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Abstract

Introduction: Approximate Entropy is an extensively enforced metric to evaluate chaotic
responses and irregularities of RR intervals sourced from an eletrocardiogram. However, to
estimate their responses, it has one major problem – the accurate determination of tolerances
and embedding dimensions. So, we aimed to overt this potential hazard by calculating numer-
ous alternatives to detect their optimality in malnourished children. Materials and methods:
We evaluated 70 subjects split equally: malnourished children and controls. To estimate
autonomic modulation, the heart rate was measured lacking any physical, sensory or pharma-
cologic stimuli. In the time series attained, Approximate Entropy was computed for tolerance
(0.1→0.5 in intervals of 0.1) and embedding dimension (1→5 in intervals of 1) and the statistical
significances between the groups by their Cohen’s ds and Hedges’s gs were totalled. Results:
The uppermost value of statistical significance accomplished for the effect sizes for any of the
combinations was −0.2897 (Cohen’s ds) and −0.2865 (Hedges’s gs). This was achieved with
embedding dimension= 5 and tolerance= 0.3. Conclusions: Approximate Entropy was able
to identify a reduction in chaotic response viamalnourished children. The best values of embed-
ding dimension and tolerance of the Approximate Entropy to identify malnourished children
were, respectively, embedding dimension= 5 and embedding tolerance= 0.3. Nevertheless,
Approximate Entropy is still an unreliable mathematical marker to regulate this.

The RR intervals derived from an electrocardiographic trace fluctuate in an irregular and often
chaotic manner.1 Historically, time series assessments have stimulated academics to examine
this niche.2,3 The assessment of RR intervals is called Heart Rate Variability, a method for meas-
uring the autonomic nervous system and, hence, its autonomic dysfunction. As a technique, it is
simple, dependable and cheap and an important technique for arbitrating physiologically
healthy and/or pathological conditions.4–6 Other techniques such as the sympathetic Skin
Response are an alternative but unresponsive.7,8 Quantitative Pupillography is complicated
and expensive.9 Throughout medical dynamical systems, high chaotic values may designate
healthy physiological status but losses could be pathological.10,11

Heart rate variability can be computed by an algorithm described by Pincus (1991), hence,
Approximate Entropy.12–15 The benefits of Approximate Entropy include low computer proc-
essor demand. It is reliable with small sample lengths (RR< 50). Similarly, it can accurately
decipher statistics even with considerable signal noise. Nonetheless, this technique has a crucial
shortcoming in that its accuracy is very reliant on the following parameter choices – tolerance,
r and embedding dimension, M. Approximate Entropy is as such difficult to interpret.

In this study, we systematically applied different combinations of embedding tolerance, r, and
embedding dimension, M, in normal subjects and compared them to malnourished children. The
relationship between malnourishment and complexity metrics is useful in the risk assessment of
dynamical diseases associated with the illness and can support the treatment of these children.
The crucial purpose is to enforce embedding tolerance, r, and embedding dimension, M, groupings
to acquire their optimum, hence, achieving the greatest statistical significances between the groups.

Materials and methods

Population and sample

The malnourished group entailed children not more than −2 in z-score in relative to the height
for the age, according to the criteria for age and gender by the World Health Organization.16
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The eutrophic group consisted of children with z scores ≥−2
and below þ3, also consistent with World Health Organization
standards. Excluded from this study was obese children (z-score
> þ3) or who presented with no less than one of the subsequent
criteria: children who were taking medications that would influ-
ence autonomic activity of the heart, such as propranolol and
atropine. Also omitted were children who presented with infec-
tions, metabolic diseases or cardiorespiratory system diseases,
which affected their cardiac autonomic control.

The subjects and their parents/guardians were duly well-versed
as to the procedures and objectives of the study. After agreeing to
participate, the parents/guardians signed terms of informed
consent. All procedures received approval from the ethics commit-
tee of the Institution (Process nº 275.310). Ethical Committee in
Research from Sao Paulo State University (UNESP), Marilia, SP,
Brazil.

