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This paper presents new results allowing an unknown non-Gaussian positive matrix-valued

random field to be identified through a stochastic elliptic boundary value problem, solving

a statistical inverse problem. A new general class of non-Gaussian positive-definite matrix-

valued random fields, adapted to the statistical inverse problems in high stochastic dimension

for their experimental identification, is introduced and its properties are analysed. A minimal

parameterisation of discretised random fields belonging to this general class is proposed.

Using this parameterisation of the general class, a complete identification procedure is

proposed. New results of the mathematical and numerical analyses of the parameterised

stochastic elliptic boundary value problem are presented. The numerical solution of this

parametric stochastic problem provides an explicit approximation of the application that

maps the parameterised general class of random fields to the corresponding set of random

solutions. This approximation can be used during the identification procedure in order to

avoid the solution of multiple forward stochastic problems. Since the proposed general class of

random fields possibly contains random fields which are not uniformly bounded, a particular

mathematical analysis is developed and dedicated approximation methods are introduced. In

order to obtain an algorithm for constructing the approximation of a very high-dimensional

map, complexity reduction methods are introduced and are based on the use of sparse or

low-rank approximation methods that exploit the tensor structure of the solution which

results from the parameterisation of the general class of random fields.
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Notations

A lower-case letter, y, is a real deterministic variable.

A boldface lower-case letter, y = (y1, . . . , yN) is a real deterministic vector.

An upper-case letter, Y , is a real random variable.

A boldface upper-case letter, Y = (Y1, . . . , YN) is a real random vector.

A lower- (or an upper-) case letter between brackets, [a] (or [A]), is a real deterministic

matrix.
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A boldface upper-case letter between brackets, [A], is a real random matrix.

E: Mathematical expectation.

�N,m(�): set of all the (N × m) real matrices.

�m(�): set of all the square (m× m) real matrices.

�S
n(�): set of all the symmetric (n× n) real matrices.

�+
n (�): set of all the symmetric positive-definite (n× n) real matrices.

�SS
m (�): set of all the skew-symmetric (m× m) real matrices.

�U
n (�): set of all the upper triangular (n×n) real matrices with strictly positive diagonal.

�(N): set of all the orthogonal (N ×N) real matrices.

�m(�N): compact Stiefel manifold of (N × m) orthogonal real matrices.

tr: trace of a matrix.

< y, z >2: Euclidean inner product of y with z in �n.

‖y‖2: Euclidean norm of a vector y in �n.

‖A‖2: Operator norm subordinated to �n: ‖A‖2 = sup‖y‖2=1 ‖Ay‖2.

‖A‖F : Frobenius norm of a matrix such that ‖A‖2
F = tr{[A]T [A]}.

[Im,n]: matrix in �m,n(�) such that [Im,n]ij = δij .

[Im]: identity matrix in �m(�).

1 Introduction

The experimental identification of an unknown non-Gaussian positive matrix-valued

random field, using partial and limited experimental data for an observation vector related

to the random solution of a stochastic elliptic boundary value problem, stays a challenging

problem which has not received yet a complete solution, in particular for high stochastic

dimension. An example of a challenging application concerns the identification of random

fields that model at a mesoscale the elastic properties of complex heterogeneous materials

that cannot be described at the level of their microscopic constituents (e.g., biological

materials such as the cortical bone), given some indirect observations measured on a

collection of material samples (measurements of their elastic response, e.g., through image

analysis or other displacement sensors). Even if many results have already been obtained,

additional developments concerning the stochastic representations of such random fields

and additional mathematical and numerical analyses of the associated stochastic elliptic

boundary value problem must yet be produced. This is the objective of the present paper.

Concerning the representation of random fields adapted to the statistical inverse prob-

lems for their experimental identification, one interesting type of representation for any

non-Gaussian second-order random field is based on the use of the polynomial chaos

expansion [8, 69] for which an efficient construction has been proposed in [18, 26, 27],

consisting in coupling a Karhunen–Loève expansion (allowing a statistical reduction to

be done) with a polynomial chaos expansion of the reduced model. This type of construc-

tion has been extended for an arbitrary probability measure [21, 39, 41, 56, 67, 70] and for

random coefficients of the expansion [58].

Concerning the identification of random fields by solving stochastic inverse prob-

lems, works can be found such as [16, 35, 36, 63] and some methods and formulations

have been proposed for the experimental identification of non-Gaussian random fields
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[2, 13, 14, 17, 28, 42, 62, 71] in low stochastic dimension. More recently, a more advanced

methodology [59, 60] has been proposed for the identification of non-Gaussian positive-

definite matrix-valued random fields in high stochastic dimension for the case for which

only partial and limited experimental data are available.

Concerning the mathematical analysis of stochastic elliptic boundary value problems

and the associated numerical aspects for approximating the random solutions (the forward

problem), many works have been devoted to the simple case of uniformly elliptic and

uniformly bounded operators [3–5, 15, 24, 40, 43, 50, 68]. For these problems, existence and

uniqueness results can be directly obtained using Lax–Milgram theorem and Galerkin

approximation methods in classical approximation spaces can be used. More recently,

some works have addressed the mathematical and numerical analyses of some classes of

non-uniformly elliptic operators [10, 25, 29, 46], including the case of log-normal random

fields.

For the numerical solution of stochastic boundary value problems, classical non-adapted

choices of stochastic approximation spaces lead to very high-dimensional representations

of the random solutions, e.g., when using classical (possibly piecewise) polynomial

spaces in the random variables. For addressing this complexity issue, several complexity

reduction methods have been recently proposed, such as model reduction methods for

stochastic and parametric partial differential equations [7, 48, 49], sparse approximation

methods for high-dimensional approximations [6, 11, 47, 53, 65], or low-rank tensor ap-

proximation methods that exploit the tensor structure of stochastic approximation spaces

and also allow the representation of high-dimensional functions [9, 19, 22, 23, 37, 44, 51].

In this paper, we present new results concerning:

(i) the construction of a general class of non-Gaussian positive-definite matrix-valued

random fields which is adapted to the identification in high stochastic dimension,

presented in Section 2,

(ii) the parameterisation of the discretised random fields belonging to the general class

and an adapted identification strategy for this class, presented in Section 3 and

(iii) the mathematical analysis of the parameterised stochastic elliptic boundary value

problems whose random coefficients belong to the parameterised general class

of random fields, and the introduction and analysis of dedicated approximation

methods, presented in Section 4.

Concerning (i), we introduce a new class of matrix-valued random fields {[K(x)], x ∈ D}
indexed on a domain D that are expressed as a non-linear function of second-order

symmetric matrix-valued random fields {[G(x)], x ∈ D}. More precisely, we propose and

analyse two classes of random fields that use two different non-linear mappings. The first

class, which uses a matrix exponential mapping, contains the class of (shifted) log-normal

random fields (when [G] is a Gaussian random field) and can be seen as a generalisation

of this classical class. The second class contains (a shifted version of) the class SFE+

of positive-definite matrix-valued random fields introduced in [57] which arises from

a maximum entropy principle given natural constraints on the integrability of random

matrices and their inverse.
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Concerning (ii), and following [59], we introduce a parameterisation of the second-order

random fields [G] using Karhunen–Loeve and Polynomial Chaos expansions, therefore

yielding a parameterisation of the class of random fields in terms of the set of coefficients

of the Polynomial Chaos expansions of the random variables of the Karhunen–Loeve

expansions. Second-order statistical properties of [G] are imposed by enforcing ortho-

gonality constraints on the set of coefficients, therefore yielding a class of random fields

parameterised on the compact Stiefel manifold. It finally results in a parameterised class

of random fields K = {[K(·)] = F(·,Ξ, z); z ∈ �ν}, where the parameters z are associated

with a parameterisation of the compact Stiefel manifold, and where Ξ is the Gaussian

germ of the Polynomial Chaos expansion. A general procedure is then proposed for the

identification of random fields in this new class, this procedure being an adaptation for

the present parameterisation of the procedure described in [60]. The parameterisation of

the Stiefel manifold, some additional mathematical properties of the resulting paramet-

erised class of random fields and the general identification procedure are introduced in

Section 3.

The numerical solution of the parameterised stochastic boundary value problems

provides an explicit approximation of the application u : D×�Ng ×�ν → � that maps the

parameterised general class of random fields to the corresponding set of random solutions

{u(·,Ξ, z); z ∈ �ν}. This explicit map can be efficiently used in the identification procedure

in order to avoid the solution of multiple stochastic forward problems. Concerning (iii),

the general class of random fields possibly contains random fields which are not uni-

formly bounded, which requires a particular mathematical analysis and the introduction

of dedicated approximation methods. In particular, in Section 4, we prove the existence

and uniqueness of a weak solution u in the natural function space associated with the

energy norm, and we propose suitable constructions of approximation spaces for Galerkin

approximations. Also, since the solution of this problem requires the approximation of

a very high-dimensional map, complexity reduction methods are required. The solution

map has a tensor structure which is inherited from the particular parameterisation of the

general class of random fields. This allows the use of complexity reduction methods based

on low-rank or sparse tensor approximation methods. The applicability of these reduction

techniques in the present context is briefly discussed in Section 4.3. Note that this kind of

approach for stochastic inverse problems has been recently analysed in [54] in a particular

Bayesian setting with another type of representation of random fields, and with sparse

approximation methods for the approximation of the high-dimensional functions.

2 General class of non-Gaussian positive-definite matrix-valued random fields

2.1 Elements for the construction of a general class of random fields

Let d � 1 and n � 1 be two integers. Let D be a bounded open domain of �d, let ∂D be

its boundary and let D = D ∪ ∂D be its closure.

Let C+
n be the set of all the random fields [K] = {[K(x)], x ∈ D}, defined on a

probability space (Θ,T,P), with values in �+
n (�). A random field [K] in C+

n corresponds

to the coefficients of a stochastic elliptic operator and must be identified from data, by

solving a statistical inverse boundary value problem. The objective of this section is to
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construct a general representation of [K] which allows its identification to be performed

using experimental data and solving a statistical inverse problem based on the explicit

construction of the solution of the forward (direct) stochastic boundary value problem.

For that, we need to introduce some hypotheses for random field [K] which requires the

introduction of a subset of C+
n .

In order to normalise random field [K], we introduce a function x �→ [K(x)] from D

into �+
n (�) such that, for all x in D and for all z in �n,

k 0‖z‖2
2 � < [K(x)] z, z >2 � n−1/2k̃ 1‖z‖2

2, (2.1)

in which k 0 and k̃ 1 are positive real constants, independent of x, such that 0 < k 0 < k̃ 1 <

+∞. The right inequality means that ‖K(x)‖2 � n−1/2k̃ 1 and using ‖K(x)‖F �
√
n ‖K(x)‖2

yields ‖K(x)‖F � k̃ 1. Since 0 � [K(x)]jj and [K(x)]2jj � ‖K(x)‖2
F , it can be deduced that

tr[K(x)] � k 1, (2.2)

in which k 1 is a positive real constant, independent of x, such that k 1 = n k̃ 1.

