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THE GENERIC DEGREES OF DENSITY-1 SETS, AND A
CHARACTERIZATION OF THE HYPERARITHMETIC REALS

GREGORY IGUSA

Abstract. A generic computation of a subset A of N is a computation which correctly computes most
of the bits ofA, but which potentially does not halt on all inputs. The motivation for this concept is derived
from complexity theory, where it has been noticed that frequently, it is more important to know how
difficult a type of problem is in the general case than how difficult it is in the worst case. When we study this
concept from a recursion theoretic point of view, to create a transitive relationship, we are forced to consider
oracles that sometimes fail to give answers when asked questions. Unfortunately, this makes working in the
generic degrees quite difficult. Indeed, we show that generic reduction is Π11−complete. To help avoid this
difficulty, we work with the generic degrees of density-1 reals. We demonstrate how an understanding of
these degrees leads to a greater understanding of the overall structure of the generic degrees, and we also
use these density-1 sets to provide a new a characterization of the hyperartithmetical Turing degrees.

§1. Introduction. In complexity theory, there has been recent work attempting
to rigorously understand and study the phenomenon in which a problem might be
known to have a very high complexity in the traditional sense, and yet still be very
easy to solve in practice. To this end, distinctions are made between the worst-case
complexity of the problem, which is the usual way to measure the complexity of
a problem, the average-case complexity of the problem [1], which measures the
expected amount of time to solve the problem, and the generic-case complexity of
the problem [4], a measure of how complex the majority of the instances of the
problem are.
The study of generic-case complexity has led to the interesting realization that it
is sometimes possible to find the generic-case complexity of a problem that is not
even solvable. For instance, the word problem for Boone’s group is known to be
unsolvable, yet it can be shown to be generically linear time solvable [4]. This sort of
behavior allows for a complexity theoretic analysis of questions that had previously
been outside of the scope of complexity theory. Simultaneously, however, it calls
to light the recursion theoretic question: what can be said about the generically
computable sets, and about generic computation in general?
Following the notation of Jockusch and Schupp [3] we make the following
definitions:
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Definition 1.1. Let A be a subset of the natural numbers. Then A has den-
sity 1 if the limit of the densities of its initial segments is 1, or in other words,
if limn→∞

|A∩n|
n = 1. In this case, we will frequently say that A is density-1.

The notation in this paper follows the heuristics of [6], but notationwill be defined
as it is introduced. A subset of the natural numbers is often referred to as a real.
Note that the intersection of two reals is density-1 if and only if each of the reals is
density-1. (For any � > 0, once the densities of the initial segments of each of the
reals is> 1− �

2 , the density of their intersection will be> 1− �.) We will sometimes
use function notation for reals, in which case we say that A(n) = 1 if n ∈ A, and
A(n) = 0 if n /∈ A. In longer proofs, parenthetical comments will frequently be used
to provide short proofs of claims in order to help illustrate the structure of the proofs.

Definition 1.2. A real A is generically computable if there exists a partial
recursive function ϕ with the following properties:

• dom(ϕ) is density-1,
• ran(ϕ) ⊆ {0, 1},
• ϕ(n) = A(n), for all n ∈ dom(ϕ).
Note that this is very different from the following concept.

Definition 1.3. A real A is coarsely computable if there exists a total recursive
function ϕ, whose range is contained in {0, 1} such that {n |ϕ(n) = A(n)} is
density-1.

Thus, a generic computation is a computation which never makes mistakes, but
which occasionally does not give answers, while a coarse computation is a compu-
tation which always gives answers, but sometimes makes mistakes. Neither generic
computability nor coarse computability implies the other [3]. The focus of this
paper will be on generic computation (we remind the reader that the motivation for
generic computation is algorithms that, in practice, run faster than they otherwise
should be able to, not algorithms that take shortcuts and are occasionally inaccurate
in order to get answers more quickly.)
Now, we wish to work our way up to generic degrees, and for this reason, we first

present relativized generic computation.

Definition 1.4. For reals A and B, A is generically B-computable if A is generi-
cally computable using B as an oracle. In this case, we frequently say B generically
computes A.

Notice, however, that this relativized notion of generic computation is very far
from transitive, since information can be “hidden” in a real in a way that causes it
to have a large amount of computing power:

Observation 1.5. There exist reals A, B, and C such that B generically computes
A, C generically computes B, but C does not generically compute A.

Proof. Let A be any real that is not generically computable. (There exists such
a real because every ϕ is a generic computation of at most Lebesgue measure zero
many reals, and there are only countably many partial recursive functions.)
Let B be the real such that 2n ∈ B ⇔ n ∈ A (andm /∈ B ifm is not a power of 2.)
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Let C = 0, the empty set.
Then, B generically computes A because B computes A, and a computation is
also a generic computation. Also, C generically computes B by the algorithm ϕ
whereϕ(m) = 0 ifm is not a power of 2, andϕ(m) does not halt ifm is a power of 2.
Finally, C does not generically compute A, because A is not generically
computable. �
Now, we introduce generic reduction, which is a notion of relative generic com-
putation that has been modified to make it transitive. This will allow us to discuss
the degree structure of the generic degrees, and will give us a deeper understand-
ing of what it means to generically compute something, since now the difficulty in
generically computing a real will be precisely measured by its generic computation
power. We will also see in Observation 1.15 that the entire theory of relative generic
computation can be discussed within the structure of generic reduction, so we do
not lose anything.
The basic idea of a generic reduction will be that a generic reduction from A
to B is an algorithm that can use any generic oracle for B to generically compute
A. A generic oracle for B is an oracle that does not always respond when asked a
question, but that responds (always correctly) to density-1 many questions about
B. For this reason, we first define what it means for a Turing machine to work with
a partial oracle.

Definition 1.6. Let A be a real. Then a (time-dependent) partial oracle, (A), for
A is a set of ordered triples 〈n, x, l〉 such that:
∃l(〈n, 0, l〉 ∈ (A)) =⇒ n /∈ A,
∃l(〈n, 1, l〉 ∈ (A)) =⇒ n ∈ A.
The idea here is that (A) is a partial oracle that, when asked a question about A,
sometimes takes a while before it responds, and does not always respond. Thus, to
“ask” (A) whether or not n ∈ A is to search (A) for some x, l such that 〈n, x, l〉 ∈
(A). Here, x is thought of as the answer that (A) gives, and l is thought of as the
amount of time before it gives an answer.
If such x, l exist for n, we say that the oracle halts on n, i.e. (A)(n) ↓, and that the
output of (A) on n is x; otherwise, we say that it does not halt on n, or (A)(n) ↑.
Also, after querying the oracle (initiating a search for some such x, l) our reductions
will be able to do other things while waiting for the oracle to respond (while running
the search in parallel to other processes.) The “domain” of a partial oracle, written
dom((A)), is the set of n such that (A)(n) ↓.
The words “time-dependent” in the definition refer to the fact that the original
definition [3] is different in that it does not use an l parameter, and the eventual
definition of a generic reduction uses enumeration reductions rather than Turing
reductions. The two can be proven to be equivalent in our setting [2]. We use this
definition so that generic reductions can be formalized using Turing reductions,
rather than enumeration reductions. This choice streamlines the proofs of several
of our theorems, but it will force us to prove Lemma 2.10, which is obtained for free
with the other definition.

Definition 1.7. Let A be a real. Then a generic oracle, (A), for A is a partial
oracle for A such that dom((A)) is density-1.
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Note then the following.

Observation 1.8. B generically computes A if and only if B computes a generic
oracle for A.

Proof. If ϕB is a generic computation of A, then we can let 〈n, x, l〉 ∈ (A) if
and only if ϕB (n) halts in l steps, with value x. Conversely, if B computes (A) for
some generic oracle, (A), for A, then B can generically compute A by ϕB (n) = x
where x is the first x found such that there exists an l with 〈n, x, l〉 ∈ (A). This
algorithm halts on density-1, and gives only correct answers, since (A) is a generic
oracle for A. �
Definition 1.9. Let A and B be reals. Then, A is generically reducible to B if

there exists a Turing functionalϕ such that for every generic oracle, (B), forB, ϕ(B)

is a generic computation of A. In this case, we write B ≥g A.
Here, it is important to note that a generic reduction is given by a uniformway to

go from a generic oracle for B to a generic computation of A. (In other words, the
same reductionϕmust work for every generic oracle (B).) If we relax this condition,
and allow ϕ to depend on (B), then we get another, provably distinct, transitive
notion of reducibility [2]. Nonuniform generic reduction is somewhat more difficult
to work with, and in this paper, we will focus solely on uniform generic reduction.
Note that the proof of Observation 1.8 is uniform, which allows us to conclude

that≥g is a transitive relationship:
Lemma 1.10. If C ≥g B and B ≥g A, then C ≥g A.
Proof. Assume C ≥g B and B ≥g A. Then, let (C ) be a generic oracle for C .