Experimental protocol

Before starting experimental procedures, information was
noted on age, gender, mass and height. The anthropometric
measurements were undertaken following the recommendations
of Lohman et al.17 Mass was measured using a digital scale
(Filizzola PL 150, Filizzola Ltda., Brazil) with a precision of
0.1 kg, with the children barefoot and wearing only lightweight
clothing. Height was measured via an infantometer with an accu-
racy of 0.1 cm. The data collection was achieved in a laboratory
with temperature between 21°C and 23°C and relative humidity
between 40% and 60%. Data sets were logged between 14:00 and
17:00 to minimise the circadian rhythm interference. After the ini-
tial evaluation, all procedures required for data collection were
explained on an individual basis. Children were told to continue
at rest and avoid talking during the data collection.

Next, the heart monitor belt was placed over the thorax, aligned
with the distal third of the sternum. The Polar S810i heart rate
receiver (Polar Electro, Finland) was located on the wrist.18–21

The equipment had been previously validated for monitoring
beat-by-beat heart rate and the use of these data for Heart Rate
Variability analysis in children and adults.20 The children were
positioned in the dorsal decubitus with a cushion and remained
at rest with spontaneous breathing for 20 minutes. After data col-
lection, the child was discharged. The Heart Rate Variability
behaviour pattern was logged beat-by-beat throughout the moni-
toring process at a sampling rate of 1 kHz. After the digital and
manual filtering for the elimination of premature ectopic beats
and artefacts, 1000 uninterrupted RR intervals were required for
data analysis. Only series with >95% sinus rhythm were included
in this study.22

Mathematical analysis

Approximate entropy

Techniques based on entropy are routinely used in medical signal
and data analysis.14,23 Approximate Entropy13,15,24,25 is a process

that evaluates the level of regularity and the unpredictability of
changes over time series. Approximate Entropy is the logarithmic
ratio of component-wise matching sequences from the signal
length, N. Other parameters include r tolerance andM the embed-
ding dimension. For instance, with studies assessing Heart Rate
Variability in obese children,14 r is set to 0.2 and this represents
0.2 or, 20% of the standard deviation of the data sets RR intervals.
A value of zero for Approximate Entropy would indicate a totally
foreseeable series. Approximate Entropy increases with increasing
chaotic response and irregularities. Further information regarding
Approximate Entropy and it computation is found in the Kubios
HRV® Manual.26

Statistical analysis

At this point, we enforced various effect sizes to study the impli-
cations of the data. We did not evaluate normality27–29 and so did
not enforce the one-way analysis of variance,30 or Kruskal–Wallis31

test as in previous studies. These two statistical tests are unable to
discriminate adequately between the small changes in significance
apparent here. Therefore, we examine the significances using their
effect sizes.32–34.

Cohen’s ds35 is the foremost subcategory of effect sizes.

Cohen0s ds ¼
X1 � X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn1�1ÞSD2
1þðn2�1ÞSD2

2
n1þn2�2

q

It refers to the standardisedmean difference between two groups of
independent observations for the suitable sample. It is founded on
sample means and provides a biased estimate of the effect size.
Throughout the mathematical algorithm for Cohen’s ds, the
numerator is the variation between the means of two groups of
observations. The denominator is the pooled standard deviation.
These differences are squared. Next, they are summed and divided
by the number of observations minus one for bias, in the estima-
tion of the variance. To conclude, the square root is imposed on the
denominator.

Hedges0s gs ¼ Cohen0s dsx 1� 3
4ðn1 þ n2Þ � 9

� �

Hedges’s gs is unbiased.36 The change between Cohen’s ds and
Hedges’s gs is very small in sample sizes >20. As regards, the
Cohen’s ds and Hedges’s gs effect sizes’ designated ranges are
0.01 > very small effect; 0.20 > small effect; 0.50 >medium effect;
0.80 > large effect. These are the benchmarks from Cohen35 and
Sawilowsky.37

Results

A total of 70 volunteers of both genders between three and five
years of age were split equally. Characteristics of the population
are given in Table 1.

Table 1. Description of the characteristics of the population by group, gender, age (years), weight (kg), height (cm) and z-score (mean ± SD)

