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Abstract

Constructor-Based Conditional Rewriting Logic is a general framework for integrating

first-order functional and logic programming which gives an algebraic semantics for non-

deterministic functional-logic programs. In the context of this formalism, we introduce a

simple notion of program module as an open program which can be extended together

with several mechanisms to combine them. These mechanisms are based on a reduced set of

operations. However, the high expressiveness of these operations enable us to model typical

constructs for program modularization like hiding, export/import, genericity/instantiation,

and inheritance in a simple way. We also deal with the semantic aspects of the proposal by

introducing an immediate consequence operator, and studying several alternative semantics

for a program module, based on this operator, in the line of logic programming: the operator

itself, its least fixpoint (the least model of the module), the set of its pre-fixpoints (term

models of the module), and some other variations in order to find a compositional and fully

abstract semantics w.r.t. the set of operations and a natural notion of observability.

KEYWORDS: functional-logic programming, modules, compositionality, full abstraction, sem-

antics

1 Introduction

Constructor-Based Conditional Rewriting Logic (CRWL)1, presented in González-

Moreno et al. (1999), is a quite general approach to declarative programming that

combines (first-order) functional and logic paradigms by means of the notion of

(possibly) non deterministic lazy function. The basic idea is that both relations and

deterministic lazy functions are particular cases of non-deterministic lazy func-

tions. This approach retains the advantages of deterministic functions while adding

the possibility of modeling non-deterministic functions by means of non-confluent

constructor-based term rewriting systems, where a given term may be rewritten to

constructor terms (possibly with variables) in more than one way. Here a fundamen-

tal notion is that of joinability: two terms a,b are joinable iff they can be rewritten

to a common – but not necessarily unique – constructor term. In González-Moreno

1 CRWL must not be confused with the Rewriting Logic proposed in Meseguer (1992) as a unifying
logical framework for concurrency. CRWL is a particular logic for dealing with indeterminism.
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et al. (1999), CRWL is introduced with two equivalent proof calculi that govern

deduction in this logic, an algebraic semantics for programs (theories) based on a

freely generated model, and an operational semantics, based on a lazy narrowing

calculus for solving goals, that is sound and complete w.r.t. the algebraic semantics.

Modularity is a central issue in all programming paradigms motivated by the

need of mastering the complexity inherent in large programs. Modularity related

with algebraic specifications (which, to some extent, can be viewed as a sort of first-

order functional programming) has been extensively studied and all specification

languages are extended for dealing with modules. In this field, a typical module

consists of a body, an export interface, a list of imports and, possibly, a list of

formal parameters, and typical operations with modules have to do with setting

up hierarchical relationships between modules as the union of modules (with some

constraints) and the application of a parameterized module to an actual module,

and their semantics are given from a category-theoretic point of view (Goguen

and Burstall, 1992; Ehrig and Mahr, 1990; Orejas, 1999). Nevertheless, there are

other studies of modularity (Wirsing, 1990) with more flexible sets of operations

semantically defined by means of operations on the sets of models, and also studies

where modularity has been tackled with the tools of algebraic specifications, as in

Bergstra et al. (1990), where an axiomatic specification is given for an algebra of

non-parameterized modules and it is proved that each expression can be reduced to

another one with, at most, an occurrence of the export (hiding) operator, and Durán

(1999) where a constructive specification is given for an algebra of parameterized

modules (without hiding) in Maude, and each expression is reduced to a flat module.

In the logic programming field, modularity has been the objective of different

proposals – see Bugliesi et al. (1994) for a survey about the subject – which basically

have followed two different guidelines. One, focused on programming-in-the-large,

extends logic programming with modular constructs as a meta-linguistic mechanism

(Brogi and Turini, 1995) and gives semantics to modules with the aid of the

immediate consequence operator. And the other one, focused on programming-

in-the-small, enriches the theory of Horn clauses with new logical connectives for

dealing with modules (Miller, 1986). In the first line, there is the work Brogi (1993)

where an algebra of logic programs is studied. This algebra is based on three basic

operations (union, intersection and encapsulation) defined at the semantic level and

then translate to the syntactic level. It is proved that each program expression is

equivalent to a, possibly infinite, flat program, and also a transformation is defined for

mapping program expressions into finite programs by introducing system generated

predicates and adding a hidden part to each program. Notions of module hiding

some predicates and module importation are built up with the aid of the basic

operations.

On the other hand, in functional-logic programming we do not know any study of

modularity semantically well founded. With this paper we have tried to contribute

to filling this gap at least in the CRWL context. In this context, we deal with

data constructors, as in logic programming, and functions defined by conditional

rewrite rules, instead of predicates defined by Horn clauses, and we have proved (see

section 3) that an operator, similar to the immediate consequence operator of logic
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programs, can be defined to each CRWL-program and its least fixpoint coincides

with the freely generated term-model given in González-Moreno et al. (1999). All

this has motivated our decision of developing a study of programs structuring and

modularity in CRWL, based on a meta-linguistic mechanism, similar to the one

which appears in Brogi (1993). However, we have defined an algebra of program

modules based on a different set of operations (union, deletion of a signature of

function symbols, closure w.r.t. a signature and renaming) defined at the syntacti-

cal level in such a way that each program expression can be reduced to a, possibly

infinite, flat program. With these operations we can model as well as notions of mod-

ule which hides some functions and module importation, module parameterization,

instantiation and inheritance with overriding. Also, we have introduced a notion

of protected signature labeling symbols with module expressions, which allows to

define structured modules and a representation morphism that maps each program

expression into a finite structured module. We use protected signature, not only for

hiding functions as is done in Brogi (1993) for predicates, but also for hiding data

constructors.

An important aspect to be considered when a language is extended for modular

programming is the sound integration of the behavior of the modular operations

into the semantics of the language. The compositionality of the semantics of a

programming language is particularly relevant when modularity is involved. In fact,

one of the most critical aspects in modular systems is the possibility of making a

separate compilation of modules, and this can only be made in the presence of this

property. On the other hand, full abstraction measures the implementation details of

the semantics of a programming language. A non-fully abstract semantics makes the

intended meaning of a program to include non relevant aspects, which do not depend

on the behavior of the program but on a particular ‘implementation’. In some sense,

full abstraction can be seen as the complementary property of compositionality,

and the adequacy of a semantics is established when both full abstraction and

compositionality are obtained. In Brogi (1993), the semantics of a program is given

by its immediate consequence operator which captures the information concerning

possible compositions, this semantics is compositional by construction and it is

proved that also is fully abstract w.r.t. a notion of observable behavior given by the

success sets of programs (least fixpoints of their immediate consequence operators).

In CRWL-programming, the semantics given by the immediate consequence operator

is compositional but not fully abstract when we take the freely generated term-model

as observable behavior. For this reason, we study several alternative semantics to

find one that is compositional and fully abstract.

We are confident that our work could serve as a reference to other studies

of modularity in functional-logic programming, and, although we are focused on

the modular aspects of the semantics, the results obtained in this paper, as well

as the study of a wide range of other issues concerning semantics, makes the

current work also relevant from a purely semantic point of view, in the context

of rewriting logic-based programming languages. The approach to modularity in

CRWL-programming, that we present here, substantially extends a previous one

in Molina-Bravo and Pimentel (1997) with a more elaborate notion of program
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module and a new operation (renaming) that makes clear the difference between

importation and instantiation, and a more recent one (Molina-Bravo, 2000) with

the notions of structured module and module representation that allows to express

closed modules by means of a finite number of rules and also to deal with local

constructor symbols. For space reasons we do not include the proofs of the results;

they are available at http://arxiv.crg/abs/cs/0203006.

The paper is organized as follows: in the next section we introduce the basic

features of the CRWL approach to functional-logic programming and its model-

theoretic semantics – for a detailed presentation we refer to González-Moreno et

al. (1999). In section 3 we introduce an immediate consequence operator TR, for

each CRWL-program R, and a fixpoint semantics that matches the free term-model

MR proposed in González-Moreno et al. (1999). In section 4 we define a notion

of (plain) module together with a reduced set of operations on program modules,

and we express some modular constructions with these operations. In section 5 we

give the T-semantics that characterizes the meaning of a CRWL-program when we

consider composition of programs and prove that this semantics is compositional but

not fully abstract w.r.t. the set of operations, takingMR as the observable behavior

of a program R. In section 6 we introduce a fully abstract semantics by denoting a

program module with the set of all its consistent term-models (pre-fixpoints of TR);

but this semantics is not compositional for the deletion of a signature. In section 7,

we obtain a compositional and fully abstract semantics as an indexed family of sets

of consistent term-models for single functions. In section 8, we introduce the notion

of structured module as a finite representation of expressions made up from finite

plain modules that allows the hiding of constructor symbols. Finally we present a

discussion and some conclusions.