We then introduce the following representation of the lower-bounded random field [K] in

C+
n such that, for all x in D,

[K(x)] =
1

1 + ε
[L(x)]T {ε[ In] + [K0(x)]} [L(x)], (2.3)

in which ε > 0 is any fixed positive real number, where [ In] is the (n × n) identity

matrix and where [L(x)] is the upper triangular (n × n) real matrix such that, for all x

in D, [K(x)] = [L(x)]T [L(x)] and where [K0] = {[K0(x)], x ∈ D} is any random field in C+
n .

For instance, if function [K] is chosen as the mean function of random field [K], that is

to say, if for all x in D, [K(x)] = E{[K(x)]}, then equation (2.3) shows that E{[K0(x)]}
must be equal to [ In], what shows that random field [K0] is normalised.

Lemma 1 If [K0] is any random field in C+
n , then the random field [K], defined by equa-

tion (2.3), is such that

(i) for all x in D,

‖K(x)‖F �
k 1

1 + ε
(
√
n ε+ ‖K0(x)‖F ) a.s. (2.4)

(ii) for all z in �n and for all x in D,

k ε‖z‖2
2 � < [K(x)] z, z >2 a.s, (2.5)

in which k ε = k 0 ε/(1 + ε) is a positive constant independent of x.

(iii) for all x in D,

‖[K(x)]−1‖F �

√
n (1 + ε)

ε
tr[K(x)]−1 a.s, (2.6)

which shows that, for all integer p � 1, {[K(x)]−1, x ∈ D} is a p-order random field,
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i.e., for all x in D, E{‖[K(x)]−1‖pF} < +∞ and in particular, is a second-order random

field.

Proof (i) Taking the Frobenius norm of the two members of equation (2.3), using

‖L(x)‖F = ‖[L(x)]T‖F =
√

tr[K(x)] and taking into account equation (2.2), we ob-

tain equation (2.4).

(ii) Equation (2.5) can easily be proven using equation (2.3) and the left inequality in

equation (2.1).

(iii) We have ‖[K(x)]−1‖F � ‖[L(x)]−1‖F‖[L(x)]−T‖F‖[Kε(x)]−1‖F in which [Kε(x)] =

(ε[ In]+[K0(x)])/(1+ ε). Since [K0(x)] is positive definite almost surely, for x fixed in D, we

can write [K0(x)] = [Φ(x)] [Λ(x)] [Φ(x)]T in which [Λ(x)] is the diagonal random matrix

of the positive-valued random eigenvalues Λ1(x), . . . , Λn(x) of [K0(x)] and [Φ(x)] is the

orthogonal real random matrix made up of the associated random eigenvectors. It can

then be deduced that [Kε(x)]−1 = (1+ε) [Φ(x)] (ε[In]+[Λ(x)])−1 [Φ(x)]T and consequently,

for x in D, ‖[Kε(x)]−1‖2
F = tr{[Kε(x)]−2} = (1 + ε)2

∑n
j=1(ε+Λj(x))−2 � (1 + ε)2n/ε2. Since

‖[L(x)]−1‖F ‖[L(x)]−T‖F = tr[K(x)]−1, we deduce equation (2.6). �

Lemma 2 If [K0] is any random field in C+
n , such that, for all x in D,

(i) ‖K0(x)‖F � β0 < ∞ almost surely, in which β0 is a positive-valued random variable

independent of x, then the random field [K], defined by equation (2.3), is such that,

for all x in D,

‖K(x)‖F � β < +∞ a.s, (2.7)

in which β is the positive-valued random variable independent of x such that β =

k 1(
√
n ε+ β0)/(1 + ε).

(ii) E{‖K0(x)‖2
F} < +∞, then [K] is a second-order random field,

E{‖K(x)‖2
F} < +∞. (2.8)

Proof Equations (2.7) and (2.8) are directly deduced from equation (2.4). �

Remark 2.1 If β0 is a second-order random variable, then equation (2.7) implies

equation (2.8). However, if equation (2.8) holds for all x in D, then this equation does not

imply the existence of a positive random variable β such that equation (2.7) is verified and

a fortiori, even if β existed, this random variable would not be, in general, a second-order

random variable.

2.2 Representations of random field [K0] as transformations of a non-Gaussian

second-order symmetric matrix-valued random field [G]

Let C2,S
n be the set of all the second-order random fields [G] = {[G(x)], x ∈ D}, defined

on probability space (Θ,T,P), with values in �S
n(�). Consequently, for all x in D, we

have E{‖G(x)‖2
F} < +∞.
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In this section, we propose two representations of random field [K0] belonging to C+
n ,

yielding the definition of two different subsets of C+
n :

• Exponential-type representation. The first type representation is written as [K0(x)] =

exp�([G(x)]) with [G] in C2,S
n and where exp� denotes the exponential of symmetric

square real matrices. It should be noted that random field [G] is not assumed to be

Gaussian. If [G] were a Gaussian random field, then [K0] would be a log-normal

matrix-valued random field.

• Square-type representation. The second type representation is written as [K0(x)] =

[L(x)]T [L(x)] in which [L(x)] is an upper triangular (n × n) real random matrix, for

which the diagonal terms are positive-valued random variables, and which is written

as [L(x)] = [L([G(x)])] with [G] in C2,S
n and where [G] �→ [L([G])] is a well-defined

deterministic mapping from �S
n(�) into the set of all the upper triangular (n× n) real

deterministic matrices. Again, random field [G] is not assumed to be Gaussian. If for

all 1 � j � j ′ � n, [G]jj ′ are independent copies of a Gaussian random field and for

a particular definition of mapping [L([G])], then [K0] would be the set SFG+ of the

non-Gaussian matrix-valued random field previously introduced in [57].

These two representations are general enough, but the mathematical properties of each

one will be slightly different and the computational aspects will be different.

2.2.1 Exponential-type representation of random field [K0]

It should be noted that for all symmetric real matrix [A] in �S
n(�), [B] = exp�([A]) is

a well-defined matrix belonging to �+
n (�). All matrix [A] in �S

n(�) can be written as

[A] = [Φ] [μ] [Φ]T in which [μ] is the diagonal matrix of the real eigenvalues μ1, . . . , μn
of [A] and [Φ] is the orthogonal real matrix made up of the associated eigenvectors. We

then have [B] = [Φ] exp�([μ])[Φ]T in which exp�([μ]) is the diagonal matrix in �+
n (�)

such that [exp�([μ])]jk = eμj δjk .

For all random field [G] belonging to C2,S
n , the random field [K0] = exp�([G]) defined,

for all x in D, by

[K0(x)] = exp�([G(x)]), (2.9)

belongs to C+
n . If [K0] is any random field given in C+

n , then there exists a unique random

field [G] with values in the �S
n(�) such that, for all x in D,

[G(x)] = log�([K0(x)]). (2.10)

in which log� is the reciprocity mapping of exp� which is defined on �+
n (�) with values

in �S
n(�), but in general, this random field [G] is not a second-order random field and

therefore, is not in C2,S
n . The following lemma shows that, if a random field [K0] in C+

n

satisfies additional properties, then there exists [G] in C2,S
n such that [K0] = exp�([G]).

Lemma 3 Let [K0] be a random field belonging to C+
n such that for all x ∈ D,

E{‖K0(x)‖2
F} < +∞ , E{‖[K0(x)]−1‖2

F} < +∞. (2.11)

Then there exists [G] belonging to C2,S
n such that [K0] = exp�([G]).
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Proof For x fixed in D, we use the spectral representation of [K0(x)] introduced in

the proof of Lemma 1. The hypotheses introduced in Lemma 3 can be rewritten as

E{‖K0(x)‖2
F} =

∑n
j=1 E{Λj(x)2} < +∞ and E{‖[K0(x)]−1‖2

F} =
∑n

j=1 E{Λj(x)−2} < +∞.

Similarly, it can easily be proven that E{‖G(x)‖2
F} =

∑n
j=1 E{(logΛj(x))2}. Since n is

finite, the proof of the lemma will be complete if we prove that, for all j, we have

E{(logΛj(x))2} < +∞ knowing that E{Λj(x)−2} < +∞ and E{Λj(x)2} < +∞. For j

and x fixed, let P (dλ) be the probability distribution of the random variable Λj(x). We

have E{(logΛj(x))2} =
∫ 1

0 (log λ)2 P (dλ) +
∫ +∞

1 (log λ)2 P (dλ). For 0 < λ < 1, we have

(log λ)2 < λ−2, and for 1 < λ < +∞, we have (log λ)2 < λ2. It can then be deduced

that E{(logΛj(x))2} <
∫ 1

0 λ
−2 P (dλ) +

∫ +∞
1 λ2 P (dλ) <

∫ +∞
0 λ−2 P (dλ) +

∫ +∞
0 λ2 P (dλ) =

E{Λj(x)−2} + E{Λj(x)2} < +∞. �

Remark 2.2 The converse of Lemma 3 does not hold. If [G] is any random field in C2,S
n ,

in general, the random field [K0] = exp�([G]) is not a second-order random field.

Proposition 1 Let [G] be a random field belonging to C2,S
n and let [K0] be the random field

belonging to C+
n such that, for all x in D, [K0(x)] = exp�([G(x)]). Then the following results

hold:

(i) For all x in D,

‖K0(x)‖F �
√
n e‖G(x)‖F a.s, (2.12)

E{‖K0(x)‖2
F} � nE{e2‖G(x)‖F }, (2.13)

E{‖ log�[K0(x)]‖2
F} < +∞. (2.14)

(ii) If ‖G(x)‖F � βG < +∞ almost surely, in which βG is a positive random variable

independent of x, then ‖K0(x)‖F � β0 < +∞ almost surely, in which β0 is the positive

random variable, independent of x, such that β0 =
√
n eβG .

Proof For (i), we have ‖ exp�(G(x))‖2 � e‖G(x)‖2 . Since [K0(x)] = exp�(G(x)) and since

‖K0(x)‖F �
√
n ‖K0(x)‖2, it can then be deduced that ‖K0(x)‖F �

√
n e‖G(x)‖F and then

E{‖K0(x)‖2
F} � nE{e2‖G(x)‖F }. Since [G] is a second-order random field, the inequality

(2.14) is deduced from equation (2.10). For (ii), the proof is directly deduced from the

inequality (2.12). �

2.2.2 Square-type representation of random field [K0]

Let g �→ h(g; a) be a given function from � in �+, depending on one positive real

parameter a. For all fixed a, it is assumed that:

(i) h(.; a) is a strictly monotonically increasing function on �, which means that

h(g; a) < h(g′; a) if −∞ < g < g′ < +∞;

(ii) there are real numbers 0 < ch < +∞ and 0 < ca < +∞, such that, for all g in �,

we have h(g; a) � ca + ch g
2.
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It should be noted that ca � h(0, a). In addition, from (i) it can be deduced that, for

g < 0, we have h(g; a) < h(0, a) � ca < ca + ch g
2. Therefore, the inequality given in (ii),

which is true for g < 0, allows the behaviour of the increasing function g �→ h(g; a) to

be controlled for g > 0. Finally, the introduced hypotheses imply that, for all a > 0,

g �→ h(g; a) is a one-to-one mapping from � onto �+ and consequently, the reciprocity

mapping, v �→ h−1(v; a), is a strictly monotonically increasing function from �+ onto �.