By assumption, (C ) can be used uniformly to generically compute B. By the uni-
formity of the proof of Observation 1.8, (C ) can also be used to uniformly compute
a generic oracle, (B), for B, and, by assumption, (B) can be used uniformly to
generically compute A.
(The specific (B) that is computed will depend on (C ), but any (B) is sufficient

to generically compute A.) �
With transitivity, we may now define a degree structure in the standard manner.

Definition 1.11. The generic degrees are the equivalence classes of reals under
the relation (A ≡g B)↔ (A ≥g B ∧A ≤g B).
As usual, the preordering≤g on reals induces a partial ordering≤g on the generic

degrees:
a ≥g b↔ A ≥g B where A and B are elements of a, and b respectively.
Next, we show that the usual join operation induces a degree-theoretic join in the

generic degrees.

Lemma 1.12. Let A and B be reals. Let A⊕B be the real given by (2n ∈ A⊕B ↔
n ∈ A) and (2n + 1 ∈ A⊕ B ↔ n ∈ B).
Then, A ⊕ B ≥g A, A ⊕ B ≥g B, and, ∀C , if C ≥g A and C ≥g B then

C ≥g A⊕ B.
Proof. The basic idea of the proof is that a subset ofN is density-1 if andonly if its

even elements are density-1 in the even numbers, and its odd elements are density-1
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in the odd numbers. The proof of this fact is a straightforward, but somewhat long
limit calculation, and will be omitted.
From this, we deduce that it is easy to go from a generic oracle for A⊕ B to one
for each of A, and B, and vice versa. �
In terms of understanding the generic degrees, one of themost important features
is that the Turing degrees embed naturally into the generic degrees.

Definition 1.13. For any real X ,R(X ) is the real defined by:
R(X ) = {2mk |m ∈ X, k ∈ N, k is odd}.

In other words, n ∈ R(X ) if and only if m ∈ X , where 2m is the largest power of
2 dividing n.

Proposition 1.14. The map X �→ R(X ) induces an embedding from the Turing
degrees to the generic degrees.

The key idea of this proof is that every piece of information in X is stretched
out over a positive density set in R(X ), and so any generic description of R(X )
contains all of the information in X .

Proof. If Y ≥T X , then we may generically reduce R(X ) to R(Y ) by using a
generic oracle forR(Y ) to compute Y , and then using Y to compute X , which we
use to computeR(X ).
Let (B) be a generic oracle forR(Y ). Then, we can use (B) to compute Y in the
following way.
To determine ifm ∈ Y we search for a k ∈ N such that (2k +1)2m ∈ R(Y ). Our
oracle, (B) must eventually give an answer for some such K , because otherwise its
domain would not be density-1. (B) is not allowed to make any mistakes, and so
that answer must also be the answer as to whether or not m ∈ Y .
Thus, to generically compute R(X ) from (B), we use (B) to compute Y , use Y
to compute X , and use X to compute R(X ). (Note that for our purposes, we only
need to generically computeR(X ), but computing R(X ) is just as good.)
Conversely, ifR(Y ) ≥g R(X ), then in particular,Y generically computesR(X ).
This is because Y can compute a generic oracle for R(Y ) (namely, the oracle that
halts everywhere), and any generic oracle forR(Y ) can generically computeR(X ).
So then, to use Y to compute X (m), we use our generic computation of R(X ) to
simultaneously attempt to compute, for each k, whether or not (2k+1)2m ∈ R(X ).
The generic computation must halt on at least one of these, else the domain of the
generic computation is not density-1.Whenwefind somek such thatϕY ((2k+1)2m)
halts, then we use that output for our computation of X (m). �
Note, in particular, that by using this embedding, we are able to study generic
computation in terms of generic reduction.

Observation 1.15. LetA,B be reals. ThenR(B) ≥g A if and only if B generically
computes A.

Proof. If R(B) ≥g A then B generically computes A because B can compute a
generic oracle for itself, which can be used to generically compute A.
Conversely, any generic oracle for R(B) can (uniformly) compute B (as in the
first half of the proof of Proposition 1.14), and so, if B generically computes A,

https://doi.org/10.1017/jsl.2014.77 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2014.77


DENSITY-1 DEGREES 1295

then any generic oracle for R(B) can generically compute A by computing B, and
then using the generic computation of A from B. �

§2. Density-1 Reals.
2.1. Introduction. Now, to understand the generic degrees, we attempt to under-

stand them from two standpoints. First, we attempt to answer basic degree-theoretic
questions about them such as: Are there any minimal degrees? Are there mini-
mal pairs of degrees? Does every nonzero degree have another degree that it is
incomparable to? Second, we use the embedding of the Turing degrees to attempt
to understand the generic degrees in terms of their relationship with the Turing
degrees: How far up and how far down do the Turing degrees embed in the generic
degrees? Can we understand concepts within the generic degrees in terms of known
concepts within the Turing degrees?
For the question of “how far up do the Turing degrees go?” the answer is

straightforward, which is that they go all the way up.
Observation 2.1. For any realA,R(A) ≥g A. Thus, the embedded Turing degrees

are upward dense in the generic degrees.
Proof. Any generic oracle for R(A) can be used uniformly to compute A, and

so, in particular, to generically compute A. �
The study of how far down the Turing degrees go is, in some sense, the study of

the quasi-minimal generic degrees.

Definition 2.2. A nontrivial generic degree, b, is quasi-minimal if for every
Turing degree a, if b ≥g R(a), then a = 0.
In other words, a quasi-minimal generic degree is a generic degree that is not

generically computable, but is also not above anynonzero embedded Turing degrees.
Quasi-minimal degrees will be discussed more thoroughly in Section 2.3, when

we discuss minimal degrees and minimal pairs in the generic degrees.
One of the biggest goals of this paper is to discuss the generic degrees of the

density-1 reals, and show how they relate to many questions concerning the generic
degrees in general. To aid our discussion, we define density-1 generic degrees as
generic degrees that have density-1 elements.

Definition 2.3. A generic degree a is density-1 if there is a density-1 real A ∈ a.
The original motivation for studying the density-1 reals is that they, in some

sense, isolate the “new” concept that needs to be addressed in the generic degrees:
A generic oracle sometimes outputs “1,” sometimes outputs “0,” and sometimes
does not halt. Furthermore, the “information” in the generic oracle is somehow
contained both in the outputs that it gives, and also in the places where it does not
give outputs. The density-1 reals isolate this second form of information, since a
generic oracle of a density-1 real can be assumed to never give any outputs other
than “1,” and so can be thought of as having all of its information contained within
its halting set.
The following lemma formalizes the concept that, from the point of view of

generic reduction, the entire information content of a density-1 real can be captured
using oracles and computations that only output “yes” answers when they halt.
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Lemma 2.4. Let A be a density-1 real, and B be any real. Then, the following hold.
B ≥g A if and only if there exists a Turing functional ϕ which only outputs 1’s
( for any realX and number n, if ϕX (n) ↓, then ϕX (n) = 1), such that for any generic
oracle (B) for B, ϕ(B) is a generic computation of A.
Also, A ≥g B if and only if there exists a Turing functional ϕ such that for any
generic oracle (A) for A, if dom((A)) ⊆ A, then ϕ(A) is a generic computation of B.
The primary content of this lemma is that a generic oracle or generic computation
of a density-1 real, A, can, in some sense, be thought of as an enumeration of a
density-1 subset of A. This idea will be formalized more thoroughly in Lemmas 2.7
and 2.8.