2 CRWL for declarative programming

A signature with constructors is a pair Σ = (DSΣ, FSΣ), where DSΣ and FSΣ are

countable disjoint sets of strings h/n with n ∈ N. Each c such that c/n ∈ DSΣ is

a constructor symbol with arity n and each f such that f/n ∈ FSΣ is a (defined)

function symbol with arity n. The set of all constructor symbols and the set of all

function symbols with arity n are denoted by DSnΣ and FSnΣ, respectively. Given a

signature (with constructors) Σ and a set V of variable symbols, disjoint from all

of the sets DSnΣ and FSnΣ, we define Σ-terms as follows: each symbol in V and each

symbol in DS0
Σ ∪ FS0

Σ is a Σ-term, and for each h ∈ DSnΣ ∪ FSnΣ and t1, . . . , tn terms,

h(t1, . . . , tn) is a term. TermΣ is the set of all Σ-terms and CTermΣ the subset of those

Σ-terms (called constructor terms) built up only with symbols in DSΣ and V. To

cope with partial definition we add a new 0-arity constructor ⊥ to each signature Σ

obtaining an extended signature Σ⊥ whose terms are called partial Σ-terms. When the

signature Σ is clear, we will omit explicit mention of it, and we will write Term and

CTerm (or Term⊥ and CTerm⊥ for Σ⊥) respectively. Following the approach to non-

determinism in Hussmann (1993), we only consider C-substitutions θ:V → CTerm.

These mappings have natural extensions θ: Term→ Term, also noted as θ, defined in

the usual way, and the result of applying θ to the term t is written tθ. Analogously,
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we define partial C-substitutions as mappings θ:V → CTerm⊥. The set of all

C-substitutions (partial C-substitutions) is written CSubst (CSubst⊥). A signature

morphism ρ: Σ→ Σ′ from a signature Σ = (DSΣ, FSΣ) to a signature Σ′ = (DSΣ′ , FSΣ′)

consists of two mappings, that we denote with the same symbol ρ:DSΣ → DSΣ′ and

ρ:FSΣ → FSΣ′ , that map strings h/n into strings h′/n. By abuse of notation we

will denote h′ = ρ(h). This allows us to define a mapping ρ: TermΣ⊥ → TermΣ′⊥ as

ρ(h) =def h, for h ∈ V ∪ {⊥} ∪ DS0
Σ ∪ FS0

Σ; ρ(h(t)) =def ρ(h)(ρ(t1), . . . , ρ(tn)), for h ∈
DSnΣ ∪ FSnΣ, n > 0. ρ(h) =def h, for h ∈ V ∪ {⊥} ∪ DS0

Σ ∪ FS0
Σ, and ρ(h(t)) =def

ρ(h)ρ(t1), . . . , ρ(tn)), for h ∈ DSnΣ ∪ FSnΣ and n > 0. We will consider signature

morphisms ρ: Σ → Σ such that ρ(h/n) = h/n for every string h/n in DSΣ. Such

morphisms will be called function symbol renamings.

Given a signature Σ and a setV of variable symbols, there are two kinds of atomic

CRWL-formulas for a, b ∈ Term⊥, reduction statements a → b, with the intended

meaning “a can be reduced to b,” and joinability statements a ./ b, with the intended

meaning “a and b can be reduced to a common value in CTerm”. Terms t ∈ CTerm

are intended to represent totally defined values whereas terms t ∈ CTerm⊥ represent

partially defined values — to model the behavior of non-strict functions. Reduction

statements a → t with t ∈ CTerm⊥, called approximation statements, have the

intended meaning that t approximates a possible value of a, whereas a → t with

t ∈ CTerm have the intended meaning that t represents a possible value of a – an

expression may denote several values capturing the behavior of non-deterministic

functions. Substitutions θ ∈ CSubst⊥ and signature morphisms ρ: Σ → Σ′ apply to

formulas in the obvious way.

A CRWL-program is a CRWL-theory R defined as a signature Σ together with

a set of conditional rewrite rules of the general form f(t) → r ⇐ C , where f(t) is

the left-hand side (lhs), r the right-hand side (rhs), C the condition of the rule, f

is a function symbol with arity n > 0, and C consists of finitely many (possibly

zero) joinability statements between fully defined terms (with no occurrence of ⊥).

When n > 0, t is a linear n-tuple (i.e. without repeated variables) of fully defined

constructor terms ti ∈ CTerm. When n = 0 rules take the simpler form f → r ⇐ C .

Formal derivation of CRWL-statements from a given program R is governed by

two equivalent calculi (see González-Moreno et al. (1999)). We present here the

so-called Goal-Oriented Proof Calculus (GPC), which focuses on top-down proofs

of reduction and joinability statements:

(Bo) e→ ⊥, for e ∈ Term⊥;

(RR) e→ e, for e ∈ V∪ DS0;

(DS)
e1 → t1 . . . en → tn

c(e)→ c(t)
, for c ∈ DSn and ei, ti ∈ Term⊥;

(OR)
e1 → t1 . . . en → tn C r → t

f(e)→ t
, if (f(t)→ r ⇐ C) ∈ [R]⊥ and t 6≡ ⊥;

(Jo)
a→ t b→ t

a ./ b
, if t ∈ CTerm and a, b ∈ Term⊥;

where [R]⊥ = {(l → r ⇐ C)θ | (l → r ⇐ C) ∈ R, θ ∈ CSubst⊥} is the set of possibly

partial constructor instances of rewrite rules and C-substitutions apply to rules in
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the obvious way. Rule (Bo) shows that a CRWL-reduction is related to the idea of

approximation, and rule (OR) states that only constructor instances of rewrite rules

are allowed in this calculus reflecting the so-called ‘call-time-choice’ (Hussmann,

1993) for non-determinism (values of arguments for functions are chosen before

the call is made). When a reduction or joinability statement ϕ is derivable from

a program R we write R `CRWL ϕ and we say that ϕ is provable in R. Goals

for a program R are finite conjunctions of atomic formulas, and solutions are C-

substitutions that make goals derivable. In González-Moreno et al. (1999), a sound

and complete lazy narrowing calculus for goal-solving can be found.

We interpret CRWL-programs over algebraic structures consisting of posets with

bottom as carriers (i.e. sets D with a partial order vD and a least element ⊥D), whose

elements are thought of as finite approximations of possibly infinite values in the

poset’s ideal completion (Möller, 1985), and monotonic mappings from elements to

cones (non-empty subsets of a poset with bottom, downclosed w.r.t. the partial order

of the poset) as function symbol denotations reflecting possible non-determinism.

Such a mapping f:D → C(E) – where D, E are posets with bottom, and C(E) is

the set of cones of E – can be extended to a monotonic mapping f̂:C(D) → C(E),

defined by f̂(C) =def

⋃
u∈C f(u) and also noted f by abuse of notation. In particular,

deterministic function symbols are represented by mappings f:D → I(E) computing

directed cones or ideals (i.e., cones C such that for all x, y ∈ C there exists z ∈ C
with x v z and y v z) where I(E) is the set of ideals of E. These mappings become

continuous mappings between algebraic cpos after performing the ideal completion

(for a comprehensive exposition of these notions we refer to Abramsky and Jung

(1994)). These ideas are behind the notion of CRWL-algebra.

Given a signature Σ and a setV of variable symbols, a CRWL-algebra of signature

Σ is an algebraic structure A = (DA, {cA}c∈DSΣ
, {fA}f∈FSΣ

) where the carrier DA
is a poset with bottom ⊥A, fA is a monotonic mapping DnA → C(DA) for each

f ∈ FSnΣ and cA is a monotonic mapping DnA → I(DA) for each c ∈ DSnΣ. Both fA
and cA reduce to cones when n = 0. To ensure preservation of finite and maximal

elements in the ideal completion, we require for all u1, . . . , un ∈ DA that there exists

v ∈ DA such that cA(u1, . . . , un) = 〈v〉, where 〈v〉 is the ideal generated by v (i.e. the

set {d ∈ DA | d v v}), and if all ui are maximal (totally defined) then v must also be

maximal. The class of all CRWL-algebras of signature Σ is denoted by AlgΣ. We are

specially interested in CRWL-term algebras, which are CRWL-algebras with carrier

CTerm⊥, ordered by the approximation ordering ‘v’, defined as the least partial

ordering satisfying the following properties:

(a) ⊥ v t, ∀t ∈ CTerm⊥;

(b) c(s) v c(t) if si v ti, i = 1, . . . , n, for c ∈ DSnΣ, n > 0;

and fixed interpretation for constructor symbols: cA = 〈c〉, for all c ∈ DS0
Σ, and

cA(t) = 〈c(t)〉, for all c ∈ DSnΣ and n > 0. Therefore, two CRWL-term algebras of

the same signature Σ will only differ in their interpretations for the function symbols

of Σ. As a consequence of the above definition, for s, t ∈ CTerm⊥, s v t implies

s = ⊥ or s = c(s) and t = c(t) for some c ∈ DSnΣ and n > 0 with each component

si v ti. Also, for s, t ∈ CTerm⊥, s v t is equivalent to `CRWL t→ s. It can be proved,
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by induction, that every θ ∈ CSubst⊥ is a monotonic mapping from CTerm⊥ to

CTerm⊥, that is: s v t ⇒ sθ v tθ, for all s, t ∈ CTerm⊥.

A valuation over a structure A ∈ AlgΣ is any mapping η:V → DA. η is totally

defined when η(X) is maximal for all X ∈ V. Val(A) is the set of all valuations over

A and DefVal(A) the set of all totally defined valuations. Given a valuation η we

can evaluate each partial Σ-term in A as follows:

[[ ⊥ ]]Aη =def 〈⊥A〉,
[[ X ]]Aη =def 〈η(X)〉, ∀X ∈ V;

[[ c ]]Aη =def cA, ∀c ∈ DS0
Σ ∪ FS0

Σ;

[[ h(e) ]]Aη =def ĥA( [[ e1 ]]Aη , . . . , [[ en ]]Aη ), ∀h ∈ DSnΣ ∪ FSnΣ, n > 0.