The square-type representation of random field [K0] belonging to C+
n is then defined as

follows. For all x in D,

[K0(x)] = �([G(x)]), (2.15)

in which {[G(x)], x ∈ D} is a random field belonging to C2,S
n and where [G] �→ �([G]) is

a measurable mapping from �S
n(�) into �+

n (�) which is defined as follows. The matrix

[K0] = �([G]) ∈ �+
n (�) is written as

[K0] = [L]T [L], (2.16)

in which [L] is an upper triangular (n × n) real matrix with positive diagonal, which is

written as

[L] = L([G]), (2.17)

where [G] �→ L([G]) is the measurable mapping from �S
n(�) into �U

n (�) defined by

[L([G])]jj ′ = [G]jj ′ , 1 � j < j ′ � n, (2.18)

[L([G])]jj =
√
h([G]jj; aj) , 1 � j � n, (2.19)

in which a1, . . . , an are positive real numbers.

If [K0] is any random field given in C+
n , then there exists a unique random field [G]

with values in the �S
n(�) such that, for all x in D,

[G(x)] = �−1([K0(x)]), (2.20)

in which �−1 is the reciprocity function of �, from �+
n (�) into �S

n(�), which is explicitly

defined as follows. For all 1 � j � j ′ � n,

[G(x)]jj ′ = [L−1([L(x)])]jj ′ , [G(x)]j ′j = [G(x)]jj ′ . (2.21)

in which [L] �→ L−1([L]) is the unique reciprocity mapping of L (due to the existence

of v �→ h−1(v; a)) defined on �U
n (�), and where [L(x)] follows from the Cholesky

factorisation of random matrix [K0(x)] = [L(x)]T [L(x)] (see equations (2.15) and (2.16)).

Example of function h

Let us give an example which shows that there exists at least one such a construction. For

instance, we can choose h = hAPM, in which the function hAPM is defined in [57] as follows.

Let be s = δ/
√
n+ 1 in which δ is a parameter such that 0 < δ <

√
(n+ 1)/(n− 1) and

which allows the statistical fluctuations level to be controlled. Let be aj = 1/(2 s2) + (1 −
j)/2 > 0 and hAPM(g; a) = 2 s2 F−1

Γa
(FW (g/s)) with FW (w̃) =

∫ w̃
−∞

1√
2π

exp(− 1
2
w2) dw and
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F−1
Γa

(u) = γ the reciprocal function such that FΓa(γ) = u with FΓa(γ) =
∫ γ

0
1

Γ (a)
ta−1 e−t dt and

Γ (a) =
∫ +∞

0
ta−1 e−t dt. Then, for all j = 1, . . . , n, it can be proven [57] that g �→ hAPM(g; aj)

is a strictly monotonically increasing function from � into �+ and there are positive

real numbers ch and caj such that, for all g in �, we have hAPM(g; aj) � caj + ch g
2. In

addition, it can easily be seen that the reciprocity function is written as hAPM−1
(v; a) =

s F−1
W (FΓa(v/(2s

2)).

Proposition 2 Let [G] be a random field belonging to C2,S
n and let [K0] be the random field

belonging to C+
n such that, for all x in D, [K0(x)] = �([G(x)]). We then have the following

results:

(i) There exist two real numbers 0 < γ0 < +∞ and 0 < γ1 < +∞ such that, for all x in

D, we have

‖K0(x)‖F � γ0 + γ1‖G(x)‖2
F a.s, (2.22)

E{‖K0(x)‖F} < +∞, (2.23)

If E{‖G(x)‖4
F} < +∞, then E{‖K0(x)‖2

F} < +∞. (2.24)

(ii) If ‖G(x)‖F � βG < +∞ a.s, in which βG is a positive random variable independent

of x, we then have ‖K0(x)‖F � β0 < +∞ almost surely, in which β0 is the positive

random variable, independent of x, such that β0 = γ0 + γ1 β
2
G.

Proof (i) Since [K0(x)] = [L(x)]T [L(x)], we have ‖K0(x)‖F � ‖L(x)‖2
F with

‖L(x)‖2
F =

∑
j h([G(x)]jj; aj)+

∑
j<j ′ [G(x)]2jj ′ . Therefore, ‖K0(x)‖F �

∑
j caj +max{ch, 1/2}∑

j,j ′[G(x)]2jj ′ which yields inequality (2.22) with γ0 =
∑

j caj and γ1 = max{ch, 1/2}. Tak-

ing the mathematical expectation yields E{‖K0(x)‖F} � γ0 +γ1E{‖G(x)‖2
F} < +∞ because

[G] is a second-order random field. Taking the square and then the mathematical expect-

ation of equation (2.22) yields equation (2.24).

(ii) The proof is directly deduced from equation (2.22). �

2.3 Representation of any random field [G] in C2,S
n

As previously explained, we are interested in the identification of the random field [K]

which belongs to C+
n , by solving a statistical inverse problem related to a stochastic

boundary value problem. Such an identification is carried out using the proposed

representation of [K] (defined by equation (2.3)) as a function of the random field

[K0] which is written either as [K0(x)] = exp�([G(x)]) (see equation (2.9)) or as

[K0(x)] = [L([G(x)])]T [L([G(x)])] (see equations (2.16) and (2.17)). In these two repres-

entations, [G] is any random field in C2,S
n , which has to be identified (instead of [K] in

C+
n ). Consequently, we have to construct a representation of any random field [G] in C2,S

n .

Since any [G] in C2,S
n is a second-order random field, a general representation of [G],

adapted to its identification, is the polynomial chaos expansion for which the coefficients

of the expansion constitutes a family of functions from D into �S
n(�).

It is well-known that a direct identification of such a family of matrix-valued functions

cannot easily be done. An adapted representation must be introduced consisting in
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choosing a deterministic vector basis, then representing [G] on this deterministic vector

basis and finally, performing a polynomial chaos expansion of the random coefficients on

this deterministic vector basis. The representation is generally in high stochastic dimension.

Consequently, the identification of a very large number of coefficients must be done. It

is then interesting to use a statistical reduction and thus to choose, for the deterministic

vector basis, the Karhunen–Loève vector basis. Such a vector basis is constituted of the

family of the eigenfunctions of the compact covariance operator of random field [G].

2.3.1 Covariance operator of random field [G] and eigenvalue problem

Let [G0(x)] = E{[G(x)]} be the mean function of [G], defined on D with values in �S
n(�).

The covariance function of random field [G] is the function (x, x′) �→ CG(x, x′), defined

on D × D, with values in the space �S
n(�) ⊗ �S

n(�) of fourth-order tensors, such that

CG(x, x′) = E{([G(x)] − [G0(x)]) ⊗ ([G(x′)] − [G0(x
′)])}. (2.25)

It is assumed that [G0] is a uniformly bounded function on D, i.e.,

‖G0‖∞ := ess supx∈D‖G0(x)‖F < +∞, (2.26)

and that function CG is square integrable on D×D. Consequently, the covariance operator

CovG, defined by the kernel CG, is a Hilbert–Schmidt, symmetric, positive operator in the

Hilbert space L2(D,�S
n(�)) equipped with the inner product,

� [Gi], [Gj] =

∫
D

tr{[Gi(x)]T [Gj(x)]} dx, (2.27)

and the associated norm |||[Gi]||| =� [Gi], [Gi] 1/2. The eigenvalue problem related to

the covariance operator CovG consists in finding the family {[Gi(x)], x ∈ D}i�1 of the

normalised eigenfunctions with values in �S
n(�) and the associated positive eigenvalues

{σi}i�1 with σ1 � σ2 � . . . → 0 and
∑+∞

i=1 σ
2
i < +∞, such that

∫
D

CG(x, x′) : [Gi(x
′)] dx′ = σi [Gi(x)] , i � 1, (2.28)

in which {CG(x, x′) : [Gi(x
′)]}k =

∑
k′′ {CG(x, x′)}kk′′ {[Gi(x′)]}k′′ . The normalised

family {[Gi(x)], x ∈ D}i�1 is a Hilbertian basis of L2(D,�S
n(�)) and consequently,

� [Gi], [Gj] = δij . It can easily be verified that

E{‖G(x)‖2
F} = ‖G0(x)‖2

F +

+∞∑
i=1

σi ‖Gi(x)‖2
F < +∞ , ∀x ∈ D, (2.29)
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D

E{‖G(x)‖2
F} dx = |||G0|||2 +

+∞∑
i=1

σi < +∞. (2.30)

We now give some properties which will be useful later. Since CG is a covariance

function, we have ||CG(x, x′)||2 � tr{CG(x, x)}× tr{CG(x′, x′)} in which ||CG(x, x′)||2 =∑
kk′′ {CG(x, x′)}2

kk′′ and tr{CG(x, x)} =
∑

k{CG(x, x)}kk � 0. We can then deduce the

following Lemma.

Lemma 4 If x �→ tr{CG(x, x)} is integrable on D, then CG is square integrable on D×D. If

x �→ tr{CG(x, x)} is bounded on D, then CG is bounded on D×D (and thus square integrable

on D × D) and the eigenfunctions x �→ [Gi(x)] are bounded functions from D into �S
n(�).

For i � 1, we then have ‖Gi‖∞ = ess supx∈D‖Gi(x)‖F < +∞.

Using additional assumptions about the kernel CG, more results concerning the decrease

rate of eigenvalues {σi}i�1 can be obtained.

Lemma 5 We have the following results for d = 1 and for d � 2.

(a) For d = 1, it is proven (see Theorem 9.1 of Chapter II of [72]) that, if for a given integer

μ � 1 and for all integer α such that 1 � α � μ, the functions (x, x′) �→ ∂αCG(x, x′)/∂x′α

are bounded functions on D × D, then
∑+∞

i=1 σ
ζ+2/(2μ+1)
i < +∞ for any ζ > 0.

(b) For d � 2 (finite integer), a useful result is given by Theorem 4 of [38]. Let us assume

that D has a sufficiently smooth boundary ∂D. For x in D, let h be such that x + h and

x + 2h belong to D. We then define the difference operator Δh such that, for all x′ fixed

in D, ΔhCG(x, x′) = CG(x + h, x′) − CG(x, x′) and Δ2
h is defined as the second iterate of

Δh. For all x′ fixed in D, for a given positive integer μ such that μ � 1 and for a given

real ζ such that 0 < ζ � 1, let be

‖CG(·, x′)‖μ =
∑
|α|�μ

sup
x∈D

‖DαCG(x, x′)‖ +
∑
|α|=μ

sup
x,h

‖Δ2
hDαCG(x, x′)‖

‖h‖μ+ζ ,

in which DαCG(x, x′) = ∂|α|CG(x, x′)/∂xα1

1 . . . ∂x
αd
d with |α| = α1 + . . . + αd. Therefore,

if CG is continuous on D × D such that supx′∈D ‖CG(·, x′)‖μ < +∞, we then have the

following decrease of eigenvalues: σi = O(i−1−(μ+ζ)/d).

