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We present a new framework for the identification of competing risks models, which
also include Roy models. We show that by establishing a Hicksian-type decompo-
sition, the direction of covariate effects on the marginal distributions of the com-
peting risks model can be identified under weak restrictions. Our approach leaves
the marginal distributions and their joint distribution completely unspecified, except
that the associated copula is invariant in the covariates. Results from simulations and
two data examples suggest that our method often outperforms existing comparable
approaches in terms of the range of durations for which the direction of the covariate
effect is identified, particularly for long duration.

1. INTRODUCTION

A feature of the competing risks model is that only the transition to one risk (or
failure because of one cause of death) is observed. This is the risk with shortest re-
alised duration. The latent durations for the other risks are therefore not observed.
The nonidentifiability of the competing risks model means that observed data
alone do not contain sufficient information to identify the marginal distributions
of the latent durations (Cox, 1962; Tsiatis, 1975). This identification problem is
closely related to the identification problem of the Roy model (Roy, 1951), where
an individual faces different potential wage distributions in different economic
sectors but only the wage in the chosen sector (maximum potential wage) is being
observed.

The joint distribution of the latent durations can be viewed as a copula function
of the marginal distributions (Schweizer and Sklar, 1983). Most previous studies
focus on the identifiability of the marginal distributions. Peterson (1976) in his sem-
inal paper derives bounds for the marginal distributions in absence of any knowl-
edge about them and the copula function. These bounds are typically too wide for
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informative results, particularly for longer durations as their width (difference
between the upper and lower bound) increases with duration. When the cop-
ula is known, Zheng and Klein (1995) show that the marginal distributions are
nonparametrically identified. Given that full knowledge about the copula is a
strong requirement, many existing studies consider an intermediate approach. In
particular, the copula is unknown but independent of the covariates (the copula
invariance assumption). In this scenario identification results are obtained by ex-
ploiting linkages between variations in covariates and variations in the observed
durations. The copula invariance assumption ensures that by changing the covari-
ates, changes in observed durations stem solely from changes in the marginal dis-
tributions but not from changes in the copula function. By relying on exclusion
restrictions or considering certain classes of regression models that restrict the
effect of covariates on the marginal distributions, a number of studies have de-
rived widely regarded identification results. For instance, Heckman and Honoré
(1989) show for proportional hazard models and accelerated failure time mod-
els that marginal distributions are identified semiparametrically, provided that the
variations induced by the covariates are sufficiently large. Heckman and Honoré
(1990) establish this result for a corresponding Roy model. Abbring and van den
Berg (2003) derive similar results for the semiparametric mixed proportional haz-
ard model. In their model the copula function belongs to a Laplace transform of an
unknown mixture distribution. Using the accelerated failure time model, Honoré
and Lleras-Muney (2006) obtain bounds for the marginal effect of discrete covari-
ates on latent durations. Lee and Lewbel (2013) show that the accelerated failure
time model is identified provided that a certain rank condition is satisfied. Rely-
ing on exclusion restrictions, Henry and Mourifie (2014) derive bounds for the
marginal distributions in the Roy model. Park (2015) identifies the joint distribu-
tion of the latent outcome variables in the Roy model when an instrumental vari-
able is available. Apart from theoretical studies, the copula invariance assumption
is also commonly made in empirical economic analysis. The most popular exam-
ple is the mixed proportional hazard model using finite mass point specification for
the unknown mixture distribution (Heckman and Singer, 1984), see, e.g., Butler,
Anderson, and Burkhauser (1989), Carling, Edin, Harkman, and Holmlund (1996),
Meghir and Whitehouse (1997), Dolton and van der Klaauw (1999), Steiner (2001),
D’Addio and Rosholm (2005), Alba-Ramirez, Arranz, and Munoz-Bullon (2007).
Other empirical studies using the copula invariance assumption include the inde-
pendent risks model and parametric copula models. See for example Carling et al.
(1996), Mealli and Pudney (1996), and Burda, Harding, and Hausman (2015).
We consider a more general model in this paper than the above mentioned stud-
ies, although we maintain the copula invariance assumption. First, the marginal
distributions in our model are nonparametric and therefore it is not limited to
specific classes of duration models such as the proportional hazard models or
the accelerated failure time model. This is a practical advantage as these models
impose parametric restrictions on the marginal distributions, which may be vio-
lated in applications. Second, our model does not rely on exclusion restriction nor
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requires instrumental variables which could be either difficult to justify or might
not be available in an application.

In this paper we establish a Hicksian-type decomposition of covariate effects
on marginal distributions. We develop a general link between the observable sign
of covariate effects on subdistributions (cumulative incidence functions, CIF) and
the unobservable sign of covariate effects on the marginal distributions. We show
that under rather weak restrictions the sign of covariate effects on the marginal
distributions is identifiable for some set of durations.

DEFINITION 1. The identification set is defined as the set of durations for
which the sign of a covariate effect on the marginal distributions is identified.
Identification set A is larger (smaller) than identification set B if B C A (A C B).

At a glance our approach shares some similarities with the approach proposed
by Bond and Shaw (2006). Under the copula invariance assumption they derive
bounds for the covariate-time transformation (CTT). These bounds can be used
to identify the sign of the covariate effect. However, there are three major differ-
ences between our decomposition approach and the CTT. First, these two methods
produce different identification sets. In order to make the difference apparent, we
restate Bond and Shaw’s approach using our analytical framework. Second, the
width of the bounds for the CTT increases with duration. This implies that, simi-
lar to the Peterson bounds, the bounds for the CTT tend to be less informative at
longer durations, but this is not the case for our approach. Third, the bounds for the
CTT require an additional nontestable order assumption which restricts the role
of covariates on the marginal distributions in a nontrival way. This order assump-
tion implies that the propensity of one risk will either increase or decrease for all
durations when a covariate changes. In the context of the Roy model, this implies
that the utility for one state increases more or decreases less than that for the other
state irrespective of the level of outcome variables when a covariate changes. As
a by-product of rewriting Bond and Shaw’s (2006) approach, we accommodate a
feature of our approach into their model which obviates their order assumption.

In our simulation studies and two real-data illustrations, our proposed decom-
position approach tends to produce the largest identification set among the consid-
ered methods. We illustrate that a proposed combination of the various methods
is even more appealing for empirical research if the direction rather than the mag-
nitude of the covariate effect is of main interest. Our real-data illustration also
provides evidence for changes in the sign of covariate effects at different dura-
tions, highlighting the importance of using a more flexible model rather than the
proportional hazard and accelerated failure time model for the marginal distri-
butions. These findings are useful for empirical research that utilises competing
risks models as well as the Roy model.

The structure of this paper is as follows: Section 2 introduces the model and
presents the identification results. Section 3 explores the performance of the
considered approach by means of simulations. Section 4 investigates the empirical
performance with two data examples.
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2. IDENTIFIABILITY

We consider a model with two latent competing random variables 77 and 7> € R..
T1 and T, are latent durations to events 1 and 2, respectively. A competing risks
model with more than two risks is considered in Section 2.2. X € RX is a vec-
tor of continuous covariates x;, k = 1,..., K. A model with discrete X is con-
sidered in Section 2.1. The marginal survival function (latent survival) of T is
S;(t; ) =Pr(T; > t|x), with X = z. The joint survival distribution of the latent
durations is S(t1,t; ®) = Pr(Ty > t1, T» > r|x). Let T = min(7Ty, T») be the ob-
served minimum and 6 = arg minj{Tj} be the risk indicator. When J = 1, latent
duration 7> is censored by 77, and vice versa. Define the cumulative incidence
function (CIF) as Q;(t;x) = Pr(T < t,0 = j|x), the cause-specific crude haz-
ard function as 4; (t; x) =limp,oPr(t <7 <t+A,6 = j|T > t,x)/A forrisk
j = 1,2 and the survival function of T (overall survival) as S(¢; x) = Pr(T >
tle) =1-01(t; ) — Q2(t; ).

Assumption 1. S;(z; x) : [0,00] = [0, 1] and S(¢; ) : [0, co] = [0, 1] are con-
tinuous and strictly decreasing in ¢ for all j with inverses denoted by Sj_1 and
S~!, respectively. Q ; (t; ) is continuous and strictly increasing in ¢ for all j with

inverse denoted by Qj_l. S;, Sj_l, S, s, Qj, and Qj_1 are differentiable with
respect to .

DEFINITION 2. The copula function C(ui,uz) = Pr(Uy < u1,Us < up) :
[0,112 = [0, 1] is a joint distribution of two uniform random variables (U1, U)
with density function k(uy,u).

See Nelsen (2006) for more details on copulas.

According to Sklar’s theorem (Schweizer and Sklar, 1983), the joint distribu-
tion of the latent durations 77 and 75 can be represented by a copula function of
the latent survivals, i.e.,

S(t,t; ) =Pr(Th > 11, Tr > 1|@)
=Pr($1(T1; ) < S1(t1; ), S2(T2; @) < Sa(t2; x)| )
= C(S1(t1; ), S2(t2; T); ). 1

The copula function characterises the dependence structure between the latent
survivals.

