B ′→ B is a weak equivalence, and then factoring A→ B ′
as A→ A′→ B ′, where A→ A′ is a cofibration and a weak equivalence and A′→ B ′ is

a fibration, we can assume that f ′ : A′→ B ′ is levelwise surjective, and that A′ and B ′
are both levelwise smooth k-algebras. In particular, in the fiber sequence

I → A′ f ′→ B ′,

the simplicial ideal I is levelwise a regular ideal. Furthermore, since A′→ B ′ is

quasi-smooth, using the identification L B′/A′ [−1] ' I/I 2 obtained above it follows that

I/I 2 is a projective A′-module.

We now filter A′ by powers of the simplicial ideal I to obtain a filtered simplicial

k-algebra (A′, F). Applying the Rees construction gives a simplicial graded k[t]-algebra⊕
n∈Z F i t i . The fiber over zero can be identified with the associated graded simplicial

algebra
⊕

n>0 I n/I n+1. Since the simplicial ideal I is levelwise regular and I/I 2 is
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projective, we obtain an identification Sym∗B(I/I 2) ' I n/I n+1. As a consequence, we can

identify the fiber over zero of the Rees-algebra
⊕

n∈Z F i t i with Sym∗B(L B/A[−1]).
The previous discussion immediately generalizes to schemes, giving us a deformation to

the normal cone space M◦X Y . By the fiberwise criterion for flatness, this space is flat over

Y ×A1. The fiber over zero of the truncation t0(M◦X Y ) is a Cartier divisor on t0(M◦X Y ).
When X ↪→ Y is a quasi-smooth embedding, the fiber over zero is given by the vector

bundle corresponding to the locally free sheaf j∗X L X/Y [−1], and thus is the virtual normal

bundle N of Definition 4.4.

4.3. Pull-back along quasi-smooth embeddings

We will define the pull-back along a quasi-smooth embedding f : X ↪→ Y using the

deformation to the normal cone space introduced in § 4.2. We will abbreviate the space

t0(M◦X Y ) to M◦. Recall that this scheme is flat over Y ×A1, with the virtual normal

bundle N of Definition 4.4 as fiber over zero.

Applying the localization sequence for algebraic bordism in characteristic zero, we

obtain an exact sequence

�∗(N )
i∗−→ �∗(M◦)

j∗−→ �∗(Y × (A1 \ 0)) −→ 0.

Since i∗i∗ = 0, we thus obtain a morphism

sX/Y : �∗(Y × (A1 \ 0)) −→ �∗−1(N ).

Finally, we can define the specialization morphism as the composition

σX/Y : �∗(Y ) pr∗−→ �∗+1(Y ×A1)
sX/Y−→ �∗(N ).

In complete analogy to the case of pull-backs along regular embeddings, we can then

define pull-backs along quasi-smooth morphisms.

For the following definition, recall that, since algebraic cobordism satisfies the extended

homotopy property, for any scheme X over k and any rank n vector bundle p : E → X ,

the morphism p∗ : �∗(X)→ �∗+n(E) is an isomorphism. This allows us to form the

inverse (p∗)−1. In particular, we can apply this to the virtual normal bundle. Note that

the same reasoning does not apply if the normal cone fails to be a vector bundle. This
is precisely what makes it impossible to define pull-backs along embeddings that are not

local complete intersections or more generally quasi-smooth.

Definition 4.6. Let f : X ↪→ Y be a quasi-smooth embedding of virtual codimension d
with Y ∈ QPrk , and let p : N → t0(X) be the projection of the virtual normal bundle.

We define quasi-smooth pull-back as the composition

f ∗ : �∗(Y )
σX/Y−→ �∗(N )

(p∗)−1

−→ �∗−d(t0(X))
(ιX )∗−→ �∗−d(X).

Remark 4.7. Unraveling the definition of σX/Y (u) for a class u ∈ �∗(Y ), we see that we

first have to pull back u to Y × (A1 \ 0), giving us a class pr∗ u ∈ �∗+1(A1 \ 0), then choose
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a preimage ũ of pr∗ u in �∗+1(M◦), and finally intersect with the Cartier divisor N to

obtain i∗N ũ ∈ �∗(N ).
Thus once we have chosen a lifting ũ ∈ �∗+1(M◦), quasi-smooth pull-back is given by

(ιX )∗ ◦ (p∗)−1 ◦ i∗N . This relates the general quasi-smooth pull-back to intersecting with

an effective Cartier divisor and intersecting with a zero-section.