(c) For d � 2 (finite integer), a similar result to (b) in Lemma 5 can be found in [45]

under hypotheses weaker than those introduced above, but in practice, it seems much

more difficult to verify these hypotheses for a given kernel CG.

Comment about the eigenvalue problem

Any symmetric (n× n) real matrix [G] can be represented by a real vector w of dimension

nw = n(n + 1)/2 such that [G] = G(w) in which G is the one-to-one linear mapping

from �nw in �S
n(�), such that, for 1 � i � j � n, one has [G]ij = [G]ji = wk with

k = i + j(j − 1)/2. Let L2
nw

be the set of all the �nw -valued second-order random fields

{W(x), x ∈ D} defined on probability space (Θ,T,P). Consequently, any random field
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[G] in C2,S
n can be written as

[G] = G(W), W = G−1([G]), (2.31)

in which W is a random field in L2
nw

. The eigenvalue problem defined by equation (2.28)

can be rewritten as ∫
D

[CW(x, x′)] wi(x′) dx′ = σi w
i(x) , i � 1, (2.32)

in which [CW(x, x′)] = E{(W(x) − w0(x))(W(x′) − w0(x′))T } and where w0 = G−1([G0]).

For i � 1, the eigenfunctions [Gi] are then given by [Gi] = G(wi).

2.3.2 Chaos representation of random field [G]

Under the hypotheses introduced in Section 2.3.1, random field [G] admits the following

Karhunen–Loève decomposition:

[G(x)] = [G0(x)] +

+∞∑
i=1

√
σi [Gi(x)] ηi, (2.33)

in which {ηi}i�1 are uncorrelated random variables with zero mean and unit variance. The

second-order random variables {ηi}i�1 are represented using the following polynomial

chaos expansion:

ηi =

+∞∑
j=1

y
j
i Ψj({Ξk}k∈�), (2.34)

in which {Ξk}k∈� is a countable set of independent normalised Gaussian random variables

and where {Ψj}j�1 is the polynomial chaos basis composed of normalised multivariate

Hermite polynomials such that E{Ψj({Ξk}k∈�)Ψj ′ ({Ξk}k∈�)} = δjj ′ . Since E{ηiηi′ } = δii′ ,

it can be deduced that
+∞∑
j=1

y
j
i y

j
i′ = δii′ . (2.35)

2.4 Random upper bound for random field [K]

Lemma 6 If
∑+∞

i=1

√
σi ‖Gi‖∞ < +∞, then for all x in D,

‖G(x)‖F � βG < +∞ a.s, (2.36)

in which βG is the second-order positive-valued random variable,

βG = ‖G0‖∞ +

+∞∑
i=1

√
σi ‖Gi‖∞ |ηi|, E{β2

G} < +∞. (2.37)

https://doi.org/10.1017/S0956792514000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792514000072


352 A. Nouy and C. Soize

Proof The expression of βG defined in equation (2.37) is directly deduced from

equation (2.33). The random variable βG can be written as βG = ‖G0‖∞ + β̂. Clearly,

if E{β̂2} =
∑

i,i′
√
σi

√
σi′ ‖Gi‖∞‖Gi′ ‖∞E{|ηi| |ηi′ |} < +∞, then E{β2

G} < +∞. We have

E{|ηi| |ηi′ |} �
√
E{η2

i }
√
E{η2

i′ } = 1 and thus E{β̂2} � (
∑+∞

i=1

√
σi ‖Gi‖∞)2. �

Remark 2.3 It should be noted that, if ‖Gi‖∞ < c∞ < +∞ for all i � 1 with c∞
independent of i, we then have

∑+∞
i=1

√
σi ‖Gi‖∞ < +∞ if:

(i) for d = 1, the hypothesis of (a) in Lemma 5 holds for μ = 2. The proof is the

following. We have
∑+∞

i=1

√
σi ‖Gi‖∞ < c∞

∑+∞
i=1

√
σi. Since σi → 0 for i → +∞, there

exists an integer i0 � 1 such that, for all i � i0, we have σi < 1. For μ = 2, then

there exits 0 < ζ < 1/10 such that
∑+∞

i=i0

√
σi �

∑+∞
i=i0

σ
ζ+2/5
i < +∞, which yields∑+∞

i=1

√
σi < +∞, and consequently,

∑+∞
i=1 c∞

√
σi < +∞.

(ii) for d � 2 (finite integer), the hypothesis of (b) in Lemma 5 holds for μ = d. The

proof is then the following. We have
∑+∞

i=1

√
σi ‖Gi‖∞ < c∞

∑+∞
i=1

√
σi and for μ = d,√

σi = O(i−1−ζ/(2d)) and consequently, for 0 < ζ � 1,
∑+∞

i=1

√
σi < +∞.

The previous results allow the following proposition to be proven.

Proposition 3 Let σi and [Gi] be defined in Section 2.3.1. If
∑+∞

i=1

√
σi ‖Gi‖∞ < +∞, then

for all x in D,

‖K(x)‖F � β < +∞ a.s, (2.38)

in which β is a positive-valued random variable independent of x. Let βG be the second-order

positive-valued random variable defined by equation (2.37).

(i) (Exponential-type representation) If [K(x)] is represented by equation (2.3) with

equation (2.9),

[K(x)] =
1

1 + ε
[L(x)]T {ε[ In] + exp�([G(x)])} [L(x)], (2.39)

then, β = k 1

√
n(ε+ eβG )/(1 + ε).

(ii) (Square-type representation) If [K(x)] is represented by equation (2.3) with equa-

tions (2.16) and (2.17),

[K(x)] =
1

1 + ε
[L(x)]T {ε[ In] + [L([G(x)])]T [L([G(x)])]} [L(x)], (2.40)

then, β = k 1(
√
n ε+ γ0 + γ1 β

2
G)/(1 + ε) in which γ0 and γ1 are two positive and finite

real numbers. In addition the random variable β is such that

E{β} < +∞. (2.41)

Proof Proposition 3 results from Lemma 2, Propositions 1 and 2, and Lemma 6. �
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2.5 Approximation of random field [G]

Taking into account equations (2.33) to (2.35), we introduce the approximation [G(m,N)]

of the random field [G] such that

[G(m,N)(x)] = [G0(x)] +

m∑
i=1

√
σi [Gi(x)] ηi, (2.42)

ηi =

N∑
j=1

y
j
i Ψj(Ξ), (2.43)

in which the {Ψj}Nj=1 only depends on a random vector Ξ = (Ξ1, . . . , ΞNg
) ofNg independent

normalised Gaussian random variables Ξ1, . . . , ΞNg
defined on probability space (Θ,T,P).

The coefficients yji are supposed to verify
∑N

j=1 y
j
i y

j
i′ = δii′ which ensures that the random

variables, {ηi}mi=1, are uncorrelated, centred random variables with unit variance, which

means that E{ηiηi′ } = δii′ . The relation between the coefficients can be rewritten as

[y]T [y] = [Im], (2.44)

in which [y] ∈ �N,m(�) is such that [y]ji = y
j
i for 1 � i � m and 1 � j � N. Introducing

the random vectors η = (η1, . . . , ηm) and Ψ(Ξ) = (Ψ1(Ξ), . . . , ΨN(Ξ)), equation (2.43) can

be rewritten as

η = [y]T Ψ(Ξ). (2.45)

Equation (2.44) means that [y] belongs to the compact Stiefel manifold.

�m(�N) =
{
[y] ∈ �N,m(�) ; [y]T [y] = [Im]

}
. (2.46)

With the above hypotheses, the covariance operators of random fields [G] and [G(m,N)]

coincide on the subspace spanned by the finite family {[Gi]}mi=1.

3 Parameterisation of discretised random fields in the general class and

identification strategy

Let us consider the approximation {[G(m,N)(x)], x ∈ D} of {[G(x)], x ∈ D} defined by

equations (2.42) to (2.44). The corresponding approximation {[K(m,N)(x)], x ∈ D} of random

field {[K(x)], x ∈ D} defined by equation (2.39) or by equation (2.40), is rewritten, for all

x in D, as

[K(m,N)(x)] = K(m,N)(x,Ξ, [y]), (3.1)

in which (x, y, [y]) �→ K(m,N)(x, y, [y]) is a mapping defined on D × �Ng × �m(�N) with

values in �+
n (�).

• The first objective of this section is to construct a parameterised general class of random

fields, {[K(m,N)(x)], x ∈ D}, in introducing a minimal parameterisation of the compact

Stiefel manifold �m(�N) with an algorithm of complexity O(Nm2).
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• The second objective will be the presentation of an identification strategy of an optimal

random field {[K(m,N)(x)], x ∈ D} in the parameterised general class, using partial and

limited experimental data.

3.1 Minimal parameterisation of the compact Stiefel manifold �m(�N)

Here, we introduce a particular minimal parameterisation of the compact Stiefel manifold

�m(�N) using matrix exponentials (see, e.g., [1]). The dimension of �m(�N) being

ν = mN − m(m+ 1)/2, the parameterisation consists in introducing a surjective mapping

from �ν onto �m(�N). The construction is as follows.

(i) Let [a] be given in �m(�N) and let [a⊥] ∈ �N,N−m(�) be the orthogonal comple-

ment of [a], which is such that [a a⊥] is in �(N). Consequently, we have,

[a]T [a] = [Im], [a⊥]T [a⊥] = [IN−m], [a⊥]T [a] = [0N−m,m]. (3.2)

The columns of matrix [a⊥] can be chosen as the vectors of the ortho-normal basis

of the null space of [a]T . In practice [30], [a⊥] can be constructed using the QR

factorisation of matrix [a] = [QN] [Rm] and [a⊥] is then made up of the columns

j = m+ 1, . . . , N of [QN] ∈ �(N).

(ii) Let [A] be a skew-symmetric (m×m) real matrix which then depends on m(m−1)/2

parameters denoted by z1, . . . , zm(m−1)/2 and such that, for 1 � i < j � m, one has

[A]ij = −[A]ji = zk with k = i+ (j − 1)(j − 2)/2 and for 1 � i � m, [A]ii = 0.