DEFINITION 3. Let up = ¢1(uy; ) = Sz(Sl_l(ul;x); x):[0,1] > [0, 1] be a
continuous and strictly increasing link function, which uniquely defines the rela-
tionship between uy = S| (t; x) and up = Sy(t; x) for all t and x. The link func-
ti0111 is differentiable with respect to x with its inverse defined as uy = (2 (u2; ) =
¢ (uas ).

Continuity, monotonicity, uniqueness, and differentiability of the link function
are guaranteed by Assumption 1. The link function plays the role of determining
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the propensity of risk 1 such that Pr(7; < Tr;x) = Pr(Sl_l(U1;ac) <

S5 (Uss x);2) = Pr(Us < (1(Un; ); 2) = fol foa("“m)x(ul,uz;m)duzdm. In
the context of the Roy model, the link function can be viewed as a nonlinear
and nonseparable selection equation (Henry and Mourifie, 2014) in which u; =
S; (t; z) is the utility function of the outcome variable 7;.

The copula is unknown but assumed to satisfy the following condition.

Assumption 2. C(uy,uz;x) = C(uy,ur) forall @, uy, and uy,

Given (1) and Assumption 2 the competing risks model is fully characterised
by the following system of equations:

S(t;x) =Pr(T > t;x) =Pr(U; < Si(t;x), Uz < $2(t5 @)

Si(t;x)  pS2(t;@)
_ / / kG, u2) dus duy = C(S1 (5 2), .62 ()
0 0

Qi1(t; ) =Pr(T <t,6 =1;x) =Pr(U; > S1(t;x), Uz < (1(Uy; )

1 &1 (up;@)
=/ / k(ui,u2) dus duy. 3
Si(t;x) JO

A graphical presentation of the problem using the unit square is given in Figure 1.
A similar graphical presentation of the competing risk model can be found in
Zheng and Klein (1995) and for the Roy model in Henry and Mourifie (2014).

Uz 1
T uz=&1(u;x) —
Sa(t;x)
0 Si(t;x) i

B sctx) =fus,uzu<sien), uz<saidClus,uz)
I:I Qu(t;x) =,|-{[u1,u2}:u1>51(t;x], uz<&1(urx)ydC(us,uz)

FIGURE 1. Graphical presentation of a competing risks model.
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In our model (7', 6, x) are observed and S(t; ), Q; (t; ), and 4; (t; ) are iden-
tified nonparametrically. S; (t; ), S(t1,12; ), {1(:; ), C(u1,u2), and x (11, u2)
are unknown and not identified but somehow restricted due to Assumptions 1
and 2. Instead of considering the identifiability of these functionals we focus on
the identifiability of the sign of a covariate effect on S;(; ). The idea of our
approach is to use the observable direction of the covariate effect on Q;(z; ) to
identify the sign of the covariate effect on S;(¢; ). One can see from Q(t; x) =
Pr(T <t,T) < Th;x) =Pr(U; > S1(t; ), Us < 1 (Uy; )) that a covariate effect
on the cumulative incidence function is driven by both the changes in S (¢; ) and
C1(ur; @) foralluy € [S1(¢; ), 1]. It is possible that a negative covariate effect on
S; results in a negative effect on Q;, when the negative effect driven by the link
function overrides the positive effect driven by the negative covariate effect on S;.
Therefore, an identified sign of the covariate effect of Q; is not immediately in-
formative about the sign of the covariate effect on S;. We propose a Hicksian-type
decomposition approach of the covariate effect which makes the relationship be-
tween the sign of the covariate effect of S; and Q; tractable. For this purpose,
we reformulate the competing risks models characterised by (2) and (3) as the
following constrained maximisation problem (compare also Figure 2):

(S1(t; ), S2(t; x)) = arg maxu| + us “4)
(uy,up)
subject to: (i) C(uy,u2) < S(t;x) and (ii) ua = 1 (u1; ).

Intuitively, risks 1 and 2 are two groups that compete for survival by time 7. The
competition is subject to two constraints. First, there is a maximum level of overall

Uz :
| C(u1,u2)>5S(tx) uz=&1(uLx) =
-
S~
S~
S
~
~
Clu,uz)=5(tx) N ~
N
+ N
AY
\
\
\
(S1(t;x),S2(t:x)) = \

\

\

1

L

0 — U

FIGURE 2. Latent survivals under a given copula function and link function.
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survivor ¢ = S(¢; ) such that C(S1(¢; ), S>(¢; x)) is no greater than c. Second,
for a given copula, the composition of nonsurvivor for risk 1 and 2 at each ¢ is
fixed by the link function, and thus Sy (#; ) = ¢1(S1(¢; «); ). These two con-
straints together determine the value of survival for each risk at each . When x
changes, it changes the value of the maximum level of overall survivor ¢ = S(¢; x)
for each given ¢ and the link function ¢ (-; ) simultaneously. Thus, S;(¢; ) and
S>(t; ) also attain new values. We consider the partial effect of a covariate x; in
the following and suppress the index k for convenience.

DEFINITION 4. Let A, S;(t;x) = 0S;(t; x)/0x be the covariate effect of x on
the latent survival S; at t given x.

DEFINITION 5. Let A1 (t; ) = 01 (u1; x)/0x be the covariate effect of x
on the link function at uy = S (t; x) given x.

DEFINITION 6. The duration function D(c;x) is defined by the minimum
duration time to keep the value of the overall survival no greater than c¢ € [0, 1]
given , i.e.,

D(c;x) =inflo e Ry : S(v; ) < c}. 5)

Due to Assumption 1 the inverse of S(z; @) exists. This implies that D(c; x) exists
and is unique. Since S(¢; x) is differentiable w.r.t. x, D(c; ) is also differentiable
w.r.t. x.

DEFINITION 7. The Hicksian latent survival function, S ;‘ (c(t); x), is defined
by the value of the latent survival function when S is held constant at c(t) =
S(t; x), ie.,

S (c(t); ) = Sj(D(c(t); T); ). (6)
Differentiating both sides of (6) with respect to x and rearranging, we obtain
08;(t1; ) 087 (c(t);)  a8;(t;x) dD(c(1); ) o

ox ox ot ox
The covariate effect on the latent survival S; can therefore be decomposed into
two parts by isolating the effect on the link function and the overall survival. We
call the first part the link function effect. This is the change in the Hicksian latent

survival S j?“ due to the change in the link function while holding c¢(¢) = S(¢; x)
constant.

DEFINITION 8. Let A;Sj (t;x) = 65; (c(t); x)/0x be the link function effect
of a change in x on latent survival of risk j at t given x.

The link function effect can be thought of as a compensated substitution effect
between risks 1 and 2. A movement from x¢ to &1 will change the value of over-
all survival from ¢ = S(¢; o) to S(¢; x1). An adjustment of the duration time
from ¢ to D(c; «1) is necessary to ‘compensate’ the induced change in the overall
survival in order to hold the value of the overall survival constant.
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The second part is called the duration effect, which is the change in the latent
survival S; due to moving the duration time that is required to push the level of
overall survival to the new level while holding the link function constant.

DEFINITION 9. Let AYS;(t; ) = —aS;(t; x) /0t x dD(c(t); T)/0x be the du-
ration effect of a change in the covariate x on the latent survival of risk j att given x.

A graphical illustration of the decomposition for a move from xq to x| is given
in Figure 3.

Let sign |z| be the sign operator of z. This means that it is +1, 0, or —1 if z is
positive, zero, or negative, respectively.

LEMMA 1. Under Assumptions 1 and 2 the following holds for the competing
risks model characterised by equations (2)—(3):

1. There is a unique decomposition of the covariate effect on S;(t; x) for all t
andx and j =1,2:

Ay Sj(t; ) = ALS; (1; ) + ALS; (1; ). @®)
2. sign |A§C51(t; x)| =—sign |AﬁcSz(t; x)|=—sign|A 1 (t; )| forall t and x.
3. signlAﬁSl (t; )| =sign|A§Sg(t;a:)|f0ralltanda:.

4. sign|AS;(t;z)| for at least one risk j can be determined by
sign|A§CS1 (t; )| and sign|AffSl(t; x)| for all t and x.

We provide a sketch of the proof in Appendix A.1.

Uz
T u2=&1(u1;X0) =)

uz=&1{uLx1) =y
Cu1,u2)=5(t;x1)
4

C(u1,uz)=S(t;x0)=c
4

Sz(txo) +

[l

C

4
A Sit) 4

T

B

Sz(D(c(t);lxu;x;) 1

0 Siftxo) SiD(cxi)xt) Siltx) —p U
A: Link Function Effect |—A—>|—B—
B: Duration Effect | C——3»|

C: (Total) Covariate Effect

FI1GURE 3. Decomposition of covariate effect.
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Lemma 1.4 suggests that the direction of the covariate effect can be identified
when it is known that the link function effect and the duration effect do not have
opposite signs. Although the sign of the link function effect and the duration effect
are unknown, we show next that the link function (duration) effect of the latent
survivals can be identified by the link function (duration) effect of the CIF for
some subsets of 7. For this reason we define a similar decomposition for Q;.

DEFINITION 10. The Hicksian cumulative incidence function, Q; (c(t); ), is
defined by the value of the cumulative incidence function when the value of the
overall survival is fixed at c(t) = S(t; x), i.e.,

0! (c(t): @) = Qj(D(c(1); ); ). ©)

Analogously to equation (7), the covariate effect on Q; can be decomposed
into two parts.