In this way each partial Σ-term is evaluated to a cone. For each CRWL-algebra

A, every η ∈ Val(A), and e ∈ Term⊥, the following properties are proved in

González-Moreno et al. (1999):

1. [[ e ]]Aη ∈ C(DA).

2. [[ e ]]Aη ∈ I(DA), if e is only built from deterministic functions (i.e. function

symbols interpreted by ideal valued functions).

3. [[ e ]]Aη = 〈v〉 for some v ∈ DA, if e ∈ CTerm⊥. Moreover, when e ∈ CTerm and

η ∈ DefVal(A), v is maximal.

4. (Substitution Lemma) [[ eθ ]]Aη = [[ e ]]Aρ , for θ ∈ CSubst⊥, where ρ is the

uniquely determined valuation that satisfies 〈ρ(X)〉 = [[ Xθ ]]Aη , for all X ∈ V.

From these results and taking into account that each substitution is equivalent to

a valuation over any CRWL-term algebra, we have the following complementary

results for term algebras:

Proposition 1

For each CRWL-term algebra A and every η ∈ Val(A) we have:

1. [[ t ]]Aη = 〈tη〉 for every t ∈ CTerm⊥;

2. [[ h(t) ]]Aη = hA(tη) for all h ∈ DSnΣ ∪ FSnΣ, n > 0, and t1, . . . , tn ∈ CTerm⊥;

3. [[ eθ ]]Aη = [[ e ]]Aθη for all e ∈ Term⊥ and θ ∈ CSubst⊥, where θη represents the

function composition η ◦ θ.

Models in CRWL are introduced from the following notion of satisfiability:

• A satisfies a reduction statement a → b under a valuation η ∈ Val(DA), or

A |=η (a→ b), iff [[ a ]]Aη ⊇ [[ b ]]Aη .

• A satisfies a joinability statement a ./ b under a valuation η ∈ Val(DA), or

A |=η (a ./ b), iff [[ a ]]Aη ∩ [[ b ]]Aη contains a maximal element in DA.

• A satisfies a rule l → r ⇐ C , or A |= (l → r ⇐ C), iff A |=η C implies A |=η

(l → r), for every valuation η ∈ Val(DA).

• A is a model of a program R, i.e., A |= R, iff A satisfies all rules in R.

CRWL-provability is sound and complete w.r.t. this model-theoretic semantics when

we consider totally defined valuations only. In González-Moreno et al. (1999) it is

proved that for any program R and any approximation or joinability statement ϕ,

R `CRWL ϕ is equivatent to A |=η ϕ, for every A model of R and η ∈ DefVal(DA).

https://doi.org/10.1017/S1471068402001527 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001527


196 J. M. Molina-Bravo and E. Pimentel

This result is achieved with the help of a CRWL-term algebraMR characterized by

the following interpretation for any defined function symbol f ∈ FSnΣ, n > 0,

fMR (t) =def {r ∈ CTerm⊥ | R `CRWL f(t)→ r}.
MR is such that R `CRWL ϕ ⇔ MR |=id ϕ for any approximation or joinability

statement ϕ. According to this result, MR is taken as the canonical model of the

program R. Also, in González-Moreno et al. (1999), it is proved that this model is

freely generated byV in the category of all models of R. This is the model-theoretical

semantics of the program R.

Given a signature Σ and a function symbol renaming ρ: Σ→ Σ, for each CRWL-

term algebra A = (CTerm⊥, {cA}c∈DSΣ
, {fA}f∈FSΣ

) of this signature we can define

another CRWL-term algebra Aρ = (CTerm⊥, {cAρ}c∈DSΣ
, {fAρ}f∈FSΣ

), such that

fAρ = ρ(f)A. The relation between evaluation and satisfaction in A and evaluation

and satisfaction in Aρ is stated by the following proposition.

Proposition 2

Given a signature Σ, for every CRWL-term algebra A of this signature, every

function symbol renaming ρ: Σ→ Σ, and all θ ∈ CSubst⊥, we have

1. (ρ(t))θ = ρ(tθ), for all t ∈ Term⊥.

2. [[ ρ(t) ]]Aθ = [[ t ]]
Aρ

θ , for all t ∈ Term⊥.

3. A |=θ ρ(ϕ) ⇔ Aρ |=θ ϕ, for any reduction or joinability statement ϕ.

3 Fixpoint semantics

In this section we prove, for every CRWL-program R, that MR is the least fixpoint

of an operator defined over CRWL-term algebras. The approach we use here is

similar to that applied in the field of logic programming (Apt, 1990). However,

the notion of interpretation, and the corresponding mathematical aspects, have to

be reformulated in the context of CRWL-term algebras. This approach has been

also used in González-Moreno (1994) in the context of a previous formalism to

model functional-logic programming. However, this work does not deal with some

relevant aspects (e.g. non-determinism) of the CRWL-programming version we are

considering here.

Let TAlgΣ be the set of all CRWL-term algebras of a signature Σ associated

to a CRWL-program R. We can define the relationship A v B, between two

algebras A,B ∈ TAlgΣ, as fA(t) ⊆ fB(t) for all f ∈ FSnΣ, when n > 0, and

fA ⊆ fB, when n = 0. This relationship is obviously a partial ordering and

(TAlgΣ,v) is a poset. This poset has a bottom ⊥Σ and a top >Σ characterized by

f⊥Σ(t) = 〈⊥〉 and f>Σ(t) = CTerm⊥, respectively, for each f ∈ FSnΣ and n > 0.

Given a subset S ⊆ TAlgΣ, the following definitions: ftS(t) =def

⋃
A∈S f

A(t), and

fuS(t) =def

⋂
A∈S f

A(t), for each f ∈ FSnΣ and n > 0, characterize two CRWL-term

algebras, tS and uS respectively, because the union and intersection of any number

of cones are cones also, and the resulting functions in the above definitions are

obviously monotonic if fA is monotonic for all A ∈ S. Clearly, tS and uS are the
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least upper bound and the greatest lower bound of S, respectively. So, (TAlgΣ,v) is

a complete lattice.

Valuations (substitutions) of terms in term algebras can be considered continuous

mappings from algebras to cones in the sense given by the following lemma.

Lemma 1 (Continuity of valuations in TAlgΣ)

For each term e ∈ Term⊥ and each substitution θ ∈ CSubst⊥

1. A v B ⇒ [[ e ]]Aθ ⊆ [[ e ]]Bθ , for A,B ∈ TAlgΣ.

2. [[ e ]] tD
θ =

⋃
A∈D [[ e ]]Aθ , for all directed subsets D ⊆ TAlgΣ.

Another interesting result relates satisfiability of joinability statements in the least

upper bound of a directed set of term algebras with satisfiability in, at least, one of

the algebras of the set.

Lemma 2

Let C be a finite set of joinability statements and D a directed subset of TAlgΣ, then

tD |=θ C implies that there exists A ∈ D such that A |=θ C .

Given a CRWL-program R, with a signature Σ, we can define an algebra trans-

former TR: TAlgΣ → TAlgΣ, similar to the immediate consequences operator used

in logic programming, by fixing the interpretation of each function symbol f ∈ FSnΣ,

in a transformed algebra TR(A), as the result of one step applications of reduction

statements corresponding to instances – not necessarily ground – of those rules of

R, defining f, satisfied in A. We formalize this idea defining, for each f ∈ FSnΣ,

n > 0,

fTR(A)(t) =def {t | ∃(f(s)→ r ⇐ C) ∈ [R]⊥, si v ti,A |=id C, t ∈ [[ r ]]Aid } ∪ {⊥},
that is basically a union of cones [[ r ]]Aid . This definition corresponds to a monotonic

mapping because all rule instances (f(s)→ r ⇐ C) ∈ [R]⊥, applicable to arguments

t′ are also applicable to arguments t such that t′i v ti, for i = 1, . . . , n, and so

the corresponding interpretation characterizes a CRWL-term algebra. From this

definition of TR we can derive the continuity of the operator in TAlgΣ.

Proposition 3

For each program R its associated operator TR is continuous.

Thus, TR has a least fixpoint FR given by tAR (that is also the least pre-

fixpoint), where AR is the chain of CRWL-term algebras Ai, i ∈ N, such that

A0 = ⊥Σ v · · · v Ai+1 = TR(Ai) v · · ·. FR is also denoted as TRω(⊥Σ) (see

Abramsky and Jung (1994)). To prove that FR coincides with MR we need two

lemmata, one characterizing the set of term models and other relating CRWL-

provability with AR satisfiability.

Lemma 3 (Model characterization)

Given a program R, M is a term model for R iff TR(M) vM
Lemma 4

Given e ∈ Term⊥ and t ∈ CTerm⊥, we have that R `CRWL e → t implies Ai |=id

e→ t for some Ai ∈ AR.
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From the above results we obtain the following proposition.

Proposition 4

For every program R, MR is the least fixpoint (and the least pre-fixpoint) of TR.

Thus, if we consider the meaning of a program R as the least fixpoint of its

associated transformer TR, then this fixpoint semantics coincides with the model-

theoretic semantics as it happens in logic programming. In fact, this semantics would

correspond to the C-semantics in Falaschi et al. (1993).

