
Math. Proc. Camb. Phil. Soc. (2022), 173, 163–187 163
doi:10.1017/S0305004121000487

First published online 28 June 2021

Optimal transportation and stationary measures for
iterated function systems

BY BENOÎT R. KLOECKNER

Univ Paris Est Creteil, CNRS, LAMA, F-94010 Creteil, France
Univ Gustave Eiffel, LAMA, F-77447 Marne-la-Vallée, France.

e-mail: benoit.kloeckner@u-pec.fr

(Received 17 December 2019; revised 27 May 2021; accepted 26 May 2021)

Abstract

In this paper we show how ideas, methods and results from optimal transportation can
be used to study various aspects of the stationary measures of Iterated Function Systems
equipped with a probability distribution. We recover a classical existence and uniqueness
result under a contraction-on-average assumption, prove generalised moment bounds from
which tail estimates can be deduced, consider the convergence of the empirical measure
of an associated Markov chain, and prove in many cases the Lipschitz continuity of the
stationary measure when the system is perturbed, with as a consequence a “linear response
formula” at almost every parameter of the perturbation.
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1. Introduction

Let (X, d) be a complete separable metric space (endowed with its Borel σ -algebra for
all measurability purposes) and�= {φi : i ∈ I } be an Iterated Functions System (IFS), i.e. a
family of continuous maps φi : X → X indexed by a set I , either countable or endowed with
a standard σ -algebra. The set of probability measures on X is denoted by P(X).

Hutchinson [Hut81] introduced such IFS to produce fractals: under a contraction hypoth-
esis, there is a unique compact subset K� of X such that

K� =
⋃
i∈I

φi(K�).

The proof is very simple: one shows that the map K �→ ∪iφi(K ) is a contraction in the
Hausdorff metric, and applies the Banach fixed point theorem. Given additionally η ∈P(I ),
one is interested in existence, uniqueness and properties of a measure μ ∈P(X) such that

μ=
∫
(φi)∗μ dη(i) (1·1)

i.e.
∫

f (x) dμ(x)= ∫∫
f ◦ φi(x) dμ(x) dη(i) for all f ∈ Cb(X), the set of bounded contin-

uous functions X →R. Such a measure is called a stationary measure for the pair (�, η),
which is sometimes called an Iterated Functions System with probabilities but that we will
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call an IFS for simplicity, since we will only consider this case. When the φi are contrac-
tions, again existence and uniqueness mostly follow from the Banach fixed point theorem;
Hutchinson used the now-called Wasserstein distance of exponent 1 (in its dual formulation,
restricted to compactly supported measures). As we shall see, using general Wasserstein dis-
tances one can use the fixed point theorem approach and get moment estimates at the same
time.

We shall also be concerned with the attractivity of the stationary measure μ. Assume
(Ik)k∈N are independent, identically distributed random variables of law η and X0 is a random
variable independent from them. Then one constructs a Markov chain, named the “chaos
game” by Barnsley [BDM+88], by setting Xk+1 = φIk (Xk). Two sequences of measures are
then to be studied: the laws of the Xk , and the “empirical measures” 1/k

∑k
j=1 δX j .

The goal of this paper is to apply tools and ideas from optimal transportation in this
context, to show the variety of information they provide with simple (while not always ele-
mentary) proofs; we shall also get inspiration from the “thermodynamical formalism”; more
precisely we use the transfer operator (also known as the Markov operator in the present
context) in a crucial way. Results are stated and proved throughout, but provide to motiva-
tion, at the end of this introduction we give the most striking application, in the well-known
example of Bernoulli convolutions.

1·1. Brief comparison of the literature with the present results

The stationary measures of IFS have been investigated in many times, and this overview
is necessarily partial. In [BE88], one of the early works popularising the field, the
existence and uniqueness of the stationary measure was proven under a hypothesis of
contraction on average, and moment estimates where given. As a warm-up, we will
reprove their main results using the point of view of optimal transport in Section 3. In
Section 4, using the transfer operator we obtain a new generalised moment estimate, see e.g.
Corollary 4·2.

Ergodicity, i.e. weak convergence of the empirical measures toward the stationary mea-
sure, is an important property as it enables a Monte Carlo Markov Chain approach to
approximate the stationary measure. Ergodicity was proved in [Elt87, Elt90], see also
[FM98, Sza03]. In Section 5, we give almost optimal bounds for convergence of the empir-
ical measure in the L1 Wasserstein distance and other related metrics, thus providing a
“quantitative ergodicity” statement (Theorem 5·1). This result is new, but follows imme-
diately from a general result on Markov chains obtained previously in [Klo18a]; it is
mentioned as an illustration of the wealth of tools available.

Tail estimates for the stationary measure have been largely investigated, notably for affine
IFS in [Kes73,Gol91] and more recently [Kev16]. These works use assumptions that induce
a polynomial tail; in Section 4 we will be interested in quite general and easy to obtain, but
less precise, tail estimates. In particular we will consider a case with exponential tail, which
(obviously) does not fit Kesten’s assumptions (Corollary 4·3).

In the case of two affine transformations of the line, one contracting and one expanding,
[BMS06] studied more general invariant measures, where the random choice of indices need
not be independent but is defined by a shift-invariant measure on IN. In Section 7, we use
a modified Wasserstein distance to generalise this setting further to skew products; under
a uniform contraction assumption, we get explicit convergence rates towards the stationary
measure. For such generalisations, ergodicity has been studied in [Elt90, SS98].
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In addition to the aforementioned [MS10], let us cite two other works studying IFS and
Wasserstein distances. First [GMN16] focusses on the computation of the stationary mea-
sure, with certified bounds on the Wasserstein distance from the approximation. Second,
[Fra15] computes the exact value of the Wasserstein distance between the stationary mea-
sures of different affine IFS on the line. In Section 6 we study how much the stationary
measure depends on the underlying IFS; this is less precise but more general than the pre-
vious cited article. Our interest in such bounds is that they enable us to use a sophisticated
Rademacher theorem for measures to obtain a linear response formula (see Corollary 1·1).
While linear response has become a classical subject in dynamical systems, to my knowl-
edge this result is the first of this kind in the context of IFS; it has one weakness and one
strength: it is only proven for almost all parameters, but we get a derivative in quite a strong
sense.

Let us conclude with some directions we do not pursue in this work. A prominent topic in
the study of IFS on R

d is to determine the dimension of their stationary measure and whether
it is absolutely continuous with respect to Lebesgue measure —this includes open questions
even for some of the simplest IFS. Citing all relevant works would be daunting and, while
we will use Solomyak’s theorem [Sol95], we will not be primarily concerned with such
questions here. We thus refer the reader to the recent survey [Var18] and references therein.

More general conditions ensuring existence, uniqueness and attractivity of the station-
ary measure have been sought, a notable example being the local contraction condition
introduced by [Ste99], where the focus is on the behaviour of the backward iteration. For
IFS satisfying this local contraction assumption, exponential convergence of the law in the
Wasserstein distance to the stationary measure was proven in [MS10]. In a very general set-
ting, without the contraction assumption, [BV11] manages to prove that the attractor of an
IFS is obtained as the limit of a random orbit. The case of place-dependent probabilities is
for example considered in [BDEG88, Sza03].

Inspired by the thermodynamical formalism for expanding dynamical systems, statistical
properties (e.g. Central Limit Theorem, Invariance Principle) were studied in [Pei93, Pol01,
Wal07, SW13]. Our strong reliance on transfer operators is quite similar in spirit, with the
same inspiration from expanding dynamical systems, but this paper focuses on different
results.

1·2. Linear response for Bernoulli convolutions

The Bernoulli convolution μβ (where β ∈ (0, 1)) is defined as the stationary measure of
the following classical IFS (�λ, η):

I = {0, 1}, η({0})= η({1})= 1

2
φλ0 (x)= λx, φλ1 (x)= λx + (1 − λ) ∀x ∈R.

(The precise value 1 − λ of the translation part in φλ1 has no particular relevance —as soon
as it is not zero— with this value the attractor is [0, 1] for all λ> 1/2, but it bears no
consequence on the result below.)