DEFINITION 11. Let Ai Qj(t;x) = 6Q}‘(c(l);sc)/6x be the link function
effect of a change in the covariate x on the cumulative incidence function for
risk j att given x.

DEFINITION 12. Let AfQj (t;x) =—0Q;(t;x)/0t x 0D (c(t); x)/0x be the
duration effect of a change in the covariate x on the cumulative incidence function
forrisk j att given x.

Since the duration effect comes solely from the change in the duration while
holding the link function constant, and, under Assumption 1, S; (¢; ) is a decreas-
ing functionin # and Q; (¢; x) is an increasing function in ¢, it is immediately clear
that the sign of the duration effect of the latent survival is always opposite to the
sign of the duration effect of the cumulative incidence function.

LEMMA 2. Under Assumptions 1 and 2 and for j = 1,2 we have for the
competing risks model characterised by equations (2)—(3): sign |Ai Si(t;x)| =
—sign |AfQj(t; x)| for j = 1,2 and for all t and .

The equivalent result can be established for the link function effect but it
requires an additional monotonicity assumption.

Assumption 3. The link function is a monotonic function in x, i.e.,
Axt1(t;x) <0or > 0 forall f and .

Given Lemma 1.2, Assumption 3 implies that the link function effect on S
has the same direction for all 7. Specifically, AiSl (t; ) < 0 for all ¢ implies
Ax1(t; ) > 0 for all £ and vice versa. As the effect of the covariate on the two
arguments of Q7 (c; ¢) =Pr(U; > S} (c; x), Uz < {1(U1; x)) leads to the same di-
rection of the change in Q7(c; x), the sign of Ai Q1 (t; ) can be unambiguously
determined. This can be summarised as follows:

LEMMA 3. Under Assumptions 1, 2, and 3 and for j = 1,2, we have for the
competing risks model characterised by equations (2)—(3):
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1. sign |A§CSj(t;sc)| = —signlAin(t;w)lforalltand x.
2. sign|A.S;(t;x)| can be determined by signlA;Qj(t;w)l and
sign| AfQj (t; x)| for at least one of the risks for all t and x.

The proof can be found in Appendix A.1.

Intuitively speaking, Assumption 3 is similar to the monotonicity assumption
in the Roy model as discussed by Park (2015). It implies that the propensity of
risk 1 will either increase or decrease for all # € IRy when a covariate changes. It
can be shown that some popular duration models, e.g., the accelerated failure time
model, are compatible with the restrictions of Assumption 3. While convenient,
Assumption 3 is rather restrictive in applications. For instance, unemployment
research has found that the hazard rate of being recalled to the previous employer
and the hazard for taking up a new job have very different patterns of duration
dependence (see, e.g., Alba-Ramirez et al., 2007). Specifically, as unemployment
duration increases, the hazard of finding a new job remains relatively high, but
the recall hazard rate drops quickly and becomes very low. Different individual
and job characteristics will affect the relative propensity of recall and new job in
different directions depending on the length of unemployment duration. This then
violates Assumption 3. While Assumption 3 is the key identification assumption
in Park (2015), a relaxation of Assumption 3 in our model will only restrict the
validity of Lemma 3 from the entire support of ¢ to some subsets of ¢.

Relaxing Assumption 3 implies that the link function can change direction at
some ¢. We define the sequence of zero-cutting point(s) of the link function as
follows:

DEFINITION 13. Let {fx} for k = 1,2,3,... be a sequence of t such that
f1 =0 and, for all k > 1, Ax(j(tx; €) = 0 and there exists some € > 0 such that
Ax(j(s; ) #0forall s € [fy —e, ). These conditions imply that if A (t; ) =0
forall t € [ty,tp] for some tp > t; > 0, only the left end point of this interval t,
enters the sequence {fy}.

This sequence is the same for all j because the covariate effect on the link function
is zero for both j at {#;} due to Lemma 1.2. Since the link function is unidentified,
{f¢} is unidentified. But for Ai Q;(t; ), its zero cut-off point(s) and first local
turning (maximum or minimum) point(s) after the zero cut-off point(s) are all
identified. These observable quantities can be used to identify the direction of the
link function effect on §; for some subset of ¢.

DEFINITION 14. (i) Let {fy} for k = 1,2,3,... be a sequence of t such
that Ain (t'k,; w,) = 0 and there exists some € > 0 such that Ain (s;x) #0
for all s € (tx,tx + €]. These conditions imply that if Ai Qj(t;x) =0 for all
t € [t4,tp] for some t, > t, > 0, only the right end point of this interval t, enters
the sequence {i;}. (ii) Let {fj,k} for k =1,2,3,... be a sequence of t such that
= inflt € (e fep) : AL O (13 @) 2 A0y (s: @) or /Aé\Qj(tQSU) < ALQj(s; )
foralls €[t —e,t+¢] for some e, e > 0}. (ii)) I x = [tx,tj 1] and I = Ukzl I x
for j=1,2andk =1,2,3,....
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The sequence {#;} is the same for all j because the link function effect on Q ;1S
zero for both j at {f;} due to Lemmas 1.2 and 3.1. Since A; Qj (t; x) is identified,
{f}), {fj,k}, I x, and II; are identifiable. The following lemma establishes that in
absence of Assumption 3 the validity of Lemma 3 is restricted to ¢ € [I;.

LEMMA 4. Under Assumptions I and 2 and for j = 1,2, we have for the
competing risks model characterised by equations (2)—(3):

1. Fork=1,2,3,..., I x is a subset in the interval [1;, f41] for some L.
2. sign|AiSj(t;a:)| = —signlA;Qj(t;w)l,forallt e l;.

Each set [ ; is contained in one of the interval [#;,741] for [ = 1,2,3,....
However, not every interval in the sequence [#, £, ] will contain an element in the
sequence [ ;. For more details see the remark on Lemma 4.1 in Appendix A.1.
The proof of Lemma 4 can be found in Appendix A.1.

Let us denote AxQj(t;x) = [Ai Q;(t;x), AﬁQj (t; )] for j = 1,2.
AxQj(t; x) > 0 means that both of Ai Q;(t; ) and Af Qj (t; ) are nonnegative
but that at least one is nonzero. AxQ;(t; x) < 0 is defined analogously.

DEFINITION 15. ID; consists of all t such that AL.Q;(t; x) x A2Q;(t; x) > 0.

Then ID; consists of all # such that Aé Qj(t;x) and Ain (t; ) do not have the
opposite sign.

DEFINITION 16. G; = I; () ID;.
We now state our main identification result for the identification set G;.

PROPOSITION 1. Under Assumptions 1 and 2 and for j = 1,2, the sign of
the covariate effect on S; is identified in the competing risks model characterised
by equations (2)-(3) for all t € G;:

-1 if AxQ(t;x) > 0;
sign|AxSj(t; )| =10 if AxQj(t;x) =0; (10)
+1if AxQj(t:%) <0,

Proposition 1 follows directly from Lemmas 1, 2, and 4.

2.1. Increasing the Identification Set

In this section we consider approaches to increase the set of durations for which
the direction of the covariate effect is identified:

1. Reversed application of our decomposition approach.

2. Bounding unknown functionals without copula invariance (Peterson, 1976).

3. Bounding unknown functionals with copula invariance (Bond and Shaw,
2006).

The considered approaches are appealing because they do not require additional
restrictions on the model. Since these are only applicable for discrete covariates,
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we focus in the following on the partial effect of a discrete x; moving from
X =x9 to X = x;. Again, we suppress the index k for the ease of notation.
We restate a number of definitions in analogy to Section 2.

DEFINITION 17. For a change in x inducing a movement from xg to x

e the covariate effect on S; (compare Definition 4) is AS;(t; o) =
Si(t; 1) — Sj(t; o),

e the covariate effect on the link function (compare Definition 5) is
A1 (t; o) = (8185 @0); 1)) — (18125 @0); o),

e the duration function (compare Definition 6) to keep the overall survival at
c=S(t; o) is D(S(t; x0); x1),

e the link function effect (compare Definition 8) is AéSj(t;sco) =
S (D(S(t;xo); x1); T1) — S; (25 T0),

e the duration effect (compare Definition 9) is AiSj(t;wo) =
Sj(t;21) — S;(D(S(t; T0); X1); 1),

o the link function effect of Q; (compare Definition 11) is A; Qj(t; o) =
Qj(D(S(t;0); x1); 1) — Q) (15 @),

o the duration effect of Q; (compare Definition 12) is AfQj(t;a:()) =
Qj(t; 1) — Q;(D(S(t; o); T1); x1).

It is straightforward to restate Proposition 1 for the case of discrete covariates and
a presentation is therefore omitted. Instead, we focus on how the identification set
can be increased.

(1) Decomposition of the Reversed Covariate Effect. A simple expansion of
the identification set can be achieved by applying our proposed decomposition to
the reversed covariate effect.