(iii) Let [B] be a ((N−m)×m) real matrix which then depends on (N−m)m parameters

denoted by zm(m−1)/2+1, . . . , zm(m−1)/2+(N−m)m and such that, for 1 � i � N − m and

1 � j � m, one has [B]ij = zm(m−1)/2+k with k = i + (j − 1)(N − m). Introducing

z = (z1, . . . , zν) in �ν , there is a one-to-one linear mapping S from �ν into

�SS
m (�) × �N−m,m(�) such that

{[A], [B]} = S(z), (3.3)

in which matrices [A] and [B] are defined in (i) and (ii) above as a function of z.

Let t > 0 be a parameter which is assumed to be fixed. Then, for an arbitrary [a] in

�m(�N), a first minimal parameterisation of the compact Stiefel manifold �m(�N) can

be defined by the mapping M[a] from �ν onto �m(�N) such that

[y] = M[a](z) := [a a⊥]

{
exp�

(
t

[
A −BT
B 0

])}
[IN,m]. (3.4)

In the context of the present development, we are interested in the case for which N � m

and possibly, in the case for which N  m with N very large. The evaluation of the

mapping M[a] defined by equation (3.4) has a complexity O(N3).

We then propose to use a second form of minimal parameterisation of the compact

Stiefel with a reduced computational complexity. This parameterisation, which is derived

from the results presented in [20], is defined by the mapping M[a] from �ν onto �m(�N)
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such that

[y] = M[a](z) := [a Q]

{
exp�

(
t

[
A −RT
R 0

])}
[I2m,m], (3.5)

in which [a Q] ∈ �N,2m(�). The matrix [Q] is in �m(�N) and [R] is an upper triangular

(m×m) real matrix. These two matrices are constructed using the QR factorisation of the

matrix [a⊥] [B] ∈ �N,m(�),

[a⊥] [B] = [Q] [R]. (3.6)

The evaluation of the mapping M[a] defined by equation (3.5) has a complexity O(Nm2).

3.2 Parameterised general class of random fields and parameterised random upper bound

Using equation (3.5), the parameterised general class of random field {[K(m,N)(x)], x ∈ D}
is then defined as

K := {K(m,N)(·,Ξ,M[a](z)) ; z ∈ �ν}. (3.7)

It should be noted that, for z = 0, [y] = M[a](0) = [a], which corresponds to the random

field [K(m,N)] = K(m,N)(·,Ξ, [a]). The following proposition corresponds to Proposition 3

for the approximation [K(m,N)] of random field [K].

Proposition 4 The random field [K(m,N)] = K(m,N)(·,Ξ,M[a](z)), z ∈ �ν , is such that

‖K(m,N)‖F � γ(Ξ, z) < +∞ (3.8)

almost surely and for all z ∈ �ν , where γ : �Ng ×�ν → � is a measurable positive function.

For the square-type representation of random fields, there exists a constant γ, independent

on N and z, such that

E{γ(Ξ, z)} � γ < +∞ for all z ∈ �ν . (3.9)

Moreover, if
∑+∞

i=1

√
σi ‖Gi‖∞ < +∞, with σi and [Gi] defined in Section 2.3.1, (3.9) is

satisfied for a constant γ independent of m.

Proof Following the proof of Lemma 6, we obtain

‖G(m,N)(x)‖F � ‖G0‖∞ +

m∑
i=1

√
σi‖Gi‖∞|ηi(Ξ, z)| := δ(Ξ, z), (3.10)

with η = (η1, . . . , ηm) = M[a](z)
TΨ(Ξ). Using Proposition 3, we then obtain equation (3.8)

with γ = k1

√
n(ε+ eδ)/(1 + ε) for the exponential-type representation and γ = k 1(

√
n ε+

γ0 + γ1 δ
2)/(1 + ε) for the square-type representation. Using E{η2

i} = 1, it can be shown

that E{δ2} � 2‖G0‖2
∞ + 2(

∑m
i=1

√
σi‖Gi‖∞)2 := ζm, where ζm < +∞ is independent on

N and z. Therefore, for the square-type representation, we obtain equation (3.9) with

γ = k 1(
√
n ε+γ0 +γ1 ζm)/(1+ ε). Moreover, if

∑+∞
i=1

√
σi ‖Gi‖∞ < +∞, then ζm � ζ∞ < +∞

and equation (3.9) holds for γ = k 1(
√
n ε+ γ0 + γ1 ζ∞)/(1 + ε). �
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3.3 Brief description of the identification procedure

Let B be the non-linear mapping which, for any given random field [K] = {[K(x)], x ∈ D}
introduced and studied in Section 2, associates a unique random observation vector

Uobs = B([K]) with values in �mobs . The non-linear mapping B is constructed in solving

the elliptic stochastic boundary value problem as explained in Section 4. We are then

interested in identifying the random field [K] using partial and limited experimental

dataset uexp,1, . . . , uexp,νexp in �mobs (mobs and νexp are small). In high stochastic dimension

(which is the assumption of the present paper), such a statistical inverse problem is

an ill-posed problem if no additional available information is introduced. As explained

in [59,60], this difficulty can be circumvented (1) in introducing an algebraic prior model

(APM), [KAPM], of random field [K], which contains additional information and satisfying

the required mathematical properties, and (2) in using an adapted identification procedure.

Below, we summarise and we adapt this procedure to the new representations and their

parameterisations of random field [K] that we propose in this paper. The steps of the

identification procedure are the following:

Step 1

Introduction of a family {[KAPM(x; w)], x ∈ D} of APMs for random field [K]. This

family depends on an unknown parameter w (for instance, w can be made up of the

mean function, spatial correlation lengths, dispersion parameters controlling the statistical

fluctuations, parameters controlling the shape of the tensor-valued correlation function,

parameters controlling the symmetry class, etc). For fixed w, the probability law and

the generator of independent realisations of the APM are known. For example, for the

modelling of groundwater Darcy flows, a typical choice for the APM would consist in

a homogeneous and isotropic log-normal random field [KAPM(x; w)] = exp(GAPM)[Id] with

GAPM a homogeneous real-valued Gaussian random field having a covariance function of

the Matérn family. With this APM, w consists of four scalar parameters that are the mean

value of G and the three parameters of the Matérn covariance. For other examples of

APMs of non-Gaussian positive-definite matrix-valued random fields, we refer the reader

to [57] for the anisotropic class, to [64] for the isotropic class, to [31] for bounded random

fields in the anisotropic class, to [32] for random fields with any symmetry class (isotropic,

cubic, transversal isotropic, tetragonal, trigonal, orthotropic), and finally, to [33] for a very

general class of bounded random fields with any symmetry properties from the isotropic

class to the anisotropic class.

Step 2

Identification of an optimal value wopt of parameter w using the experimental dataset,

the family of stochastic solutions Uobs(w) = B([KAPM(·; w)]) and a statistical inverse

method such as the moment method, the least-square method or the maximum likelihood

method [55,59,61,66]). The optimal APM {[KOAPM(x)], x ∈ D} := {[KAPM(x; wopt)], x ∈ D} is

then obtained. Using the generator of realisations of the APM, νKL independent realisations

[K (1)], . . . , [K (νKL)] of random field [KOAPM] can be generated with νKL as large as it is desired

without inducing a significant computational cost.
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Step 3

Choice of a type of representation for random field [K] and, using equation (2.3) with

equation (2.10) or with equation (2.20), the optimal APM {[GOAPM(x)], x ∈ D} of random

field [G] is deduced. For all x ∈ D, [GOAPM(x)] = log�([KOAPM
0 (x)]) for the exponential-type

representation and [GOAPM(x)] = �−1([KOAPM
0 (x)]) for the square-type representation, with

[KOAPM
0 (x)] = (1 + ε)[L(x)]−T [KOAPM(x)] [L(x)] − ε[ In]. (3.11)

It is assumed that random field [GOAPM] belongs to C2,S
n . From the νKL independent real-

isations [K (1)], . . . , [K (νKL)] of random field [KOAPM], it can be deduced the νKL independent

realisations [G(1)], . . . , [G(νKL)] of random field [GOAPM].

Step 4

Use of the νKL independent realisations [G(1)], . . . , [G(νKL)] of random field [GOAPM] and use

of the adapted statistical estimators for estimating the mean function [GOAPM
0 ] and the

covariance function CGOAPM of random field [GOAPM] (see Section 2.3.1). Then, calculation of

the first m eigenvalues σ1 � . . . � σm and the corresponding eigenfunctions [G1], . . . , [Gm]

of the covariance operator CovGOAPM defined by the kernel CGOAPM . For a given convergence

tolerance with respect to m, equation (2.42) is used to construct independent realisations

of the random vector ηOAPM = (ηOAPM
1 , . . . , ηOAPM

m ) such that

[GOAPM(m)(x)] = [GOAPM
0 (x)] +

m∑
i=1

√
σi [Gi(x)] ηOAPM

i . (3.12)

For i = 1, . . . , m, the νKL independent realisations η(1)
i , . . . , η

(νKL)
i of the random variable

ηOAPM
i are calculated by

η
()
i =

1
√
σi

� [G()] − [GOAPM
0 ], [Gi]  ,  = 1, . . . , νKL. (3.13)

Step 5

For a given convergence tolerance with respect to N and Ng in the polynomial chaos

expansion defined by equation (2.45), use of the methodology based on the maximum

likelihood and the corresponding algorithms presented in [59] for estimating a value

[y0] ∈ �m(�N) of [y] such that ηOAPM = [y0]
T Ψ(Ξ).

Let us examine the following particular case for which the APM [KAPM] of random field

[K] is defined by equation (2.3) with either equations (2.10) or (2.20), in which [GAPM] is

chosen as a second-order Gaussian random field indexed by D with values in �S
n(�).

Therefore, the components η1, . . . , ηm of the random vector η defined by equation (2.45) are

independent real-valued normalised Gaussian random variables. We then have Ng = m.

Let us assume that, for 1 � j � m � N, the indices j of the polynomial chaos are ordered

such that Ψj(Ξ) = Ξj . It can then be deduced that [y0] ∈ �m(�N) is such that [y0]ji = δij
for 1 � i � m and 1 � j � N.
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Step 6

With the maximum likelihood method, estimation of a value ž of z ∈ �ν for the

parameterised general class K defined by equations (3.1) and (3.7), using the family

of stochastic solutions Uobs(z) = B(K(m,N)(·,Ξ,M[y0](z))) and the experimental dataset

uexp,1, . . . , uexp,νexp . Then, calculation of [y̌] = M[y0](ž).

Step 7

Construction of a posterior model for random field [K] using the Bayesian method. In

such a framework, the coefficients [y] of the polynomial chaos expansion η = [y]T Ψ(Ξ)

(see equation (2.45)) are modelled by a random matrix [Y] (see [58]) as proposed in [60]

and consequently, z is modelled by a �ν-valued random variable Z. For the prior model

[Yprior] of [Y], here we propose

[Yprior] = M[y̌](Z
prior) , Zprior ∼ centred Gaussian vector, (3.14)

which guaranties that [Yprior] is a random matrix with values in �m(�N) whose

statistical fluctuations are centred around [y̌] (the maximum likelihood estimator

of the set of coefficients [y] computed at step 6). The Bayesian update allows

the posterior distribution of random vector Zpost to be estimated using the stochastic

solution Uobs = B(K(m,N)(·,Ξ,M[y̌](Z
prior))) and the experimental dataset uexp,1, . . . , uexp,νexp .