We shall prove in Section 6 that the map λ �→μλ is Lipschitz in the Wasserstein distances
Wq of all exponents q; for q > 1, thanks to the differentiation theorem of Ambrosio, Gigli
and Savaré [AGS08] this implies an almost-everywhere linear response formula (a termi-
nology coined in dynamical systems, see e.g. [Rue98, Rue09, BS12]): the map λ �→μλ can
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be differentiated in some precise sense at almost-all λ, and while we do not get an explicit
expression for the differential we show that it takes a specific form. We state the result here
with q = 2, see Corollary 6·6 for a more general result. Let Id denote the identity map of
R, so that for a function w and number x, ε we have (Id +εw)(x)= x + εw(x). Let ϕ∗μ
denote the push-forward of a measure μ by a map ϕ.

COROLLARY 1·1. The family of Bernoulli convolutions (μλ)λ∈(0,1) is differentiable
almost everywhere in the quadratic Wasserstein space, meaning that there exist a family
(vλ)λ∈(0,1) of L2(μλ) functions such that for Lebesgue-almost all λ ∈ (1/2, 1):

W2

(
μλ+ε, (Id +εvλ)∗μλ

)= o(ε) as ε−→ 0. (1·2)

As a consequence, there exist a family (wλ)λ∈( 1
2 ,1)

of measurable functions and a Lebesgue-
negligible set E such that for all λ ∈ (1/2, 1) \ E and for all smooth compactly supported
f :R→R,

d

dt

∣∣∣
t=λ

∫
f dμt =

∫ 1

0
f ′(x)wλ(x) dx .

Moreover, for Lebesgue-almost all λ> 1/
√

2 we have wλ ∈ Lq([0, 1]) for all q > 1.

2. Notation and definition of Wasserstein distances

Let us now introduce briefly the Wasserstein distances originating in optimal transporta-
tion theory. We only mention here statements that will be used several times or are relevant
to several parts of the text. On several occasions below we will use results from the literature
in a crucial way without giving their full statements; we shall only do so when we can give
a precise reference, use the result as it is stated without modification, and when restating it
would be somewhat redundant with the corollary we get from it. This makes this paper not
as self-contained as it could be, but is consistent with the purpose of showing what optimal
transportation can bring to the subject and encourage the reader to learn more about it. For
details and proofs of the claims made in this section, see for example [Vil09].

Let us fix a reference point x0 ∈ X . This choice can be arbitrary and has no conceptual
bearing, but can be subject to optimisation in some cases. For each q ∈ (0,+∞), the qth
moment of μ ∈P(X) is

mq
x0
(μ) :=

∫
d(x, x0)

q dμ(x) ∈ [0,+∞].

The set of probability measures μ of finite qth moment is denoted by Pq(X) and does not
depend on x0.

Given measures μ0, μ1 ∈P(X), the set of transport plans or couplings is the set
�(μ0, μ1) of measures γ ∈P(X × X) such that γ (A × X)=μ0(A) and γ (X × B)=
μ1(B) for all measurable A, B ⊂ X . The number γ (A × B) can be interpreted as the amount
of mass moved from A to B under the plan γ .

One defines the total cost and Wasserstein distance of exponent q between two probability
measures by:
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Cq(ν0, ν1)= inf
γ∈�(ν0,ν1)

∫
d(x, y)q dγ (x, y)

Wq(ν0, ν1)= Cq(ν0, ν1)
min(1, 1

q ).

Observe that the Wassertein distance of exponent q < 1 is actually the Wassertein dis-
tance of exponent 1 of (X, dq). The cost and the Wasserstein distance are finite as soon
as μ0, μ1 ∈Pq(X), and (Pq(X),Wq) is a complete metric space. Convergence in the
Wasserstein distance is stronger than weak-∗ convergence when X is not compact; if X
is compact, then Wq metrises the weak-∗ topology.

Note that when μ0 = δx is a Dirac mass, there is only one possible coupling: �(δx , μ1)=
{δx ⊗μ1}; therefore the qth moment of μ can be expressed as mq

x0
(μ)= Cq(δx0, μ).

We denote by Lip(φ) the Lipschitz constant of a map φ : X →R, i.e.

Lip(φ)= inf
{
C ≥ 0 : |φ(x)− φ(y)| ≤ Cd(x, y) ∀x, y ∈ X

} ∈ [0,+∞].
The Kantorovich duality expresses that W1 coincides with the value of a “dual” optimisation
problem:

W1(μ0, μ1)= sup
Lip( f )≤1

∣∣ ∫ f dμ0 −
∫

f dμ1

∣∣.
Similarly, for all q < 1 the Wasserstein distance Wq can be expressed as the maximal differ-
ences between the integrals of q-Hölder functions with Hölder constant 1, since q-Hölder
functions are precisely the Lipschitz function of the metric dq .

3. Wasserstein contraction and its consequences

Under suitable assumptions, one can prove that the dual transfer operator associated to an
IFS is contracting in some Wasserstein distance. The completeness of the Wasserstein spaces
thus makes it easy to prove existence and uniqueness of a stationary measure inPq(X) (some
technicalities are needed to prove uniqueness on the whole of P(X); Huntchinson restricts to
compactly supported stationary measures). Later we shall also use this contraction property
to get Lipschitz continuity of the stationary measure under perturbation of the IFS.

3·1. Contracting dual operator

We consider the “dual transfer operator” L∗ defined on P(X) by

L∗ μ=
∫
(φi)∗μ dη(i),

i.e. L∗ μ is the law of Xn+1 if (Xn)n is a Markov chain jumping from x to φi(x) with
probability dη(i) and Xn ∼μ. A stationary measure is precisely a μ ∈P(X) such that
L∗ μ=μ.

The “transfer operator” (also known as the Markov operator), acting for example on the
space of bounded measurable functions X →R, is defined by

L f (x)=
∫

f ◦ φi(x) dη(i).
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It is a positive operator fixing each constant function, so that when a ≤ f ≤ b with a, b ∈R,
then also a ≤ L f ≤ b. The duality relation between L and L∗ is∫

f d(L∗ μ)=
∫

L f dμ

and is a direct consequence of Fubini’s theorem.
The dual transfer operator has a natural extension to couplings, which we denote in the

same way: given γ ∈ �(μ0, μ1), we define

L∗ γ =
∫
(φi × φi)∗γ dη(i) ∈ �(L∗ μ0, L∗ μ1).

We first recover the following slight extension of the main results of [BE88], the difference
being that only finite index sets were considered there. The first hypothesis requires the IFS
to be contracting on Lq average, while the second ensures that the maps do not shift some
point too much (this was automatically granted in the finite index case, see Section 3·3 for
examples showing the importance of this second hypothesis).

THEOREM 3·1 (variant of Barnsley, Elton 1988). Let (�, η) be a IFS on a complete
metric space (X, d) and fix any x0 ∈ X. Assume that for some q > 0, A> 0, ρ ∈ (0, 1) the
following holds: ∫

d(φi(x), φi(y))
q dη(i)≤ ρ d(x, y)q ∀x, y ∈ X (3·1)∫

d(x0, φi(x0))
q dη(i)≤ A. (3·2)

Then (�, η) has a unique stationary measure μ ∈P(X); moreover μ has finite qth moment:

mq
x0
(μ)≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A

1 − ρ
when q ≤ 1

A(
1 − ρ

1
q
)q when q ≥ 1.

The proof is split into several lemmas. It has some similarity with the original proof of
Barnsley and Elton, our point here being to show that the Wasserstein distances are quite
convenient, and enable us to use the dual transfer operator throughout the proof without
introducing backward iterations; see also [Ios09] where a slightly different metric is used.

LEMMA 3·2. The dual transfer operator preserves Pq(X) and is a contraction of ratio

no more than ρ̄ := ρ
min

(
1, 1

q

)
.

Proof. Let μ0, μ1 ∈Pq(X) and choose an optimal coupling γ ∈ �(μ0, μ1) for Wq . Then∫
d(x, y)q d(L∗ γ )(x, y)=

∫∫
d(φi(x), φi(y))

q dη(i) dγ (x, y)

≤ ρ
∫

d(x, y)q dγ (x, y)

so that Wq(L∗ μ0, L∗ μ1)≤ ρ̄ Wq(μ0, μ1).
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In particular, all elements of Pq(X) are sent a finite Wq distance from L∗ δx0 and we only
have left to prove that L∗ δx0 ∈Pq(X), which follows from (3·2):

Cq(δx0, L∗ δx0)=
∫

d(x, y)q d(δx0 ⊗ L∗ δx0)(x, y)=
∫

d(x0, φi(x0)) dη(i)≤ A.

LEMMA 3·3. There is a unique stationary measure in Pq(X). Moreover for all ν ∈
Pq(X), we have L∗k ν→μ in the distance Wq , exponentially fast.