Proof. Let A be a density-1 real, and assume B ≥g A.
Fix � such that for any generic oracle (B) for B, �(B) is a generic computation
of A. If we modify �, and define ϕ so that ϕX behaves exactly the same way as �X ,
except that ϕX (n) diverges whenever �X (n) �= 1, then ϕ will also have the property
that for any (B), ϕ(B) is a generic computation of A, because the outputs that it
gives will still be correct (ϕ’s outputs are a subset of �’s outputs), and the domains
of the computations will still be density-1, since for each (B), the domain of ϕ(B)

will be the intersection of A with the domain of �(B).
Conversely, if there exists a ϕ as in the statement of the observation, then that ϕ
is a generic reduction from A to B.
For the second part of the observation, assume there exists a ϕ that generically
computes B from any generic oracle for A that outputs only 1’s. Then it can be
modified to generically computeB fromany generic oracle (A) forA in the following
manner.A is density-1, and (A) is a generic oracle, and so the intersection ofAwith
the domain of (A) must be density-1. So now, we define � so that �X (n) = ϕY (n)
where Y = X \ {〈n, 0, l〉 | n, l ∈ N}. (Intuitively, � is the computation that mimics
ϕ, except that it ignores any locations where its oracle outputs 0.) Then, � will
generically computeB from any generic oracle forA, because it modifies that oracle
to a generic oracle that outputs only 1’s, and then uses ϕ.
Again, the converse is true by definition: If A ≥g B, then there exists a ϕ which
generically computes B from any generic oracle for A. In particular, ϕ generically
computes B from any generic oracle for A that outputs only 1’s. �
Note that for this result, we needed to use the fact that the intersection of two
density-1 reals is density-1.Weprovided a short proof of this fact afterDefinition 1.1,
and we restate this observation here, since it will be very relevant to our work in this
section.

Observation 2.5. LetA and B be reals. Then A∩B is density-1 if and only if both
A and B are density-1.

This allows us to prove a few results which will be useful to us, and will also help
illustrate the manner in which density-1 reals are easier to work with than other
reals.

Lemma 2.6. Let A and B be density-1 reals. Assume B ⊆ A. Then B ≥g A.
Proof. Assume B ⊆ A.
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Then B ≥g A via the algorithm ϕ where ϕ(n) = 1 if n ∈ B. This algorithm only
gives correct outputs because B ⊆ A, and it halts on the intersection of B with the
domain of the generic oracle for B, which is density-1. �
Lemma 2.7. Let A and B be density-1 reals. Then A ∩ B ≡g A⊕ B.
Proof. To show that A ∩ B ≥g A ⊕ B, we show that A ∩ B ≥g A, and that

A ∩ B ≥g B. This is true by Lemma 2.6.
Conversely, A ⊕ B ≥g A ∩ B by the algorithm ϕ where ϕ(n) = 1 if 2n and

2n + 1 are both in A ⊕ B. If (C ) is a generic oracle for A⊕ B, then the domain of
ϕ(C ) is density-1 because it is the intersection of the domains of the natural generic
computations of A and of B from (C ). �
Lemma 2.8. Let a and b be density-1 generic degrees. Then b ≥g a if and only if

∃B ∈ b ∃A ∈ a such that B and A are both density-1, and B ⊆ A.
Proof. Assume ∃B ∈ b ∃A ∈ a(B ⊆ A), with B and A both density-1. Then

B ≥g A by Lemma 2.7.
Conversely, assume b ≥g a, and let B0 ∈ b, A0 ∈ a, with B0, A0 both density-1.

Let B = B0 ∩ A0, and let A = A0. Clearly, B ⊆ A. Also, by Lemma 2.7, B ≡g
A0 ⊕ B0. Furthermore, A0 ⊕ B0 ≡g B0 because B0 ≥g A0. Thus, B ∈ b, A ∈ a, and
B ⊆ A. �
Weuse Lemma 2.8 to prove that the density-1 sets are dense in the generic degrees.

Proposition 2.9. Let a and b be density-1 generic degrees. Assume b >g a. Then
there exists a density-1 degree c such that b >g c >g a.

Before we prove this, however, we require a technical result roughly saying that
in generic reductions, we may assume that computations always give more outputs
if they get more inputs.

Lemma 2.10. Let A,B be reals. Then B ≥g A if and only if there is a ϕ such that
the following hold.

• For any generic oracle, (B), for B, ϕ(B) is a generic computation of A.
• For anyC , if anything generically reduces toC via ϕ, then for any partial oracles
(C )0 and (C )1, if dom((C )0) ⊆ dom((C )1), and (C )1 �dom((C )0)= (C )0 (with
(C )0 and (C )1 regarded as partial functions), then dom(ϕ(C )0 ) ⊆ dom(ϕ(C )1 ),
and ϕ(C )1 �dom(ϕ(C )0 )= ϕ(C )0 .
We call such a ϕ a “more-is-more” functional, since having more information

from the oracle never results in computing fewer things from the output. (Note that
in Jockusch and Schupp’s definition of generic reduction [3], all generic reductions
are via more-is-more functionals.)

Proof. Certainly, if there is a ϕ as in the statement of the lemma, then B ≥g A,
because the first bulletpoint ensures that ϕ is a generic reduction of A to B.
Conversely, assume that B ≥g A via �. Then, define ϕX as follows.
Think of X as a partial oracle, and consider all partial oracles Y that agree with

X (i.e., so that Y does not give any outputs thatX does not give). For any such Y ,
if �Y (n) = x then ϕX (n) = x. (If there are multiple such Y s for which �Y (n) is
defined, then use the first such Y that is found.)
Note then that, first of all, if X is a generic oracle for B, then ϕX is a generic

computation for A, because every Y that is used will be a partial oracle for B, and
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any finite portion of a partial oracle for B can be extended to a generic oracle for
B, and so �Y cannot make any mistakes when generically computing A. Anything
that �X would output will also be outputted by ϕX , and so the domain of ϕX will
be density-1.
Also, ϕ satisfies the “more is more” requirement of the lemma, because if (C )0
and (C )1 are as in the lemma, then any Y that agreed with (C )0 would also agree
with (C )1, and so ϕ(C )1 would halt anywhere that ϕ(C )0 would halt. If anything
generically reduces to C via ϕ, then in particular, ϕ(C )1 must agree with ϕ(C )0

anywhere that they both halt. �
Now we move on to prove Proposition 2.9.

Proof. Use Lemma 2.8 to fix density-1 sets B ⊆ A in b and a respectively.
We build a real C such that B ⊆ C ⊆ A. This guarantees that C is density-1 and
that B ≥g C ≥g A. The main difficulty in the construction will be ensuring that
C �g B, and A �g C .
Note that it is not necessary to ensure thatB ≥T C , and indeed, this will probably
not be the case.
The basic idea of the proof is that C will alternate between copying B until it
forces one instance ofA not computing it, and copyingA until it forces one instance
of it not computing B. By the end of the construction, there will be no ϕ via which
A could compute C , or via which C could compute B.

At stage 2e, we have some finite approximation �2e to C , and we wish to extend
it to ensure that C will not generically reduce to A via ϕe .
The first thing that we ask is whether ϕe is a functional that only outputs 1’s when
it halts. If not, then we do not have to do anything, since C will be density-1 by the
end of the construction, so by Lemma 2.4, if there is a reduction from C to A, then
there is a reduction that only outputs 1’s.
Next, we ask whether it is true that for every generic oracle (A), for A, ϕ(A)e is a
generic computation of A. If not, then we do not have to do anything, since C will
be a density-1 subset of A, so any generic computation of C that only outputs 1’s
must also be a generic computation of A.
If so, then there must be some number n, and some generic oracle, (A), for A
such that ϕ(A)e (n) = 1, but n /∈ B. Otherwise, A ≥g B via ϕe . (We are assuming
that ϕ(A)e halts on density-1, and only outputs 1’s, so the only thing that could
prevent it from being a generic computation of B is if it outputs a 1 when it is not
supposed to.)
By the usual argument, there must be infinitely many such n (because otherwise
we could modify ϕe to not halt on those n, which is not possible, because we know
thatA �g B.) So we can choose one such n that is larger than |�2e |, and extend our
approximation to C to be equal to B up to and including that n.
This ensures that it is not true thatA ≥g C via ϕe , since n /∈ C , but ϕ(A)e (n) = 1.
At stage 2e + 1, we have some finite approximation �2e+1 to C , and we wish to
extend it so that B does not generically reduce to C via ϕe .
The first thing we ask is whether ϕe is a more-is-more functional. If not, then
we do not need to do anything, since, by Lemma 2.10, if there is a reduction from
B to C , then there is a reduction via a more-is-more functional.
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Next, we ask whether it is true that for every generic oracle (B), for B, with
dom((B)) ⊆ B, ϕ(B)e is a generic computation of B. If the answer is “no,” then we
do not have to do anything: C will contain B, so every such generic oracle for B
will, in fact, also be a generic oracle for C . Thus if any of the ϕ(B)e is not a generic
computation of B, then B will definitely not reduce to C via ϕe .
If the answer is “yes,” then it must be true that for some n, ϕAe (n) �= B(n).