Finally, it should be noted that once the probability distribution of Zpost has been

estimated by Step 7, νKL independent realisations can be calculated for the random field

[Gpost(x)] = [GOAPM
0 (x)] +

∑m
i=1

√
σi [Gi(x)] η

post
i in which ηpost = [Ypost]T Ψ(Ξ) and where

[Ypost] = M[y̌](Z
post). The identification procedure can then be restarted from Step 4

replacing [GOAPM] by [Gpost].

4 Solution of the stochastic elliptic boundary value problem

Let D ⊂ �d be a bounded open domain with smooth boundary. The following elliptic

stochastic partial differential equation is considered,

−div([K] · ∇U) = f a.e. in D, (4.1)

with homogeneous Dirichlet boundary conditions (for the sake of simplicity). The random

field {[K(x)], x ∈ D} belongs to the parameterised general class of random fields,

K = {K(m,N)(·,Ξ,M[a](z)) ; z ∈ �ν},

introduced in Section 3.2. This stochastic boundary value problem has to be solved at steps

6 and 7 of the identification procedure described in Section 3.3, respectively considering

z as a deterministic or a random parameter. We introduce the map

u : D × �Ng × �ν → �

such that U = u(x,Ξ, z) is the solution of the stochastic boundary value problem for

[K(x)] = K(m,N)(x,Ξ,M[a](z)). The aim here is to construct an explicit approximation of

the map u for its efficient use in the identification procedure.
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In this section, a suitable functional framework will first be introduced for the definition

of the map u. Then, numerical methods based on Galerkin projections will be analysed

for the approximation of this map. Different numerical approaches will be introduced

depending on the type of representation of random fields (square-type or exponential-

type) and depending on the properties of approximation spaces. For the two types

of representation of random fields (exponential-type or square-type). Finally, we will

briefly describe complexity reduction methods based on low-rank approximations that

exploit the tensor structure of the high-dimensional map u and allows its approximate

representation to be obtained in high dimension. That makes affordable the application

of the identification procedure for high-dimensional germs Ξ (high Ng) and high-order

representation of random fields (high ν).

4.1 Analysis of the stochastic boundary value problem

We denote by Γ = ΓNg
⊗ Γν a product measure on �μ := �Ng × �ν , where ΓNg

is the

probability measure of random variable Ξ and where Γν is a finite measure on �ν . Up to

a normalisation, Γν is considered as the probability measure of a random vector Z. We

denote by [C] : D × �Ng × �ν → �+
n (�) the map defined by

[C](x, y, z) = K(m,N)(x, y,M[a](z)),

and such that [K(x)] = [C](x,Ξ,Z) is a σ(Ξ,Z)-measurable random field. Sometimes, the

random field {[C](x,Ξ,Z), x ∈ D} will be denoted by {[C(x)], x ∈ D}. For a measurable

function h : �Ng × �ν → �, the mathematical expectation of h is defined by

EΓ (h) = E{h(Ξ,Z)} =

∫
�Ng×�ν

h(y, z)Γ (dy, dz).

Lemma 7 Under the hypotheses of Proposition 4, there exists a constant α and a positive

measurable function γ : �Ng × �ν → � such that, for Γ -almost all (y, z) in �Ng × �ν , we

have

0 < α � ess inf
x∈D

inf
h∈�n\{0}

< [C](x, y, z)h, h >2

‖h‖2
2

, (4.2)

ess sup
x∈D

sup
h∈�n\{0}

< [C](x, y, z)h, h >2

‖h‖2
2

� γ(y, z) < ∞. (4.3)

Moreover, for the class of random fields corresponding to the square-type representation, we

have EΓ (γ) � γ < +∞, that means γ ∈ L1
Γ (�μ).

Proof Lemma 1(ii) gives the existence of the lower bound α = kε. Proposition 4 yields

‖[C](x, y, z)‖2 � ‖[C](x, y, z)‖F � γ(y, z) < ∞, with γ a measurable function defined on

�Ng × �ν . For the square-type representation of random fields, property (3.9) implies

EΓ (γ) =
∫

�ν EΓNg {γ(Ξ, z)}Γν(dz) � γ. �
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We introduce the bilinear form C(·, ·; y, z) : H1
0 (D) ×H1

0 (D) → � defined by

C(u, v; y, z) =

∫
D

∇v · [C](·, y, z)∇u dx. (4.4)

Let’s introduce ‖ · ‖H1
0

= (
∫
D

|∇(·)|2 dx)1/2 the norm on H1
0 (D), and ‖ · ‖H−1 the norm on

the continuous dual space H−1(D).

Strong-stochastic solution

Proposition 5 Assume f ∈ H−1(D). Then, for Γ -almost all (y, z) in �Ng × �ν , there exists

a unique u(·, y, z) ∈ H1
0 (D) such that

C(u(·, y, z), v; y, z) = f(v), for all v ∈ H1
0 (D), (4.5)

and

‖u(·, y, z)‖H1
0

�
1

α
‖f‖H−1 . (4.6)

Proof Lemma 7 ensures the continuity and coercivity of bilinear form C(·, ·; y, z) for

Γ -almost all (y, z) in �Ng × �ν . The proof follows from a direct application of the

Lax–Milgram theorem. �

Weak-stochastic solution

Let be L2
Γ (�μ) = L2

ΓNg
(�Ng ) ⊗ L2

Γν
(�ν) and X = H1

0 (D) ⊗ L2
Γ (�μ). Then X is a Hilbert

space for the inner product norm ‖ · ‖X defined by

‖v‖2
X = EΓ

(∫
D

‖∇v‖2
2 dx

)
.

We also introduce the spaces X(γsCr) (s, r ∈ �) of functions v : D×�μ → � with bounded

norm

‖v‖X(γsCr ) =

{
EΓ

(
γs

∫
D

∇v · [C]r∇v dx
)}1/2

.

Lemma 8 We have α3/2‖v‖X � α‖v‖X(C) � ‖v‖
X(C2) � ‖v‖X(γC) � ‖v‖

X(γ2) , and therefore

X(γ2) ⊂ X(γC) ⊂ X(C2) ⊂ X(C) ⊂ X

with dense embeddings.

Proof The inequalities satisfied by the norms are easily deduced from the properties of

[C] (Lemma 7). Then, it can easily be proven that X(γ2) is dense in X, which proves the

density of other embeddings. �
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Let’s introduce the bilinear form a : X ×X → � defined by

a(u, v) = EΓ (C(u, v)) =

∫
�μ

(∫
D

∇v · [C](·, y, z)∇u dx
)
Γ (dy, dz),

and the linear form F belonging to the continuous dual space X ′ of X, defined by

〈F, v〉 = EΓ (f(v)) =

∫
�μ

f(v(·, y, z))Γ (dy, dz).

From Lemma 7, it can easily be deduced the following lemma.

Lemma 9 a : X ×X → � is a symmetric bilinear form such that:

(i) a is continuous from X(C2) ×X to �,

|a(u, v)| � ‖u‖
X(C2)‖v‖X ∀(u, v) ∈ X(C2) ×X. (4.7)

(ii) a is continuous from X(C) ×X(C) to �,

|a(u, v)| � ‖u‖X(C)‖v‖X(C) ∀(u, v) ∈ X(C) ×X(C). (4.8)

(iii) a is coercive,

a(v, v) � α‖v‖2
X ∀v ∈ X. (4.9)

Now we introduce a weak form of the parameterised stochastic boundary value problem:

Find u ∈ X such that

a(u, v) = F(v) ∀v ∈ X.
(4.10)

We have the following result.

Proposition 6 There exists a unique solution u ∈ X to problem (4.10), and ‖u‖X � 1
α
‖F‖X ′ .

Moreover, u verifies (4.5) Γ -almost surely.

Proof The existence and uniqueness of solution can be deduced from a general result

obtained in [46]. Here we provide a short proof for completeness sake. We denote by

A : D(A) ⊂ X → X ′ the linear operator defined by Au = a(u, ·), D(A) being the domain of

A. We introduce the adjoint operator A∗ : D(A∗) ⊂ X → X ′ defined by 〈u, A∗v〉 = 〈Au, v〉
for all u ∈ D(A) and v ∈ D(A∗), with D(A∗) = {v ∈ X; ∃c > 0 such that |〈Au, v〉| �
c‖u‖X for all u ∈ D(A)}. The continuity property (4.7) implies that A is continuous from

X(C2) to X ′ and therefore, D(A) ⊃ X(C2) is dense in X (using Lemma 8). That means that

A is densely defined. The coercivity property (4.9) implies that ‖Av‖X ′ � α‖v‖X for all

v ∈ X, which implies that A is injective and the range R(A) of A is closed. It also implies

that A∗ is injective and R(A∗) is closed, and by the Banach closed range theorem, we then

have that A is surjective, which proves the existence of a unique solution. Then, using the

coercivity of a, we simply obtain ‖u‖2
X � 1

α
a(u, u) = 1

α
F(u) � 1

α
‖F‖X ′ ‖u‖X. �
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Proposition 7 The solution u of problem (4.10) is such that:

(i) u ∈ X(C),

(ii) u ∈ X(γC) if γ ∈ L1
Γ (�μ),

(iii) u ∈ X(γ2) if γ ∈ L2
Γ (�μ).

Proof Using equation (4.5) with v = u and equation (4.6), we obtain
∫
D

∇u · [C]∇u dx =

f(u) � ‖f‖H−1‖u‖H1
0

� 1
α
‖f‖2

H−1 . Taking the expectation yields ‖u‖2
X(C) � 1

α
‖f‖2

H−1 < ∞,

which proves (i). If γ ∈ L1
Γ , ‖u‖2

X(γC) = EΓ (γ
∫
D

∇u · [C]∇u dx) � 1
α
‖f‖2

H−1EΓ (γ) < ∞, which

proves (ii). Finally, if γ ∈ L2
Γ , we have ‖u‖2

X(γ2)
= EΓ (γ2‖u‖2

H1
0
) � 1

α2 ‖f‖2
H−1EΓ (γ2) < ∞,

which proves (iii). �

4.2 Galerkin approximation

Galerkin methods are introduced for the approximation of the solution u of problem

(4.10). Let XN ⊂ X be an approximation space such that XN := Xq,p = Vq ⊗ Wp with

Vq ⊂ H1
0 (D) (e.g., a finite element approximation space) and Wp ⊂ L2

Γ (�μ) (e.g., a

polynomial chaos approximation space). The Galerkin approximation uN ∈ XN of u is

defined by

a(uN, vN) = F(vN) ∀vN ∈ XN. (4.11)

Note that the coercivity property of bilinear form a on XN×XN (Lemma 9(iii)) ensures the

existence and uniqueness of a solution uN to problem (4.11). The convergence of Galerkin

approximations is now analysed in different situations corresponding to the different types

of representation of random fields (exponential- or square-type), to different underlying

measures Γ , and to different choices of approximation spaces. We first analyse the case

where XN ⊂ X(γ) which leads us to a natural strategy for the definition of a convergent

sequence of approximations. Then, we analyse the use of more general approximation

spaces that do not necessarily verify XN ⊂ X(γ).