DEFINITION 18. The reversed covariate effect on S; for a discrete movement
from xq to x| is

A_ySj(t; o) = Sj(t; o) — S (t; 1) = —AxSj (t; x0). an

Clearly, A_,S;(t; o) has the opposite sign to A, S;(t; zo). It is also obvious
that Proposition 1 can be carried over to the reversed covariate effect by ex-
changing the notation 1 and xp. We denote this property as independence of
the decomposition route. Let G;(x) and G;(—x) be the identification sets for
sign|AySi(t; xo)| and sign|A_,S;(t; xo)|, respectively. We obtain the follow-
ing useful result:

COROLLARY 1. G;(x) # G;(—x).

The proof is given in Appendix A.1. We show in the proof that there exists some
set of ¢ for which the sign of the covariate effect is unidentified, while the sign
of the reversed covariate effect is identified. Corollary 1 suggests that it is always
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better to compute both decomposition routes and take the union of the two iden-
tification sets.

The identification set can be further enlarged by applying an approach that
relies on bounds for unknown functionals.

(2) Peterson Bounds. Peterson bounds can be constructed by applying the
Fréchet—Hoeffding bounds for the joint survival distribution in (1), i.e.,

W(Si(t1; ), S2(t2; ) < C(S1(t1; ), S2(t2; )5 )
< M(S1(11; ), S2(f2; ), 12)

with W (s1,s2) = max{s; + s — 1,0} is the lower Fréchet-Hoeffding bound for
the copula function and M (s, s2) = min{sy, sp} is the upper Fréchet-Hoeffding
bound. The lower (upper) Fréchet—Hoeffding bound corresponds to the case
where S7 and S are perfectly negatively (positively) correlated. The correspond-
ing bounds for the latent survivals in (2)—(3) are the Peterson bounds, i.e.,

S(t;x) < Sj(t;x) < 1—Q;(t; ). 13)

The upper (lower) bound in (13) is attained when the copula attains its up-
per (lower) Fréchet—Hoeffding bound and the copula attains its lower (upper)
Fréchet—Hoeffding bound and they do not require Assumption 2. C is therefore
allowed to vary freely in @. Thus, competing risks may be perfectly positively
correlated with one value of & while they are perfectly negatively correlated at
another value of .

For a discrete movement from xo to x1, the Peterson bounds for A, S;(z; xo)
are given by

—AxQj(t; o) — Qi(t; o) < AxSj(t; o) < —AQj(t;20) + Qi(t;21),  (14)

for i # j. Equivalent bounds for the covariate effect of continuous x cannot be
derived.

DEFINITION 19. Let IP; be the identification set for sign|A,S;(t;xo)|
obtained by the Peterson bounds. IP; consists of all t for which
—AxQj(t; o) — Qi(t;20) > 0 or —AQ;(t; o) + Qi(t;0) <O for j #i or
the two former being equal to zero.

One characteristic of the Peterson bounds in (14) is that the difference between
the lower and upper bound, i.e., —A Q;(t; o) + Qi (t; 1) — (—Ax Q;(t; o) —
Qi(t;xo)) = Qi(t;x1) + Qi(t; xp), is an increasing function of ¢. This implies
that the bounds in (14) tend to be less informative for greater values of . In
contrast, the identification set in Proposition 1 is a function of Ai Qj(t; ) and
Az Q;(t; x), which are generally not monotonic in ¢. Thus there are no mechanics
which make our decomposition approach less informative for greater . However,
it is possible that some subsets of IP; are not included in G;(x). For instance,
consider some ¢ € IP; N IP; such that sign|A,S;(t; xo)| is identified as positive
for both j = 1,2; but from Lemma 1, the sign of only one risk can be identified
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with our decomposition approach. This appears to be a limitation of our decom-
position approach. However, by applying the reversed decomposition there may
be some durations for which the sign of the covariate effect is identified for either
risk. An example is illustrated with simulations in Section 3.

(3) Bounds for Covariate Time Transformation. Bond and Shaw (2006) con-
sider the so-called covariate-time transformation for a discrete movement from x
to 21 under Assumptions 1 and 2.

DEFINITION 20. The covariate-time transformation (CTT) is ¢;(t;zo) =
87 (8 (15 @0); @)
The difference between ¢; (¢; ¢o) and ¢ can be interpreted as the S; (¢; xo)-quantile
treatment effect on the latent duration. The sign of this difference also cor-
responds to the direction of the covariate effect, i.e., sign|A\S;(t;zo)| =
sign|@;(t; xo) —t|. But as the S;’s are not identified, the CTT are also unidenti-

fied. Bond and Shaw (2006) show that the CTT can be bounded provided that the
following order assumption holds:

Assumption 4. ¢, (; xg) < ¢ (t; ) or ¢pa(t; x0) > P1(t; x0) forall 1 > 0.

The following result establishes the equivalence of this order assumption and the
monotonicity of the link function (Assumption 3).

LEMMA 5. (1(ui; o) < C1(uis ) iff ¢a(t5x0) > ¢1(t;@0) at any uy =
S1(t; x0), and vice versa.

According to Lemma 5, the order assumption has the same implication for the
competing risks model and the Roy model as Assumption 3 (see above for the
discussion of Assumption 3). Bounds for the CTT can then be derived by using
Assumption 3 and by exploiting the link between the observable changes in the
Q;’s and the changes in the unobservable S;’s. Suppose that ¢, (¢; o) < ¢1(f; x0)
for all ¢ and thus ¢ (u1; @1) < 1(u1; o) for all uy, we have

1 (ugsey)
Q1(¢1(l;$0);w1)=/ /0 k(uy,uz2) dus du,

S1(p1(t;z0); 1)

1 & (urs®o)
S/ / K(uy,uz) dup duy = Q1(t; xp); and  (15)
Si(t;20) /0

Si@1(txo); 1) O (S1(P1(t0)51)521)
S(¢1(l;wo);wl)=/ / w(uy,uz) duy du;
0 0

Si(t;0)  po1(S1(t;20);20)
< / / k(1o u2) dus duy = St o). (16)
0 0
The bounds for the CTT are therefore

STHS (Wt o) 1) < 1 (85 0) < 07 (0113 0); 1), 17)
05 1 (Qa(t; 0); 1) < dalt: o) < ST (S(13 0); 21). (18)
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For a given ¢ the sign of the covariate effect on S; may be obtained as follows:
If the minimum of Qj_l(Qj (t; x0); 1) and S_I(S(t; xp); x1) is greater than ¢,
one can conclude that ¢; (¢; <o) > t and thus Sj_1 (Sj(t; x0); 1) > t. It follows that
Sj(t;zo) < S;(t; 1) which implies a positive covariate effect on §;. Similarly,
the covariate effect on S; is negative when the maximum of Qj_1 (Qj(t;z0); 1)

and ST!1(S(t; xo); 1) is smaller than 7. Otherwise the direction of the covariate
effect on S; is not identified. Compared with our decomposition approach this ap-
proach has two disadvantages: First, similar to the Peterson bounds, the difference
between the bounds for the CTT increase when ¢t becomes greater, making it less
likely that the sign of the covariate effect can be identified. Specifically, when ¢ ap-
proaches infinity, the lower (upper) bound of @1 (¢; xg) (¢2(¢; xo)) approaches in-
finity. Second, (15) and (16) are only valid under the restrictions of Assumption 3
which cannot be verified in an application. While it is possible to detect some re-
jections of the order assumption, an observed rejection does not constitute a suf-
ficient condition. In particular, whenever the values of Ql_1 (Q1(t; x0); 1) and
Q2_1 (Qa(t; xo); x1) in (17) and (18) change their order at some observed ¢*, it
can be certain that the order assumption is violated at some ¢ < ¢*. But, the mere
fact that Ql_l(Ql(t; xp); 1) and Qz_l(Qz(t; xp); x1) do not change their order
before * does not imply that there is no violation at some ¢ < t*.

In what follows we propose a modification of the approach by Bond and Shaw
which does not require Assumption 3. Instead it uses the observation that the order
assumption is not violated for ¢ € [0, ij,l]. This is a consequence of Lemma 5,
keeping Definitions 13 and 14 in mind. The set of ¢ for which the sign of the
covariate effect is identified is then:

DEFINITION 21. Let IBj(x) be the identification set for which
sign|AS;(t;zo)| is identified by the modified Bond and Shaw’s ap-
proach under Assumptions 1 and 2. IBj(x) consists of all t € [O,ij,l] s.t.
min{ Q7" (Q; (t; mo); 1), S~ (S(t;mo); 1)} > ¢ or max{Q; " (Q;(t;mo); 1),
STU(S(t; x0); 1)} < t or the former two being equal to zero. Similarly, let
Bj(—x) be the identification set for sign|A_,S;(t; xo)| derived by the modified
Bond and Shaw’s approach.

To sum up we have now defined five identification sets for risk j: IP;, IB;(x),

Bj(—x), Gj(x) and G;(—x). The overall identification set is obtained by taking
their union:

DEFINITION 22. For j = 1,2 let U; be the set of t for which the sign of the
covariate on S; is identified by at least one of the approaches:

Uj=U;x) | JU;(—x) with
Ui) = 1P |J B;0) | JG(0),
Uj(—x) = 1P; | ) B; () | G, (—x).
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In Sections 3 and 4, we explore with simulations and data examples how the
size of the sets IP;, IB;, and G; compare in practice and whether the size of U; is
large enough to obtain practically informative results.