Otherwise,A ≥g B because for any (A), ϕ(A)e never gives incorrect outputs aboutB.
(Notice that any generic oracle for A actually is a superset of some generic oracle
for B, so since ϕe is a more-is-more functional, for any (A), the domain of ϕ

(A)
e is

density-1.)
Similarly, if we let A1 be the real that agrees with �2e+1 up to |�2e+1|, and agrees

with A after that, then there must also be some n /∈ B, such that ϕA1e (n) = 1
because otherwise A1 ≥g B. This is not possible, since A1 ≡g A. We extend our
approximation toC tomatchA until we have copied enough tomakeϕCe (n) �= B(n)
for some n.
This ensures that it is not true that C ≥g B via ϕe .
Once we have completed �-many stages, we will have ensured that, for each e, if

ϕe only outputs 1’s, then it does not witness A ≥g C , and also, if ϕe is a more-is-
more reduction, then it does not witness C ≥g B. Thus, by Lemmas 2.4 and 2.10,
A �g C and C �g B. Hence, because B ⊆ C ⊆ A, we have that B >g C >g A.
Let c be the generic degree of C . �
We can strengthen this result to split b over a.

Proposition 2.11. Let a and b be density-1 generic degrees. Assume b >g a. Then
there exist density-1 degrees c and d such that b >g c >g a, b >g d >g a, and
c⊕ d = b.
Proof. The basic idea of this proof is that we will mimic the previous construc-

tion, but we will ensure that C ∩ D = B, which will ensure that C ⊕ D ≡g B by
Lemma 2.7. We may also, if we desire, ensure thatC ∪D = A, which we will do for
symmetry, but this does not ensure that a is the infimum of c and d in the generic
degrees.
We will assume familiarity with the proof of Proposition 2.9.

As before, fix density-1 sets B ⊆ A in b and a respectively.
At stage 2e, we have some finite approximations �2e to C , and �2e to D, and

we wish to extend them so that C does not generically reduce to A via ϕe , and so
that B does not generically reduce to D via ϕe . (Notice here that we are satisfying
requirement 2e for C , but requirement 2e + 1 forD.)
We accomplish this by having C copy B until for some (A), ϕ(A)e incorrectly

computes some bit of C . We simultaneously have D copy A until for some (D),
ϕ(D)e incorrectly computes some bit of B.
(If one of the strategies satisfies its objective before the other one does, then it

continues to copy the set that it is copying until the other strategy has satisfied its
own objective.) If one of the strategies does not need to act, then both strategies only
wait for the one that needs to act to satisfy its objective. If neither strategy needs to
act, then we simply move on to stage 2e+1. (Again, this cannot be done uniformly,
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but that is fine, because we do not need either C or D to be computable from B,
but just for them both to be generically computable from B. This is guaranteed
since both C and D contain B.)
At stage 2e+1, we haveC copy A andD copy B in a manner analogous to what
we did at stage 2e.
At the end of the construction, we have that C ∩D = B, and so C ⊕ D ≡g B.
We have also forced that C �g B,D �g B,A �g C, and A �g D. So we may let c,
and d be the generic degrees of C , and D, respectively. �

2.2. Bounding Hyperarithmetic Reals. Now that we have established some tech-
niques for working with density-1 degrees, we seek to prove Theorem 2.15, which
says that for any real A, the Turing degree of A is hyperarithmetic if and only if
there is some density-1 B such that B ≥g R(A). For our purposes, the most useful
characterization of the hyperarithmetic reals is that the hyperarithmetic reals are
precisely the reals that can be computed from any sufficiently fast growing function.

Theorem 2.12 (Solovay [7]). Let A be a real. Then A is hyperarithmetic if and
only if there is a function f, and a Turing functional ϕ, such that for every function g
dominating f, ϕg is a computation of A. In this case, we say that f is a modulus of
computation for A.
(Here, g dominates f if and only if ∀n, g(n) ≥ f(n). In this case, we sometimes
write g � f.)
Here, A is hyperarithmetic if and only if there is a recursive ordinal α such that
A ≤T 0α , theαth jump of 0. Equivalently, as shown byKleene,A is hyperarithmetic
if and only if it is Δ11 (i.e., definable by both a Σ

1
1 formula and a Π

1
1 formula in the

language of second order arithmetic.) See [5] for a more thorough explanation
of the subject. In this paper, however, we will only need the characterization of
the hyperarithmetic reals in terms of fast growing functions, so we do not present
the other two characterizations in detail, and Theorem 2.12 may be treated as a
definition.
The easier direction of our argument will be showing that anything computable
from a sufficiently fast growing function, f, can be coded into a density-1 set, A, in
such a way that any generic oracle for A can recover a function that dominates f.

Proposition 2.13. Let A be any hyperarithmetic real. Then there is a density-1
real B such that B ≥g R(A).
The idea of this proof is that, if f is a fast growing function, we may define B so
thatB is density-1, but the density of B approaches 1 very slowly. If we do this, then
any generic oracle, (B), for B will have its density approach 1 at most as quickly as
B’s density does, and thus (B) will be able to compute a function that dominates
f. (B) can then use that function to compute A.

Proof. By Theorem 2.12, there is a function f, and a Turing functional ϕ such
that for any g, if ∀n g(n) ≥ f(n), then ϕg is a computation of A.
Let f, ϕ be as above. Replacing f with a faster growing function if necessary, we
may assume f is an increasing function. Let B be any density-1 real such that for
every n and m, if n < f(m), then |B∩n|

n < 1− 2−m. Because f(m) goes to infinity,
the density of B can be made to go to 1 while obeying this bound.
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Then, from any generic oracle (B) for B, we can define a function g, where g(m)
is the first number n such that we see that |B∩ dom((B))∩n|

n ≥ 1 − 2−m. For every m,
g(m) is defined because the density of (B) must approach 1, so there must be some

least n0 such that for all n1 ≥ n0, |B∩ dom((B))�n1 |
n1

> 1 − 2m, and so there must be
some n ≥ n0 where we see that |B∩ dom((B))∩n|n ≥ 1− 2−m. (Note that, since (B) only
provides an enumeration of its domain, the first such n that we find might not be the
smallest such n. Generic oracles sometimes take a long time to give their answers,
so we slowly increase the values of n that we check while waiting for the oracle to
converge on any inputs less than n.)
Since B ∩ dom((B)) ⊆ B, we have that for every m, g(m) ≥ f(m), so we may

compute A, and therefore compute (and generically compute) R(A) via n ∈ A ↔
ϕg (n) = 1. �
The other direction of our argument is more subtle, because, as we will see

in Proposition 2.17, there is no way to code an arbitrary density-1 real within a
modulus of computation.

Proposition 2.14. Let A be a real, and suppose B is a density-1 real such that
B ≥g R(A). Then A is hyperarithmetic.
Proof. By assumption, let A be a real, B a density-1 real, and ϕ a Turing

functional such that B ≥g R(A) via ϕ.
ByTheorem2.12,wemust prove that there is a functionf, and aTuring functional

� such that for any g, if g � f, then �g is a computation of A.
Let f be the function where f(m) is the smallest number such that ∀n >

f(m), |B∩n|
n > 1− 2−m. Then we claim that from any g that dominates f, we can

uniformly compute A.
The basic idea of the construction is that from any such g, we can get a lower

bound on the rate at which the density of B goes to 1. We then consider all
density-1 oracles whose density goes to 1 at least this fast. (We use g to build a
tree of possibilities for B that includes B, but also only includes paths that are
density-1.) Then, to get an answer from our collection of oracles we have themwork
together in pairs in a way that ensures that whatever answer we get is an answer that
has been approved by B.
Let g be a function such that for all m, g(m) ≥ f(m). Replacing g by a faster

growing function if necessary, we may assume that g is an increasing function.
Define Tg ⊆ 2<� to be the tree such that � ∈ Tg if and only if ∀n,m, if n > g(m),

and if n ≤ |�|, then #{k<n | �(k)=1}n > 1−2−m. The important facts aboutTg are that
every path throughTg is density-1,B is a path through Tg , and thatTg is uniformly
recursive in g.
The first fact holds because g provides a lower bound on the rate at which the