Group Gender Age (years) Weight (kg) Height (cm) z-score

Malnutrition 23 Girls 3.71 ± 0.75 13.02 ± 1.71 91.53 ± 5.47 −2.80 ± 0.59

Eutrophic 20 Girls 4.09 ± 0.85 17.89 ± 3.04 106.83 ± 8.15 0.191 ± 1.28
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Childhood malnutrition’s effect on the autonomic
dysfunction has been established by chaotic global analysis.38 It
was demonstrated to lessen the chaotic responses and irregularities
of RR intervals. Then, Approximate Entropy is methodically
applied to 25 parameters for tolerance, r, and embedding
dimension, M (Figure 1 & Table 2). This determined that under
50% were appropriate when judged physiologically. This is since,
chaos and irregularities usually decrease for pathological
states.10,11,38 In Table 2, Approximate Entropy for controls and
malnourished children has tolerances, r (0.1→0.5 in intervals of
0.1) and embedding dimensions, M (1→5 in intervals of 1).
A similar survey of parameter space was achieved in the study
with subjects exhibiting type I diabetes mellitus13 and Chronic
Obstructive Pulmonary Disease.15

In this study on malnourished subjects, as the embedding
dimension, M increases the level of tolerance, r is less critical.
For, M = 1.0, two of the values for r are fitting as malnutrition
has (and, should have) a lesser chaotic response than the control
with negative effect sizes. This is physiologically accurate and was
demonstrated by chaotic globals.38 Here, when M= 2.0, three out
of five r values were apt and still negative effect sizes. Similarly, for
M= 3.0, one of the values for r is suitable and for M= 4.0, two of

the five values for r are suitable. At M= 5.0, four out of
the five values for r are apposite. All appropriate values have
negative effect sizes for both statistical procedures, Cohen’s ds
and Hedges’s gs.

Also, whilst the embedding dimension,M approaches 5.0, those
values that are physiologically accurate have enlarged negative
effect sizes by both measures. When studying the results in
Table 2, we notice that the optimal statistical combination of
M is 5.0 and r is 0.3 with ES = −0.2897 (Cohen’s ds) and
−0.2865 (Hedges’s gs).

On closer inspection, where theM values are fixed, this could be
surpassed. Perusing in finer detail (Table 3), setting values of
M and manipulating r. We set M= 3 and r= 0.1833→0.4167 in
intervals of 0.0167, hence 15 values of Approximate Entropy.
Then, M= 4 and r= 0.1833→0.4167 in intervals of 0.0167, hence
a further 15 values of Approximate Entropy, and so forth, until an
M value ofM= 6. For combinations ofM and r, we determine that
M= 5 achieves the greatest significance when tolerance r= 0.3
This corresponds to ES = −0.2897 (Cohen’s ds) and −0.2865
(Hedges’s gs), hence both with small effect sizes. This is the highest
value of statistical significance reached for any of the combinations
presented in either Tables 1–3.

Figure 1. Contours Greyscale (Above) and Contour Lines (Below) Approximate Entropy (ApEn) for controls and subjects with Malnutrition (both n = 35). There were precisely 1000
RR intervals. Other parameters consist of tolerance, r and embedding dimension, M. There were 25 groups of values for tolerance, r (0.1→0.5 in intervals of 0.1) and embedding
dimension,M (1→5 in intervals of 1) hence a grid of 5-by-5. The ApEn for the controls (left), those with Malnutrition (middle), the difference in ApEn between the controls and those
with Malnutrition (right).
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Discussion

We endeavoured to evaluate different combinations of r and
M in malnourished children. Malnutrition in children has been
demonstrated as a condition that greatly reduces chaotic
response.10,39 Results demonstrated that Approximate Entropy is
able to identify the reduction in chaotic response and the best com-
bination of M and r for this study was 5.0 and 0.3, respectively.

Approximate Entropy measurements have some advantages
in that they can be applied to short time series (RR< 50).
Likewise, it is reasonably accurately at responding in the presence
of substantial levels of signal noise. Nevertheless, its foremost
disadvantage is the optimal choice of parameters for tolerance,
r and embedding dimension, M.

In this study, initially, we enforced 25 different combinations
r (0.1→0.5 in intervals of 0.1) and embedding dimension
M (1→5 in intervals of 1). It was anticipated that since malnutri-
tion is a condition which lessens the chaotic response of Heart Rate

Variability,38 those combinations of r and M which increase
their responses for malnutrition can be disregarded. They are
physiologically inappropriate. These inapt values reached positive
effect sizes for both Cohen’s ds and Hedges’s gs.

Thirteen out of twenty-five of the permutations provided a
higher value for the control than for malnourished subjects. So, less
than half of the computations provided a true assessment. When
scrutinising the results further in Table 2, we can detect that the
optimum combination of M is 5.0 and r is 0.3. We now need to
examine the values more closely regarding the tolerance, r levels,
whilst fixing M, embedding dimension (Table 3).