4.2.1 Case XN ⊂ X(γ)

Proposition 8 Assuming XN ⊂ X(γ) ⊂ X(C), the solution uN ∈ XN of (4.11) verifies

‖u− uN‖X(C) � inf
vN∈XN

‖u− vN‖X(C) , (4.12)

and ‖u− uN‖X �
1√
α

inf
vN∈XN

‖u− vN‖X(C) . (4.13)

Therefore, if {XN}N∈� ⊂ X(γ) is a sequence of approximation spaces such that ∪N∈�XN

is dense in X, then there exists a subsequence of Galerkin approximations {uN}N∈� which

converges to u in the X(C)-norm and in the X-norm.

Proof Using the Galerkin orthogonality property of uN and the continuity of a (Lemma

9(ii)) yield

‖u− uN‖2
X(C) = a(u− uN, u− uN) = a(u− uN, u− vN) � ‖u− uN‖X(C)‖u− vN‖X(C) ,
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for all vN ∈ XN . Inequality (4.12) is obtained by taking the infimum over all vN ∈ XN .

Then, inequality (4.13) is obtained by using the coercivity of a (Lemma 9(iii)). �

Let us now analyse the condition XN ⊂ X(γ) of Proposition 8, with XN = Vq ⊗Wp. Due

to the tensor product structure of XN = Vq ⊗ Wp, the condition XN ⊂ X(γ) is equivalent

to
√
γWp ⊂ L2

Γ (�μ), that means EΓ (ϕ2γ) < +∞ for all ϕ ∈ Wp.

Use of weighted approximation spaces (for both types of representation of random fields)

A possible approximation strategy consists in choosing weighted approximation spaces

Wp = {γ−1/2ϕ;ϕ ∈ W̃p} with W̃p ⊂ L2
Γ (�ν). For example, if the measure Γ has finite

moments of any order, W̃p can be chosen as a classical (piecewise) polynomial space with

degree p, e.g.,

W̃p = �p(�
Ng ) ⊗ �p(�

ν) = span{yαzβ; α ∈ �Ng , β ∈ �ν , |α| � p, |β| � p}.

Indeed, for all ϕ = γ−1/2yαzβ ∈ Wp,

EΓ (ϕ2γ) = EΓ (y2αz2β) =

∫
�μ

y2αz2βΓ (dy, dz) < +∞,

This approximation strategy is adapted to both types of representation of random fields

(exponential- or square-type) since it does not require any assumption on γ. However, the

use of weighted polynomial approximation spacesWp leads to non-classical computational

treatments.

Use of classical approximation spaces (for square-type representation of random fields)

More classical approximation spaces can be used provided some conditions on γ.

Lemma 10 If γ ∈ LrΓ (�μ) and Wp ⊂ LsΓ (�μ) with some r � 1 and s � 2 such that
2
s
+ 1

r
= 1, then XN ⊂ X(γ). In particular XN ⊂ X(γ) if γ ∈ L1

Γ (�μ) and Wp ⊂ L∞
Γ (�μ).

Proof For r > 1, letting s′ = s
2

such that 1
s′ + 1

r
= 1, we have

EΓ (ϕ2γ) � {EΓ (ϕ2s′)}1/s′ {EΓ (γr)}1/r = {EΓ (ϕs)}2/s {EΓ (γr)}1/r < ∞.

The proof for r = 1 and s = ∞ is straightforward. �

Lemma 10 allows us to analyse the approximation when using the square-type represent-

ation of random fields, for which γ ∈ L1
Γ (�μ). Indeed, in this case, Lemma 10 implies that

XN ⊂ X(γ) if Wp ⊂ L∞
Γ (�μ). In particular, this condition is satisfied if Γ has a bounded

support and Wp is a (possibly piecewise) polynomial space, e.g., Wp = �p(�Ng ) ⊗ �p(�ν).

We note that Γ = ΓNg
⊗ Γν has a bounded support if (i) the random germ Ξ for the

representation of random fields in the class K = {K(m,N)(·,Ξ,M[a](z)) ; z ∈ �ν} has a

bounded support supp(ΓNg
), and (ii) the support of the measure Γν on the parameter

space �ν is bounded. This latter condition implies that the map u only provides the
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solution to the boundary value problems associated to a subset of random fields in K
(those corresponding to parameters z ∈ supp(Γν)). In other words, this first result shows

that when using the square-type representation of random fields with a germ Ξ with

bounded support, the approximation is possible using classical polynomial approximation

spaces.

Note that for having XN ⊂ X(γ), weaker conditions on approximation spaces could be

obtained by looking further at the properties of γ and the measure Γ . In particular, if

Wp is the tensor product of polynomial spaces with (total or partial) degree p, that means

Wp = �p(�Ng ) ⊗ �p(�ν), then XN ⊂ X(γ) if for all yαzβ ∈ Wp,

EΓ (y2αz2βγ(y, z)) =

∫
�μ

y2αz2βγ(y, z)Γ (dy, dz) < +∞, (4.14)

which is a condition on γ and on measure Γ . The following result justifies the applicability

of classical (piecewise) polynomial spaces when using the square-type representation of

random fields.

Proposition 9 For the square-type representation of random fields, if Wp is the tensor

product of (possibly piecewise) polynomial spaces and if Γ = ΓNg
⊗ Γν is such that prob-

ability measures ΓNg
and Γν admit moments of any order, then XN = Vq ⊗Wp ⊂ X(γ).

Proof Following the proof of Proposition 4, we obtain γ � k1(
√
nε + γ0 + γ1δ

2), with δ

defined by equation (3.10) and such that

δ2 � 2‖G0‖2
∞ + 2

(
m∑
i=1

√
σi‖Gi‖∞|ηi|

)2

� g0 + g1

m∑
i=1

η2
i ,

with g0 = 2‖G0‖2
∞ and g1 = 2

∑m
i=1 σi‖Gi‖2

∞. From equation (2.45), we have η = [y]TΨ(y),

where Ψ(y) is a vector of polynomials in y and [y]T [y] = [Im]. The latter condition

implies |yji | � 1 for all 1 � i � m and 1 � j � N. Therefore, η2
i � (

∑N
j=1 y

j
i Ψj(y))2 �

N
∑N

j=1Ψj(y)2, and δ(y, z)2 � g0 +g1mN
∑N

j=1Ψj(y)2 := Q(y), where Q(y) is a polynomial

in y. If the measures ΓNg
and Γν have finite moments of any order, then any (piecewise)

polynomial function on �μ is in L1
Γ (�μ). Therefore, if Wp is a space of (piecewise)

polynomial functions on �μ , then for all ϕ ∈ Wp, we have

EΓ (ϕ(y, z)2γ(y, z)) � EΓ (ϕ(y, z)2(1 + Q(y)) < +∞,

from which we deduce that Vq ⊗Wp ⊂ X(γ). �

Since measures with bounded support have finite moments of any order, Proposition 9

is consistent with the first conclusions of Lemma 10. Moreover, we have that for the

square-type representation of random fields, if Z is chosen as a Gaussian random variable

(that means Γν is a Gaussian measure) or a random variable with bounded support, then

the classical Hermite polynomial chaos space associated with a Gaussian germ Ξ can be
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used. Note that the use of a measure Γν whose support is �ν allows to explore the whole

class of random fields K with the single map u.

Remark 4.1 The case of log-normal random fields corresponds to a particular case

of the exponential-type representation for which the random field [G] is Gaussian and

represented using a degree one Hermite polynomial chaos expansion with a Gaussian germ

Ξ. In this case, it can be proven that if Wp is the tensor product of (possibly piecewise)

polynomial spaces and if Γν admit moments of any order, then XN = Vq ⊗ Wp ⊂ X(γ).

This justifies the use of polynomial approximation spaces when considering the particular

case of log-normal random fields. However, this result does not extend to other random

fields with exponential-type representation.

4.2.2 Case of general approximation spaces XN

In order to handle both types of representation of random fields (exponential-type and

square-type) with a measure Γ with a possibly unbounded support, we here propose

and analyse an approximation strategy which consists in using truncated approximation

spaces. We consider a family of approximation spaces {Vq}q�1 such that ∪qVq is dense

in H1
0 (D), and a family {Wp}p�1 such that ∪pWp is dense in L2

Γ (�μ). Classical (possibly

piecewise) polynomial spaces with degree p can be chosen for Wp. Let XN be defined as

Vq ⊗Wp. Then, for τ > 0, we introduce the approximation space

Wτ
p = {Iγ�τϕ;ϕ ∈ Wp} ,

where Iγ�τ(y, z) = 1 if γ(y, z) � τ and 0 if γ(y, z) > τ. It can be proven that ∪τ>0 ∪p�1 W
τ
p

is dense in L2
Γ (�μ). Let Xτ

N be defined as Vq ⊗ Wτ
p . For ψ = Iγ�τϕ in Wτ

p , we have

EΓ (γψ2) � τEΓ (ϕ2) < ∞, that means Xτ
N := Vq ⊗ Wτ

p ⊂ X(γ) for all τ > 0. The Galerkin

approximation of u in Xτ
N is denoted by uτN .

Proposition 10 The Galerkin approximation uτN ∈ Xτ
N of u satisfies

‖u− uτN‖2
X(C) � τ inf

v∈XN
‖u− v‖2

X + ‖uIγ>τ‖2
X(C) , (4.15)

and there exists a sequence of approximation spaces Xτ
N(τ) = Vq(τ) ⊗Wτ

p(τ) such that

‖u− uτN(τ)‖X(C) → 0 as τ → ∞. (4.16)

Proof We have u ∈ X(C) (Proposition 7) and Xτ
N ⊂ X(γ) ⊂ X(C). We first note that for all

v ∈ Xτ
N ,

‖(u− v)‖2
X(C) = ‖(u− v)Iγ�τ‖2

X(C) + ‖(u− v)Iγ>τ‖2
X(C)

� ‖(u− v)Iγ�τ‖2
X(γ) + ‖uIγ>τ‖2

X(C)

� τ‖(u− v)Iγ�τ‖2
X + ‖uIγ>τ‖2

X(C) .
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Then, using Proposition 8 (equation (4.13)), we obtain

‖u− uτN‖2
X(C) � inf

v∈Xτ
N

‖u− v‖2
X(C) � τ inf

v∈Xτ
N

‖(u− v)Iγ�τ‖2
X + ‖uIγ>τ‖2

X(C)

= τ inf
v∈XN

‖(u− v)Iγ�τ‖2
X + ‖uIγ>τ‖2

X(C)

� τ inf
v∈XN

‖u− v‖2
X + ‖uIγ>τ‖2

X(C)

Since ‖u‖X(C) is bounded, the second term converges to 0 as τ → ∞. Also, provided that

∪NXN is dense in X, we can define a sequence of spaces XN(τ) such that

τ inf
v∈XN(τ)

‖u− v‖2
X → 0 as τ → ∞,

which ends the proof. �

4.3 High-dimensional approximation using sparse or low-rank approximations

The approximation of the map u ∈ X requires the introduction of adapted complexity

reduction techniques. Indeed, when introducing approximation spaces Vq ⊂ H1
0 (D) and

Wp = W y
p ⊗W z

p ⊂ L2
ΓNg

(�Ng )⊗L2
Γν

(�ν), the resulting approximation space XN = Vq ⊗Wp

may have a very high dimension dim(Vq) × dim(Wp). For classical non adapted construc-

tions of approximation spaces Wp, the dimension of Wp has typically an exponential

(or factorial) increase with Ng and ν (e.g. with polynomial spaces W y
p = �p(�Ng ) and

W z
p = �p(�ν)). Therefore, the use of standard approximation techniques would restrict

the applicability of the identification procedure to a class of random fields with a germ

Ξ of small dimension (small Ng) and a low order in the representation of random fields

(small ν).