Definition 1 (Least model semantics)

For each program R we define its least model semantics as: [{ R }] LM =def MR.

4 An algebra of CRWL-program modules

For designing large programs it is convenient to separate the whole task into

subtasks of manageable size and construct programs in a structured fashion by

combining and modifying smaller programs. This idea has been extended to many

programming languages giving rise to different notions of program module, each one

being attached to a programming paradigm. In CRWL-programming we are going

to follow an approach close to that developed in Brogi (1993) for logic programming,

where modules are open programs in the sense that function definitions in a module

can be completed with definitions for the same functions in other modules. We will

consider a global signature with bottom Σ⊥ = (DSΣ⊥ , FSΣ⊥) and a countable set

V of variable symbols and will construct modules and module expressions with

symbols of these sets. Σ⊥ and V will characterize the environment where modules

are written. Also we will consider all constructor symbols in DSΣ⊥ common to

all program modules as it is usual in other proposals of modularity for declarative

programming, like Brogi et al. (1994) and Orejas et al. (1997), where compositionality

and full abstraction are dealt with. With this decision we give up any possibility of

data abstraction and the only contribution of a program module to the environment

will be a set of (definition) rules for a subsignature of function symbols. We will

take this subsignature to denote the exportable resources of the module, and the set

of rules as its body. In a program module, function symbols may appear – in the rhs

of a rule – with no definition rule in this module. Although it may be assumed that

all function symbols are defined in each program module by assuming an implicit

rule f(t) → ⊥ for each function symbol f with no definition rule, these symbols

will be assumed to be provided by other modules and they will be taken to denote

the resources that have to be imported. They will be the parameters of the module.

From these considerations we propose the following definition for the notion of

module in CRWL-programming

Definition 2 (Module)

A module in CRWL-programming is a tuple < σp, σe,R > where R is a set of

program rules f(t) → r ⇐ C (r 6= ⊥), σe is the (exported) signature of function

symbols with a definition rule in R, σp is the (parameter) signature of those function

symbols with no definition rule in R that appear in any rule (i.e. they are invoked

but not defined).
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R is the body of the module and (σp, σe) its interface. The interface of a module

could be inferred from its body if one knows which are the constructor symbols.

However, as we consider all constructor symbols common to all program modules,

we do not include an explicit declaration of these symbols in any module and have

to make explicit parameter signatures in order to distinguish between function and

constructor symbols. In this way, every symbol not occurring in σe nor σp will be a

constructor symbol. Next, we have an example of a module definition.

Example 3

This example shows a module for constructing ordered lists of natural numbers

with functions for inserting elements, checking the type of an element, and compare

natural numbers.

OrdNatList =

< {}, % Parameter signature

{isnat/1, leq/2, insert/2}, % Exported signature

{ isnat(zero) -> true.

isnat(succ(X)) -> isnat(X).

leq(zero,zero) -> true.

leq(zero,succ(X)) -> isnat(X).

leq(succ(X),zero) -> false <= isnat(X) >< true.

leq(succ(X),succ(Y)) -> leq(X,Y).

insert(X,[]) -> [X] <= isnat(X) >< true.

insert(X,[Y|Ys]) -> [X|[Y|Ys]] <= leq(X,Y) >< true.

insert(X,[Y|Ys]) -> [Y|insert(X,Ys)] <= leq(X,Y) >< false.}>

In this module the parameter signature is empty, and symbols like zero/0, succ/1,

[]/0, [_|_]/2 with no definition rule are considered constructor symbols, because

they are not included in the parameter signature (and obviously because they occur

in arguments of left-hand sides).

We write PMod(Σ⊥) for the class of all program modules which can be defined

with a signature Σ⊥, SubSig(Σ⊥) for the set of all subsignatures of a signature Σ⊥,

and Prg(Σ⊥) for the class of all sets of rules (programs) which can be defined with

Σ⊥. On PMod(Σ⊥) we define three projections:

• par: PMod(Σ⊥)→ SubSig(Σ⊥) such that par(< σp, σe,R >) = σp,

• exp: PMod(Σ⊥)→ SubSig(Σ⊥) such that exp(< σp, σe,R >) = σe, and

• rl : PMod(Σ⊥)→ Prg(Σ⊥) such that rl (< σp, σe,R >) = R,

which give respectively the parameter signature, the exported signature, and the

body of a module.

4.1 Basic operations on modules

In this section we present a set of basic operations with modules that allows

us to express typical features of modularization techniques such as information

hiding/abstraction, import/export relationships and inheritance related to function

symbols as is done in Brogi (1993), but our set of operations is different and we

give syntactic definitions for it. We use three operations: union of programs, closure
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w.r.t. a signature and deletion of a signature, that are sufficient to express the most

extended ways of composing modules and their relationships, and we do not need

the intersection of programs, used in Brogi (1993) to model hiding, because we

directly deal with signatures in the closure. To give more flexibility in expressing

importation and instantiation, we also include a renaming operation. We define our

operations in such a way that all module expressions can be reduced to a flat module

< σp, σe,R > – where R could be an infinite set of rules. This is something like a

presentation semantics (Wirsing, 1990).

First we define the union of two modules as the module obtained as the simple

union of signatures and rules.

Definition 4 (Union)

Given two modules P1 =< σ1
p , σ

1
e ,R1 > and P2 =< σ2

p , σ
2
e ,R2 >, their union P1∪P2

is defined as the module < (σ1
p ∪ σ2

p) \ (σ1
e ∪ σ2

e ), σ
1
e ∪ σ2

e ,R1 ∪R2 >.

Each argument in this operation is considered an open program that can be

extended or completed with the other argument possibly with additional rules for

its exported function symbols.

Example 5

Let us consider the following module with a function to give change for an amount

of money. Values for coins are provided by the non-deterministic function coin/0,

whereas getcoin/1 gives different possibilities to get a coin for a fixed amount.

Finally, the function change/1 returns a list with the coins corresponding to the

change. In this example, we are assuming a predefined arithmetic with the usual

notation for natural numbers. This was not the case in Example 3.

MoneyChange =

< {_=<_/2, _-_/2},

{coin/0,getcoin/1,change/1},

{ coin -> 1. coin -> 5. coin -> 10.

getcoin(N) -> C <= coin >< C, C =< N >< true.

change(0) -> [].

change(N) -> [C|change(N-C)] <= getcoin(N) >< C. } >

We can extend this module with another module for providing new coins:

NewCoins = <{},{coin/0},{coin -> 15. coin -> 20.}>

simply by joining them to obtain

MoneyChange ∪ NewCoins =

< {_=<_/2, _-_/2},

{coin/0,getcoin/1,change/1},

{ coin -> 1. coin -> 5. coin -> 10. coin -> 15. coin -> 20.

getcoin(N) -> C <= coin >< C, C =< N >< true.

change(0) -> [].

change(N) -> [C|change(N-C)] <= getcoin(N) >< C. } >

Union of modules is idempotent, associative, commutative, and there exists a null

element: the module O =< σo, σo, ∅ >, where σo is the empty signature of function

symbols, representing the module with no rule.
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Proposition 5

The union of modules has the following properties:

1. P∪ O = P, for every module P.

2. P∪P = P, for every module P.

3. (P∪P1) ∪P2 = P∪ (P1 ∪P2), for all modules P, P1 and P2.

4. P1 ∪P2 = P2 ∪P1, for all modules P1 and P2.

The second operation is the closure of a module w.r.t. a given signature σ. This

operation makes accessible the signature σ in an extensional way (i.e. only provable

approximations can be used) and hides the rest. To define this operation, we need

to introduce the notion of canonical rewrite rule.

Definition 6 (Canonical rewrite rule)

Given a term f(t), with f ∈ FSnΣ and each ti ∈ CTerm⊥, and r ∈ CTerm⊥, we

define the canonical rewrite rule crr(f(t), r) which reduces f(t) to r, as the rule

f(t
′
) → r ⇐ C , constructed by substituting in t each occurrence of a repeated

variable X or ⊥ with a fresh variable Y and adding in C a joinability statement

X ./ Y for each occurrence of a repeated variable X, and a statement X ./ X for

each variable X in r and each variable with only one occurrence in t.

In this way we obtain a program rule (with t
′

linear and each t′i ∈ CTerm) from

which f(t) → r can be proved, because for θt ∈ CSubst⊥ such that θt(Y ) = X for

each fresh variable Y that substitutes an occurrence of X in t, θt(Y ) = ⊥ for each

fresh variable Y that substitutes an occurrence of ⊥, and θt(X) = X for all other

variables, Cθt always can be proved and (f(t
′
)→ r)θt is f(t)→ r.

Example 7

The canonical rewrite rule which reduces f(⊥, b(X,Y ), X) to a(X,Z) is:

f(V , b(X,Y ), X1)→ a(X,Z) ⇐ {X1 ./ X, Y ./ Y , Z ./ Z},
and the associated substitution θt is such that θt(X1) = X, θt(V ) = ⊥, and θt(W ) =

W for all other variables W . In this case Cθt = {X ./ X, Y ./ Y , Z ./ Z} and

all these joinability statements can be trivially derived from (RR) and (Jo), and

therefore f(⊥, b(X,Y ), X)→ a(X,Z) by the (OR) rule.

Now, we can define the closure of a module as follows.