density of a path must go to 1, and the paths through Tg all respect that lower
bound. The second fact holds because, by the definition of f, B is a path through
Tf , and faster growing functions provide larger trees, not smaller ones. The third
fact holds because the definition is uniform in g (and the apparently unbounded
quantifiers over n and m are bounded by g(m) < n ≤ |�|. Since g is an increasing
function, a bound on g(m) is a bound on m.)
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To determine whether n ∈ A, we search for a real X0 such that for every X that
looks like it might be a path through T , if we let YX = X0 ∩ X , and let (YX ) be
the partial oracle for YX that only halts on the elements of YX , (and that halts
immediately if it halts,) then for some odd value of k, ϕ(YX )(2nk) halts, and such
that all of those computations (ranging over different reals X ) halt and give the
same output. Then n ∈ A if and only if that output is “1.”
Such an X0 exists because B is such a real. (If we let X0 = B, then for every X ,
if X is a path throughT , then (YX ) is a generic oracle forB, and so ϕ(YX ) must be a
generic computation ofR(A), and thus it must halt on 2nk for some odd k. This is
observed at some finite stage by the usual compactness argument — Every X must
either at some finite height fall out of T , or at some finite stage, with some finite
portion of itself, provide a correct answer by havingϕ(YX )(2nk) halt. Note that since
all of this happens at a finite stage, we do not need to search over all uncountably
many potential values ofX0, but rather only over all potential finite initial segments
of X0, so the search for X0 can be conducted effectively.)
Furthermore, the answer given when X0 is found must be correct, because B is a
path throughTg. ThusB is always oneof the eligible values forX , so for anyX0, (YB )
is a generic oracle for B. Thus, ϕ(YB ) cannot give any incorrect outputs forR(A).
Intuitively speaking, B is strong enough to force every X to give the correct vote,
so a consensus must eventually be reached. No X0 is able to force B to vote incor-
rectly, so any reached consensus must be a correct one. We use g only to build a
population of density-1 sets that includes B as a member. �
We may now conclude the main theorem of this section.
Theorem 2.15. A real A is hyperarithmetic if and only if there is a density-1 real
B such that B ≥g R(A).
Proof. This follows directly from Propositions 2.13 and 2.14. �
We also mention a somewhat useful corollary that we get from the proof of
Proposition 2.14.

Corollary 2.16. Let B be a density-1 real, and assume that there is a recursive
lower bound on the rate at which the density of B approaches 1. Then B is quasi-
minimal.
Here, a recursive lower bound is a recursive function h : N → [0, 1] such that
limn→∞ h(n) = 1 and for every n, and every k ≥ n, |B∩k|k ≥ h(n).
Proof. Let B and h be as in the statement of the corollary.
Let A be a real, and assume that B ≥g R(A).
Let f be the function where f(m) is the smallest number such that ∀n >
f(m), |B∩n|

n > 1− 2−m.
Let g be the function such that g(m) is the smallest n for which h(n) > 1− 2−m.
Then, g � f, so by the proof of Proposition 2.14, g computes A. Also, g is
recursive because h is recursive, and g is defined recursively in h. Therefore, A is
recursive, because it can be computed from a recursive function.
Thus, for any A, if B ≥g R(A), then A is recursive, and so B is quasi-
minimal. �
Before we move on to discuss questions of the structure of the generic degrees,
we call attention to the asymmetry in our proof of Theorem 2.15.
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Theproof of Proposition 2.13 shows that for anyf, there is a density-1 realB, such
that any generic oracle for B can uniformly compute a function that dominates f.
Thus, the entire content of f, as a modulus of computation, can be captured by a
density-1 real, as a generic oracle.
We show here that the converse is not true, so density-1 generic degrees, in some

sense, are more powerful than moduli of computation, but this cannot be seen from
the Turing degrees that they can compute.

Proposition 2.17. There exists a density-1 real,A, such that for everyf : N → N,
and every ϕ, there is a g � f such that ϕg is not a generic computation of A.
The authorwould like to thank the anonymous referee for providing the following

lemma, dramatically shortening the original proof.

Lemma 2.18. Let A be a density-1 real, f : N → N a function, and ϕ a Turing
functional such that for every g � f, ϕg is a generic computation of A. Then A has
an infinite Π11 subset.

Proof. Define

Bk = {x | (∀h : N → N with h �k= f �k)(∃� ∈ �<�)[� � h ∧ ϕ�(x) ↓= 1]}.
By � � h, we mean that for all n < |�|, �(n) ≥ h(n). Note that this is a Π11 set.
Also, Bk ⊆ A, because, if h = f, then by assumption there can be no � � h such
that ϕ� gives a false output. We now claim that there must be some k such that Bk
is infinite.
To show this, assume it is false. Then, for every x ∈ Bk+1 \ Bk , fix hx with

hx �k= f �k witnessing that x /∈ Bk . Let g be the supremum of f and these hx :
g(n) = max

({f(n)} ∪ {hx(n) | k ∈ N ∧ x ∈ Bk+1 \ Bk}
)
.

Note that this is the maximum of a finite set: By assumption Bn is finite, and if
x /∈ Bn then hx �n= f �n. Also, g � f.
We now prove that {x | ϕg (x) ↓= 1} ⊆ B0.
To see this, assume that ϕg (x) ↓= 1. Let �0 be the initial segment of g that

was queried in the computation, and let k0 = |�0|. Then x ∈ Bk0 , because ∀h :
N → N with h �k0= f �k0 , �0 � h. Now, assume k0 �= 0, and assume x /∈ Bk0−1.
By construction, g � hx , and so (�� � g)[ϕ� (x) ↓= 1]. This is a contradiction,
because �0 � g.
Thus, {x | ϕg(x) ↓= 1} is finite, and so ϕg cannot be a generic computation

of A, because A is density-1. This provides a contradiction, and so we have that
there must be some k such that Bk is an infinite Π11 subset of A. �
To prove Proposition 2.17, it now suffices to find a density-1 setAwith no infinite

Π11 subset.

Proof. Let Xe be the eth Π11 set. Let xe be the smallest element of Xe that is
greater than 2e . Let A = N \ {xe}.
Then A is density-1 because it is missing at most e elements less than 2e ,

and it has no infinite Π11 subset because if Xe is infinite, then xe exists, and
xe ∈ Xe \ A. �
Note that this A has a computable lower bound on the rate at which its density

goes to 1. (It is missing at most e of its first 2e elements.) Thus, by Corollary 2.16,
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we have thatA is quasi-minimal. In particular, this means that a generic degree can
avoid having a modulus while also avoiding having any actual Turing information
in it.
We now move on to discuss the structure of the generic degrees as a whole, and
to see how questions about the density-1 degrees fit in to the larger picture.

2.3. Structure of the generic degrees. The main purpose of this section is to
address the following two questions about generic degrees.

Question 2.19. Do there exist minimal degrees in the generic degrees?

In other words, is there a generic degree a such that a >g 0, and for all generic
degrees b, if a ≥g b >g 0, then a = b?
Question 2.20. Do there exist minimal pairs in the generic degrees?

In other words, do there exist generic degrees a and b such that a >g 0, b >g 0,
and for all generic degrees c, if a ≥g c, and b ≥g c, then c = 0?
To aid in our discussion, we also present an open question concerning the degrees
of the density-1 sets, which will turn out to be relevant to Questions 2.19 and 2.20.

Question 2.21. Is it true that for every nonzero generic degree b there exists a
nonzero density-1 generic degree a such that b ≥g a?
We will see that a “yes” answer to Question 2.21 would imply that the answer to
Question 2.19 is no, and that a “no” answer to Question 2.21 would imply that the
answer to Question 2.20 is yes.
Beforewe do this, we give a brief overview onwhat is known about the degrees that
have a density-1 degree below them. In a previous paper [2], we showed that there
are no minimal pairs for generic computation (not generic reduction.) Translated
into the language of generic reduction, this can be phrased as follows.

Theorem 2.22 (I. [2]).
Let B,C be nonrecursive reals. Then R(B) and R(C ) do not form a minimal pair
in the generic degrees.

An analysis of the proof, however, yields a stronger result that is also more
relevant to the current discussion.

Proposition 2.23 (I. [2]).
Let B,C be nonrecursive reals. Then there is an A such thatA is density-1,A is not
generically computable,R(B) ≥g A, andR(C ) ≥g A.
In fact, an easy generalization of the argument from [2] can be used to strengthen
Proposition 2.23 by replacing B,C with an arbitrary finite set of nonrecursive reals.
Proposition 2.23 gives us an immediate corollary concerning the quasi-minimal
generic degrees.