Consequently, for Table 3, we fixed the values of M
and inspected the values more closely regarding its tolerance, r.
Tolerance, r, was initially set at 0.1833 and increased up to
0.4167 in equal units (0.1833→0.4167 at intervals of 0.0167).
Therefore, we computed 15 values for each value of embedding
dimension, M. In Table 3, the embedding dimension, M, varies
from 3 to 6. The results for the two effect sizes were similar.

Table 2. Approximate Entropy (ApEn) for controls and malnourished (MAL) subjects (both n= 35). There were exactly 1000 RR intervals for each subject. Other
parameters consisted of tolerance, r and embedding dimension, M. There were 25 groups of values for tolerance, r (0.1→0.5 in intervals of 0.1) and embedding
dimension, M (1→5 in intervals of 1). Illustrated are the ApEn for the mean controls with standard deviation, mean malnourished and standard deviation, then their
effect sizes for control versus malnourished by Cohen’s ds and Hedges’s gs

M r

Approximate Entropy (n= 35) Effect Sizes (ES)

Mean Control ±SD Control Mean MAL ±SD MAL Cohen’s ds Hedges’s gs

1.0 0.1 2.0835 0.1995 2.0906 0.2154 0.0343 0.0340

1.0 0.2 1.5309 0.2084 1.5361 0.2214 0.0242 0.0240

1.0 0.3 1.1877 0.1928 1.1911 0.2099 0.0170 0.0168

1.0 0.4 0.9567 0.1806 0.9528 0.1916 −0.0208 −0.0205

1.0 0.5 0.7859 0.1607 0.7791 0.1764 −0.0402 −0.0397

2.0 0.1 1.3842 0.0531 1.3760 0.0778 −0.1217 −0.1204

2.0 0.2 1.3296 0.1700 1.3430 0.1759 0.0775 0.0767

2.0 0.3 1.0904 0.1821 1.0974 0.1897 0.0377 0.0373

2.0 0.4 0.8996 0.1735 0.8969 0.1790 −0.0149 −0.0148

2.0 0.5 0.7508 0.1546 0.7435 0.1680 −0.0458 −0.0453

3.0 0.1 0.4799 0.1499 0.4581 0.1389 −0.1508 −0.1491

3.0 0.2 0.9566 0.0630 0.9709 0.0886 0.1859 0.1838

3.0 0.3 0.9349 0.1180 0.9608 0.1491 0.1925 0.1904

3.0 0.4 0.8117 0.1383 0.8263 0.1637 0.0962 0.0951

3.0 0.5 0.6899 0.1295 0.6966 0.1604 0.0464 0.0459

4.0 0.1 0.1028 0.0660 0.0996 0.0876 −0.0404 −0.0400

4.0 0.2 0.5306 0.1294 0.4997 0.1301 −0.2383 −0.2356

4.0 0.3 0.7356 0.0668 0.7360 0.0901 0.0040 0.0040

4.0 0.4 0.7125 0.1016 0.7202 0.1252 0.0678 0.0671

4.0 0.5 0.6306 0.1138 0.6344 0.1389 0.0299 0.0296

5.0 0.1 0.0199 0.0181 0.0224 0.0350 0.0888 0.0879

5.0 0.2 0.2365 0.1294 0.2109 0.1265 −0.1995 −0.1973

5.0 0.3 0.5068 0.1030 0.4760 0.1097 −0.2897 −0.2865

5.0 0.4 0.5952 0.0616 0.5892 0.0826 −0.0829 −0.0820

5.0 0.5 0.5735 0.0868 0.5664 0.1096 −0.0722 −0.0714

The bold values are the optimum values.
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The highest level of discrimination for the suitable physiological
responses by Cohen’s ds and Hedges’s gs was ES = −0.2897 and
−0.2865, respectively (small effect size for M = 5.0 and r= 0.5).
This is synonymous to Table 2.