Proof. Follows from Lemma 3·2 and the Banach fixed point theorem.

LEMMA 3·4. Lk f (x)→ ∫
f dμ for all continuous bounded functions f : X →R and

for all x ∈ X.

Proof. Since δx ∈Pq(X),

Lk f (x)=
∫

Lk f dδx =
∫

f d(L∗k δx)−→
∫

f dμ.

LEMMA 3·5. Every stationary measure has finite qth moment, therefore there is a unique
stationary measure in P(X).

Proof. For each n ∈N, define a continuous bounded function by

fn(x)= min(d(x0, x)q, n).

Let μ′ ∈P(X) be a stationary measure, the qth moment of which we do not assume to be
finite. For all n, k ∈N,

∫
fn dμ′ =

∫
fn d(L∗k μ′)=

∫
Lk fn dμ′.

Since Lk fn is bounded between 0 and n for all k, we can apply the dominated convergence
theorem as k → ∞, so that by Lemma 3·4
∫

fn dμ′ =
∫

lim
k→∞

Lk fn dμ′ =
∫ (∫

fn dμ

)
dμ′ =

∫
fn dμ≤

∫
d(x0, x)q dμ<∞.

The monotone convergence theorem applied to fn as n → ∞ then shows that

∫
d(x0, x)q dμ′ ≤

∫
d(x0, x)q dμ<∞,

so that μ′ ∈Pq(X). Since both μ and μ′ are stationary measures of finite qth moment,
Lemma 3·3 shows that μ′ =μ.

LEMMA 3·6. The unique stationary measure μ satisfies mq
x0
(μ)≤ A/(1 − ρ̄)max(1,q).
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Proof. Setting Ā = Amin
(

1, 1
q

)
and using L∗ μ=μ we get:

Wq(δx0, μ)≤ Wq(δx0, L∗ δx0)+ Wq(L
∗ δx0, L∗ μ)

≤ Ā + ρ̄ Wq(δx0, μ)

(1 − ρ̄)Wq(δx0, μ)≤ Ā.

If q ≤ 1, Ā = A and ρ̄ = ρ; we get
∫

d(x0, x)q dμ≤ A/(1 − ρ). If q ≥ 1; Ā = A
1
q and ρ̄ =

ρ
1
q and we get

( ∫
d(x0, x)q dμ

) 1
q ≤ A

1
q /(1 − ρ

1
q ).

Theorem 3·1 follows at once from Lemmas 3·3, 3·5 and 3·6.
As an illustration, let us consider a simple case studied for example in [BMS06, AH16].

For each ω= (i1, . . . , in) ∈ {0, 1}n we set φω = φi1 ◦ φi2 ◦ · · · φin (here the order of compo-
sition, forward or backward, has no particular relevance).

COROLLARY 3·7. Let a ∈ (0, 1) and b ∈ (1, 1/a). The IFS on the line given by

I = {0, 1}, ηp({0})= 1

2
ηp({1})= 1

2
φ0(x)= ax φ1(x)= bx + 1 ∀x ∈R

(3·3)

has a unique stationary measure μ, which has finite moments of all orders q ∈ (0, q0) where
q0 is the unique solution in (0,+∞) of aq0 + bq0 = 2. More precisely

mq
0(μ)≤

2

2 − (aq + bq)
.

Moreover, for all q ∈ (0,min(1, q0)), all q-Hölder-continuous function f :R+ →R and
all x0, ∣∣∣∣ 1

2n

∑
ω∈{0,1}n

f (φω(x0))−
∫

f dμ

∣∣∣∣≤ Cρn, (3·4)

where ρ = (aq + bq)/2< 1 and C = Holq( f )/(1 − ρ).

We write Holq( f ) for the least possible Hölder constant of f ; note that we ask f to be
globally q-Hölder, implying it has a growth at infinity of the order of xq at most. Of course,
unbalanced versions of this example (i.e. with η({0}) �= η({1})) can be studied in the same
way.

Proof. First note that the function q �→ aq + bq is convex, and the assumptions ensure that it
is decreasing on some interval (0, q1) and goes to +∞ when q → +∞, so that this function
takes the value 2 at exactly two points, 0 and q0.

For all q > 0, we have (3·2) with A = 1 and∫
|φi (x)− φi (y)|q dη(i)= 1

2
(aq + bq)|x − y|q

so that when q < q0, (3·1) is satisfied with ρ = (aq + bq)/2. The claim on existence,
uniqueness and moments of μ thus follows from Theorem 3·1.
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The convergence of empirical averages of f toward its integral with respect to μ follows
from Lemma 3·2, observing

1

2n

∑
ω∈{0,1}n

f (φω(x0))= Ln f (x0).

Indeed as in the proof of Lemma 3·4 we have

∣∣ Ln f (x0)−
∫

f dμ
∣∣= ∣∣ ∫ f d(L∗n δx0)−

∫
f dμ

∣∣
≤ Holq( f )Wq(L

∗n δx0, μ)

≤ Holq( f )ρn Wq(δx0, μ).

and Wq(δx0, μ)= mq
x0
(μ)≤ 1/[1 − ρ].

3·2. Some simple tools

We present here a few statements that prove convenient for applications of Theorem 3·1.

LEMMA 3·8. If (�, η) satisfies (3·1) and (3·2), then for all q ′ ∈ (0, q) it also satisfies
them with constants q ′, ρ ′ := ρq ′/q and A′ := Aq ′/q .

Proof. Follows from the Jensen inequality applied to the concave function r �→ rq ′/q .

The next two complementary results enable us to reduce the conditions of Theorem 3·1 to
other “contracting on average” hypotheses, including the one used for example in [DF99].
Similar lemmas can be found in [BE88] in the case of finite index set.

LEMMA 3·9. If (�, η) satisfies∫
log Lip(φi) dη(i) < 0 and ∃p> 0,

∫
Lip(φi)

p dη(i) <+∞,

then there exists q > 0, ρ ∈ (0, 1) such that (3·1) holds.

Proof. The idea is simply to differentiate
∫

Lip(φi)
t dη(i)with respect to t at t = 0; we shall

use truncation to differentiate under the integral sign.
For all n ∈N, consider the functions fn : I →R and Fn : (0, p] →R defined by

fn(i)= max(Lip(φi), 1/n) and Fn(t)=
∫

fn(i)
t dη(i).

Since − log n ≤ log fn(i)≤ (1/p) Lip(φi)
p for all i, n, the functions log fn are η-integrable.

The monotone convergence theorem implies that∫
log fn(i) dη(i)−→

∫
log Lip(φi) dη(i) ∈ [−∞, 0)

so that for some n ∈N we have
∫

log fn(i) dη(i) ∈ (−∞, 0). Now Fn(0)= 1 and for all
t ∈ [0, p/2]:

− log(n)max
(
1, fn(i)

p
2
)≤ d

dt
fn(i)

t = log fn(i) · fn(i)
t ≤ 2

p
fn(i)

t+ p
2
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so that fn(i)t/dt is η-integrable, uniformly in t (n being fixed above). The function Fn is
thus differentiable on [0, p/2], with F ′

n(0)=
∫

log fn(i) dη(i) < 0. We conclude that there
is some q ∈ (0, p/2) such that Fn(q) ∈ (0, 1). Now∫

Lip(φi)
q dη(i)≤

∫
fn(i)

q dη(i)= Fn(q) < 1

which readily implies (3·1).

LEMMA 3·10. Assume that there exist L ≥ 1 and r ∈ (0, 1) such that Lip(φi)≤ L for all
i ∈ I and

exp

(∫
log d(φi(x), φi(y)) dη(i)

)
≤ rd(x, y)

for all x, y ∈ X. Then there exists q > 0, ρ ∈ (0, 1) such that (3·1) holds.

Proof. Applying the second order Taylor formula with Lagrange remainder to q �→ aq

ensures that

aq ≤ 1 + q log(a)+ Cq2

for all a ∈ (0, L) and all q ∈ (0, 1], where C = sup{a(log a)2/2 : x ∈ (0, L]}. Fix x �= y ∈ X
and for all i ∈ I apply this to a = d(φi(x), φi (y))/d(x, y) and integrate with respect to η
to get:∫ (

d(φi(x), φi(y))

d(x, y)

)q

dη(i)≤ 1 + q
∫

log

(
d(φi(x), φi(y))

d(x, y)

)
dη(i)+ Cq2

≤ 1 + q log(r)+ Cq2,

where C is independent of x, y. Since log(r) < 0, we can find q such that 1 + q log(r)+
Cq2 < 1 and we are done.