Corollary 2.24. Let b be any nonquasi-minimal generic degree. Then there is a
density-1 quasi-minimal generic degree a such that b ≥g a.
This, in particular, shows that a counterexample to Question 2.21 would
necessarily be a quasi-minimal generic degree.

Proof. Let b be a nonquasi-minimal generic degree. Let B be a noncomputable
real such that b ≥g R(B).
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Then, by a result of classical recursion theory,B is half a minimal pair, so there is
a nonrecursive realC such thatB andC form a minimal pair in the Turing degrees.
(For any X , if B ≥T X and C ≥T X , then X is recursive.)
ByProposition 2.23,we can choose a density-1 realA such thatA is not generically

computable, R(B) ≥g A, and R(C ) ≥g A. Let a be the generic degree of A. Then,
b ≥g R(B) ≥g a, and also a is density-1. It remains to show that a is quasi-minimal.
If not, then fix X nonrecursive such that R(X ) ≤g A. but then, R(B) ≥g A ≥

R(X ), and alsoR(C ) ≥g A ≥ R(X ). SinceR induces an embedding of the Turing
degrees into the generic degrees, we get thatB ≥T X andC ≥T X . This contradicts
that B and C form a minimal pair in the Turing degrees. �
Thus, there are a fair number of quasi-minimal generic degrees, and, in fact, many

of them are density-1. Next, we indicate how a resolution to Question 2.21 would
allow us to resolve either Question 2.19 or Question 2.20.
Showing that a positive resolution to Question 2.21 gives a negative resolution to

Question 2.20 is the easy half, since it is a direct application of Proposition 2.9.

Proposition 2.25. If for every nonzero generic degree b there exists a nonzero
density-1 generic degree a such that a ≤g b, then there are no minimal degrees in the
generic degrees.

Proof. Let b be a generic degree, and assume that there exists a nonzero density-1
generic degree a such that a ≤g b.
Then, 0 is a density-1 generic degree (because N is generically computable, and

density-1). So by Proposition 2.9, there exists a density-1 generic degree c, such that
a >g c >g 0. Thus, b >g c >g 0, and so b is not a minimal generic degree. �
The other half is slightly more subtle, but the argument is basically a modification

of the usual construction of a minimal pair in the Turing degrees, together with the
realization that a counterexample to Question 2.21 would have exactly the property
that we require in order to adapt the construction to our situation.

Proposition 2.26. If there exists a nonzero generic degree b such that there is no
nonzero density-1 generic degree a with a ≤g b, then b is half of a minimal pair in the
generic degrees.

Proof. Let B ∈ b. We will build a real C such thatR(C ) and B form a minimal
pair for generic reduction, or in other words, so that if B ≥g D, and C generically
computes D, then D is generically computable.
We build C by finite approximation.
We have one stage for each e, and one stage for each 〈i, j〉.
At stage e, we ensure thatC is not computed by ϕe in the usual manner. (We have

a � which is our current approximation toC . We ask whether there exists an n > |�|
such that ϕe(n) ↓, and if there does, then we extend � so that �(n) �= ϕe(n). If there
does not exist such an n, then in particular ϕe is not total, so we do not need to do
anything to ensure that C is not computed by ϕe .)
At stage 〈i, j〉, we have an approximation � for C , and we need to ensure that if

D generically reduces to B via ϕi , and if D is generically computable from C via
ϕj , thenD is generically computable. (As a reminder, being generically computable
from C is equivalent to being generically reducible toR(C ).)
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The first thing that we ask is whether there is any extension �̃ of �, and any generic
oracle (B) for B such that for some n, ϕ(B)i (n) �= ϕ�̃j (n). If there is, then we extend
� to �̃, thereby ensuring that ϕCj cannot be a generic computation of any real that
generically reduces to B via ϕi . (This is because neither computation is allowed to
make any mistakes, and so in particular, if ϕ(B)i , and ϕ

�̃
j are trying to be generic

computations of the same real, then they are not allowed to disagree with each other
anywhere.)
If there is no such �̃, then we ask whether there is any D such that D generically
reduces to B via ϕi . (In other words, we ask whether it is true that for every generic
oracle (B), for B, dom

(
ϕ(B)i

)
is density-1, and whether it is true that the ϕ(B)i all

agree wherever they halt. If either of these is false, then there cannot be any D that
generically reduces to B via ϕi .) If there is no such D, then, again, we do not need
to do anything at stage 〈i, j〉.
If there is no such �̃, and if there does exist such a D, then we may generically
compute any D that generically reduces to B via ϕi , and that also is generically
computable from C via ϕj by the following algorithm. The basic idea of the algo-
rithm will be that it halts on a subset of the halting set of ϕi , and gives only the
outputs given by ϕj applied to extensions of �.
Now, let A be the union, over all generic oracles, (B), for B, of the domains
of the ϕ(B)i . Then, for each (B), dom

(
ϕ(B)i

)
is a density-1 set. Also, it is clearly a

subset of A, and so the algorithm that enumerates the domain of ϕ(B)i is a generic
computation of A. Thus, A ≤g B.
Thus, by the hypothesis on B, A is generically computable (since it is a density-1
set, and B ≥g A), and so A contains a density-1 r.e. subset,W . (By the comment
after Lemma 2.4, a density-1 set is generically computable if and only if it contains
a density-1 r.e. subset.)
Now, we define � so that �(n) ↓ if and only if n ∈ W and there exists a �̃
extending � such that ϕ�̃j (n) ↓. In this case, we let �(n) = ϕ�̃j(n) for the first such
�̃ that we find. The domain of � is density-1 because it is the intersection of two
density-1 sets.
It is a generic computation of any D that we are concerned with, because every-
where that � halts, there is some (B) such that ϕ(B)i halts, and furthermore � gives
the same output as ϕ(B)i because it gives the same output as ϕ�̃j for some �̃ extend-
ing �. By assumption, we could not extend � to produce a disagreement between
these two. �
The answer to Question 2.21 must either be “yes,” or “no,” and so we may
combine Propositions 2.25 and 2.26, to conclude that if there exist minimal generic
degrees, then there exist minimal pairs of generic degrees. In fact, any minimal
generic degree is half of a minimal pair in the generic degrees. In the Turing degrees,
this follows from the fact that any nonzero degree has another degree that is Turing
incomparable to it. A result of Dan Turetsky (personal correspondence) shows that
this also holds in the generic degrees, and moreover that it can be witnessed by a
density-1 degree.

Proposition 2.27 (Turetsky). IfA is not generically computable, then there exists
a density-1 real B that is incomparable to A under ≤g .

https://doi.org/10.1017/jsl.2014.77 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2014.77


DENSITY-1 DEGREES 1307

The proof is analogous to the proof that if B is 1-generic relative to A, then B
is incomparable to A. Here, we use a forcing consisting of an initial segment and
a density restriction. The notation of forcing will be suppressed in order to avoid
overburdening the word “generic.”
Proof. We build B by finite approximation. At stage s , we will have an initial

segment �s ≺ B, and a restriction that for n ≥ |�s |, |B∩n|n ≥ 1− 2−n.
At stage 2e, we diagonalize against A reducing to B via ϕe . We first ask whether

there is some n, some � � �2e , and some partial oracle (�) for a real extending
� such that � obeys the density restriction imposed at stage 2e, and such that
ϕ(�)e (n) ↓�= A(n). If there is such a �, we extend �2e to that �.
If there is no such �, then we claim that we have already forced that A does

not generically reduce to B via ϕe . This is because we may attempt to generically
compute A by searching over all (�) extending � and obeying the density restriction
such that ϕ(�)e ↓. Whenever we find such a (�), we halt and give the same output
as ϕ(�)e . By assumption, none of these are incorrect, and so, because A is not
generically computable, it must be true that our computation does not halt on
density-1. In particular, for any B � �, and for any generic oracle (B) for B, ϕ(B)e
does not have density-1 domain.
In either case, we then proceed to extend our initial segment with a collection of