2.2. Identifiability in a Multirisks Model

In this subsection we extend the model of Section 2 to a model with a finite num-
ber of risks J(> 2). The observed failure time becomes 7" = min(Ty,...,Ty)
and the indicator function is J = arg min;{7;}. The link function is defined as

up = x) = S,-(Sj_1 (uj; x); ). Equations (2)—(3) becomes
St ) = CT (Si(t52), ..., Sy (5 2));

1 a1juj;x) G-1,jwpx) g,y a)
Qj(t;w):/ / ,/ /
Si(t;)J0 0 0

Co,jujsx)
/ x(ul,...,u])duj...duj+1 duj_l...dul duj. (19)
0

The J-copula is
Clur,...,up)=Pr(S1(T; ) <ur,...,S;(T;) <uy). (20)

To carry over the identification results for the model with J = 2, we follow
the risk pooling approach by Lo and Wilke (2010). Suppose that we want to
identify the sign of the covariate effect on the j’th risk. By conceptually pool-
ing all other risks into a single risk, we generate an unobserved new variable

T_; =min(Ty,...,Tj—1,Tjy1,...,Ty). This is then a two risks model with a
2-copula
C*(uj,u—j) =Pr(S;(Tj;@) < uj, S_j(T—j; @) < u_). @1)

The unknown marginal survival function for the pooled variable 7T-_; is
S_j(t;x) = Pr(T—; > t;x). The observed failure time is unaffected as
T =min(7}, T-;), and the indicator function is modified as 6; = j if § = j and
0j = —j if 6 # j. For any J-copula in (20), the existence of a 2-copula in (21) is
guaranteed under the following assumption (Nelsen, 2006).

Assumption 5. In the competing risks model defined by (19), the copula be-
longs to the Archimedean class.

In this case the multirisk model can be reduced into a two risks model as
(2)-3):

S(t;2) =CX(Sj(t, @), S-;(t; @));
Qj(t;w):f;i(t;x) fo—j,j(ujiw)K(u_j,uj)du_j du;,
with u_; = ¢ j(uj;x) denoting the link function between S;(f;x) and

S_j(t;x). For more details see Lo and Wilke (2010). The identification ap-
proaches for the two risks model in Section 2 can therefore be subsequently

(22)
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applied to (22) for j = 1,...,J, where the order of application does not
matter. Note, however, that only the nonpooled risk is of interest in the pooled
risks model as a pooled risk is generally uninformative.

3. SIMULATION STUDY

In this section we explore the practical performance of the methods outlined in
Section 2 with the help of a simulation study. We consider a two risks model with
a known closed form representation of the entire competing risks model. This
means Q;, S, S, and C for j = 1,2 are fully known. We consider the closed form
expression given in Rivest and Wells (2001) for an Archimedean copula generator
with parameters 6, ¢y(s), and the known cause-specific crude hazard functions,
Aj(t;x), j = 1,2. For simplicity, we consider a model with one binary x. We have
S(t;x) =exp[— fot/h (u; x) + A2(u; x) dul and Q;(r; x) = f(; Aj(u; x)S(u; x) du,
and

S (t:x) = ¢! [— /0 LS (w3 )18 (s x) 2 (3 ) du]. 23)

We consider two one-parameter copulas in our simulations: Frank and Clayton
(see, e.g., Nelsen, 2006, for details). These copulas are characterised by different
tail dependencies: the Frank copula has no upper and lower tail dependence, while
the Clayton copula has lower tail dependence. The copula generators ¢y are given
in Table 1. We consider four simulation designs in which § of these copulas is
chosen such that Kendall’s 7 equals to the following four values: —0.8, —0.4, 0.4,
and 0.8.

We consider three specifications of the cause-specific crude hazard functions:

(i) Odd-rate transformation model (Dabrowska and Doksum, 1988) with
Weibull baseline such that 4;(t;x) = vjpjt(pf'_l)(l + ijjtpf)_l with
vj,pj € Ry and y; e R,

(ii) Log-logistic ~ proportional odds model such that A;(t;x) =
vip; )P~V (1 + (;1)?) ! with vj, p; € Ry, and

(iii) Log-normal accelerated failure time model such that /;(t;x) =
(f (Qogt = p)/v)jr(1 — F((logt — p)/v))™") with p; € R, and
v; € Ry where f and F are the probability and the cumulative density
function of the standardized normal distribution, respectively.

Table 2 gives the parameters for the models that we use in our simulations. Since
we know the true S, §;, and Q; for all j, we can easily assess the performance

TABLE 1. Copula generators of Frank and Clayton copula

Copula Copula generator Support of parameter
Frank $o(s) = —In((exp(—0s) — 1)/ (exp(=0) — 1)) 0 € (—00,00) \ {0}
Clayton Po(s) = (7% =10 6>0
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TABLE 2. Parameters of the simulated competing risks model

Risk j =1 Risk j =2
Models Parameters x =xy x=x; x=x9 X=X
Odd-rate transformation model i, pj,y) (1,10,1) (1,2,2) (0.5, 1, 1)(1.5,2,2)

Log-logistic proportional odds model (vj, pj) 2,2)  (5,1.8) (2,25 (3,1.5)
Log-normal accelerated failure model (v;,p;) (1.2, —=0.5)(1, =0.5) (1.2,1) (1.3, 1.5)

of the different considered identification approaches by comparing their iden-
tification sets. We compute AéQj(t;x), AﬁQj(t;x), AiSj(t;x), AﬁSj(t;x),
and A,S;(t;x) for ¢ € {0,0.005,0.01,...,1.995,2.000} and the sequences
{t}, {tj.i}

Figure 4 presents the results for the Frank copula using the odd-rate transforma-
tion model with 7 = 0.4. Panels (a) and (b) show the covariate effect (A, S; (¢; x)),
the link function effect of the CIF (Ai Qj(t; x)), the duration effect of the CIF
(Ain (t;x)), and the Peterson bounds (P B;). They also report the identifica-
tion set derived from the Peterson bounds (/P;), the modified Bond and Shaw
approach (B} (x)), the decomposition approach (G; (x)), and their union (U (x)).
The set IP; is marked as horizontal lines in grey color at the value of the ver-
tical axis of —1.2, while unmarked intervals indicate the range of duration in
which the sign is unidentified. Similarly, the identification sets IB;(x), G;(x),
and U (x) are marked as horizontal lines in different grey colors at —1.3, —1.4,
and —1.6, respectively. The Figure also reports the direction of the identified sign
for ¢ in U (x). When the sign is identified as positive, zero, or negative at ¢, I S; (x)
(identified sign) is marked as the horizontal lines at 1, 0, —1, respectively, at
that 7. Panels (c) and (d) report equivalent results for the reversed covariate effect
A_S;j(t; x). This includes the corresponding link function effect (AL L0 (t;x)),
the duration effect (A‘i 0Qj(t;x)), and the identification sets using the Peterson
bounds (/P;), the modified Bond and Shaw approach (/B;(—x)), the decompo-
sition approach (G;(—x)) and their union (U;(—x)). Panels (e) and (f) present
the union of the various identification approaches in different directions. This
means B; = B;(x)|JBj(—x),G; =G;(x) JG;(—x), U; =U;(x) YU, (—x),
and IS; = 1S;(x)|J1S;(—x).

Figure 4(a) shows that the upper and lower Peterson bounds (P B1) contain the
value zero at all ¢ and thus IP; is an empty set (unmarked). The identification
set for the modified Bond and Shaw approach, /B (x) (compare Definition 21),
is restricted to t € [0,21,1]. This is confirmed in Panel (a). /B (x) does not con-
tain values of ¢ greater than il,l, this is the time at which the maximum of the
link function effect AL Q; occurs in the interval [f1,7%]. In contrast, the sign of
the covariate effect is also identified for 7 € [f2, 51,2] when the decomposition ap-
proach is used. For this reason, G, (x) includes values of ¢ in [0, 51,1] U[fg, 2] for
which Ain (t) and Ang(t) have the same direction. Panel (a) shows that the
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FIGURE 4. Identified sign (IS) of the covariate effect in a known two risks model using
Frank copula and odd-rate transformation model with 7 = 0.4: risk 1 (left) and risk 2
(right).

decomposition approach provides the largest identification set and coincides with
the union U; (x).

Panel (c) shows the same upper and lower Peterson bounds (PBj) as in
Panel (a), as the Peterson bounds are identical in the reversed direction. In contrast
Al_x Q1 and Adx Q) differ compared to Panel (a). The computed identification

sets for the modified Bond and Shaw approach (/B (—x)) and the decomposition
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approach (G (—x)) are therefore different from those in Panel (a). This illustrates
the usefulness of Corollary 1. Similar to Panel (a), the identification set of the de-
composition approach in Panel (c) is the largest. Panel (e) shows that combining
U (x) and U | (—x) produces larger identification sets U | and 7 S;. This illustrates
the usefulness of combining the three approaches.