We now relate this to an alternative definition, which is closer to the definition of

virtual pull-backs of [11]. Denote by M◦t0(X)Y the deformation to the normal cone space of

the inclusion t0(X) ↪→ Y . The fiber over 0 of M◦t0(X)Y is Ct0(X)Y , the normal cone of t0(X)
in Y . This is an effective Cartier divisor on M◦t0(X)Y . Again using that i∗i∗ = 0 for this

divisor and the exact localization sequence for algebraic bordism, there is a specialization

morphism

σt0(X)/Y : �∗(Y ) −→ �∗+1(Y × (A1 \ 0)) −→ �∗(Ct0(X)Y ).

By Lemma 4.5, we have a closed immersion j : Ct0(X)Y ↪→ NX Y of the normal cone of

t0(X) in Y into the virtual normal bundle.

Lemma 4.8. Let f : X → Y be a quasi-smooth embedding. Denote by j : Ct0(X)Y → NX Y
the inclusion of Lemma 4.5. Then

σX/Y = j∗ ◦ σt0(X)/Y .

Proof. By [6, Lemma 6.2.1], intersection with a Cartier divisor commutes with proper

push-forward.

Corollary 4.9. Let f : X ↪→ Y be a quasi-smooth embedding. Then

f ∗(u) = ιX∗ ◦ (p∗)−1 ◦ j∗ ◦ σX/Y (u)

for all u ∈ d�∗(Y ).

Remark 4.10. By Corollary 4.9, the pull-back for quasi-smooth embeddings differs from

the pull-back for regular embeddings only by the inclusion of the normal cone into the

virtual normal bundle.

The formula for quasi-smooth pull-backs given in Corollary 4.9 is the most convenient

form to prove the expected properties of the orientations defined. The remainder of this
section closely follows the construction of pull-backs for local complete intersections of

Verdier [3]. We first recall some basic properties of the specialization homomorphism.

Lemma 4.11. Let

X ′ �
� i ′ //

f ′

��

Y ′

f

��
X �
� i // Y

be a Cartesian diagram in QPrk with i a closed embedding. Let g : CX ′Y ′→ CX Y be the

induced morphism of normal cones.
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(a) Assume that f in the above diagram is proper. Then

�∗(Y ′)
σX ′/Y ′ //

f∗
��

�∗(CX ′Y ′)
g∗
��

�∗(Y ) σX/Y
// �∗(CX Y )

commutes.

(b) Assume that f in the above diagram is smooth of pure relative dimension d. Then

�∗(Y )
σX/Y //

f ∗

��

�∗(CX Y )

g∗

��
�∗+d(Y ′) σX ′/Y ′

// �∗+d(CX ′Y ′)

commutes.

Proof. By functoriality of the deformation to the normal cone space, we have a morphism

h : M◦X ′Y
′→ M◦X Y which induces g : CX ′Y ′→ CX Y on the exceptional divisors.

Assume that f is proper. Intersection with a pseudo-divisor commutes with proper

push-forward [6, Lemma 6.2.1], so the diagram

�∗(Y ′× (A1 \ 0))
σ ∗X ′/Y ′ //

��

�∗(CX ′Y ′)
g∗
��

�∗(Y × (A1 \ 0))
σ ∗X/Y

// �∗(CX Y )

commutes, and the claim follows.

For the case that f is smooth, one can explicitly compute that M◦X ′Y
′ = Y ′×A1×Y×A1

M◦X Y and that h is the natural projection. In particular, by base change, the morphism

g is smooth. The proof now proceeds as above, since intersection with a pseudo-divisor

commutes with smooth pull-back [6, Lemma 6.2.1].

Remark 4.12. Lemma 4.11 also admits an indirect proof. Assume that there exists some

Cartesian diagram such that the diagrams in (a) and (b) do not commute. Then one has

an immediate contradiction to the functoriality properties of the refined pull-backs of �∗
stated in [6, Proposition 6.6.3].

Lemma 4.13. Let

X ′ �
� i ′ //

f ′

��

Y ′

f

��
X �
� i // Y

be a homotopy Cartesian diagram in dQPrk with i a quasi-smooth closed embedding.
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(a) Assume that in the above diagram f is proper. Then

i∗ f∗ = f ′∗i
′∗.

(b) Assume that in the above diagram f is smooth. Then

i ′∗ f ∗ = f ′∗i∗.