Thus, Approximate Entropy has been demonstrated to be a
moderately reliable marker if the embedding dimension M and
tolerance r are carefully chosen such that the differences are
maximised by Cohen’s ds and Hedges’s gs. There is at present
no procedure or algorithm by which these values can be selected.
So, Approximate Entropy can be viewed as an unpredictable
marker which can only be used effectively when the M and r are
selected by trial and error. Routinely, when assessing Heart Rate
Variability studies, we setM= 2.0 and r= 0.2 where this represents
20% of the standard deviation of the time series.14 Now, in this
study, that would give a positive effect size and as such, physiologi-
cally inapt. The chaotic global analysis would seem more reliable
and dependable.38 This is vital if we were enforcing Approximate
Entropy when results were required online or under conditions
that need to be calculated quickly as, for example, in an intensive
care unit. It would be too slow and laborious to calculate all the
possible values of Approximate Entropy. It would necessitate per-
forming multiple calculations for every statistical outcome to reach
the exact values to assess if an individual is pathological or healthy.

Approximate Entropy has been recognised to be an undepend-
able mathematical marker. Yet, it has advantages such as perform-
ing well on short time series, even in the presence of substantial
signal noise. Based on the results obtained, we encourage the
use of the chaotic global methods as a substitute for judging
severity of pathological conditions. Chaotic global analysis is
easier to enforce, performs well on relatively short time series
(RR> 256),40 even with levels of noise, discriminates between
the groups better and needs less computational time.10,11,41,42

Some points need to be addressed in our study. The present
results should not be interpreted to smaller sample sizes, as we
evaluated just 70 individuals. Different autonomic approaches
were not used, including baroreflex sensitivity, skin conductance
and neuroelectromyograph. It would provide additional physio-
logical data for our analysis. And finally, our study reinforces
the importance to emphasize the relationship between experimen-
tal HRV with clinical practice.

Conclusion

Childhood malnutrition has been established as a dynamic condi-
tion which lessens chaotic response. In this study, Approximate
Entropy was able to identify the reduction in chaotic response
during malnutrition. Until now, Approximate Entropy has been
confirmed to be a relatively unreliable mathematical marker.

Acknowledgements. None.

Financial support. This research does not include any specific grants from
public, commercial or non-profit sectors.

Conflicts of interests. The authors declare that there is no conflict of interests
regarding the publication of this article. Data and MATLAB code used in the
study remain confidential for commercial reasons.

References

1. Goldberger AL. Cardiac chaos. Science 1989; 243: 1419.
2. Ho M-W. The Rainbow and the Worm: The Physics of Organisms.

World Scientific, Singapore, 2008.
3. Prigogine I. Non-equilibrium statistical mechanics. Interscience,

New York, 1962.

Table 3. Effect sizes (ES) by Cohen’s ds and Hedges’s gs for the ApEn for controls versusmalnourished subjects (both n= 35). Exactly 1000 RR intervals were required in
the calculations for each subject. Other parameters consisted of tolerance, r and embedding dimensions, M which are fixed at 3, 4, 5 and 6. There were 15 groups of
values for tolerance, r (0.1833→0.4167 in intervals of 0.0167)

r

ES by Cohen’s ds ES by Hedges’s gs

M = 3 M= 4 M= 5 M = 6 M= 3 M = 4 M = 5 M= 6

0.1833 0.0782 −0.2110 −0.1033 −0.0140 0.0773 −0.2087 −0.1021 −0.0138

0.2000 0.1859 −0.2383 −0.1995 −0.1044 0.1838 −0.2356 −0.1973 −0.1033

0.2167 0.1893 −0.1565 −0.1878 −0.1123 0.1872 −0.1548 −0.1857 −0.1110

0.2333 0.2561 −0.1466 −0.2336 −0.2010 0.2532 −0.1450 −0.2310 −0.1988

0.2500 0.1593 −0.1078 −0.1675 −0.0742 0.1576 −0.1066 −0.1657 −0.0733

0.2667 0.1575 −0.0566 −0.1652 −0.1336 0.1557 −0.0559 −0.1634 −0.1321

0.2833 0.1844 0.0555 −0.1942 −0.1943 0.1824 0.0549 −0.1921 −0.1922

0.3000 0.1925 0.0040 −0.2897 −0.2515 0.1904 0.0040 −0.2865 −0.2487

0.3167 0.1501 0.0103 −0.2324 −0.2004 0.1484 0.0102 −0.2298 −0.1982

0.3333 0.1210 0.0292 −0.2467 −0.2080 0.1197 0.0289 −0.2440 −0.2057

0.3500 0.1369 0.0728 −0.1922 −0.2246 0.1354 0.0720 −0.1901 −0.2221

0.3667 0.1185 0.0791 −0.1401 −0.1916 0.1172 0.0783 −0.1385 −0.1895

0.3833 0.1103 0.0689 −0.1545 −0.2382 0.1091 0.0681 −0.1528 −0.2355

0.4000 0.0962 0.0678 −0.0829 −0.2056 0.0951 0.0671 −0.0820 −0.2033

0.4167 0.1006 0.0680 −0.0975 −0.2783 0.0995 0.0672 −0.0965 −0.2752

The bold values are the optimum values.