Panel (b) shows the results for risk 2. It can be seen that IP(x) and B>(x)
consist of some ¢ which are not contained in Gy (x). This is the set of ¢ for
which the link function and the duration effect have different directions. At
the same time, G, (x) includes some set of ¢ which is not included in IP;(x)
and B> (x). Similarly, Panels (d) and (f) show that the three approaches partly
complement each other. Notably, the decomposition approach is particularly
useful for identifying the sign of the covariate effect at longer durations. The
application of the decomposition and the reversed decomposition in Figure 4
did not generate sets of durations at which the sign of the effect is iden-
tified for both risks at the same time. This means the sets G; and G; are
disjoint.

We also show the results for a Clayton copula and log-logistic proportional
odds model in Figure S1 in the supplementary material. The result patterns are
similar to those in Figure 4 but there is an overlap of the sets G| and G, for
t €[0.18,0.22], meaning that the direction of the covariate effect is identified for
both risks in this interval.

Table 3 summarises the results using different combinations of copulas and
marginal distributions with 7 = 0.4. Tables S1-S3 in the supplementary material
show more results for r = —0.8, 7 = —0.4, and = 0.8. In these tables, the rel-
ative size of the identification set using each approach is measured as the size
of the respective identification set divided by the size of I' (I is the support on
which the model has been evaluated, see below for details). This is the share of
I’ identified by the respective approach. The relative size of the identification set
that is uniquely identified by each approach is measured by the size of the subset
of the respective identification set that is not contained in the identification sets
of the other methods (unique of I'). The latter shows the additional contribution
of each of the approaches to the union of identification sets. If the latter is zero,
it means that there is no additional gain from using this method when the other
methods have already been applied. Since the support of 7 has no upper limit,
we define set I' as the set of duration from 0 to the value at which one of the S
becomes very flat, particularly when S; decreases by less than 1 x 107¢ when ¢
increases by 0.05. The tables show that the order of the relative size of the iden-
tification sets using different approaches is quite robust in the choice of 7 and C.
More specifically, in almost all cases our proposed decomposition approach pro-
duces the largest identification set. In the case it does not generate the largest set,
it is only marginally smaller than the largest set. Moreover, in all of the cases
our proposed decomposition approach makes the largest additional contribution
among all methods. It is therefore the method that provides the most distinctive
information.
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TABLE 3. Relative size of identification sets in simulated competing risks models

(r=04)
Frank Copula Clayton Copula

Share of T*  Unique of T**  Share of T*  Unique of T**
Odd-rate
transformation model
r [0, 3.59] [0, 3.03]
Risk j =1
P 0% 0% 0% 0%
B, 12.5% 0% 14.8% 0%
G 84.1% 71.6% 81.2% 66.4%
U, 84.1% 81.2%
Risk j =2
Py 16.4% 2% 14% 4.2%
By 12.4% 0% 14.7% 0%
G, 15.7% 7.4% 18.6% 8.7%
U, 23.8% 28.2%

Log-logistic
proportional odds model

r [0, 5.805] [0, 2.71]
Risk j =1

P 6.5% 2% 14% 4.2%
B 4.6% 0% 9.7% 0%
G 91.2% 87.7% 81.2% 71.5%
U, 93.2% 85.5%

Risk j =2

Py 7.8% 1.2% 16.8% 2.6%
By 1.5% 0% 3.1% 0%
G, 10.9% 5.8% 23.4% 12.3%
U, 13.6% 29.1%

Log-normal

accelerated failure model

r [0, 24.59] [0, 19.945]
Risk j =1

P 1.9% 0% 2.6% 0%
B 94% 0.1% 91.8% 0.2%
G 92.6% 0.2% 89.8% 0.4%
U, 94.2% 92.1%

Risk j =2

/) 0% 0% 0% 0%
By 8% 0% 11% 0%
G, 8.2% 0.2% 11.3% 0.3%
U, 8.2% 11.3%

*Size of respective identification set divided by the size of T.
**Size of the subset of the respective identification set that is not contained in the identification sets of the other
methods divided by the size of T. Measure of additional contribution.
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4. DATA EXAMPLES

We illustrate the usefulness of the proposed decomposition approach with the help
of two data examples. The sets IP; and IB; (and the associated signs of the covari-
ate effect) can be easily determined using the estimated Q;. The set G; is esti-
mated by a multiple-step procedure. First, Q; (¢; ) and S(¢; =) are estimated with
a consistent estimator. See for example Kalbfleisch and Prentice (2002) for non-
parametric estimation in stratified samples for discrete x. For continuous x, non-
parametric kernel estimator can be applied. See for example Fermanian (2003).
These estimates are then plugged into the population equations of Section 2 to
obtain their sample analogues. The estimate for G; and the direction of the co-
variate are obtained from the sample analogues of the relevant equations. The
estimation procedure is outlined step by step in Appendix A.2. A discussion of
asymptotic properties and a bootstrap based inference procedure can be found in
the discussion paper version of this paper (Lo and Wilke, 2011).

We use two samples of unemployment durations and consider the effect of vari-
ous discrete covariates on the probability of taking up employment. All other exit
states are pooled into a second risk using the method discussed in Section 2.2.
Results for the second risk are not presented because it does not have a direct
interpretation. The first sample we use is the illustrating data for competing risks
models in the textbook of Cameron and Trivedi (2005). These data have been
originally used in the study by McCall (1996) and come from the U.S. Current
Population Survey’s Displaced Worker Supplement. They contain monthly infor-
mation on three destination states for the displaced jobless individual. We only
consider transitions into the risk “full-time employment.” In addition to observed
transitions there is independent censoring because not all joblessness periods were
terminated by the time of the interview. There are 3,343 observations with 1,073
transitions into full-time employment and 913 transitions into the pooled risk. We
report results only for the first 24 months as there are hardly any transitions for
longer durations. We consider the effect of three dummy variables: receipt of un-
employment insurance (i), being married (married), and being female (female).
The second sample is extracted from German administrative labour market data.
In particular, we use a sample of the scientific use file version of the sample of the
integrated labour market biographies (SIAB) 1975-2010 of the Institute for Em-
ployment Research (IAB), Germany. These administrative data are a 2% random
sample of the workforce in Germany that contributed to the social insurance in the
period 1975-2010. The SIAB contains daily information about periods of depen-
dent employment and claim periods for unemployment compensation along with
basic information about the individual (such as gender, wage, age, and employ-
ment history) and the employing firm (such as business sector and location). For
more information on the SIAB see Dorner, Heining, Jacobebbinghaus, and Seth
(2010). From these data we extract all unemployment benefit claim periods start-
ing in 2007 and 2008. We define unemployment benefit duration as receipt of un-
employment benefits (Arbeitslosengeld) from the German Federal Employment
Agency. This leaves us with a sample of 95,271 observations. We only consider
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transitions into employment (with contributions to the social insurance). We ob-
serve 56,843 transitions into employment and 38,428 transitions into the pooled
risk. There is no censoring. We report results only for the first 730 days as there
are hardly any transitions to employment beyond that point. For these data we
consider the effect of five dummy covariates: unemployment starts during winter
period, i.e., November—February (winfer), unemployment starts in calendar year
2008 (year2008), a previous unemployment period of the unemployed had been
terminated by a recall to the former employer (previous recall), the person has
been unemployed in the past (previous unemployment), and gender (female).

We present estimation results in Table 4 and Figure 5. The table summarises
the results for all variables by providing information about the relative size of
the identification sets and their uniqueness. It can be seen that the decomposi-
tion approach produces the largest identification set in almost all cases. It is also
apparent that the decomposition approach in most cases produces the largest ad-
ditional contribution. These observations confirm the findings of the simulations.

Figure 5 presents more detailed insights for two variables: ui (receipt of un-
employment insurance, McCall data) and winter (SIAB). In particular, it shows
plots for the estimated nonparametric cumulative incidence functions (Ql) in the
left panel. The right panel contains the estimated sign of the covariate effects on
the marginal distribution of job finding (£S7), and the estimated identification
sets Pl, Bl, Gl, and IU1 E S is plotted as horizontal lines at 0.6, 0, and O 6
when the effect is estimated as positive, zero, and negative, respectively. P, By,
Gl, and IIJ1 are plotted at —0.7, —0.8, —0.9, and —1, respectively. For compar-
ison these plots also report the estimated covariate effects under the assumption
of independent competing risks (Kaplan—Meier estimator, K-M) and under the
assumption of independent competing risks and parametric restrictions on the
marginal survivals (Cox-proportional hazards model, Cox). The K-M estimator
and Cox model are very frequently applied in empirical research and it is there-
fore of interest to see how the imposition of stronger restrictions leads to changes
in the results.

It is apparent from the left panel of Figure 5 that the estimated Q; change
considerably in the two variables. The cumulative incidence for ui=1 is lower for
all durations. This suggests that unemployment insurance claimants have lower
incidences of taking up a job irrespective of the length of unemployment. The
cumulative incidence for winter=1 is lower for shorter durations but is higher for
longer durations. This implies that winter affects the incidence of re-employment
differently at different lengths of unemployment duration. But it remains to be
seen whether the estimated directions of the covariate effects on the latent survival
distribution of re-employment follow the same patterns.