Proof. Since the truncation functor t0 takes homotopy Cartesian diagrams to Cartesian

diagrams, we can apply Lemma 4.11 to the diagram

t0(X ′) �
� t0(i ′) //

t0( f ′)
��

t0(Y ′)
t0( f )

��
t0(X)

� � t0(i) // t0(Y ).

Using basic functoriality properties of the cotangent complex, we obtain a further

commutative diagram:

CX ′Y ′ //

g

��

NX ′Y ′

��
CX Y // NX Y.

Here, g is the morphism of normal cones induced by the base change used in Lemma 4.11.

Now assume that f is proper. Combining Lemma 4.11 with the above diagram, it

follows that

�∗(Y ′)
σX ′/Y ′ //

f∗
��

�∗(CX ′/Y ′) //

g∗
��

�∗(NX ′Y ′) //

��

�∗(X)

f ′∗
��

�∗(Y ) σX/Y
// �∗(CX/Y ) // �∗(NX Y ) // �∗(X)

commutes. Since the composition of the horizontal morphisms is respectively i∗ and i ′∗,
the claim follows. The case of f smooth is analogous.

Our next task is to verify functoriality of the orientation for quasi-smooth closed

embeddings. Apart from the fact that we have to keep track of the embeddings of the

normal cones in the virtual normal bundles, the proof proceeds in exact analogy to the

case of regular embeddings of discrete schemes.

Proposition 4.14. Let X
i
↪→ Y

j
↪→ Z be quasi-smooth embeddings. Then

( j ◦ i)∗ = i∗ j∗.

Proof. Let us first assume that t0( j) : t0(Y ) ↪→ t0(Z) is given by the embedding

t0(Y ) ↪→ CY Z ↪→ NY Z

https://doi.org/10.1017/S1474748014000334 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748014000334


Derived algebraic cobordism 431

of Y in the virtual normal bundle. Let p : NY Z → t0(Y ) be the projection. We have an

isomorphism [4, Proof of Theorem 6.5]

CX (NY Z) ' CX Y ×t0(X) (NY Z ×t0(Y ) t0(X))

inducing a morphism

q ′ : CX (NY Z) −→ CX Y.

Additionally assume that the virtual normal bundle NX Z splits as NY Z ⊕ NX Y , and let

q : NX Y ⊕ NY Z → NX Y be the projection, giving us a commutative diagram

CX (NY Z) //

q ′

��

NX Y ⊕ NY Z

q

��
CX Y // NX Y.

Here, the lower horizontal morphism is the canonical inclusion of the normal cone

in the virtual normal bundle. In this situation, we have an isomorphism of the open

deformation to the normal cone spaces M◦t0(X)/NY Z
∼= M◦t0(X)/t0(Y )

×t0(Y ) NY Z compatible

with the projections to A1 [3, Corollaire 2.18]. We thus obtain a commutative diagram:

�∗(Y )
σX/Y //

p∗

��

�∗(CX Y ) //

q
′∗

��

�∗(NX Y )

q∗

��
�∗+d(Z) σX/Z

// �∗+d(CX Z) // �∗+d(NX Y ⊕ NY Z).

To prove our claim, since j∗ = (p∗)−1, it suffices to prove that

( j ◦ i)∗ p∗ = i∗.

Let π : NX Y → X and ρ : NX Y ⊕ NY Z → X be the structure morphisms. Since q∗ ◦π∗
= ρ∗ is an isomorphism, it suffices to prove that

(π ◦ q)∗ ◦ ( j ◦ i)∗ ◦ p∗ = q∗ ◦π∗ ◦ i∗.

But this is immediate from the commutativity of the above diagram. The reduction of
the general case to the special case treated here is a standard application of the double

deformation space

M◦X×A1/M◦Y/Z
−→ A1×A1

obtained by applying the deformation to the normal cone construction to the embedding

X ×A1 ↪→ M◦Y/Z , as in [11, Theorem 4.8], [6, Theorem 6.6.5], or [3, Theoreme 4.4].

4.4. Pull-backs for quasi-smooth morphisms

After having defined orientations for quasi-smooth closed embeddings, we now move to

general quasi-smooth morphisms. Since we are only working with quasi-projective derived

schemes, a smoothing is always available.
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Lemma 4.15. Let f : X → Y be a quasi-smooth morphism in dQPrk . Assume that

f = p ◦ i = p′ ◦ i ′ are two smoothings of f . Then

i∗ p∗ = i
′∗ p
′∗.