3·3. A heavy tail of translations

To illustrate the role of assumption (3·2) in Theorem 3·1 let us consider the following
example on [0,+∞):

I =N, η({n})= pn,

∀n > 0, ∀x ∈R : φn(x)= x + n, φ0(x)= ax; (3·5)

where p0 > 0 and, of course, pn ≥ 0 and
∑

n≥0 pn = 1.
We have good contraction properties: assumption (3·1) is satisfied for any q > 0 with ρ =

1 − (1 − aq)p0. As in the previous example, ρ decreases from 1 when q → 0 to 1 − p0 when
q → ∞; however the translation part influences the moments of the stationary measure. By
a direct application of Theorem 3·1, we get:

PROPOSITION 3·11. Let q > 0; if
∑

nq pn <+∞ then (3·5) has a unique stationary mea-
sure μ, and μ has finite qth moment; if

∑
nq pn = +∞, then any stationary measure of (3·5)

has infinite qth moment.
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Giving (pn)n a heavy tail and taking a � 1 we get examples with very quick convergence
in low-exponent Wasserstein distances but only few finite moments. This begs the question:
what happens when

∑
nq pn = ∞ for all q > 0, e.g. when pn ∼ c/n(log n)2? Does there

exist a stationary measure?

4. Generalised moment estimates

In some cases, the stationary measure of an IFS will not be compactly supported, but will
have finite moments of all order; it then makes sense to develop tools to estimate exponential,
sub-exponential or super-exponential moments. In practice, the following simple result will
be quite efficient.

PROPOSITION 4·1. Let (�, η) be an IFS on X and ϕ, ψ : X → [0,+∞) two functions
that are bounded on every bounded subset of X (usually, they will be of the form h(d(x0, ·))
for some function h). Denote by L the transfer operator, i.e. L f (x)= ∫

f (φi(x)) dη(i).
Assume μ is a stationary measure for (�, η) and

∫
ψ dμ<+∞.

If there exist θ ∈ (0, 1) and B ≥ 0 such that for all x ∈ X, L ϕ(x)≤ θϕ(x)+ Bψ , then∫
ϕ dμ<+∞ and more precisely∫

ϕ dμ≤ B

1 − θ

∫
ψ dμ.

Proof. For all m ∈ [0,+∞), set ϕm(x)= min(ϕ(x),m). Since μ is stationary, L∗ μ=μ and
by positivity

L ϕm ≤ min(L ϕ,m)≤ min(θϕ + Bψ,m)≤ min(θϕ,m)+ Bψ = θϕ m
θ

+ Bψ.

Applying duality we get:∫
ϕm dμ=

∫
ϕm d L∗ μ=

∫
L ϕm dμ≤

∫ (
θϕ m

θ
+ Bψ

)
dμ

from which we deduce ∫ (
ϕm − θϕ m

θ

)
dμ≤ B

∫
ψ dμ.

For each x ∈ X , the function m �→ ϕm(x)− θϕ m
θ
(x) is non-decreasing and converges to (1 −

θ)ϕ(x). The monotone convergence theorem ensures that we can pass to the limit in the
above inequality, leading precisely to the claimed inequality.

Let us now treat a specific example for which to my knowledge no precise tail estimate
has been derived yet. For p, a ∈ (0, 1), consider the IFS given by

I = {0, 1}, η({0})= p η({1})= 1 − p

φ0(x)= ax φ1(x)= x + 1 ∀x ∈R.
(4·1)

When φ0 and φ1 are seen as Möbius transformations (i.e. extended as homography of the
real projective line, with ∞ as a fixed point) or as hyperbolic isometries (i.e. extended to the
Poincaré upper half plane of C with its hyperbolic metric), φ0 is hyperbolic (two fixed points
on the projective line, one attractive and one repulsive) while φ1 is parabolic (a single fixed
point on the projective line, which is repulsive on one side and attractive on the other side).
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This example is interesting in particular because it is not uniformly contracting, and cannot
be made so in any set of coordinates because of the parabolic fixed point at infinity. Moreover
it does not fit into Kesten and Goldie’s framework for a polynomial tail, the parabolic map
sits at the frontier between contraction (then the support would be bounded) and dilation
(then only some moments would be finite, and a polynomial tail would be a possibility).

Let μa,p denote the unique stationary measure of this IFS; it is concentrated on [0,+∞).
Its local structure has for example been studied in [NSB02,AH16]. Theorem 3·1 shows that
μa,p has finite moments of all orders. Indeed (3·1) and (3·2) are satisfied for all q ≥ 1 with
x0 = 0, ρ = 1 − p + paq (which is less than 1 since a < 1), A = 1 − p. Since the maps of
the IFS are affine, the transfer operator will behave very nicely with exponentials, and we
get an explicit formula for the exponential moments.

COROLLARY 4·2. For all p, a ∈ (0, 1) and all b< log(1/(1 − p)),∫
ebx dμa,p(x)=

∞∏
k=0

p

1 − (1 − p)eak b
<∞.

In particular there is a constant C(a, p) independent of b such that∫
ebx dμa,p(x)≤ C(a, p)

1 − (1 − p)eb
.

Proof. Let L be the dual transfer operator and ϕb(x)= ebx ; then

L ϕb(x)= p(ϕb(x))
a + (1 − p)ebϕb(x). (4·2)

Pick any θ strictly between (1 − p)eb and 1: for some C > 0 (which could be computed
explicitly), L ϕb(x)≤ θϕb(x) whenever x ≥ C . Since ϕb is increasing, L ϕb ≤ θϕb + ebC and
we can thus apply Proposition 4·1 with ψ ≡ 1, obtaining∫

ebx dμa,p ≤ ebC

1 − θ
<∞.

This shows that ϕb and ϕab are integrable with respect to μa,p; using∫
ϕb dμa,p =

∫
ϕb d L∗ μa,p =

∫
L ϕb dμa,p

and (4·2) we get ∫
ϕb dμa,p = p

∫
ϕab dμa,p + (1 − p)eb

∫
ϕb dμa,p∫

ϕb dμa,p = p

1 − (1 − p)eb

∫
ϕab dμa,p

Applying this equality to ϕak b, an induction yields

∫
ϕb dμa,p =

(
K−1∏
k=0

p

1 − (1 − p)eak b

) ∫
ϕaK b dμa,p.

for all K ∈N. We only have left to let K → ∞: indeed ϕaK b → 1 and the monotone
convergence theorem gives the desired formula.
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The upper bound is then obtained by using akb ≤ ak log(1/(1 − p)) and setting

C(a, p)= p
∞∏

k=1

p

1 − (1 − p)1−ak ;

observe for the convergence that the logarithm of the kth factor is asymptotic to ((1 −
p)/p)(log(1/(1 − p)))ak .

We obtain from this an exponential tail estimate for μa,p, sharp up to a linear factor.

COROLLARY 4·3. For all p, a ∈ (0, 1), there exist c,C > 0 such that for all t ≥ 1:

c(1 − p)t ≤μa,p

([t,+∞)
)≤ Ct (1 − p)t .

Proof. The lower bound follows from the simple observation that for all n ∈
N we have μa,p([n + 1, n + 2])≥ (1 − p)μa,p([n, n + 1]), thus μa,p([n, n + 1])≥ (1 −
p)nμa,p([0, 1]). Since μa,p is a probability measure, there is some n ∈N such that
μa,p([0, a−n]) > 0, and μa,p([0, 1])≥ pnμa,p([0, a−n]) > 0.

The upper bound follows from Corollary 4·2 and Chebyshev’s inequality: for all t > 0 and
all b< log(1/(1 − p)),

μa,p([t,+∞))≤ C(a, p)
e−bt

1 − (1 − p)eb
.

Given t , we can choose b in order to optimise the above inequality. An elementary
computation leads to take

eb = 1

1 − p
· t

1 + t
,

yielding the bound μa,p([t,+∞))≤ C(a, p)p(1 + 1/t)t(1 + t)(1 − p)t = O
(
t (1 − p)t

)
.

PROBLEM 4·1. Find an asymptotic for the tail of μa,p, in the spirit of [Kes73] and [Gol91].
Note these works give (in a different context) a precise asymptotic μ([t,+∞))= f (t)+
o( f (t)) with f a polynomial function; this can thus be written μ([t,+∞))= f (t + o(t)).
While Corollary 4·3 already gives an estimation of the form μa,p([t,+∞))= g(t + o(t)),
it might be difficult to get μa,p([t,+∞))= g(t)+ o(g(t)) since g is exponential and the
sensitivity on t is thus strong.