Regarding the effect of ui, the Peterson bounds in the right panel Figure 5 re-
veal a positive covariate effect at shorter durations. This means that the receipt
of unemployment insurance decreases the re-employment rate at unemployment
duration between 2 to 8 months. The decomposition approach identifies a pos-
itive effect at long durations, More specifically, the receipt of unemployment
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TABLE 4. Relative size of estimated identification sets in the data examples

McCall data SIAB
Risk: Full-time employment Risk: Employment
I' = [0, 24] (months) Ir =10,730] (days)
Share of T* Unique of T** Share of T* Unique of T**

Covariate ui winter
P, 32% 32% 0% 0%
B 0% 0% 45.6% 10%
G 36% 36% 36.5% 0.1%
U, 68% 46.6%
Covariate married year2008
)/} 0% 0% 0% 0%
B 44% 0% 41.7% 0%
G 96% 52% 57.7% 16%
U, 96% 57.7%
Covariate female previous recall
P, 0% 0% 28.7% 0%
B, 0% 0% 99.4% 0%
G, 32% 32% 99.8% 0.2%
U, 32% 99.8%
Covariate previous unemployment
P, 0% 0%
B 99.0% 0%
G, 99.8% 0.8%
U, 99.8%
Covariate female
)/} 0% 0%
B 1.4% 1.4%
G, 94.6% 94.6%
U, 96%

*Size of respective identification set divided by the size of T.
**Size of the subset of the respective identification set that is not contained in the identification sets of the other
methods divided by the size of T. Measure of additional contribution.

insurance decreases the re-employment rate between 16 and 24 months of un-
employment duration. The modified Bond and Shaw procedure does not provide
informative results in this case. This example illustrates clearly that the decompo-
sition approach produces the most distinctive information compared to the other
approaches. Namely, the decomposition approach is particularly useful for iden-
tification at longer duration. When the decomposition approach is not employed,
one cannot identify the effect of ui on long-term unemployment (16-23 months)
without making assumptions on the copula function (K-M) or the latent survival
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MecCall data: receipt of unemployment insurance (ui)

o7

06} o5}

0 5 10 15 20 25 3 T}
unemployment benefit duration (in days) unemployment beneft dursbon in montss)
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FIGURE 5. Cumulative incidence for job finding (left) and estimated sign of covariate
effects on the marginal distribution (right).

function (Cox). This distinctive feature of the decomposition approach could be
particularly relevant for empirical applications in which the covariate effect at
longer duration is of major interest, for instance, when the impact of a policy on
curbing long-term unemployment is examined.

Another interesting observation can be made for the variable winter in Figure 5.
The results for the sets IB; and G; show that the estimated direction of the co-
variate effect changes in duration. The re-employment rate for a short-term un-
employed individual (< 90 days) is lower for those who started unemployment
in the winter. But their re-employment rate during medium-term unemployment
(110-370 days) is higher. In contrast, the Cox model, due to its restriction implied
by the proportionality of hazards, does not reveal this pattern of duration depen-
dence but suggests a negative effect for all durations. Indeed, the estimated partial
effect of the Cox model is not even located within the Peterson bounds for short
durations. This highlights the practical relevance of using a model with less para-
metric restrictions on the role of the covariates for marginal survival distributions.

The Kaplan—Meier estimator, although it does not require parametric restric-
tions on the latent survival distribution, does require that the competing risks are
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independent. It is therefore a special case and included in the Peterson bounds. In-
deed, in Figure 5 the Kaplan—Meier based estimates locate near the center of the
Peterson bounds. For the variable winter, the Kaplan—-Meier based estimate coin-
cides with the results of the decomposition approach for short-term (< 90 days)
and medium-term (90-370 days) unemployment. While it also suggests a positive
effect for long-term unemployment (> 370 days), the decomposition approach
does not provide evidence of such an effect. This shows that the K-M estima-
tor based results for long-term unemployment are not robust with respect to the
degree of dependence (7) in this example.

These results have shown that our proposed decomposition method produces
useful insights into the direction of the covariate effect. The estimated sign is ro-
bust to the functional form of the latent survival distribution as well as the degree
of dependence between the competing risks.
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APPENDIX

A.1. Proofs

Proof of Lemma 1. Lemma 1.1 is a direct result of (7) and Definitions 8 and 9.
The uniqueness is guaranteed by the uniqueness of D(c;«), which is ensured by
Assumption 1. The first equality of Lemma 1.2 can be proved by differentiat-
ing the copula function C(Sj(c;x),S5(c;x)) = ¢ with respect to x while keep-

oSy 0S5 0S5 35*
gsc;a_)f gscsa—xz =0 and thus —2/—]
< 0. The second equality of Lemma 1.2 can be proved by differentiating

ing c¢ constant. This results in

BS*/GS*

S* oSy
* _ oG 1
S (c;x) = 1(S](c;x); @) with respect to x, such that ax =5 T |u1:ST'

=% _Las Since @a‘,ﬁ—”) > 0 and

: o1
After rearranging, we have |u1:S{‘ = 6x asTox

sign |6—2| = —sign |% , we have the result. Lemma 1.3 follows from Assumption 1
that S; is decreasing in 7. Lemma 1.4 follows directly from Lemmas 1.1, 1.2, and 1.3.
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For example, if both Ag S1(t; ) and AQS 1(¢; ) are positive (negative), this implies from
1.2 and 1.3 that Ang(t;ac) > (<)0 and AiSz(t;ac) < (>)0. In such case A,S|(t;x)
is positive (negative) and the sign of AxS»(¢; ) cannot be determined. Similarly, if
AﬁSl (t;x) < (>)0and AiSl (t; &) > (<)0, the sign of Ay S (¢; ) is undetermined while
AxS>(t; @) is negative (positive). Second, if AfS] (t; ) > (<)0 and Ai Si(t;x) =0,
this implies from 1.2 and 1.3 that A%S,(r; &) > (<)0 and AL S>(t;2) = 0. In this
case, AySy(t;x) and AxSy(¢t; ) are positive (negative). Similarly, if AgSl (t;2) =0
and Ai Si(t;x) > (<)0, AxSi(t; x) is positive (negative) while Ay S)(7; @) is negative
(positive). Third, if both A S| (1; ) and AL S| (1; ) are zero, A2 Sy (1; &) and AL S, (; x)
are also zero, the sign Ay Sy (t; ) and A, S, (¢; @) are then known to be zero. To conclude,
the sign of one risk can be determined in the first case, while in cases 2 and 3 the sign of
both risks can be determined. |

Proof of Lemma 3. We prove Lemma 3.1 by differentiating Q7(c(t); @) =

fSlf(c(t),m) fcl(u" x(uy, up)duyrduy w.rt. x:

207 (c(1); ) /1
S*

5 —Cl('u @) (uy, 1 (uy; @))duy
X

(c(t);x) OX

SICHCORIIEI .
/ k(8] (c(t); @), uz)dus. (A.1)

—aST(C(t);fc)

According to Assumption 3 and Lemma 1.2, sign ‘%(1 (uy; m)‘ = —sign ‘%ST (c(t); )|
forall uj [S;‘(c(t); x), 1], or, equivalently, for all #; € [0, 7]. We have therefore

sign|AL Q) (t; @) = —sign|AL S| (1; )| x sign

1
/ ey ¢ g @)y

ex
a1 (Sy(e,@);)

+/ k(ST (c; ), uz)duy
0

for all + € Ry. Since the integrals in (A.2) are positive, the proof for risk 1 is com-
plete. For risk 2 it suffices to prove the following: Since S(t;x) =1— Q(t;x) —
001 (C(t) @ _ aQZ(C(t) ) . Substituting this and Lemma 1.2 in (A.2),

we have sign |Al Qz(t sc)l = —stgnlAl S>(t;x)|. Lemma 3.2 is a direct result from
Lemmas 1.4, 2, and 3.1. |

(A2)

Q- (t; ), we have

LEMMA A.1. Under Assumptions 1 and 2 and for k = 1,2, ..., we have for the com-
peting risks model characterised by equations (2)—(3):
1. ALS;(t;2) =0 forall t € {iy}.
2. Either sign IAiSj(t; x)| >0 orsign |AiSj(t; )| <0forallt e (i, ixy1).
3. sign|ALS;(m; )| = —sign|ALS;(n;m)| for all m e (if,ixy1) and n e
(k415 tk+2)
4. stgnIA Aj (e, t; )| = —stgnlA Sj(t; )| forallt e (i, fg1) with

Si(t;e) & (uj)
Aj(t, ;@) = / / Kk (uy,up)du_jdu; (A3)
S (tl,w) 0

forany t) >t > 0 and AiAJ- (11, 12; ) as the link function effect of A;(ty,1; ).
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Proof of Lemma A.1. Lemmas A.l1.1, A.1.2, and A.1.3 follow directly from
Definition 13 and Lemma 1.2. We prove Lemma A.1.4 as follows: For any ¢ € (i, {f41),
rewrite Q(¢; ) in (3) as

0;(t;@) = Q; ik @) + A (ix, 13 @). (A4)

The link function effect of (A.4) becomes

ALQ (1) = AL Q (s ) + AL A Gy, 15 ), with (A.5)
L S (ci):m) 5
AxAl(tk,t;m)z/ s @)k, 1 s @) du
SHc();m)  OX

o aiem.zye)
- sit) | KT EWs @), . (A6
Equation (A.6) holds because of Lemma 1.1. From Lemma 1.2, sign|Ax{1(t;x)| =
—sign |Ai S1(t; )| for all t € (¢, ). The sign of (A.6) equals to