Proof. Let X
i
↪→ P

p→ Y and X
i ′
↪→ P ′ p′→ Y be the two smoothings. Using the diagonal

embedding X → P ×Y P ′ and the Cartesian diagram

P ′ //

��

P ×Y P ′

��
X // P,

one quickly reduces to the case where f : X ↪→ Y is a quasi-smooth embedding, and one

has a smoothing

P

p
��

X
/ �

i
>>

� �

f
// Y.

We then have the Cartesian and homotopy Cartesian diagram

P ′ �
� f ′ //

p′

��

P

p

��
X

s

OO

� �

f
// Y

with f ′ ◦ s = i . Since p′ ◦ s = id and p′ is smooth, we obtain that Ls is of Tor-dimension

61. The morphism s is an embedding, since f ′ and i = f ′ ◦ s are embeddings (in

particular, f ′ is separated), and thus s is a quasi-smooth embedding. By Proposition 4.14,

we have

i∗ p∗ = s∗ f
′∗ p∗.

Using Lemma 4.13(a), the right-hand side is equal to s∗ p
′∗ f ∗. Since s∗ p

′∗ = id, the claim

follows.

This allows us to define orientations for quasi-smooth morphisms in �∗.

Definition 4.16. Let f : X → Y be a quasi-smooth morphism in dQPrk , and let X
i
↪→

P
p→ Y be a smoothing of f with p of relative dimension n and i of virtual codimension m.

Let d = n−m. We then define quasi-smooth pull-back as the composition

f ∗ : �∗(Y ) p∗−→ �∗+n(P)
i∗−→ �∗+d(X).

Here, i∗ is the quasi-smooth pull-back for quasi-smooth embeddings of Definition 4.6.
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Theorem 4.17. Let k be a field of characteristic zero. Then �∗ is an oriented Borel–Moore

functor on dQPrk of geometric type with quasi-smooth pull-backs.

Proof. It remains to verify the axioms of Definition 2.16. To prove functoriality and

thus (QS2), choose smoothings as in [6, Remark 5.1.2] such that we obtain a ladder of

smoothings

X //

��

P1 //

��

P

��
Y //

  

P2

��
Z

with the square Cartesian and homotopy Cartesian. To prove axiom (QS3), factor f as

p ◦ i . The statement then immediately follows from the individual statements for p and i .
For p, the statement is clear, since p is smooth; for i , this is Lemma 4.13(b). The proof of

(QS4) is straightforward from the definitions. Since axiom (QS5) only applies to smooth

and thus underived schemes, we can deduce it from the corresponding statement in

[6, Proposition 7.2.2].

Since d�∗ is the universal Borel–Moore functor with orientations for quasi-smooth

morphisms, we obtain the following corollaries.

Corollary 4.18. Let k be a field of characteristic zero. We then obtain a classifying

morphism

ϑ� : d�∗→ �∗.

Proof. This immediately follows from the universal property of d�∗ as the universal

Borel-Moore homology theory on dQPrk with quasi-smooth pull-backs. Since �∗ is also

such a theory, the existence of the classifying morphism ϑ� follows.

Corollary 4.19. For all X ∈ dQPrk , the natural transformation

ϑd� : �∗(X) −→ d�∗(X)

is injective.

Proof. We want to show that ϑ� is a left inverse. To prevent confusion, in the following

we will decorate pull-backs and push-forwards with the homology theory they are taken

in. Let f : Y → X be a bordism cycle. Since ϑ� commutes with proper push-forwards

and smooth pull-backs, we have

ϑ� ◦ϑd�([Y → X ]) = ϑ�( f d�∗ π∗Y,d�[1])
= f �∗ π∗Y,�ϑ�[1]
= [Y → X ].
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5. Spivak’s theorem

We now have two Borel–Moore functors of geometric type on dQPrk at our

disposal: derived algebraic bordism d�∗ and algebraic bordism �∗. Both are equipped

with orientations for quasi-smooth morphisms. We have also constructed natural

transformations ϑd� : �∗→ d�∗ and ϑ� : d�∗→ �∗ between these theories. Here, ϑd�
is induced by the universal property of �∗ as the universal Borel-Moore homology theory

of geometric type on dQPrk , and ϑ� is induced by the universal property of d� as the

universal Borel-Moore homology theory on dQPrk with quasi-smooth pull-backs.