Definition 8 (Closure w.r.t. a signature)

Given a module P =< σp, σe,R >, its closure Pσ w.r.t. a signature of function

symbols σ is defined as the module:

< σo, σ
′
e, {crr(f(t), r) | f/n ∈ σ, r ∈ CTerm⊥, r 6= ⊥, R `CRWL f(t)→ r} >,

where σo denotes the empty signature of function symbols, ti ∈ CTerm⊥ for each

component of the tuple t, and σ′e is the corresponding exported signature.

The closure of a module is a module with a possibly infinite set of rules (although

the exported signature is always finite) equivalent to the union of the graphs inMP
of all functions defined in P and contained in σ. Note that σ′e ⊆ σe ∩ σ because
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a function in σe ∩ σ that depends on functions in the parameter signature could

remain with no definition rule – or with the only rule f(t) → ⊥ – after closing the

module. As a syntactic simplification we will write P instead of Pσe for each module

P =< σp, σe,R >.

Example 9

Let us consider the following module about week days, where two functions are

defined to get the next day and the day before of a given day.

WeekDays = < {},

{next/1,before/1},

{ next(mo) -> tu. next(tu) -> we. next(we) -> th.

next(th) -> fr. next(fr) -> sa. next(sa) -> su.

next(su) -> mo.

before(X) -> Y <= next(Y) >< X. } >

The closure of this module w.r.t. its whole exported signature is the module

WeekDays = < {},

{next/1,before/1},

{ next(mo) -> tu. next(tu) -> we. next(we) -> th.

next(th) -> fr. next(fr) -> sa. next(sa) -> su.

next(su) -> mo.

before(tu) -> mo. before(we) -> tu. before(th) -> we.

before(fr) -> th. before(sa) -> fr. before(su) -> sa.

before(mo) -> su. } >

Closure w.r.t. a signature is in some way the counterpart of the encapsulation

operation ‘∗’ in Brogi (1993), but it is more general because it has a twofold effect:

hiding all rules in the module and restricting the visible signature, so we need no

intersection of modules – as is needed in Brogi (1993) – to restrict visibility in a

closed module. Variables and bottom can appear in the rules of a closed module,

but no functions in the parameter signature.

Proposition 6

Closure of modules has the following properties, where σ, σ1 and σ2 are signatures

of function symbols,

1. Pσ = O, for every module P and every signature σ such that σ ∩ exp(P) = σo.

2. Oσ = O, for every signature σ and the null module O.

3. Pσ1∪σ2
= Pσ1 ∪Pσ2

, for every module P and signatures σ1, σ2.

4. Pσ1
σ2

= Pσ1∩σ2
= Pσ2

σ1

, for every module P and signatures σ1, σ2.

5. P1 ∪P2
σ

= P1
σ ∪ P2

σ
, for modules P1 and P2 defining disjoint signatures

and such that neither P1 nor P2 use the signature defined in the other module.

Our third operation is the deletion of a signature in a module.

Definition 10 (Deletion of a signature)

Given a module P =< σp, σe,R >, the deletion in P of a signature of function

symbols σ produces the module P\ σ =def< σ′p, σe \ σ,R\ σ >, where R\ σ denotes

the set of those rules in R defining function symbols not appearing in σ, and σ′p
denotes the corresponding parameter signature.
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We do not give an explicit expression for par(P \ σ) in terms of par(P) because

new parameters can appear and old ones can disappear with the deletion of rules

in rl (P). However, par(P \ σ) ⊆ σp ∪ (σe ∩ σ) is satisfied.

Example 11

In the module OrdNatList of Example 3 we can delete or abstract the signature

{isnat/1,leq/2} to obtain the following parameterized module

OrdNatList\{isnat/1,leq/2} =

< {isnat/1,leq/2},

{insert/2},

{ insert(X,[]) -> [X] <= isnat(X) >< true.

insert(X,[Y|Ys]) -> [X|[Y|Ys]] <= leq(X,Y) >< true.

insert(X,[Y|Ys]) -> [Y|insert(X,Ys)] <= leq(X,Y) >< false. } >

The resulting module is now parameterized by the two symbol functions isnat/1

and leq/2, whereas only the function insert/2 is exported.

This operation recalls the undefine clause in the object-oriented language Eiffel,

and we will use it (combined with the union) to perform inheritance with overriding.

Note the differences between the deletion of a signature and the closure w.r.t. a

signature. The former operation removes rules defining function symbols in the

signature – but not those rules containing invocations in their rhs or condition –

whereas the latter only hides the definitions of the functions in the signature, but

maintains their consequences – hiding all other functions.

Proposition 7

The deletion of a signature (of function symbols) in a module has the following

properties, where σ, σ1 and σ2 are signatures of function symbols,

1. P \ σ = O, for every module P and every σ such that exp(P) ⊆ σ.

2. P \ σ = P, for every module P and every σ such that exp(P) ∩ σ = σo.

3. (P \ σ1) \ σ2 = P \ (σ1 ∪ σ2) = (P \ σ2) \ σ1, for all modules P and σ1, σ2.

4. (P1 ∪P2) \ σ = (P1 \ σ) ∪ (P2 \ σ), for all modules P1, P2 and signatures σ.

5. (Pσ1
) \ σ2 = P(σ1\σ2)

, for all modules P and signatures σ1, σ2.

6. Pσ = P \ (σe \ σ), for a module P, with exported signature σe, and all σ.

Finally, we introduce a renaming operation that allows us to change function

symbols with other function symbols of the same arity, in the global signature Σ⊥.

Therefore, given a module P and a function symbols renaming ρ, we define the

renaming of P by ρ as a new module ρ(P) where rules are conveniently renamed.

The following definition formalizes this idea.

Definition 12 (Renaming)

Given a module P =< σp, σe,R > and a function symbol renaming ρ, P renamed

by ρ is the module ρ(P) =def< ρ∗(σp) \ ρ∗(σe), ρ∗(σe), ρ∗(R) >, where ρ∗(σ) is the

signature resulting from applying ρ to all symbols in σ, and ρ∗(R) is the set of rules

resulting from applying ρ to all rules in R.

The following example illustrates the usefulness of this operation to adequate

parameter names of a module.
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Example 13

In the module OrdNatList\{isnat/1,leq/2} of Example 11 we can rename the

function symbol isnat/1 with the new name isbasetype/1 to obtain a more

appropriate parameterized module

OrdList = {isnat/1 -> isbasetype/1}(OrdNatList\{isnat/1,leq/2}),

where we have denoted the corresponding renaming function ρ as the set of pairs

f/n→ ρ(f/n) such that f/n 6= ρ(f/n). This module has the following appearance

OrdList =

<{isbasetype/1,leq/2},

{insert/2},

{insert(X,[]) -> [X] <= isbasetype(X) >< true.

insert(X,[Y|Ys]) -> [X|[Y|Ys]] <= leq(X,Y) >< true.

insert(X,[Y|Ys]) -> [Y|insert(X,Ys)] <= leq(X,Y) >< false.} >

Now, the parameters become isbasetype/2 and leq/2.

We will use this operation to change function names in exportation, importation

and, specially, in instantiation for matching function names in the parameter signa-

ture of a module with function names in the exported signature of another module.

See section 4.2 for some illustrative examples.

Proposition 8

Renaming of modules has the following properties, where ρ, ρ1 and ρ2 are function

symbol renamings,

1. ι(P) = P, for every module P, where ι is the identity renaming.

2. ρ(O) = O, for every ρ.

3. ρ2(ρ1(P)) = (ρ2 ◦ ρ1)(P), for all modules P and all ρ1, ρ2.

4. ρ(P1 ∪P2) = ρ(P1) ∪ ρ(P2), for all modules P1, P2 and all ρ.

5. ρ(Pσ) = ρ(P)
ρ∗(σ)

, for all modules P, signatures σ and injective ρ.

6. ρ(P \ σ) = ρ(P) \ ρ∗(σ), for all modules P, signatures σ and injective ρ.

4.2 Other modular constructions in CRWL-programming

Our notion of module is basically that of a program inside a context made up of other

programs providing explicit rules for function symbols and implicit declarations of

constructor symbols, all together defining a global signature Σ⊥. In this section, we

will show how the operations that we have defined above can be used to model typical

module interconnections used in conventional modular programming languages. We

will introduce new operations with modules for these relationships, but all these will

be defined as derived expressions from the basic set. These expressions will reflect

the relationship between the module denoted by the expression and its component

modules, and the resulting modules will be interpreted as flat modules in all cases.

The closure of a module M w.r.t. a signature σ gives a form of encapsulation,

hiding those function symbols in M that are not in σ, and making the function

symbols in M and σ visible but only in an extensional way, i.e. by the results –
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as partial constructor Σ-terms – of the function applications to constructor Σ-terms

(including variables). Thus, we can provide an export with encapsulation operation

‘�’ over modules, in this simple way, σ�M =def Mσ
.

The union of modules reflects the behavior of some logic programming systems

that allow adding new programs – saved in separate files – to the main database. With

this operation, but modifying one of its arguments, we can express different forms

of importation and instantiation. We can define an import operation � between

modules as the union of a module M – representing the body of the importing

module – with the closure of the imported module N as M � N =def M∪N.