1’s that is long enough to be able to impose the next restriction on the density of B.
At stage 2e + 1, we diagonalize against A generically computing B via ϕe . Note

that if we ensure that A does not generically compute B, then this implies that B
does not generically reduce to A. If dom(ϕAe ) is finite, then A does not generically
compute anything via ϕe . If dom(ϕAe ) is infinite, then there is an n that is large
enough that we can extend �2e+1 to a � such that �(n) �= ϕAe (n), and such that �
obeys the density restriction at stage 2e + 1.
Again, we extend by a sequence of 1’s that allows us to impose our next density

restriction. �

§3. Π11-completeness. Wefinish by proving that generic reduction isΠ11-complete.
The definition we use for generic reduction is intrinsically Π11, since it involves a

universal quantifier over all generic oracles. This makes it very difficult work with,
since the techniques of recursion theory are often poorly suited to dealing with
quantifiers over uncountable sets. Indeed, this is one of the primary reasons that
most of our work concerns the generic degrees of density-1 sets — it is somewhat
easier to work with subsets of a set than with arbitrary partial oracles.
By showing that≥g isΠ11-complete,we show that there is noway for this quantifier

over generic oracles to be replaced by quantifiers over naturals, and that generic
reduction is, in that sense, as complicated as it seems.
We show that≥g is Π11-complete by showing that from any tree T ⊆ �� , we can

use the jump of that tree to uniformly find A and B such that A ≥g B if and only
if T is well-founded. This gives a Borel reduction of well-foundedness to generic
reducibility, proving that generic reducibility is Π11-complete.
Theorem 3.1. There exists an algorithm which, given a tree T ⊆ �� , uses T ′ as

an oracle to compute a pair of reals A and B such that A ≥g B if and only if T is
well-founded. Thus, ≥g is Π11-complete.
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The proof will consist of three parts.
In the first part, we describe the intended reduction from A to B. The reduction
will have the property that an infinite path through T corresponds to a method of
creating a generic oracle forA that does not generically compute B via the intended
reduction. Every node of the path will be able to be translated into another drop in
the density of the domain of the computation without a corresponding drop in the
density of the domain of the oracle.
In the second part, we build A and B to ensure that no reduction other than
the intended reduction will work. During this second part, we do not need to work
effectively, but rather we have access to T ′.
Finally, we verify that our construction works. If T is well-founded, this will
be clear, because the intended reduction will function as it is designed to. If T is
ill-founded, we will need to show that for any potential generic reduction ϕ, there is
a generic oracle for A that either makes ϕ give a false answer somewhere, or makes
dom(ϕ) not density-1. During this third part, we are not forced to work effectively
in anything, and indeed, the generic oracles that we build would be quite difficult
to compute.
The proof is somewhat bogged down in notation, but during the proof, we will
attempt to explain the notation as it appears.

Proof. Part 1.

Let T ⊆ �� .
For each � ∈ T , there will be a single bit b� ∈ {0, 1}.
We will code b� into A in a manner so that any partial oracle for A which cannot
recover b� must have its density drop below 1− 2−|�|−2 at least once as a result.
We will code b� into B in a manner so that if a computation cannot compute b� ,
then the domain of that computation will have its density drop below 12 as a result.
The intention of this is that if there is an infinite path P through T , we will be
able to produce a generic oracle for A that omits b� for every � on P, and that
therefore cannot generically compute B, because it is missing infinitely many pieces
of information, and each missing piece of information forces there to be another
instance of the computation’s domain’s density dropping below 12 .
Unfortunately, this creates a problem. Even if the tree is well-founded, there
could theoretically be a generic oracle for A that chooses a collection of �’s of
increasing lengths from different paths of T , and omits each of the corresponding
b� ’s. Potentially this might be unable to generically compute B even if the tree is
well-founded.
For this reason, we need to also introduce a method for propagating information
down the tree: if � ≺ �, and b� is known, then it should be easy to deduce what b�
is. That way, removing the knowledge of an entire branch will still have the original
desired effect, but removing bits of information fromdifferent brancheswill bemuch
more difficult than previously.
However, if we want to be able to remove information along a path, we need
to make sure that our procedure for propagating information downward along T
does not also cause information to propagate upward along T . Else, if Q is a path
through T , � ≺ �, � ≺ Q, and � ⊀ Q, then b� could be deduced from b�, so we
would not be able to selectively remove only the information along Q from A.
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For each � ∈ T , for each m ≤ |�|, we create a procedure to deduce b�
from 〈b�1 , . . . , b�m 〉, where �0 = �, and �i+1 is the immediate predecessor of �i .
This procedure is coded in a way so that if a partial oracle for A does not know the
procedure, then its density must drop below 1− 2−|�m|−2 as a result. The procedure
is also coded in a way so that knowing b� and knowing the procedure does not
necessarily allow us to deduce any of the b�i .
Note that in the degenerate case where m = 0, this will be our desired coding of

b� into A with density 1− 2−|�|−2.
The actual coding is as follows:

Consider the sets Pi = {n ∈ N | 2i ≤ n < 2i+1}.
In B, for each � ∈ �� , uniformly choose an i , and code b� into Pi . (If n ∈ Pi ,

then n ∈ B ↔ b� = 1.) If � /∈ T , then b� = 0.
This will ensure that a generic computation of B must compute all but finitely

many of the b� , since omitting a finite number of Pi is only a finite omission, but
no density-1 set can avoid infinitely many Pi .
We define A to be equal to Ã⊕R(T ), where Ã is built as follows.
Uniformly choose a Pi for each sequence 〈�,m, �, j, k〉 such that � ∈ ��,m ≤

|�|, � ∈ 2m, j ∈ {0, 1}, k ∈ N. Call itP�,m,�,j,k . Then, to deduce b� from the sequence
〈b�1 , . . . , b�m 〉, we use the following formula.

b� = j ⇐⇒ ∃n∃k n ∈
(
Ã ∩ P�,m,〈b�1 ,...,b�m 〉,j,k

)

For a fixed value of 〈�,m, �〉, the set of all P�,m,�,j,k is known as the deduction
procedure coding b� from itsm+1 predecessors. The deduction procedure operates
under true assumptions if � = 〈b�1 , . . . , b�m 〉, and it operates under false assumptions
if � �= 〈b�1 , . . . , b�m 〉.
The idea here is that knowing 〈b�1 , . . . , b�m 〉 will direct you to the correct place

to look for the value of b� . Once you know where to look, you simply search until
you find an answer. If you try to search for the value of b� using incorrect values for
〈b�1 , . . . , b�m 〉, then you might get the correct answer, you might get the incorrect
answer, and you might get no answer. Because of this, knowing b� gives little to no
information about 〈b�1 , . . . , b�m 〉. However, if we wish to remove a deduction pro-
cedure from an oracle, we only need to remove the place where it actually gives an
answer, i.e., the last 2i

2|�|−m−1 many elements ofPi for some i . The size is calibrated so
that removing a deduction procedure whose shortest element is � is just as difficult
as removing the knowledge of what b� is.
Given that A and B are each built in the manner just described, a generic oracle

for A is able to generically compute B by the following algorithm.
Let (A) be a generic oracle for A.
To determine whether or not n ∈ B, we first determine which Pi n is in. Then we

determine which b� is coded into that Pi . Then, since A ≥g R(T ), we can use (A)
to determine whether or not � ∈ T . If no, then n /∈ B. If yes, then we attempt to
determine the value of b� inductively as follows:
If there is some m ≤ |�| such that we can determine the values of b� for �

ranging over them immediate predecessors of � (this condition is vacuously met if
m = 0), and if (A) also includes the value of Ã in a location where the corresponding
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deduction procedure has a 1, then we determine the value of b� to be the output
(the j value) of that deduction procedure.
If T is well-founded, then for any generic oracle (A), for A, there will only be
finitely many � such that (A) cannot determine the value of b� . The proof is as
follows.
Let (A) be a generic oracle for A. Assume there are infinitely many � such that
(A) cannot determine the value of b� . Let T̃ ⊆ �� be the smallest subtree of T
containing all of the � such that (A) cannot determine the value of b� . Then, T̃ is
well-founded, because it is contained in T , which is well-founded. Also, it is infinite,
by assumption. Thus, it must have at least one node where it branches infinitely.
Call the first such node �0.
From each of those countably many branches, choose a minimal node � such
that the generic oracle cannot determine the value of b� . (For i > 0, let �i be an
extension of the ith branch of T̃ such that (A) cannot determine the value of b�i ,
but such that for any �, if �0 ≺ � ≺ �i , then (A) can determine the value of b�.)
Then,we claim that the domain of (A)must have its density dropbelow1−2−|�0|−3

infinitely often.
The reason for this is that, by assumption on �i , we know that the generic oracle
can determine the values of the b� for all of the � that satisfy �0 ≺ � ≺ �i . Thus,
since the first of those � has length |�0|+ 1, the deduction procedure that allows us
to determine b�i from those b� is coded in a way so that if the generic oracle cannot
recover that deduction procedure, then its density must drop below 1− 2−|�0|−3.
Each of these deduction procedures is coded in a different place, so the domain of
the generic oracle has its density drop below 1− 2−|�0|−3 infinitely often. Therefore,
the domain is not density-1, so (A) is not a generic oracle, providing a contradiction.
Thus, if T is well-founded, then any generic oracle can (uniformly) recover all
but finitely many of the b� , and therefore all but finitely many of the bits ofB. Thus,
A ≥g B.