The goal of this section is to compare how the orientations for quasi-smooth

morphisms of these two theories interact. In the following, we will prove a

Grothendieck–Riemann–Roch-type result stating that ϑd� in fact commutes with these

orientations. As a direct consequence of this result, we obtain an algebraic version of

Spivak’s theorem for derived cobordism in the differentiable setting.

The strategy for proving our Grothendieck–Riemann–Roch-type result is the same as in

the classical case treated in [3] or [4]. We first check the compatibility of the orientations

in specific settings, and later reduce the general case to the known setting.

A word on notation is in order. In the following, we will often encounter formulas

involving pull-backs and push-forwards in different homology theories. Except in special

cases, we have chosen not to decorate these operations with the homology theories they

are taken in. We hope that this does not lead to confusion.

5.1. Preliminaries on d�∗
For certain types of bordism classes, we want to reduce pull-back along a quasi-smooth

embedding in d�∗ to intersecting with a effective Cartier divisor. The key ingredient in

this step is again deformation to the normal cone.

Recall from Corollary 4.19 that ϑd� is injective. We let d�cl∗ denote the image of ϑd�.

For any X ∈ dQPrk , classes in d�cl∗ are thus given by proper morphisms [Y → X ], where

Y is assumed to be smooth.

Lemma 5.1. Let f : X ↪→ Y be a quasi-smooth embedding, and let g : Y ′→ Y be a

morphism of derived schemes such that g factors over the normal bundle NX Y . Then

we have an equivalence of derived schemes

Y ′×h
Y X ' Y ′×h

NX Y X.

Proof. This follows immediately from the criterion that a morphism of derived schemes

is an equivalence if it induces an isomorphism on the truncation t0 and an equivalence of

the cotangent complexes.

Proposition 5.2. Let f : X → Y be a quasi-smooth embedding, and let u ∈ d�cl∗ (Y ). Then

there exists a class u′ ∈ d�cl∗ (N ) such that

f ∗(u) = s∗(u′).
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Proof. We let M be the truncation t0(MX Y ) of the deformation to the normal cone space

of X in Y , and let pr : Y ×A1 → Y be the projection on the first factor. We then obtain a

class pr∗ u ∈ d�∗+1(Y ×A1). Identify Y ×A1 with an open subset of M . Since pr∗ u is in

d�cl
∗+1(Y ×A1), we can extend it to a class ũ in d�cl

∗+1(M). Since the fiber over zero of M
is the virtual normal bundle NX Y , the class ũ provides a bordism between u ∈ d�cl∗ (X)
and a class u′ ∈ d�∗(N ). The remaining claim follows from Lemma 5.1.

Remark 5.3. Once we haven chosen a lifting ũ, we obtain the following explicit formula

for quasi-smooth pull-back:

f ∗(u) = s∗ ◦ i∗(ũ).

This reduces all questions about quasi-smooth pull-backs to intersection with a Cartier

divisor followed by pull-back along a zero-section.

We need to compare our Euler classes with more traditionally defined Chern classes in

cases of overlap. The injectivity of ϑd� allows us to define Chern class operators on d�cl∗
as follows. With X ∈ QPrk , let E → X be a vector bundle of rank e+ 1 with associated

projective bundle q : P(E)→ X . We denote the universal line bundle as O(1), and let ξ

be its first Chern class operator on d�∗(P(E)). Composing with pull-back along q, we

have operators

φ j := ξ j ◦ q∗ : d�∗(X) −→ d�∗+e− j (X).

Let

8 :
n⊕

j=0

d�∗−e+ j (X) −→ d�∗(P(E))

be the sum over the operators φ j .

Lemma 5.4. The morphism

8 :
n⊕

j=0

d�cl
∗−e+ j (X) −→ d�cl∗ (P(E))

is an isomorphism.

Proof. Since d�cl∗ is precisely the image of ϑd�, the proof follows from the fact that ϑd�
commutes with smooth pull-back and first Chern class operators, and that the projective

bundle theorem holds in �∗.

The following corollary reduces many questions about vector bundles to sums of line

bundles via the splitting principle.

Corollary 5.5. The morphism

q∗ : d�cl∗ (X) −→ d�cl∗+e(P(E))

is injective.
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Using the method of [6, § 4.1.7], as an immediate consequence of the projective bundle

theorem we obtain the existence of uniquely defined operators

c̃i (E) : d�cl∗ (X) −→ d�cl
∗−i (X)

satisfying the relations

n∑
i=0

(−1)i c1(O(1))n−i ◦ q∗ ◦ c̃i (E) = 0.