5. Convergence rate for the empirical measure

We now turn to the “chaos game” [BDM+88]: (Xk)k∈N is a Markov chain obtained by
choosing random indices (Ik)k≥1 independently with law η, and setting Xk = φIk (Xk−1); we
shall say that (Xk)k∈N is driven by (�, η). Quantitative results on the convergence of the
laws of the Xk are abundant; formula (3·4) and Theorem 7·2 are examples, see also [MS10]
for IFS satisfying a weak, local contraction assumption. We are interested here in the
behaviour of the empirical averages (also known as Birkhoff sums in the field of dynamical
systems)
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1

n

n∑
k=1

f (Xk)=: μ̂n( f )

for a given suitable ‘observable” f , and of the empirical measure μ̂n . The ergodic theorem
of Elton [Elt90] states that, under hypotheses similar to those of Theorem 3·1, μ̂n converges
almost surely to the stationary measure μ in the weak-∗ topology. We shall be interested
in quantitative ergodicity, i.e. in giving explicit estimates on the rate of convergence. For
this, we will have to restrict to observables f with some regularity, and slower rates are
expected for the convergence of μ̂n in the Wasserstein metric than for the empirical average
of a single function. Indeed, the former gives a simultaneous control for all function in a
certain class, and it is quite likely that the empirical averages of some of these deviate from
the standard long-term behaviour. However, by asking for enough regularity we will be able
to get a uniform rate close to 1/

√
n, which in general cannot be surpassed even for a single

f because of the Central Limit Theorem.
Before turning to this, let us mention that while μ̂n( f ) cannot in general converge to μ( f )

at a faster rate than 1/
√

n, one can get strong concentration results, i.e. prove that μ̂n( f ) is
very likely to be very close to its expectation. Indeed, in a very general setting Ollivier intro-
duced in [Oll09] Markov chains of positive Ricci curvature. The inspiration comes from
Riemannian geometry, where positive Ricci curvature can roughly be translated to the fol-
lowing property: given two points x, y, the uniform measures on the balls B(x, r), B(y, r)
are closer one to another (in Wasserstein distance) than x to y, by a factor ρ < 1. On such
a manifold, the Markov chain that jumps from x to a uniform random point in B(x, r) will
thus have a unique stationary measure with exponential convergence. Ollivier’s definition
simply generalises this to arbitrary Markov chains on metric spaces. That the dual transfer
operator is a contraction in the Wasserstein distance Wq for some q ∈ (0, 1] is a property
equivalent to (Xk)k∈N having positive Ricci curvature in the sense of Ollivier on the space
(X, dq), and implies strong concentration properties of the empirical averages μ̂n( f ) when-
ever f : X →R is a q-Hölder function; see [JO10] for effective and completely explicit
results (that depend on many specific quantities that may vary between examples).

Let us consider the following metrics between measures defined on R
d :

‖ν0 − ν1‖Cs
1
= sup

f ∈Cs
1

∣∣ ∫ f dν0 −
∫

f dν1

∣∣,
where s is any positive integer and Cs

1 is the set of Cs−1 functions Rd →R with all derivatives
not greater than 1, and with their derivatives of order (s − 1) 1-Lipschitz. In particular,
‖·‖C1

1
= W1. The following result shows that we can control the empirical averages of all

observables of Cs
1 simultaneously, with very good bounds when s is large enough compared

to the dimension.

THEOREM 5·1. Let (�, η) be an IFS on R
d satisfying (3·1) and (3·2) with q = 1 and

preserving a compact domain D of Rd .
Let (Xk)k∈N be a Markov chain driven by (�, η), with X0 ∈ D, and consider the empirical

measures

μ̂n := 1

n

n∑
k=1

δXk .
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Then there exists a constant C > 0 such that for all n ∈N,

E
[‖μ̂n −μ‖Cs

1

]≤ C

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(log n)
d

2s+1√
n

when 2s > d

log n√
n

when 2s = d

(log n)d−2s+ s
d

n
s
d

when 2s < d.

(5·1)

Proof. Formula (5·1) is the conclusion of theorem A in [Klo18a], whose hypotheses are
compactness of the domain and exponential contraction of the Markov chain in the metric
W1, which follows from Lemma 3·2 with q = 1.

Remark 5·2. These rates cannot be improved, except possibly for the logarithm factors (see
[Klo18a] for this and other considerations, including concentration bounds P[‖μ̂n −μ‖Cs

1
>

Mn] ≤ εn for appropriate rates Mn, εn).

Remark 5·3. If for some ρ ∈ (0, 1) every map φi of� is ρ-Lipschitz and {‖φi(0)‖: i ∈ I } is
bounded, then there is a compact domain preserved by�, so that the hypotheses of Theorem
5·1 are satisfied. Indeed let �= sup{‖φi(0)‖: i ∈ I } and let B be the ball B of center 0 and
radius R =�/(1 − ρ). Whenever ‖x‖ ≤ R,

‖φi(x)‖ ≤ ‖φi(x)− φi(0)‖ + ‖φi(0)‖ ≤ ρ‖x‖ +�≤ R

so that φi(B)⊂ B for all i .

Remark 5·4. Relaxing the assumption to any number q ∈ (0, 1] is possible, but needs some
adaptation from [Klo18a]. Theorem A from there asks contraction of L∗ in the W1 metric,
but the proof actually first reduces to contraction in the Wα for some α ∈ (0, 1). Later α is
optimised, but the optimal value goes to zero when n → ∞, so only the value of the constant
C would affected.

Dispensing from the compactness assumption is also certainly possible, but the rates
would necessarily be altered given the stationary measure might not have finite moments
of all orders (without some moment condition, one cannot expect even an optimal approx-
imation by a discrete measure supported on n point to achieve the rate 1/n

1
d in W1 when

d > 2; see [FG15] and [DM19] for rates of convergence of empirical measures under various
moment assumptions).

6. Dependence of the stationary measure on the IFS and linear response

In this section we seek to quantify how close the stationary measures of two slightly dif-
ferent IFS must be. To this end, we need to introduce a way to quantify the distance between
IFS; it is both natural and effective to use an adaptation of Wasserstein distances. There are
two points to consider in this adaptation: first, which metric to use for maps; second, how
to take into account that we might consider IFS with different index sets. The second point
is easily dealt with, by considering couplings γ ∈P(I0 × I1) of measures η0 ∈P(I0) and
η1 ∈P(I1). There is much flexibility to address the first point; taking the uniform distance
d∞(φ, ψ)= supx∈X d(φ(x), ψ(x)) is ill suited to the non-compact case, as for example the
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map x �→ ax + b acting on R would not depend continuously on the parameters a, b: chang-
ing a the slightest bit would yield a map infinitely far from the original one. We therefore
consider a pointed Lipschitz distance, notably suitable for Lipschitz IFS:

dx0(φ, ψ) := min
{
ε≥ 0

∣∣ ∀x ∈ X : d(φ(x), ψ(x))≤ ε+ εd(x, x0)}
= sup

x∈X

d(φ(x), ψ(x))

1 + d(x, x0)
.

This defines a metric on the space of Lipschitz maps X → X , and we construct from it the
Wasserstein-like distance Wx0,q (possibly taking the value ∞) between IFS:

Cx0,q

(
(�0, η0), (�1, η1)

) := inf
γ∈�(η0,η1)

∫
dx0(φi , ψ j )

q dγ (i, j)

Wx0,q

(
(�0, η0), (�1, η1)

) := Cx0,q

(
(�0, η0), (�1, η1)

)min(1, 1
q ).

6·1. Lipschitz regularity of the stationary measure

THEOREM 6·1. Consider two IFS (�0, η0) and (�1, η1) such that the first one satisfies
(3·1) and (3·2) for some q, ρ0, A0 (and thus has a unique stationary measure μ0), and the
second one has at least one stationary measure μ1 with finite qth moment mq

x0
(μ1). Then

Wq(μ0, μ1)≤ C Wx0,q

(
(�0, η0), (�1, η1)

)
,

where C =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 + mq
x0
(μ1)

1 − ρ0
when q ≤ 1

21− 1
q
(1 + mq

x0
(μ1))

1
q

1 − ρ
1
q

0

when q > 1.

In particular, if we fix �=�0 =�1 and restrict to measures η satisfying (3·1) and (3·2) the
map η �→μ (which is well-defined by Theorem 3·1) is locally Lipschitz.