Module M � N imports N, which means that only the consequences of the

functions defined inN are imported, and not their rules. When exp(M)∩exp(N) =

σo we have a typical importation because functions defined in N are only reduced

in N. We can also express selective importation of a signature σ from N by

combining importation with exportation to restrict the visible signature of the

imported module, as M� (σ�N), with σ ⊆ exp(N). This expression is equivalent

to M ∪ Nσ
by Proposition 6(4). Multiple importation or (selective) importation

from several modules can be written as (. . . (M � (σ1�N1)) . . .) � (σk�Nk),

where the importation order is not relevant by Propositions 5(3,4) and 6(4,5). It

can be easily proved that this expression is equivalent to the single importation

M� ((σ1�N1)∪ . . .∪ (σk�Nk)). Importation with renaming can be expressed by an

expression of the form M� ρ(σ�N), with σ ⊆ exp(N) and an injective function

symbol renaming ρ (see Proposition 8(5)). By the properties of renaming this

expression is equivalent to M� (ρ∗(σ)�ρ(N)) and can be reduced to M∪ ρ(Nσ
).

Example 14

Let us consider the module OrdList in Example 13 and the new module

OrdNat =

< {},

{isnat/1, leq/2, geq/2},

{ isnat(zero) -> true.

isnat(succ(X)) -> isnat(X).

leq(zero,zero) -> true.

leq(zero,succ(X)) -> isnat(X).

leq(succ(X),zero) -> false <= isnat(X) >< true.

leq(succ(X),succ(Y)) -> leq(X,Y).

geq(X,Y) -> leq(Y,X). } >

where we define the predicate isnat/1 and the two order relationships leq/2 (less
than or equal to) and geq/2 (greater than or equal to). The importation

OrdList� {isnat/1 -> isbasetype/1}(OrdNat)

is a module with an infinite number of rules for isbasetype/1, leq/2 and geq/2

(all possible reductions to true or false), that behaves as calls to isbasetype/1 and

leq/2 are reduced in OrdNat as calls to isnat/1 and leq/2 itself respectively.

Thus a typical program M with a hierarchical structure in the sense of standard

modular programming, i.e., importing from several modules N1, . . . ,Nk , possibly

with renaming, can be built up from a plain program P – its body – and the
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imported modules asM = P � (ρ1(σ1�N1)∪ . . .∪ρk(σk�Nk)), with σ1 ⊆ exp(N1),

. . . , σk ⊆ exp(Nk) and par(P) ⊆ (ρ∗1(σ1)∪. . .∪ρ∗k(σk)). This expression can be reduced

to P∪ ρ1(N1
σ1

) ∪ . . . ∪ ρk(Nk
σk

).

Because our basic modules can be parameterized, we can instantiate function

symbols of the parameterized signature of a module M with function symbols,

of the same arity but different name, exported by other module N, simply by

renaming suitably the parameters of M to fit (a part of) the exported signature

of N. Thus we obtain an instantiation operation that we denote M[N, ρ] and

define as M[N, ρ] =def ρ(M) � N, where ρ is the function symbol renaming

that characterizes the instantiation. This operation makes sense when ρ∗(par(M)) ∩
exp(N) 6= σo. When par(ρ(M)) ⊆ exp(N) the instantiation is total and is partial in

another case. Note that instantiation can be seen as a special form of importation.

The difference between a (renamed) importation M � ρ(N) and an instantiation

ρ(M) � N is that in the former, symbols in the parameter signature of M refer

to actual names in the exported signature of the imported module N (renamed by

ρ), whereas in the latter, symbols in the parameter signature of M behave as true

parameters being replaced by ρ with actual values of the exported signature of N.

Example 15

Let us consider again the module OrdList in Example 13 and the module OrdNat

defined in Example 14. The instantiation

OrdList[OrdNat,{isbasetype/1 -> isnat/1, leq/2 ->geq/2}]

is equivalent to a module, also with an infinite number of rules, but defining the

predicates isnat/1 and geq/2 instead of isbasetype/1 and leq/2 , respectively.

Deletion of a signature σ in a module removes all rules defining function symbols

in that signature but maintains the occurrences of these symbols in the rhs of the

other rules. This operation can be used to abstract a signature σ from a module

M in this way, M[σ] =def M \ σ. This abstraction operation makes sense when

σ ⊆ exp(M) and each function symbol in σ appears in some rule of rl (M \ σ).

This operation is very useful for making generic modules from concrete ones but

unfortunately it is not implemented in conventional modular programming systems.

As an example of the use of this operation we refer to Example 11. Also, with the

deletion operation, we can model a sort of inheritance relationship between modules.

Inheritance with overriding may be captured by means of union and deletion of a

signature in this way, M isaN =def M∪ (N\ exp(M)). Module M isaN inherits

all functions in N – with their rules – not defined in M and uses the rules of M
for all functions defined in M, overriding the definition rules in N, for common

functions. In this case, overriding is carried out by deleting the common signature

of the inherited module before adding it to the derived module.

Example 16

Let us consider a module defining some operations on polygonal lines and parame-

terized w.r.t. an addition operation _+_/2, a predicate ispoint/1 to test if something
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is a point, and operations distance/2 and translatepoint/2 for computing the

distance between points and the point resulting of applying a translation, given by

a vector (its second argument), to another point (its first argument).

Polygonal =
<{_+_/2, ispoint/1, distance/2, translatepoint/2 },
{perimeter/1,translate/2 },
{perimeter([P1]) -> zero <= ispoint(P1) >< true.
perimeter([P1|[P2|Ps]]) -> distance(P1,P2)+perimeter([P2|Ps]).
translate([P1],V) -> [translatepoint(P1,V)].
translate([P1|[P2|Ps]],V) -> [translatepoint(P1,V)|translate([P2|Ps],V)].} >

(where we suppose that distance/2 and translatepoint/2 check that their argu-

ments are points). Let us also consider another module defining some operations

on squares and also parameterized w.r.t. a multiplication operation _*_/2, and the

above operations ispoint/1 and distance/2.

Square =
< {_*_/2, ispoint/1, distance/2},

{issquare/1, side/1, perimeter/1, surface/1},
{issquare([P1,P2,P3,P4]) -> true <= distance(P1,P2) >< distance(P2,P3),

distance(P2,P3) >< distance(P3,P4),
distance(P1,P2) >< distance(P3,P4).

side([P1,P2,P3,P4]) -> distance(P1,P2) <= issquare([P1,P2,P3,P4]) >< true.
perimeter(C) -> 4*side(C) <= issquare(C) >< true.
surface(C) -> side(C)*side(C) <= issquare(C) >< true.} >.

With these modules we could define a new module SquarePolygone making module

Square inherit from Polygonal,

SquarePolygone = Square isa Polygonal.

The resulting module would be

SquarePolygone =
< {_+_/2, _*_/2, ispoint/1, distance/2, translatepoint/2},

{issquare/1, side/1, perimeter/1, surface/1, translate/2},
{issquare([P1,P2,P3,P4]) -> true <= distance(P1,P2) >< distance(P2,P3),

distance(P2,P3) >< distance(P3,P4),
distance(P1,P2) >< distance(P3,P4).

side([P1,P2,P3,P4]) -> distance(P1,P2) <= issquare([P1,P2,P3,P4]) >< true.
perimeter(C) -> 4*side(C) <= issquare(C) >< true.
surface(C) -> side(C)*side(C) <= issquare(C) >< true.
translate([P1],V) -> [translatepoint(P1,V)].
translate([P1|[P2|Ps]],V) -> [translatepoint(P1,V)|translate([P2|Ps],V)].} >.

Note that perimeter/1, defined in the module Polygonal, has been redefined with

the version of the module Square. The function translate/2 has been inherited

from Polygonal.

5 A compositional semantics

A module is basically a program because its interface can be extracted from its

set of rules when we know the data constructor symbols, and operations defined

on modules are operations on their sets of rules, i.e. operations on programs. The

difference between a program and a program module is that a module can be

thought of as a program piece that can be assembled with other pieces to build

larger programs (this is one of the main reasons of making explicit their interfaces).
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With this idea in mind, the model-theoretic semantics defined for CRWL-programs

is not suitable for program modules because it is not compositional w.r.t. the

operations defined over modules as we can see in the following example.

Example 17

Let Σ be a signature ({a/0, b/0, c/0}, {p/1, r/1}), and modules P1 and P2 with the

following sets of rules: rl(P1) = {p(a) → c} and rl(P2) = {p(a) → c, r(b) → c ⇐
p(b) ./ c}. These modules have the same model-theoretic semantics, MP1

= MP2
,

which is the CRWL-algebra A with functions pA and rA such that

pA(a) = {c,⊥}, pA(b) = pA(c) = pA(⊥) = {⊥}, pA(X) = {⊥}, ∀X ∈ V
rA(a) = {⊥}, rA(b) = rA(c) = rA(⊥) = {⊥}, rA(X) = {⊥}, ∀X ∈ V.

However, their unions with Q, such that rl(Q) = {p(b) → c}, have different model-

theoretic semantics. The intended model of P1 ∪ Q has a function rMP1∪Q such that

rMP1∪Q (b) = {⊥}, whereas rMP2∪Q (b) = {c,⊥}. So, MP1∪Q 6=MP2∪Q.

The compositionality of the semantics of a programming language is particularly

relevant when modularity is involved. In fact, one of the most critical aspects in

modular systems is the possibility of making a separate compilation of modules,

and this can only be made in the presence of some kind of compositionality.