Note that, by construction, c1 = c̃1. These Chern classes satisfy all the expected

properties, e.g., the Whitney product formula. In particular, if E =⊕e
i=0 L i is a direct

sum of line bundles, then the jth Chern class of E is the jth symmetric polynomial in

the c1(L i ).

A further immediate consequence of Lemma 5.4 is an explicit formula for the pull-back

along a zero-section of a vector bundle.

Corollary 5.6. Let X ∈ QPrk , let p : E → X be a rank r vector bundle, and let

q : P(E ⊕ 1)→ X be the corresponding projective bundle with universal quotient bundle ξ .

Let i : E ↪→ P(E ⊕ 1) denote the canonical open embedding. Then, for any u ∈ d�cl∗
(P(E ⊕ 1)), we have

(p∗)−1(i∗u) = q∗(cr (ξ)∩ u).

We show compatibility with the definition of the top Chern class given in Definition 3.8.

Lemma 5.7. Let X ∈ QPrk , and let E → X be a vector bundle of rank e. Then

ce(E)∩ u = c̃e(E)∩ u

for all u ∈ d�cl∗ (X).

Proof. Let q : P(E)→ X be the projection. By the injectivity of q∗, we can apply the

splitting principle and assume that E is a direct sum of line bundles
⊕e

i=1 L i . Then

c̃e(E) = c1(L1) ◦ · · · ◦ c1(Le) by the Whitney product formula.

We prove the claim by induction on rank. Let u = [Y → X ]. For e = 1, the claim holds

by construction of the Chern classes. Unraveling the definitions, the left-hand side is

given by the homotopy fiber product

Y ′ //

��

Y

��
X

s0

��
X s0

// L1⊕ · · ·⊕ Le.

(2)
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By induction, the right-hand side is given by the homotopy fiber product

Y ′′ //

��

Y ′ //

��

Y

��
X

s0

��
X

s0

��

s0 // L1⊕ · · · Le−1

X s0
// Le.

Using the universal property of the homotopy fiber product (2), we obtain a morphism

Y ′′→ Y ′. Since we have always used the zero-sections, this is an isomorphism on

the underlying classical schemes. By a straightforward calculation, it also induces an

equivalence of the cotangent complexes. It thus is an equivalence.

5.2. A Grothendieck–Riemann–Roch result

We next show that ϑd� commutes with Chern class operators and intersection with

effective Cartier divisors.

Lemma 5.8. Let X ∈ QPrk and let E → X be a vector bundle. Then the following diagram

commutes:

�∗(X)
ϑd� //

cp(E)
⋂
−
��

d�∗(X)
cp(E)

⋂
−

��
�∗−r (X)

ϑd� // d�∗−r (X).

Proof. Let q : P(E)→ X be the projection. Since q∗ is injective both for �∗ and d�cl∗ ,

we can apply the splitting principle and assume that E is a direct sum of line bundles L i .

Then, in both �∗ and d�∗, the operation cp(E) is the pth symmetric polynomial in the

c1(L i ). Since ϑd� commutes with first Chern classes, the claim follows.

For the proof of the next lemma, we have to recall one of the key technical results in [6].

Levine and Morel prove that, for any finite-type scheme X over k and any pseudo-divisor

D on X , there exists an isomorphism between �∗(X) and a group �∗(X)D, whose

generators are classes [Y f→ X ] such that either f (Y ) is contained in D or f ∗D is a

strict normal crossing divisor. We call this result Levine’s moving lemma [6, Theorem

6.4.12].

Lemma 5.9. Let iD : D ↪→ X be an effective Cartier divisor on a scheme X . Then the

following diagram commutes:
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�∗(X)
ϑd� //

i∗D
��

d�∗(X)
i∗D
��

�∗−1(D)
ϑd� // d�∗−1(D).

(3)

Proof. By Levine’s moving lemma, it suffices to treat the cases of bordism cycles

f : Y → X such that f factors through D or the fiber product of f and iD is a strict

normal crossing divisor of Y .

We first assume that f factors through D. Let f D : Y → D be the induced morphism,

i.e., f = iD ◦ f D. By definition,

ϑd� ◦ i∗D = ϑd�( f D∗ (c1( f ∗OX (D))∩ 1Y )).

On the other hand, by Lemma 5.1,

i∗D ◦ϑd� = c1(i∗DOX (D))∩ [Y f D

→ D].
The claim follows by applying the projection formula (A3) of the axioms of Borel–Moore

functor and observing that ϑd� commutes with proper push-forward and first Chern

classes.