Remark 6·2. When the second IFS satisfies (3·1) and (3·2) with constants q, ρ1, A1, we
can choose to apply the result after exchanging them to optimise; however using only the
moment estimate of Theorem 3·1 this is expected to only provide small improvements, since
both spectral gaps (i.e. 1 − ρ0 and 1 − ρ1) are then involved in denominators.

Remark 6·3. When the second ISF has several stationary measures with finite qth moment,
Theorem 6·1 shows that they all lie within small distance of μ0.

Remark 6·4. For a fixed family of contractions � and varying probabilities ηt , Theorem
6·1 gives a Lipschitz regularity that is stronger than what can be obtained in a similar
case, for the thermodynamical formalism of expanding dynamical systems (see Section 6
of [GKLM18]). When considering probabilities ηt(i, x) that depend on the point x and a
time parameter t , the family (μt) of stationary measures should thus not be expected to be
more than Hölder-continuous with respect to t .

Let us now turn to the proof of Theorem 6·1. We denote by Lk the transfer operator of the
IFS (�k, ηk) (k ∈ {0, 1}).
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LEMMA 6·5. For all IFS (�0, η0), (�1, η1) and all ν ∈Pq(X)

Wq(L
∗
0 ν, L∗

1 ν)≤ D Wx0,q

(
(�0, η0), (�1, η1)

)
,

where D =
⎧⎨
⎩

1 + mq
x0
(ν) when q ≤ 1

21− 1
q (1 + mq

x0
(ν))

1
q when q > 1.

Proof. If Cx0,q

(
(�0, η0), (�1, η1)

)= ∞, the statement is emptily true. Assume otherwise,
and let γ ∈ �(η0, η1) be an optimal coupling. Let ν̄ = (Id, Id)∗ν ∈P(X × X) be the trivial
coupling of ν with itself. Then γ̄ := ∫

(φi , ψ j )∗ν̄ dγ (i, j) is a coupling of L∗
0 ν and L∗

1 ν, so
that

Cq(L
∗
0 ν, L∗

1 ν)≤
∫

d(x, y)q dγ̄ (x, y)

=
∫∫

d(φi(x), ψ j (y))
q dν̄(x, y) dγ (i, j)

=
∫∫

d(φi(x), ψ j (x))
q dν(x) dγ (i, j)

≤
∫∫ (

dx0(φi , ψ j )(1 + d(x, x0))
)q

dν(x) dγ (i, j)

≤
∫

dx0(φi , ψ j )
q dγ (i, j)

∫
(1 + d(x, x0))

q dν(x).

When q ≤ 1, using (1 + r)q ≤ 1 + rq we obtain

Wq(L
∗
0 ν, L∗

1 ν)≤ Wx0,q

(
(�0, η0), (�1, η1)

) ∫
(1 + d(x, x0)

q) dν(x)

≤ Wx0,q

(
(�0, η0), (�1, η1)

)(
1 + mq

x0
(ν)
)

while when q ≥ 1, using (1 + r)q ≤ 2q−1(1 + rq) we get

Wq(L
∗
0 ν, L∗

1 ν)≤ Wx0,q

(
(�0, η0), (�1, η1)

)(
2q−1

∫
(1 + d(x, x0)

q) dν(x)
) 1

q

≤ Wx0,q

(
(�0, η0), (�1, η1)

) · 21− 1
q (1 + mq

x0
(ν))

1
q .

Proof of Theorem 6·1. Apply Lemma 6·5 to ν =μ1 and use that L∗
0 is a contraction (Lemma

3·2, recall ρ̄0 = ρ
min(1, 1

q )

0 ):

Wq(μ0, μ1)≤ Wq(μ0, L∗
0 μ1)+ Wq(L

∗
0 μ1, μ1)

= Wq(L
∗
0 μ0, L∗

0 μ1)+ Wq(L
∗
0 μ1, L∗

1 μ1)

≤ ρ̄0 Wq(μ0, μ1)+ D Wx0,q

(
(�0, η0), (�1, η1)

)
Wq(μ0, μ1)≤ D

1 − ρ̄0
Wx0,q

(
(�0, η0), (�1, η1)

)
.

6·2. Linear response

The Rademacher theorem ensures that Lipschitz functions [a, b] →R are differentiable
Lebesgue almost-everywhere; a similar result has been proven by Ambrosio, Gigli and
Savaré [AGS08] for maps [a, b] →Pq(R

n) for q > 1, where one has of course to make
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precise what “differentiable” means. Together with Theorem 6·1, this provides a “linear
response formula” in many cases. We use u ·w to denote the scalar product of two vectors
u, w ∈R

n .

COROLLARY 6·6 (Linear Response). Let (�t , ηt)t∈[a,b] be a curve of IFS on R
n (endowed

with the Euclidean metric, the origin O serving as reference point), assume that for some
q > 1:

i. t �→ (�t , ηt)t is Lipschitz in WO,q;
ii. there exist ρ+ ∈ (0, 1) and A+ > 0 such that for all t ∈ [a, b] the IFS (�t , ηt) satis-

fies hypotheses (3·1) and (3·2) with parameters q, ρt ≤ ρ+ and At ≤ A+ and let μt

denote the unique stationary measure of (�t , ηt). Then there exist a family (vt)t∈[a,b]
of measurable vector fields on R

n such that;
iii. for Lebesgue almost all t , ‖vt‖ ∈ Lq(μt), and |vt |q−2vt can be approximated by

gradients of smooth functions Rn →R in the Lq ′
(μt) norm where q ′ = q/(q − 1);

iv. dμt/dt + ∇·(vtμt)= 0 weakly on R×R
n, i.e. for all smooth compactly supported

F :R×R
n; ∫

R

∫
Rn

( d

dt
F(t, x)+ ∇x F(t, x) · vt(x)

)
dμt dt = 0;

v. for Lebesgue almost all t0,

Wq

(
μt+ε, (Id +εvt)∗μt

)= o(ε).

As a consequence of v, at almost every t0 ∈ [a, b], for all compactly supported smooth
functions f :Rn →R:

d

dt

∣∣∣
t=t0

∫
f dμt =

∫
∇ f · vt0 dμt0 .

Note that here q > 1 is needed to ensure strict convexity in the optimal transport problem.
Property iii may seem rather exotic; it is more easily explained when q = 2: the approxima-
tion of vt by gradient of smooth functions is a way to formulate that the “curl with respect to
μt ” of this vector field vanishes, which relates to optimality in an “infinitesimal” transport
problem. On R it is vacuous but in higher dimension it is important as it ensures uniqueness
of vt .

The proof is only an application of some results in [AGS08], but we detail some classical
arguments to better show how optimal transportation is related to linear response formulas.

Proof. By Theorem 6·1, the family of stationary measures (μt)t∈[a,b] is Lipschitz, in par-
ticular absolutely continuous. Thus theorem 8.3.1 of [AGS08] applies, giving iii and iv
(note the formulation (8.1.4) for the interpretation of the continuity equation, and see
above definition 5.1.11 that Cyl(Rn) is the space of smooth compactly supported functions).
Proposition 8.4.6 of [AGS08] gives v and we are left with proving the differentiation formula
for

∫
f dμt .

If we fix f , the weak derivative given in iv is sufficient to obtain the derivative of
t �→μt( f ) almost everywhere; but it could be that the negligible set for which the for-
mula fails turns out to depend on f . We therefore use v: fix any t at which it holds
and f a smooth compactly supported function. By Jensen’s inequality, since q > 1 we
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have W1(μt+ε, (Id +εvt)∗μt)= o(ε), and since f is Lipschitz the dual formulation of the
Wasserstein distance yields∫

f dμt+ε =
∫

f (x + εvt(x)) dμt + o(ε).