Part 2.

In this part, we construct Ã (and therefore A, and B, where these are defined
according to the construction outlined in Part 1). While we do this, we ensure that
if T is ill-founded, then A �g B.
If T is ill-founded, then the intended reduction will not work as a generic reduc-
tion. Thus, the main purpose of this section will be ensuring that any reduction
that “cheats” infinitely often occasionally makes mistakes, and therefore cannot be
used to generically reduce B to A, since a generic reduction is never allowed to
give incorrect outputs. (Here, “cheating” simply means guessing at the values of b�
without having solid evidence as to why those guesses should be correct.)
The construction is as follows.
At the beginning of stage s , there is some number f(s) such that we have deter-
mined the values of b� for every � such that |�| < f(s), and for no other �. For
every � with |�| < f(s), and every deduction procedure for computing b� , we have
determined the values of Ãon the entire deduction procedure. (That is, if |�| < f(s),
then we have determined whether or not n ∈ Ã for every n in any P�,m,�,j,k .) We also
have some finite set of numbers n such that we maintain a restriction saying that for
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any n in that set, any deduction procedure that operates under false assumptions
about any b� with |�| = n does not produce any answers. We have not determined
the values of Ã on any other deduction procedures.
At this point, we have one single functional, ϕs , that we need to diagonalize

against. This means that we either must ensure that there will be some generic ora-
cle (A) for A such that ϕ(A)s does not have density-1 domain, or we must ensure
that there is some generic oracle (A) forA such that ϕ(A)s incorrectly computes B at
some number.
The first question that we ask is whether there any way of extending our

definition of Ã to allow ϕ(A)s produce an incorrect output about B for some
partial oracle (A), for A. (We remind the reader that T is fixed, and B depends
entirely on A, so determining the value of Ã also determines the values of A
and B, and so determines whether or not ϕAs produces any incorrect computations
for B.)
If we find such an extension, thenwemake that extension, and this guarantees that

when we are done constructing Ã, (and therefore A and B,) it will not be true that
A ≥g B via ϕs . After that, we extend Ã arbitrarily in order to meet the hypotheses
on what the construction should look like at the beginning of a stage. (This involves
finding the largest number c such that b� is defined for a � with |�| = c, or such
that some deduction procedure for such a � is defined somewhere, and extending
the definition of Ã arbitrarily to all other b� ’s and deduction procedures for b�’s of
equal or lesser length.)
If ϕAs cannot be made to produce any incorrect computations for B, then we

extend our definition of Ã such that for every � with |�| = f(s), b� = 0. More
importantly, we restrict every deduction procedure that computes such a b� and
that operates under false assumptions to not give any answers. (i.e., to be empty.)
We allow all the correct deduction procedures to give correct answers immediately.
Finally, we insist that for the rest of the construction, for every deduction proce-
dure that operates under a false assumption about the value of b� for any � with
|�| = f(s), that deduction procedure does not give any answers.
This completes the construction. (The second option will certainly happen

infinitely often, and so Ã will be defined everywhere after � many steps.)

Part 3.

Finally, we prove that if T is ill-founded, then A �g B. To do this, we must
demonstrate that for any ϕ that had not been able to be extended to make a false
claim about B, there exists a generic oracle, (A), for A such that ϕ(A) does not have
density-1 domain. (At the end of Part 1, we verified that if T is well-founded, then
A ≥g B. Also, if ϕ had been able to be extended to make a false claim about B,
we would have done that, and then it would certainly not witness A ≥g B.)
We remind the reader that in this part of the proof, we are allowed to work omni-

sciently, and in particular we will be allowed to know every choice that was made
in Part 2, and also to know an example of an infinite path through T .
Assume T is ill-founded. Let Q be an infinite path through T . Assume that at

stage s of the construction ϕAs could not have been made to produce any incorrect
computations for B.
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Let s0 = s , and for each i > 0, let si be the ith stage t after stage s such that ϕAt
was not able to be made to produce any incorrect computations for B at stage t.
Let �i be the initial segment of Q such that |�i | = si .
Now, we define (A) to be the oracle for A that does not include the answers
(the 1’s) from any of the deduction procedures used for deducing b�0 , or from any of
the deduction procedures used for deducing b�i , unless those deduction procedures
have sufficiently large m values that they depend on b�i−1 .
Then we claim that (A) is a generic oracle for A, and that ϕ(A)s does not have
density-1 domain.
To show that (A) is a generic oracle for A, we show that the set of places where
(A) does not give answers is density-0.
There are finitely many (in fact, at most one) �i of each possible length. Also, for
each length n, there is at most one deduction procedure whose answers we erased
whose shortest queried string has length n. This is because only the correct deduction
procedures give any answers that need to be erased, andbecauseweonly erase deduc-
tion procedures that do not require knowledge of the previous b�i . Therefore the
pieces of information thatwe excluded from (A) were coded into smaller and smaller
portions of the corresponding Pj . Thus, for every m, there is a last j such that the
last 12m of Pj was excluded from (A), and after that point, the density of the domain
of (A) never again drops below 1

2m−1 . (Also, it goes above
1
2m−1 by the end of Pj+1.)

Finally, we show that ϕ(A)s does not give outputs in any of the locations where the
b�i are coded in B.
The proof of this fact is that, for any i , any finite subset of the information in
(A) is a partial oracle that could be extended to a partial oracle for a different set
A1 which would also be consistent with the requirements imposed at the beginning
of stage s of the construction, and such that the value of b�i in A1 was different
from the value of b�i in A. (This statement will be proved by induction shortly.)
Therefore, if ϕ(A)s gives any outputs on any of the b�i , then at stage s , we would
have been able to extend our condition on Ã to a condition specifying enough
of A1 to cause ϕs to produce an incorrect computation for B, contradicting our
assumption on ϕs .
We conclude our proof by proving, by induction on i , that any finite subset of the
information in (A) is a partial oracle that could be extended to a partial oracle for
a different set A1 which would also be consistent with the requirements imposed at
the beginning of stage s of the construction, and such that the value of b�i in A1
was different from the value of b�i in A.
Recall that by the construction of Ã, and by the assumption on �i , for every i ,
b�i = 0
Case 1: i = 0.
Assume that we have seen a finite number of the pieces of information in (A).
Then we have also seen nothing but 0’s from all of the deduction procedures for
computing b�0 . At stage s , the value of b�0 had not yet been decided, and there were
no conditions yet on the deduction procedures for computing b�0 , except for the
requirements that certain deduction procedures that operated under false assump-
tions were not allowed to give any outputs. Furthermore, none of the deduction
procedures operating under false assumptions about b�0 ever give answers.
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Therefore, it would be consistent with what we have seen so far of (A) and
with the requirements imposed at the beginning of stage s to have b�0 equal to 1,
and then to make the deduction procedures computing b�0 output 1, and to add
correct deductions for future elements that operate under the assumption that
b�0 = 1.

Case 2: i > 0.

Assume again that we have seen a finite number of the pieces of information in
(A). Then, again, we have also seen nothing but 0’s from all except a few of the
deduction procedures for computing b�i . Among these deduction procedures, the
only ones from which we have seen any 1’s are those which operate under true
assumptions, and which also depend on the value of b�i−1 .
By induction, it is consistent (both with what we have seen of (A), and with the

condition on the construction at stage s) that b�i−1 could have the opposite of its
actual value. Thus, it would be consistent to fill in A1 to have the incorrect value for
b�i−1 , and then to also have the incorrect value for b�i , and then to have the “rel-
evant” deduction procedure then place 1’s into the next relevant location. (Here,
relevant means operating under the assumptions that are true ofA1, but potentially
false of A0.)
Again, this does not contradict any of our requirements, since none of the deduc-

tion procedures that use b�i = 1 have given any outputs yet, so the ones that operate
under assumptions that are correct in A1 can still be made to give outputs which
are correct in A1.
This concludes our proof ofΠ11-completeness of ≥g . �
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