Cardiology in the Young 429

https://doi.org/10.1017/S1047951121002316 Published online by Cambridge University Press

https://doi.org/10.1017/S1047951121002316


4. Mackey MC, Milton JG. Dynamical diseases. Ann N Y Acad Sci 1987; 504:
16–32.

5. Chang S. Physiological rhythms, dynamical diseases and acupuncture.
Chin J Physiol 2010; 53: 77–90.

6. Vanderlei LC, Silva RA, Pastre CM, et al. Comparison of the Polar S810i
monitor and the ECG for the analysis of heart rate variability in the time
and frequency domains. Braz J Med Biol Res 2008; 41: 854–859.

7. Rachow T, Berger S, Boettger MK, et al. Nonlinear relationship between
electrodermal activity and heart rate variability in patients with acute
schizophrenia. Psychophysiology 2011; 48: 1323–1332.

8. Wiertel-Krawczuk A, Hirschfeld AS, Huber J, et al. Sympathetic skin
response following single and combined sound and electrical stimuli in
young healthy subjects. J Med Sci 2016; 85: 106–113.

9. BaumP, Petroff D, Classen J, et al. Dysfunction of autonomic nervous system
in childhood obesity: a cross-sectional study. PLoS One 2013; 8: e54546.

10. De Souza NM, Vanderlei LCM, Garner DM. Risk evaluation of diabetes
mellitus by relation of chaotic globals to HRV. Complexity 2015; 20: 84–92.

11. Bernardo AF, Vanderlei LC, Garner DM. HRV analysis: a clinical and
diagnostic tool in chronic obstructive pulmonary disease. Int Sch Res
Notices 2014; 673232: 2014.

12. Pincus SM. Approximate entropy as a measure of system complexity.
Proc Natl Acad Sci 1991; 88: 2297–2301.

13. Garner DM, de Souza NM, Vanderlei LCM. Unreliability of approximate
entropy to locate optimal complexity in diabetes mellitus via heart rate
variability. Series Endo Diab Met 2020; 2: 32–40.

14. Vanderlei F, Vanderlei LCM, de Abreu LC, et al. Entropic analysis of HRV
in obese children. Int Arch Med 2015; 8.

15. Garner DM, Bernardo AFB, Vanderlei LCM. HRV analysis: unpredict-
ability of approximate entropy in chronic obstructive pulmonary disease.
Series Cardiol Res 2021; 3: 1–10.

16. Organization W H and Unicef. WHO Child Growth Standards and the
Identification of Severe Acute Malnutrition in Infants and Children: A Joint
Statement. United Nations Children’s Fund, Washington, DC, 2009.

17. Lohman TG, Roche AF, Martorell R. Anthropometric standardization
reference manual, vol. 177. Human Kinetics Books Champaign, IL, USA,
1988.

18. Barbosa MP, da Silva NT, de Azevedo FM, et al. Comparison of Polar(R)
RS800G3 heart rate monitor with Polar(R) S810i and electrocardiogram to
obtain the series of RR intervals and analysis of heart rate variability at rest.
Clin Physiol Funct Imaging 2016; 36: 112–117.

19. Gamelin FX, Berthoin S, Bosquet L. Validity of the polar S810 heart rate
monitor to measure R-R intervals at rest. Med Sci Sports Exerc 2006; 38:
887–893.

20. Vanderlei LCM, Silva RA, Pastre CM, et al. Comparison of the Polar S810i
monitor and the ECG for the analysis of heart rate variability in the time
and frequency domains. Braz J Med Biol Res 2008; 41: 854–859.

21. Gamelin FX, Baquet G, Berthoin S, et al. Validity of the polar S810 to
measure R-R intervals in children. Int J Sports Med 2008; 29: 134–138.

22. Godoy MF, Takakura IT, Correa PR. Relevância da análise do comporta-
mento dinâmico não linear (Teoria do Caos) como elemento prognóstico
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