The second order Taylor formula ensures that f (x + εvt(x))= f (x)+ εvt(x) · ∇ f (x)+
O(ε2vt(x)2) where the implied constant is uniform in x . When q ≥ 2, we thus get∫

f dμt+ε =
∫

f dμt + ε

∫
∇ f · vt dμt + O

(
ε2

∫
v2

t dμt

)+ o(ε)

with vt ∈ L2(μt), giving the desired derivative at t . When q ∈ (1, 2), we argue as follows.
Let α ∈ (1, 3 − 2/q) and set Bε = {x ∈R

n | ε2vt(x)2 > εαvt(x)q} and Gε =R
n \ Bε. By

Chebyshev’s inequality,

μt(Bε)=μt({vq > ε
−(2−α) q

2−q })≤ ε(2−α) q
2−q

∫
v

q
t dμt = O(εβ)= o(ε),

where β = (2 − α)a/(2 − q). It follows:∫
f dμt+ε =

∫
Bε

f (x + εvt(x)) dμt +
∫

Gε

f (x + εvt(x)) dμt + o(ε)

= O(μt(Bε))+
∫

Gε

f dμt + ε

∫
Gε

∇ f · vt dμt + εα
∫

Gε

vq
y dμt + o(ε)

=
∫

f dμt + ε

∫
∇ f · vt dμt + O(μt(Bε))+ o(ε)

=
∫

f dμt + ε

∫
∇ f · vt dμt + o(ε)

as desired.

6·3. The case of Bernoulli convolutions

Corollary 1·1 will follow from Corollary 6·6. We take as reference point x0 = O = 0 ∈R;
recall that the family (�λ, η) of IFS defining Bernoulli convolutions is given in Section 1·2.

We start by the following explicit Lipschitz estimate.

PROPOSITION 6·7. For all q ≥ 1 and all λ, λ′ ∈ (0, 1):

Wq(μλ, μλ′)≤ 2

1 − λ
|λ− λ′|.

In particular, λ �→μλ is Lipschitz in the metrics Wq on each interval of the form [0, 1 − ε]
where ε > 0.

Proof. Given any q ≥ 1 and λ, λ′ ∈ (0, 1),

dx0(φ
λ
0 , φ

λ′
0 )= dx0(φ

λ
1 , φ

λ′
1 )= |λ− λ′|.

Considering the identity coupling of η with itself, defined by γ ({(0, 0)})= γ ({(1, 1)})=
1/2 and γ ({(0, 1)})= γ ({(1, 0)})= 0, we get W0,q

(
(�λ, η), (�λ′

, η)
)

≤ |λ− λ′|; more-

over (�λ, η) satisfies (3·1) and (3·2) with constants ρ = λq and A = 1; and mq
x0
(μλ′)≤ 1.
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Theorem 6·1 then ensures that

Wq(μλ, μλ′)≤ 21− 1
q 2

1
q

1 − λ
|λ− λ′|.

Proof of Corollary 1·1. Fix any q > 1; as seen above, W0,q

(
(�λ, η), (�λ′

, η)
)

≤ |λ− λ′|
and in restriction to any interval [1/2, 1 − ε] with ε > 0 we have (3·1) and (3·2) with uniform
bounds ρ+ = (1 − ε)q and A+ = 1.

Corollary 6·6 provides us with a family (vλ)λ∈(0,1) of vector fields on R, which can
be identified with ‖vλ‖ ∈ Lq(μλ) functions, such that for Lebesgue-almost all λ ∈ (0, 1),
Wq(μλ+ε, (Id +εvλ)∗μλ)= o(ε). When λ> 1/2, up to further restricting to a subset of full
Lebesgue measure for the parameter λ, Solomyak’s theorem [Sol95] ensures that μλ is abso-
lutely continuous with respect to the Lebesgue measure; let us denote its density by gλ. For
almost all λ ∈ (1/2, 1) and all smooth compactly supported test function f :R→R we get

d

dt

∣∣∣
t=λ

∫
f dμt =

∫ 1

0
f ′(x)vλ(x)gλ(x) dx,

which is the desired formula with wλ = vλgλ. Moreover, for almost-all λ> 1/
√

2, gλ is
bounded ( [Sol95, Corollary 1]), implying wλ ∈ Lq(μλ) and then wλ ∈ Lq([0, 1]).

Now, wλ seems to depend on the choice of q. But if w̃λ is another suitable choice for
the same λ (and possibly different q), extending both of them by 0 outside [0, 1], we have∫
R

f ′wλ = ∫
R

f ′w̃λ for all test functions f . As a consequence the extensions of wλ and w̃λ
must differ by a constant, and we thus must have wλ = w̃λ. It follows that there is a single
wλ, belonging to all Lq([0, 1]) simultaneously.

7. Stationary measures beyond products

While the case of IFS as defined above, where the randomness is a consequence of a
sequence of independent random variables of law η ∈P(I ), is the most commonly studied,
there has been great interest to generalise this setting. A first generalisation is to replace
the i.i.d. sequence by a stationary Markov chain; a further generalization is to draw the
infinite word ω=ω0 · · ·ωk · · · randomly with law an arbitrary shift-invariant measure ν ∈
P(IN) – the case of IFS corresponding to the independent Bernoulli product ν = η⊗N; then
one can consider a yet further generalisation where the shift is replaced by an arbitrary
measure-preserving dynamical system.

7·1. Skew-products

We still consider (X, d) a complete metric space, and we additionally fix a standard mea-
sure space (Y,A) (i.e. it is isomorphic to [0, 1] with its Borel σ -algebra) equipped with a
probability measure ν, and a ν-preserving map S : Y → Y . A skew-product map over S with
fiber X is a map

� : X × Y −→ X × Y

(x, y)−→ (ψy(x), S(y)),

where (x, y) �→ψy(x) is a measurable map. While, as we have seen above, an IFS can be
studied dynamically by looking at a random orbit X0, Xn+1 = φIn (Xn) where (In)n≥1 are i.i.d.
random variables of law η, in the present setting the corresponding random sequence of
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points is given by Xn+1 =ψSn(Y)(Xn) where Y is a random element of Y with law ν, taking
the place of the whole sequence (I1, I2, . . . ). In other words, IFS correspond to the particu-
lar case when Y = IN, ν = η⊗N, S is the shift y = (y0, y1, . . . ) �→ S(y)= (y1, y2, . . . ) and
ψy(x)= φy0(x). Note that � carries the information of what are X , Y and S; when we refer
to this setting, we shall therefore call (�, ν) a skew product.

We denote by π X , πY the projection maps from X × Y to each factor; a measure μ ∈
P(X) is said to be a stationary measure of the skew product (�, ν) when there exists a
measure ν̂ ∈P(X × Y ) such that:

ν̂ is �-invariant, πY
∗ ν̂ = ν, and π X

∗ ν̂ =μ.

In the case of an IFS, this coincides with the previous definition of stationary measure. The
measure ν̂ as above will be called a lift of ν. The basic question we want to address under
specific assumptions is whether there exist a unique stationary measure; a positive answer
will follow from the uniqueness of the lift of ν.

Definition 7·1. We say that � contracts the fibers whenever there exist ρ ∈ (0, 1) such that
for all y ∈ Y , the map ψy is ρ-Lipschitz.

We say that � has bounded displacement if for some x0 ∈ X , there exist an A> 0 such
that the set d(x0, ψy(x0))≤ A for all y ∈ Y .

Observe that when (ψy)y∈Y is an equicontinuous family, e.g. when � contracts the fibers,
in the definition of bounded displacement “for some x0” could be equivalently replaced by
“for all x0” (up to changing the value of A).

The main result of this section is the following.

THEOREM 7·2. Let � be a skew-product map on X × Y that contracts the fibers and
has bounded displacement. Each S-invariant ν ∈P(Y ) has a unique lift, and in particular
the skew product (�, ν) has a unique stationary measure μ, which moreover has bounded
support.

Let (Xk)k∈N be a stochastic process associated to (�, ν) as above, with X0 independent
from Y and of arbitrary law μ̃0 ∈Pq(X) for some q > 0, and let μ̃k ∈P(X) be the law of
Xk . Then for all k ∈N,

Wq(μ̃k, μ)≤ Dρ̃k,

where

ρ̃ = ρmin(q,1) ∈ (0, 1), D = mq
x0
(μ̃0)

min(1, 1
q ) +

(
A

1 − ρ

)min(1,q)

,

and A, ρ are the constants in the bounded displacement and fiber contraction hypotheses.

7·2. Fiber-wise Wasserstein distance

The main tool to prove Theorem 7·2 is a variation of Wasserstein distance that is adapted
to a projection map and the inverse images of a given measure on its target space. This notion
was at the heart of [Klo18b], from which we adapt the relevant definitions and properties.
Theorem A from [Klo18b] is not immediately applicable here since X need not be compact,
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diam(�n(X × {y}))might be infinite for all n, and Y is not even a topological space; but the
adaptation is relatively straightforward.