To study the compositionality and full abstraction of a semantics, we have to

clearly set out these notions. We will adopt the approach proposed in Brogi and

Turini (1995), where compositionality and full abstraction are defined in terms of

the equivalence relation between programs induced by the semantics.

Definition 18 (Compositional relation)

Given an equivalence relation ≡ defined between programs, an observation function

Ob defined for programs, and a set Oper of operations with programs, we say that

1. ≡ preserves Ob iff for all programs P and Q, P ≡ Q ⇒ Ob(P) = Ob(Q);

2. ≡ is a congruence w.r.t. Oper iff for all programs Pi and Qi and all O ∈ Oper ,

Pi ≡ Qi, for i = 1, . . . , n, implies O(P1, . . . ,Pn) ≡ O(Q1, . . . ,Qn);
3. ≡ is compositional w.r.t. (Ob,Oper) iff it is a congruence w.r.t. Oper and

preserves Ob.

To set the notion of full abstraction for an equivalence relation, we need some way

of distinguishing programs and for that reason we introduce the notion of context.

Given a set of operations on programs Oper, and a metavariable X, we define con-

texts C [[ X ]] inductively as follows: X and each program is a context, also for each

operation O ∈ Oper with n program arguments and C1, . . . , Cn contexts, O(C1, . . . , Cn)

is a context. Two programs P and Q are distinguishable under (Ob,Oper) if there ex-

ists a context C [[ X ]] such that C [[ P ]] and C [[ Q ]] have different external behavior,

i.e. Ob(C [[ P ]] ) 6= Ob(C [[ Q ]] ). When P and Q are indistinguishable under (Ob,Oper)

we will write P ∼=Ob,Oper Q, i.e. for all contexts C , Ob(C [[ P ]] ) = Ob(C [[ Q ]] ).

Definition 19 (Fully abstract relation)

An equivalence relation ≡ is fully abstract w.r.t. (Ob,Oper) iff for all programs P
and Q, P ∼=Ob,Oper Q ⇒ P ≡ Q.
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A semantics S for a programming language provides a meaning for programs

and also induces an equivalence relation ≡S between programs: two programs are

equivalent iff they have the same meaning in this semantics. This equivalence relation

is used for defining compositionality and full abstraction for semantics.

Definition 20 (Compositional and fully abstract semantics)

A semanticsS is compositional or fully abstract w.r.t. (Ob,Oper) iff its corresponding

relation ≡S is compositional or fully abstract, respectively, w.r.t. (Ob,Oper).

Obviously, for each pair (Ob,Oper) there exits a compositional and fully abstract

relation between programs, the relation P ≡(Ob,Oper) Q iff Ob(C [[ P ]] ) = Ob(C [[ Q ]] ),

for every context C [[ X ]] . For each compositional equivalence relation ≡, it is easy to

see that P ≡ Q ⇒ P ≡(Ob,Oper) Q, and for each fully abstract equivalence relation ≡,

P ≡(Ob,Oper) Q ⇒ P ≡ Q. Thus, ≡(Ob,Oper) will be the only equivalence relation which

is both compositional and fully abstract w.r.t. (Ob,Oper). And the more adequate se-

mantics for programs (w.r.t. (Ob,Oper)) will be a semantics that induces this relation.

5.1 The T-semantics

To find a compositional semantics we may think about programs as open in the sense

that we can build up programs from other programs adding rules for new functions

and also for already defined functions (of the signature Σ we were in) and imagine

them as algebra transformers as is done in Mancarella and Pedreschi (1988) and

Brogi (1993). The operator TP considered as a function TAlgΣ → TAlgΣ is a good

candidate for the intended meaning of a program P. First, we have to note that the

set [TAlgΣ → TAlgΣ] of all continuous functions from TAlgΣ to TAlgΣ, ordered by

the relation T1 v T2 iff T1(A) v T2(A), for all A ∈ TAlgΣ, with the least upper

bound and the greatest lower bound of a finite set {Ti}i∈I of functions pointwise

defined as (ti∈ITi)(A) = ti∈I (Ti(A)) and (ui∈ITi)(A) = ui∈I (Ti(A)) respectively,

and with bottom T⊥ and top TΣ such that T⊥(A) = ⊥Σ and TΣ(A) = >Σ,

for all A ∈ TAlgΣ, is a complete lattice as a consequence of (TAlgΣ,v) being a

complete lattice. Now, we can associate a program with the corresponding immediate

consequence operator, instead of its least fixpoint.

Definition 21 (T-semantics)

We define the T-semantics [{ P }] T by denoting the meaning of a program P by its

algebra transformer TP, where TP is intended as Trl(P).

This semantics entails the following equivalence relation on programs: P ≡T
Q ⇔def TP = TQ. Thus, two programs are ≡T -equivalent if both define the same

immediate consequences operator. In this context, and coinciding with logic pro-

gramming, a natural choice of the observable behavior of a program R is its model-

theoretic semantics. So we will adopt as observation function Ob(R) =def MR.

Notice thatMR captures the graphs of all functions defined in R, whereas functions

not included in the program are considered totally undefined (their images only

can be reduced to ⊥). The semantics [{ · }] T is compositional w.r.t. this observation

function and the set of operations Oper = {∪, (·)σ, (·)\σ, ρ(·)}. We can prove this fact

by proving that [{ · }] T is homomorphic in the following sense.

https://doi.org/10.1017/S1471068402001527 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001527


210 J. M. Molina-Bravo and E. Pimentel

Theorem 22

Given a global signature Σ and a countable set of variable symbols V, for all

programs P, P1 and P2 defined over Σ, every subsignature of function symbols

σ ⊆ FSΣ, and every function symbol renaming ρ, we have the following results

(a) [{ P1 ∪P2 }] T = [{ P1 }] T t [{ P2 }] T ;

(b) [{ Pσ }] T = λA · ( [{ P }] ωT (⊥Σ))|σ;

(c) [{ P \ σ }] T = [{ P }] T u Texp(P)\σ;

(d) [{ ρ(P) }] T = Tρ−1◦ [{ P }] T ◦Tρ;
where, for every algebraA ∈ TAlgΣ and every subsignature σ ⊆ FSΣ,A|σ is the term

algebra characterized by fA|σ (t) = fA(t), for f/n ∈ σ, and fA|σ (t) = {⊥}, otherwise.

For each subsignature σ ⊆ FSΣ, Tσ is the constant algebra transformer that, for all

A ∈ TAlgΣ produces the same term algebra >σ characterized by f>σ (t) = CTerm⊥,

for f/n ∈ σ, and f>σ (t) = {⊥}, otherwise. And, for each rename ρ, Tρ and Tρ−1 are

the algebra transformers defined by Tρ(A) = Aρ and Tρ−1 (A) = Aρ−1 where Aρ

and Aρ−1 are the term algebras characterized by

fAρ = ρ(f)A and fAρ−1 =

{ t{gA | f = ρ(g)}, when this set is not empty,

f⊥Σ otherwise,

for every function symbol f in FSΣ.

Thus, the meaning of the union of two programs (a) can be extracted from the

meaning of each one, the meaning of the closure of a program (b) is obtained from

the fixpoint of the program semantics, and deleting a signature from a program (c) is

semantically equivalent to the intersection of the program semantics with an algebra

transformer which depends on the exported signature of the program. Nevertheless,

the intersection we are mentioning here is not an operation over programs (as in

Brogi (1993)) but an operation on algebra transformers. The meaning of a renamed

program (d) can be obtained as the composition of the meaning of the program

with two algebra transformers associated with the renaming and its reverse.

Corollary 1 (Compositionality of [{ · }] T )

The semantics [{ · }] T is compositional with respect to (Ob, {∪, (·)σ, (·)\σ, ρ(·)}).
As the above corollary states, [{ · }] T is compositional w.r.t. union, closure, deletion

and renaming, when the canonic model of a program is taken as its observable

behavior. However, the following example shows that it is not fully abstract.

Example 23

Let Σ be a signature ({c/0, d/0}, {f/0}) and let P and Q be the modules such

that rl(P) = {f → c, f → d} and rl(Q) = {f → c, f → d ⇐ f ./ c}. They are

indistinguishable under {∪, (·)σ, (·)\σ, ρ(·)}, but they are not ≡T -equivalent. In fact,

TP(⊥Σ) 6=TQ(⊥Σ) because fTP(⊥Σ) = {c, d,⊥} whereas fTQ(⊥Σ) = {c,⊥}.
TheT-semantics distinguishes more than the model-theoretic semantics, since the

immediate consequence operator captures what is happening in each reduction step,

but the non-full abstraction result means that this semantics distinguishes more than

necessary. It is too fine. In the next section we will try a coarser semantics – also
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studied in logic programming (Brogi and Turini, 1995) – defined from the sets of

pre-fixpoints of T.

6 A fully abstract semantics

In this section, a fully abstract semantics is presented, which is also compositional

except for the deletion operation. For a better motivation, we will not introduce this

semantics directly. Instead, we will define a first approximation, the so-called term

model semantics (Definition 24), which only is compositional (w.r.t. the union, closure

and renaming operations), and then we will obtain the full abstraction property by

restricting the term models (Definition 29).

6.1 The term model semantics

Formally, we will introduce the first semantics by directly considering the corre-

sponding equivalence relation.