Si(c(ir);x)
/S (g 21 g @))duy

sign|AL A (G, ;@) = —sign |ALS| (t; @)| x sign o
HEOGR

a(S7(c(?),x);)
+ (S} (0 2). wa)dy
0

:—signlAﬁSl(t;ac)L (A.7)
This completes the proof. |

Proof of Lemma 4. We first prove Lemma 4.1. For any k& > 0, assume without loss of
generality that 7 € [#7,741] for some / > 0. We have from (A.5) and Definition 14

AL Q; (i @) = AL 0 (i @)+ AL A; (i, fy; ) = 0. (A8)
For all t € (f, 77411, we have therefore
AL Qi (@) = AL Q; (G )+ AL A (.t ) = ALA; (G 15 ). (A9)

The first turning point fj’k is located in (fg,#41) if Ai‘?j (fk,t;x) is a nonmono-
tonic (nonincreasing or nondecreasing) function in 7 € (f,f;41). Otherwise #; ; =
iy if AiAj (fx,t; ) is monotonic (increasing or decreasing) in ¢ € (fk,i1+1).
This is because sign|AiAj(il+1,t;zc)| = —sign|AiAj(fk,il+1;m)| in Ain(t;ac) =
ALA; (i, f415®)+ AL A (41,15 ) forall t € (f41.f4+2), and AL Qj(t; ) changes di-
rection at ;1. To conclude, we have [7, tj,k] € [, tj41] in all cases. This completes the
proof of Lemma 4.1.
Next, we prove Lemma 4.2. According to Definition 14, we have for 7 € (f¢, 1j k).

AL (i) < AL Q;(t52) < AL QG ks ) if AL Q) 43 ®) > 0,
AL Qi (G ) > ALQj(12) > ALQ; (i s ) if ALQj (s ) <0.

Since AL Q; (if; ©) = 0 and by writing AL Q; (.4 @) = AL Q1 (i @) + AL A (g, 1) 43 ),
we have
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0 <AL Qi) < ALQ (s ) + AL A Gy dj s ) i ALQ; (s ) > 0,
0> Ain(t;m) > AéQl(ik;m)+AiAl(ik,ijjk;ac) if AéQj(fj’k;m) <0.

AL Qj(1;x) is zero at f with f € (g, 1j k). Thus AL Qj (ix; =) and AL Qj (ij k; ), which
are nonzero, must have different directions. It follows that

0 <AL Qi) < ALA (G 1 1 2) if ALQ; (43 2) > 0,

0> AL Qi) > ALA (i1 ) if ALQ; (G4 2) <0

Using Lemma A.1.4 we have for all ¢ € [#, fj’k] and forallk =1,2...

sign|A£CQj(t;ac)| :signlAiAj(fk,t;m)l :signlAiSj(t;m)l, (A.10)
This completes the proof of Lemma 4.2. |

Remark on Lemma 4.1. It is possible that there is more than one zero cut-off point
in [#,f41] for some [ such that all #; g, I g1, ..., #lj g4m are included in [77, 1] for
some k,/ =1,2,...and m = 1,2,.... It is also possible that there exists no zero cut-off
point in [7;, 7;41] for some /. For example, we assume without loss of generality that ik €
[#7,f41] for some k and [ and consider the location of I ;4. If |A£CAJ- (141, 1;@)| <
|ALA; (G i1 )] in ALQ (1) = ALA; (s fig13) + ALAj (i1, t32) for all 1 e
(f141,1142), the negative (positive) value of AL A j(fi41,t;2) is not large enough to
counter-balance the posiFive (pegative) value of AéA j (fk,il+1 ;). In this. case .there is
no zero cut-off point in [#74 1,421, and thus /; ;41 can only be located in [#7 4y, {7411
for some odd integer m > 1. To conclude, there is no particular restriction on the values of
kandlin I} i € [if, f741].

Proof of Corollary 1. It suffices to show an example in which the sign of the covariate
effect is identified while the reversed covariate effect is not. Consider the case of crossing
link functions at 7; = 0, some 7,, and 73 such that {1 (S1(¢; ©g); 1) > ¢1(S1(; xp); xg)
for all t € (0,7y) and ¢1(S1(t; 20); 1) < ¢1(S1(t;x0); () for all ¢ € (f,13). Suppose
also there exists a t* such that S;(t*; o) > S1(f2; xg) and S1(D(S(f2; xg); x1); T1) >
S1(t*; @), and thus

D(S(tr; xp); 1) <t* < tr. (A.11)

Given Definition 6 and the continuity of S(¢; x), S1(D(S(t2; o); 1); 1) = S1(f2; o),
we have therefore from (A.11) S;(t*; @) < S1(D(S(tr; xg); x1); 1) = S1(f; ) <
S1(t*; @) which implies a negative covariate effect on Sy (¢*; x(). We will show the case
that the decomposition approach identifies the sign of the covariate effect for risk 1 at 7*,
but the reversed covariate effect is not identified at ¢*.

From (A.11), we have S(D(S(t*;xg);x1),x1) = St*;xg) > S, xy) =
S(D(S(ty; Tg); ©1); 1), and thus D(S(t*; xo); x1) < D(S(fr; z(); ). Together with
(A.11), we have t* > D(S(t*; z(); ). This implies that the duration effect is negative,
ie., AfSl(t*; x() < 0. Under the assumption that ¢ (S (7, xg), x1) > 1(S1(t, xp), ()
for all ¢ € (0,7) and from (A.11) t* < i, we have Ay¢y(t*; ) < 0. Given Lemma 1.2,
the link function effect is also negative, i.e., AQSl (t*; 2g) < 0. The sign of the covariate
effect is therefore identified. Next, we consider the sign of the reversed covariate effect
from a movement from x| to x.

From (A.11), we have S(D(S(t*;x1); ), ®y) = SE*x)) <
S(D(S(fy; xg); ©1); ®1) = S(i;xy), we have D(S(t*;x);xy) > tp. Together
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with (A.11), we have D(S(t*;x1);xo) > t*. This implies that the duration ef-
fect is positive, ie., AL S (t*;xg) > 0. However, under the assumption that
G (S1@, o), 1) < (81, 20), o) for all ¢ € (p,73), we have from Lemma 1.2
that the link function effect is negative, i.e., AL S1(t*;20) < 0. And thus the sign for the
reversed covariate effect is unidentified. |

Proof of Lemma 5. From Definitions 3 and 20:
Pa(t; o) < 1 (1 T0) =
S5 (Sa(t: o) 1) < ST (S1(13@0)s x1) =
Sy(t;20) > So(ST(S1(15. )1 x1)5x1) &=
G (S1(t520); o) > C1(S1(5 20); 7).

This holds vice versa and completes the proof. |

A.2. Estimation of G; and the Sign of the Covariate Effect

We apply the following multiple-step estimation procedure in the data examples in
Section 4 to estimate the effect of a discrete covariate.

1. Define an equally spaced time grid {t1,1,...,tp}

2. Estimate Qj (t; 1) and S(t; xy) for j = 1,2 and k = 0, 1 nonparametrically at all ¢
inf{ty,t,...,tp}.

3. Compute D(S(r; xg); x1) in Definition 17 by solving the sample analogue of
equation (5) for all ¢ in {r1,1, ..., }-

4. Compute Aé Q;(t;xp) and Ai Q; (t; () by plugging D(S(t; x(); 1) into Qj (t; )
according to Definition 17 for all # in {t{, 1, ..., 137}

5. Compute I j from the estimated sequences {f;} and {t\jj «} according to Definition 14
by using AQ Qj(t; xg) forall j.

6. Compute i)j by using Aﬂc Q;(t; () and Ag Qj(t; ) forall j.

7. The sign of the covariate effect at 7 € G j is then determined by the sample analogue
of Proposition 1.

This procedure is applicable to both directions of the decomposition A and A_, which
provides G; (x) and G, (—x) for each risk. There are two modifications to improve the finite
sample performance: Sampling variation in Q j (; ) also imply some random variation in
Aﬂc Q; (t; ). For this reason, the estimated sequence {ij, )} has also some random variation.
In particular since Ai Q; (t; ) is not smooth and has some peaks created by sampling
errors, the estimated first local extreme value between {f;} and {fk+1} is likely to occur
before the actual value of {ij,k-i-l}- This implies that the estimated {ij,k+ 1} as well as the
size of the identification region are likely downward biased in small samples. We suggest
two alternative procedures to overcome this issue:

e Employ a smoothing technique for Q j (t; ) in step 5 to eliminate small peaks in

Aé Q; (t; ). Although it can eliminate peaks due to random sampling, it can also
eliminate the true extreme values if the chosen degree of smoothing is too large. As
with any smoothing technique there is some arbitrariness involved and it is difficult
to determine the optimal degree of smoothing.
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e Impose an additional assumption that there are no multiple extreme values of
Ai Q; (t; ) between {#} and {f;y1}. In this case, we re,commend in step 5 us-
ing the estimated global extreme value between {7} and {f; 1} as an estimator for
the sequence of {ij, . This method produces good results if the true link function
effect does not have multiple local extreme values. Otherwise, the estimated {fj’ k)
is upward biased.
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