Fix any ν ∈P(Y ) and let Pν := (πY
∗ )

−1(ν)⊂P(X × Y ) be the fiber of ν, i.e, the set of
measures on X × Y with second marginal equal to ν. Recalling that we fixed a point x0 ∈ X ,
given any σ ∈Pν and q > 0 we define its qth moment by

mq
x0
(σ )=

∫
d(x, x0)

q dσ(x, y)

where the integral is over the whole product X × Y but distances are recorded only “along
the fibers”, i.e. over the X factor. We let Pν

q be the subset of Pν consisting of measures of
finite qth moment (this set does not depend on x0).

The product X 2 × Y identifies with what was noted �π in [Klo18b] (pairs of point in the
total space that project to the same point on the base Y ); we consider the maps

π02 : (x, x ′, y)−→ (x, y) π12 : (x, x ′, y) �→ (x ′, y) π2 : (x, x ′, y) �→ y.

For all σ0, σ1 ∈Pν let �ν(σ0, σ1) := {γ ∈P(X 2 × Y ) | (π02∗)γ = σ0 and (π12∗)γ = σ1}
(playing the role of �π in [Klo18b], where we had chosen to emphasize the projection map
rather than the image measure) and define

Cν
q(σ0, σ1)= inf

γ∈�ν(σ0,σ1)

∫
d(x, x ′)q dγ (x, x ′, y)

Wν
q(σ0, σ1)=

(
Cν

q(σ0, σ1)
)min(1, 1

q ).

The following basic result is proven in the same way as in [Klo18b].

PROPOSITION 7·3. For all σ0, σ1 ∈Pν , the set �ν(σ0, σ1) is non-empty. If the moments
mq

x0
(σi) are finite for i ∈ {0, 1}, then Wν(σ0, σ1) <∞. Moreover, if (ξy)y∈Y and (ζy)y∈Y are

the disintegrations of σ0 and σ1 with respect to πY , then

Wν
q(σ0, σ1)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(∫
Wq(ξy, ζy)

q dν(y)

) 1
q

when q ≥ 1

∫
Wq(ξy, ζy) dν(y) when q ≤ 1.

(7·1)

Finally, Wν
q is a complete metric on the set Pν

q .

Proof. Let (ξy)y∈Y and (ζy)y∈Y be the disintegrations of σ0 and σ1 with respect to πY (iden-
tifying X with the fibers of πY , (ξy)y∈Y is thus a family of measures on X characterised
by
∫

f (x, y) dξy(x) dν(y)= ∫
f (x, y) dσ0(x, y) for all continuous bounded functions f :

X × Y →R.)
From any measurable choice of y �→ γy ∈ �(ξy, ζy) (e.g. γy = ξy ⊗ ζy) we

can build an element γ of �ν(σ0, σ1) by setting
∫

f (x, x ′, y) dγ (x, x ′, y)=∫∫
f (x, x ′, y) dγy(x, x ′) dν(y). In particular �ν(σ0, σ1) is non-empty.

Conversely, given any γ ∈ �ν(σ0, σ1) its disintegration with respect to π2 is a family
(γy)y∈Y of measures on X × X , and by testing γ against integrands of the form f (x)g(y)
and f (x ′)g(y) one sees that γy ∈ �(ξy, ζy) for ν-almost all y.
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Since
∫

d(x, x ′)q dγ (x, x ′, y)= ∫∫
d(x, x ′)q dγy(x, x ′) dν(y)≥ ∫ Cq(ξy, ζy) dμ̌(y),

taking an infimum we get Cν
q(μ0, μ1)≥

∫
Cq(ξy, ζy) dμ̌.

For each y, the set of optimal transport plans from ξy to ζy is compact (see e.g. [Vil09,
proof of Theorem 4.1]), thus by the measurable selection theorem there is a measurable fam-
ily (γy)y∈Y such that for ν-almost all y ∈ Y ,

∫
d(x, x ′)q dγy(x, x ′)= Cq(ξy, ζy). It follows

Cν
q(σ0, σ1)≤

∫
Cq(ξy, ζy) dν and (7·1) is proven.

To complete the proof, it remains to be seen that Cν
q(σ0, σ1) <∞ and that Wν

q is a met-
ric making Pν

q a complete space. The triangular inequality follows from (7·1), and then
finiteness is obtained by observing

Wν
q(σ0, σ1)≤ Wν

q(σ0, δx0 ⊗ ν)+ Wν
q(δx0 ⊗ ν, σ1)= mq

x0
(σ0)+ mq

x0
(σ1).

Finally, the Riesz–Fischer Theorem for metric-space valued functions ensures that Wν
q is

a complete metric on Pν
q , seen via disintegration as a closed subset of the space of maps

Y →Pq(X).

7·3. Proof of Theorem 7·2
Let ν be any S-invariant probability measure on Y . We first observe that the fiber con-

traction and bounded displacement properties ensure that �∗ preserves Pν
q for all q. These

uniform assumptions also ensure that for some bounded set B ⊂ X , the set B × Y is an
absorbing invariant set, i.e. �(B × Y )⊂ B × Y and for all (x, y) ∈ X × Y there is some
k ∈N such that �k(x, y) ∈ B × Y . Let indeed A> 0 be such that for all y, d(x0, ψy(x0))≤
A, fix any ε > 0, set R = (1 + ε)A/(1 − ρ) and let B = B(x0, R) be the ball of center x0 and
radius R in X ; then for all x, y ∈ X × Y

d(x0, ψy(x))≤ d(x0, ψy(x0))+ d(ψy(x0), ψy(x))

≤ A + ρd(x0, x).

When x ∈ B, the right-hand side is at most A + ρR = ((1 + ερ)/(1 − ρ))A< R, proving the
B × Y is �-invariant. When x /∈ B, we have A< ((1 − ρ)/(1 + ε))d(x0, x) and the right-
hand side is at most (

1 − ρ

1 + ε
+ ρ

)
d(x0, x)= 1 + ερ

1 + ε
d(x0, x),

where (1 + ερ)/(1 + ε) < 1, proving the absorbing property with k � log d(x0, x).
Let σ0, σ1 ∈Pν

q . We consider the map X 2 × Y → X 2 × Y defined by

�2(x, x ′, y)= (ψy(x), ψy(x
′), S(y)).

For i ∈ {0, 1} we have πi2 ◦�2 =� ◦ πi2; as a consequence, for any γ ∈ �ν(σ0, σ1) we have
�2∗γ ∈ �ν(�∗σ0, �∗σ1). Observing∫

d(x, x ′)q d�2∗γ (x, x ′, y)=
∫

d(ψy(x), ψy(x
′))q dγ (x, x ′, y)

≤ ρq

∫
d(x, x ′)q dγ (x, x ′, y)

and taking an infimum, we see that

Wν
q(�∗σ0, �∗σ1)≤ ρmin(1,q) Wν

q(σ0, σ1),
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in particular �∗ induces a contraction on the complete metric space (Pν
q,Wν

q). Therefore,
there exists a unique�-invariant lift ν̂ of ν having finite qth moment. By considering differ-
ent q, we already see that the measure ν̂ has finite moments of all orders but, since B × Y
is absorbing, any �-invariant measure is concentrated on B × Y . This proves that ν̂ is the
unique �-invariant lift of ν on the whole of Pν , and that its first marginal μ is supported
on a bounded set. Explicitly, by letting ε above go to 0, we obtain that μ is concentrated on
B(x0, A/(1 − ρ)).

Consider now the stochastic process (Xk)k∈N. Let σ0 := μ̃0 ⊗ ν be the law of (X0, Y); then
the law of (Xk, Sk(Y))=�k(X0, Y) is σk =�k

∗(σ0), by definition has first marginal μ̃k , and
by invariance has second marginal ν. Since �∗ is a contraction in Pν

q � σ0, we obtain that

Wν
q(σk, ν̂)≤ ρk min(1,q) Wν

q(σ0, ν̂). (7·2)

On the first hand, using the transport plan obtained by projecting an optimal γ ∈ �ν(σk, ν̂)

on the first two variables, we get Wq(μ̃k, μ)≤ Wν
q(σk, ν̂). On the other hand,

Wν
q(σ0, ν̂)≤ Wν

q(μ̃0 ⊗ ν, δx0 ⊗ ν)+ Wν
q(δx0 ⊗ ν, ν̂)

≤ mq
x0
(μ̃0)

min(1, 1
q ) + (

A/(1 − ρ)
)min(1,q)

since ν̂ is concentrated on B(x0, A/(1 − ρ))× Y . Together with (7·2), this concludes the
proof of Theorem 7·2.
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