Let us now assume that D′ := D×X Y is a strict normal crossing divisor of Y . This

implies that we have a Tor-independent2 diagram:

D′
iD′ //

f ′

��

Y

f

��
D

iD

// X.

In this case,

ϑd� ◦ i∗D = ϑd�( f ′∗(ζD∗([D′→ |D′|]))).
Recall that the class [D′→ |D′|] is not given by a morphism, but instead by equation (1).

Since the above diagram is Tor-independent, it is a homotopy fiber diagram, and thus

i∗D ◦ϑd�([Y → X ]) = i∗D f∗(1Y )

= f ′∗i∗D′1Y

= f ′∗1D′ .

The claim then follows by applying relation RSNC∗ and observing that ϑd� commutes with

proper push-forwards and first Chern classes, and is compatible with the formal group

law.

2Recall that this means that TorOX
i (OY ,OD) = 0 for i > 0.
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Theorem 5.10. Let f : X ↪→ Y be a quasi-smooth embedding of virtual codimension d in

dQPrk with Y a scheme. Then the following diagram commutes:

�∗(Y )
ϑd� //

f ∗�
��

d�∗(Y )
f ∗d�
��

�∗−d(X)
ϑd� // d�∗−d(X).

Proof. Let M be the truncation of the deformation to the normal cone space M◦X Y .

By Remark 4.7 and Remark 5.3, after we have chosen a lifting ũ ∈ �∗+1(M) of pr∗ u ∈
�∗+1(Y ×A1), pull-back along f is given by s∗ ◦ i∗ both in �∗ and in d�∗. Here, i :
N → M is the inclusion of the virtual normal bundle N as Cartier divisor on M , and

s : t0(X)→ N is the zero-section. Note that by the localization theorem for �∗ a suitable

lifting ũ always exists.

The case of intersection with a Cartier divisor was treated in Lemma 5.9. It remains

to prove that ϑd� commutes with intersection with the zero-section. So let X ∈ QPrk , let

p : E → X be a vector bundle, let q : P(E ⊕ 1) be the associated projective bundle with

open embedding i : E → P(E ⊕ 1) and universal quotient bundle ξ , and let u ∈ �∗(E). By

the localization theorem for �∗, there exists a class ũ ∈ �∗(P(E ⊕ 1)) such that i∗(ũ) = u.

Since the projective bundle theorem holds for �∗, going around the left-hand side of our

diagram is given by

ϑd� ◦ s∗(u) = ϑd� ◦ q∗(cd(ξ)∩ ũ).

On the other hand, since ϑd�(u) by definition lies in d�cl∗ , we can apply Corollary 5.6 to

compute going around the right-hand side:

s∗ ◦ϑd�(u) = q∗(cd(ξ)∩ϑd�(ũ)).

Since ϑd� commutes with Chern classes by Lemma 5.8 and with proper push-forward,

the claim follows.

We can now use the previous theorem to obtain a Grothendieck–Riemann–Roch-type

result for the natural transformation ϑd�.

Corollary 5.11 (Grothendieck–Riemann–Roch for ϑd�). Let f : X → Y be a quasi-smooth

morphism of relative virtual dimension d in dQPrk . Then the following diagram

commutes:

�∗(Y )
ϑd� //

f ∗�
��

d�∗(Y )
f ∗d�
��

�∗+d(X)
ϑd� // d�∗+d(X).

Proof. Let u = [V g→ Y ] ∈ �∗(Y ) be a bordism cycle. By definition, u = g∗1V , where

g : V → Y is proper and V is smooth. By factoring f as a quasi-smooth embedding and
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a smooth morphism, we can assume that f is an embedding (the case of f smooth is

clear). We can now form the homotopy fiber product

W
f ′ //

g′

��

V

g

��
X

f
// Y.

Note that f ′ : W → V is a quasi-smooth embedding with V smooth. Thus Theorem 5.10

is applicable to f ′. By axiom (QS3), f ∗u = g∗ f ∗1V = g′∗ f ′∗1V . Applying ϑd� to this

equation

ϑd�( f ∗u) = ϑd�(g′∗ f ′∗1V )

= g′∗ϑd�( f ′∗1V )

= g′∗ f ′∗ϑd�(1V )

= f ∗g∗ϑd�(1V )

= f ∗ϑd�(g∗1V )

= f ∗ϑd�(u)

the result immediately follows.

We are now able to deduce an algebraic version of Spivak’s theorem from the

Grothendieck–Riemann–Roch theorem for ϑd�.