4.3.1 Sparse tensor approximation

A first possible way to reduce the complexity and address high-dimensional problems

is to use adaptive sparse tensor approximation methods [11]. Supposing that {φi =

⊗μ
k=1φ

(k)
ik

; i ∈ �μ} constitutes a basis of W , it consists in constructing a sequence of

approximations uM ∈ Vq ⊗ WM , with WM = span{φi; i ∈ ΛM}, where ΛM ⊂ �μ is a

subset of M indices constructed adaptively. For some classes of random fields (that are

simpler than the one proposed in the present paper), algorithms have been proposed for

the adaptive construction of the sequence of subsets ΛM and some results have been

obtained for the convergence of the corresponding sequence of approximations. In [12],

convergence results have been obtained for different classes of random fields and in

particular for two classes of random fields that are closely related to the ones proposed

in the present paper, namely random fields that are obtained with the exponential or the

square of a random field which admits an affine decomposition in terms of the parameters.

Under suitable conditions on the convergence of the series expansion of this random field,

the authors prove the convergence with a convergence rate independent on the dimension

μ. Such results may be obtained for the class of random fields proposed in the present
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paper under some conditions on the underlying second order random field [G]. This will

be addressed in future work.

4.3.2 Low-rank approximations

Low-rank tensor approximation methods can be used in order to reduce the complexity

of the approximation of functions in tensor product spaces [34]. They consist in approx-

imating the solution in a subset M ⊂ XN of low-rank tensors. Different tensor structures

of space XN can be exploited, such as XN = Vq ⊗ Wp or XN = Vq ⊗ W y
p ⊗ W z

p . Also,

if the measures ΓNg
and Γν are tensor product of measures, then W y

p and W z
p can be

chosen as tensor product approximation spaces W y
p = ⊗Ng

k=1W
y,(k)
p and W z

p = ⊗ν
k=1W

z,(k)
p .

Low-rank approximation methods then consist in approximating the solution in a subset

M ⊂ XN of low-rank tensors, which is a subset of low dimension in the sense that M can

be parameterized by a small number of parameters (small compared to the dimension of

XN). Different low-rank formats can be used, such as canonical format, Tucker format,

Hierarchical Tucker format or more general tree-based tensor formats (see e.g. [34]). These

tensor subsets can be formally written as

M = {v = FM(w1, . . . , w);w1 ∈ �r1 , . . . , w ∈ �r} ,

where FM is a multi-linear map with values in XN and where the wk ∈ �rk (k = 1, . . . , )

are the parameters. The dimension of such a parameterisation is
∑

k=1 rk . As an example,

M can be chosen as the set of rank-m canonical tensors in XN = Vq ⊗W y
p ⊗W z

p , defined

by M = {v =
∑m

i=1 w
x
i ⊗ w

y
i ⊗ wz

i ;w
x
i ∈ Vq, w

y
i ∈ W y

p , w
z
i ∈ W z

p }.

4.3.3 Algorithms for the low-rank approximation of uN ∈ XN

The Galerkin approximation uN ∈ XN of u is the unique minimiser of the strongly convex

functional J : XN → � defined by J(v) = 1
2
a(v, v) − F(v). A low-rank approximation

ur ∈ Mr of uN can then be obtained by solving the optimisation problem

min
v∈M

J(v) = min
w1∈�r1 ,...,w∈�r

J(FM(w1, . . . , w)).

This problem can be solved using alternated minimisation algorithms or other optimisation

algorithms (see [34]). Also, greedy procedures using low-rank tensor subsets can be

introduced in order to construct a sequence of approximations {uk}k with uk+1 = uk+wk+1

and wk+1 ∈ M defined by J(uk+wk+1) = minv∈M J(uk+v). We refer to [23] for the analysis

of a larger class of greedy algorithms in the context of convex optimisation problems

in tensor spaces, and to [51] for the practical implementation of some algorithms in the

context of stochastic parametric partial differential equations.

Remark 4.2 [On the approximability of the solution using low-rank approximations] A

very few results are available concerning the complexity reduction that can be achieved

using low-rank approximations, in particular for the approximation of high-dimensional

maps arising in the context of high-dimensional parametric stochastic equations. Of
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course, results about sparse polynomial approximation methods (e.g., [12]) could be

directly translated in the context of low-rank tensor methods (a sparse decomposition on

a multi-dimensional polynomial basis being a low-rank decomposition) but this would not

allow to quantify the additional reduction that could be achieved by low-rank methods.

Providing a priori convergence results for low-rank approximations for the proposed class

of random fields would deserve an independent analysis which is out of the scope of

the present paper. However, we notice that some standard arguments could be used in

order to provide a priori convergence results of low-rank approximations in the 2-order

tensor space X = H1
0 (D) ⊗ L2

Γ (�μ) = L2
Γ (�μ;H1

0 (D)). Indeed, under suitable regularity

conditions on the samples of the random fields in the class (related to properties of the

covariance structure of the algebraic prior), the set of solutions U = {u(·, y, z); (y, z) ∈ �μ}
could be proven to be a subset of H1

0 (D) with rapidly convergent Kolmogorov n-width1,

therefore proving the existence of a good sequence of low-dimensional spaces in H1
0 (D)

for the approximation of the set of solutions U. At least the same convergence rate (with

respect to the rank) could therefore be expected for low-rank approximations that are

optimal with respect to a L2-norm in the parameter domain. These questions will be

investigated in a future work.

4.4 Remarks about the identification procedure

The identification procedure has been presented in Section 3.3. In view of the numerical

analysis presented above, the following remarks can be done. Different approximations

of the map u should be constructed at the different steps of the identification procedure.

Indeed, the quality of approximations of u clearly depends on the choice of measure

Γν on the parameters space �ν . It is recalled that the parameterisation of the class

K = {K(m,N)(·,Ξ,M[a](z)) ; z ∈ �ν} of random fields depends on the set of parameters

[a] = M[a](0). The map u depends on the choice of [a] but it is clearly independent on the

choice of measure Γν , provided that the support supp(Γν) = �ν . However, the Galerkin

approximation uN being optimal with respect to a norm that depends on the measure

Γν , the quality of the approximation clearly depends on measure Γν . For that reason, the

choice of measure Γν can be updated throughout the identification procedure in order to

improve the approximation of u as explained at the end of Section 3.3. Steps 6 and 7

described in Section 3.3 can then be clarified as follows.

At Step 6, the parameterisation of K around [a] = [y0] is used and an approximation

of the corresponding map u in X is constructed using low-rank tensor methods. The use

of this explicit map allows a fast maximisation of the likelihood function to be performed,

yielding an estimation ž of z (or equivalently [y̌] of [y]).

At Step 7, the map u constructed in Step 6 could be used for the subsequent Bayesian

update. However, it is also possible to construct a new map that takes into account

the result of the maximum likelihood estimation. Therefore, the parameterisation of K

1 For example, if the set of solutions U is a bounded subset of H2(D) (which can be obtained

with a simple a posteriori analysis if the random fields have samples with C1 regularity), then the

Kolmogorov n-width can be proven to converge as n−1/d where d is the spatial dimension.
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around [a] = [y̌] is used and the boundary value problem is solved again in order to

obtain an approximation of the corresponding map u(·, ·, ·; [y̌]) in X. This map can then

be efficiently used for solving the Bayesian update problem.

5 Conclusion

In this paper, we have presented new results allowing an unknown non-Gaussian pos-

itive matrix-valued random field to be identified through a stochastic elliptic boundary

value problem, solving a statistical inverse problem. In order to propose a constructive

and efficient methodology and analysis of this challenging problem in high stochastic

dimension, a new general class of non-Gaussian positive-definite matrix-valued random

fields, adapted to the statistical inverse problems in high stochastic dimension for their

experimental identification, has been introduced. For this class of random fields, two types

of representation are proposed: the exponential-type representation and the square-type

representation. Their properties have been analysed. A parameterisation of discretised

random fields belonging to this general class has been proposed and analysed for the two

types of representation. Such parameterisation has been constructed using a polynomial

chaos expansion with random coefficients and a minimal parameterisation of the compact

Stiefel manifold related to these random coefficients. Using this parameterisation of the

general class, a complete identification procedure has been proposed. Such a statistical

inverse problem requires to solve the stochastic boundary value problem in high stochastic

dimension with efficient and accurate algorithms. New results of the mathematical and

numerical analyses of the parameterised stochastic elliptic boundary value problem have

been presented. The numerical solution provides an explicit approximation of the applic-

ation that maps the parameterised general class of random fields to the corresponding set

of random solutions. Since the proposed general class of random fields possibly contains

random fields which are not uniformly bounded, a particular mathematical analysis has

been developed and dedicated approximation methods have been introduced. In order

to obtain an efficient algorithm for constructing the approximation of this very high-

dimensional map, we have described possible complexity reduction methods using sparse

or low-rank approximation methods that exploit the tensor structure of the solution which

results from the parameterisation of the general class of random fields. In this paper,

we do not provide any result concerning the complexity reduction that can be achieved

when using low-rank or sparse approximation methods for the proposed class of random

fields. These results would require a fine analysis of the regularity and structures of the

solution map. Some recent results are already available for sparse approximation methods

and for some simpler classes of random fields (see [12]). This type of results should be

extended to the present class of random fields. Concerning low-rank methods, a very few

quantitative convergence results are available. Some recent results are provided in [52]

for the approximation of functions with Sobolev-type regularity. For the present class of

random fields, specific analyses are necessary to understand the structure of the solution

map induced by the proposed parameterisation and to quantify the complexity reduction

that could be achieved with low-rank methods. These challenging issues will be addressed

in future works.
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