Theorem 5.12 (Algebraic Spivak theorem). For all X ∈ dQPrk , the morphism

ϑd� : �∗(X) −→ d�∗(X)

is an isomorphism.

Proof. By Lemma 4.19, ϑd� is a right inverse to ϑ�. We have to show that it is also a

left inverse. Let f : Y → X be a derived bordism cycle. By Corollary 5.11, ϑd� commutes

with pull-backs along quasi-smooth morphisms. We then have

ϑd� ◦ϑ�([Y → X ]) = ϑd�( f �∗ π∗Y,�[1])
= f d�∗ ϑd�(π

∗
Y,�[1])

= f d�∗ π∗Y,d�ϑd�([1])
= [Y → X ].

Since there exist non-trivial derived schemes of negative virtual dimension, we by no

means know a priori that d�n(X) = 0 for n < 0. This is immediately implied by the

previous theorem.

Corollary 5.13. Let n < 0. For all X ∈ dQPrk , we have

d�n(X) = 0.
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Theorem 5.12 provides a geometric explanation why virtual fundamental classes exist

for quasi-smooth derived schemes. It implies that every quasi-smooth projective derived

scheme bords to a smooth projective scheme. We make this precise in the following

corollary. We write [Y ] for the class [Y → pt] in d�∗(k).

Corollary 5.14. For every projective quasi-smooth derived scheme X of virtual dimension

n there exists a smooth projective scheme Y of dimension n such that

[Y ] = [X ] ∈ d�n(k).

Proof. By Theorem 5.12, the morphism ϑd� : �n(k)→ d�n(k) is an isomorphism. Since

the image of ϑd� consists of smooth projective schemes, the claim follows.

A further consequence of the comparison theorem is that the projective bundle theorem,

the extended homotopy relation, and the cellular decomposition relation hold for d�∗.

Corollary 5.15. d�∗ is an oriented Borel-Moore homology theory with quasi-smooth

pull-backs as in Definition 2.19.

Remark 5.16. In differential geometry, the corresponding result of Theorem 5.12 admits

a direct proof [5, 15]. There every derived manifold in either the sense of Spivak or Joyce

admits a global presentation as zero-set of a section of a vector bundle. Such a derived

manifold can be made bordant to a manifold by arranging the section to be transverse.

6. Derived Algebraic Cobordism

In this final section, we want to study the cohomology theory d�∗ on smooth projective

schemes Smk associated to the Borel–Moore homology theory d�∗.
For X ∈ Smk of pure dimension d, we set d�n(X) := d�d−n(X). The cohomology theory

d�∗ is then equipped with an external product. Since for a smooth scheme X the diagonal

embedding δ : X → X × X is a local complete intersection morphism, we can define an

intersection product via

d�∗(X)⊗ d�∗(X) −→ d�∗(X × X)
δ∗−→ d�∗(X).

Here, the first arrow is the external product. Given two cobordism classes [Y → X ]
and [Z → X ], we will denote the intersection product by [Y ] · [Z ]. The intersection

product turns d�∗(X) into a commutative graded ring with unit [X id→ X ]. Unraveling

the definitions, the intersection product is represented by the homotopy fiber product

(Y × Z)×h
X×X X //

��

Y × Z

��
X // X × X.

(4)

For the proof of next theorem, recall that, for two subsets U and V of a set X , and

denoting by 1 the diagonal of X in X × X , we have the set-theoretic identity (U × V )∩
1 = U ∩ V . In homological algebra, given a k-algebra A and two A-modules M and N ,

https://doi.org/10.1017/S1474748014000334 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748014000334


442 P. E. Lowrey and T. Schürg

this translates to the identity (M ⊗k N )⊗A⊗A A ' M ⊗A N . We refer to this as reduction

to the diagonal. Using this, we can then prove the following result on the intersection

product.

Theorem 6.1. Let X ∈ Smk . Then the intersection product is represented by the homotopy

fiber product:

[Y ] · [Z ] = [Y ×h
X Z ] ∈ d�∗(X).

Proof. Since the base k is a field, the proof follows from reduction to the diagonal, as in

Serre [14, V.B.1].

In particular, since the natural transformation ϑ� commutes with the intersection

product, we obtain the formula

[Y ] · [Z ] = ϑ�([Y ×h
X Z ])

in algebraic cobordism �∗(X) for algebraic cobordism classes [Y → X ] and [Z → X ].
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