Definition 24 (Model equivalence)

Two programs P and Q are model-equivalent, P ≡M Q, iff their algebra transformers

have the same pre-fixpoints.

By Lemma 3 this means that two programs are equivalent iff they have the same

term models. This equivalence relation corresponds to the following semantics:

[{ P }]M =def {M | M is a term model of P}
which will be called loose model-theoretic semantics, or simply term model semantics.

To derive the corresponding result about compositionality, we need an auxiliary

property about Tρ and Tρ−1 .

Lemma 5

Given two term algebras A,B ∈ TAlgΣ, for every function symbol renaming ρ,

Aρ−1 v B ⇔A v Bρ or, equivalently, Tρ−1 (A) v B ⇔A vTρ(B).

This lemma claims that Tρ−1 is, essentially, the reverse operator for Tρ.
Theorem 25 (Compositionality of [{ · }]M)

For all programs P,Q,Pi,Qi,
1. P ≡M Q implies Ob(P) = Ob(Q).

2. Pi ≡M Qi for i = 1, 2, implies P1 ∪P2 ≡M Q1 ∪ Q2.

3. P ≡M Q implies Pσ ≡M Qσ , for every signature σ.

4. P ≡M Q implies ρ(P) ≡M ρ(Q), for every function symbol renaming ρ.

Therefore, the semantics [{ · }]M is compositional w.r.t. (Ob, {∪, (·)σ, ρ(·)}).
Unfortunately, this semantics is not compositional w.r.t. deletion.
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Example 26

Let Σ be the signature ({a/0, b/0}, {f/0, g/0}) and let P and Q be two modules

with rules rl(P) = {f → a, g → b} and rl(Q) = {f → a, g → b ⇐ f ./ a}. Both

modules have the same term models, those term algebras A with a ∈ fA and

b ∈ gA. But by deleting f/0 in each module we have P \ {f/0} and Q \ {f/0} with

rl(P \ {f/0}) = {g → b} and rl(Q \ {f/0}) = {g → b ⇐ f ./ a}, and now ⊥Σ is a

model of Q \ {f/0} whereas it is not a model of P \ {f/0}.
For a different reason, the semantics [{ · }]M is not fully abstract.

Example 27

Let Σ be the signature ({a/0}, {f/0, g/1}) and let P and Q be two modules with

rules rl(P) = {f → a⇐ g(a) ./ a} and rl(Q) = {f → a⇐ g(X) ./ a}, where the rule

in P is an instance of the rule in Q. Obviously, both modules are indistinguishable

but they do not have the same term models. In fact, if we consider the algebra A
such that: fA = {⊥}, gA(X) = {a,⊥} and gA(a) = {⊥}, A is a model of P but it is

not a model of Q.

6.2 The consistent term model semantics

To prove the full abstraction property we need to consider a different equivalence

relation (i.e. semantics). If we observe the above counter-example, we can see that,

for the term algebra A used to distinguish [{ P }]M from [{ Q }]M , gA(X) = {a,⊥}
and gA(a) = {⊥}; that is, A is such that the instantiation of the variable X derives

in a loss of information for the interpretation of g because gA(Xθ) is smaller than

(gA(X))θ, for θ = {X/a}. In general, the notion of term algebra (see section 2) does

not impose any relation between gA (̄tθ) and (gA (̄t))θ. This is not reasonable if we

take into account the role of term algebras when they are used to model programs.

On the contrary, the interpretation of a function symbol (in a term algebra) applied

to arguments with variables must be related to the interpretation of the same

function symbol when these variables are instantiated. With this idea in mind, we

introduce the notion of consistency in a term algebra.

Definition 28 (Consistency of term algebras)

A term algebra A ∈ TAlgΣ is consistent iff for every f ∈ FSnΣ and ti ∈ CTerm⊥
(i = 1, . . . , n), fA(tθ) ⊇ (fA(t))θ for all θ ∈ CSubst, where (fA(t))θ stands for the set

{uθ | u ∈ fA(t)}.
We denote by CTAlgΣ the family of all consistent term algebras. Note that

consistency is only required for total substitutions (i.e. substitutions which do not

include partial constructor terms). This is due to the special treatment of ⊥, which is

considered as lack of information. The notion of consistency here introduced is close

to that of closure under substitutions defined for interpretations in Apt (1996), and is

also related with the notion of C-interpretation considered in Falaschi et al. (1993),

but our requirements are weaker than those. To justify the reasonable nature of

consistent term algebras we will prove several desirable properties. For instance, the

immediate consequences operator maps consistent algebras into consistent algebras,

and the canonical model of a program is consistent.
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Lemma 6

For every A ∈ CTAlgΣ, r ∈ Term⊥, and θ ∈ CSubst, [[ r ]]Aid θ ⊆ [[ rθ ]]Aid .

Proposition 9

Given a program P, if A ∈ CTAlgΣ, then TP(A) ∈ CTAlgΣ.

Proposition 10

Given a program P, the canonical term model MP is consistent.

Now, we may define an equivalence relation based only on consistent term models.

Definition 29 (Consistent model equivalence)

Two programs P and Q are consistent model-equivalent, P ≡CM Q, iff their have

the same consistent models.

This equivalence is clearly weaker than the model equivalence and corresponds to

the following semantics:

[{ P }] CM =def {M | M is a consistent term model of P}
which will be called loose consistent model-theoretic semantics, or simply consistent

term model semantics. Obviously, [{ P }] CM = [{ P }]M ∩ CTAlgΣ, and the compo-

sitionality property of this semantics may be obtained in a similar way as the

compositionality of the term model semantics.

Theorem 26 (Compositionality of [{ · }] CM)

For all programs P,Q,Pi,Qi,
1. P ≡CM Q implies Ob(P) = Ob(Q).

2. Pi ≡CM Qi for i = 1, 2, implies P1 ∪P2 ≡CM Q1 ∪ Q2.

3. P ≡CM Q implies Pσ ≡CM Qσ , for every signature σ.

4. P ≡CM Q implies ρ(P) ≡CM ρ(Q), for every function symbol renaming ρ.

Therefore, the semantics [{ · }] CM is compositional w.r.t. (Ob, {∪, (·)σ, ρ(·)}).
Example 26 also illustrates the non-compositionality of [{ · }] CM w.r.t. the deletion

operation because the programs P and Q only define functions without arguments.

However, this semantics is fully abstract; to prove this fact, we need an auxiliary

result, showing how a (minimal ) program P can be constructed from a consistent

term algebra A and an element t ∈ [[ r ]]Aid such that A is a model of P and

t ∈ [[ r ]]MPid . Proposition 11 formalizes this idea. In order to simplify the proof of

this result, we will prove some properties about the notion of canonical rewrite rule

already introduced in Definition 6.

Lemma 7

For each canonical rewrite rule crr(e, r), T{crr(e,r)} is constant and if e = f(t) then,

for every term algebra A,

hT{crr(e,r)}(A)(s) =

{ ⋃
η∈CSubst { [[ rη ]]Aid | tη v s} ∪ {⊥} if h = f,

{⊥} otherwise
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Proposition 11

Let A ∈ CTAlgΣ be a consistent term algebra, and r ∈ Term⊥. Then, for every

t ∈ [[ r ]]Aid , a program Rt exists such that t ∈ [[ r ]]
MRt
id and TRt (A) v A. Moreover,

TRt is constant.

Now, we can obtain the full abstraction property for [{ · }] CM .

Theorem 31 (Full abstraction of [{ · }] CM)

The semantics [{ · }] CM is fully abstract w.r.t. (Ob, {∪, (·)σ, (·)\σ, ρ(·)})

7 A compositional and fully abstract semantics

The fact that the consistent term model semantics is fully abstract but not composi-

tional w.r.t. the deletion of a subsignature means that this semantics is more abstract

than necessary. We need a finer semantics but not as fine as the T-semantics. One

way of obtaining such a semantics is by increasing the number of pre-fixpoints (re-

lated to the T-operator) to be considered when we compare two programs, and to

obtain compositionality w.r.t. the deletion operation, we may consider the consistent

term models of all programs obtained by deleting a subsignature. With this idea we

define the following equivalence between programs

Definition 32 (Deletion equivalence)

For programs P and Q, we define the deletion equivalence P ≡D Q as P\σ ≡CM Q\σ
for all subsignatures σ ⊆ FSΣ.

This equivalence is finer than the consistent model equivalence and coarser than

the equivalence induced by the T-semantics. In fact, P ≡D Q implies P ≡CM Q
because this relationship coincides with P \ σ0 ≡CM Q \ σ0, where σ0 is the empty

signature. And if P ≡T Q, or equivalently TP = TQ, it can be proved that TP\σ =

TQ\σ , for all σ ⊆ FSΣ, and then P \ σ ≡CM Q \ σ, for all σ ⊆ FSΣ, which is P ≡D Q.

The deletion equivalence is compositional w.r.t. all operations.

Theorem 33 (Compositionality of ≡D)

For all programs P,Q,Pi,Qi,
1. P ≡D Q implies Ob(P) = Ob(Q).

2. Pi ≡D Qi for i = 1, 2, implies P1 ∪P2 ≡D Q1 ∪ Q2.

3. P ≡D Q implies Pσ ≡D Qσ , for every signature σ ⊆ FSΣ.

4. P ≡D Q implies P \ σ ≡D Q \ σ, for every signature σ ⊆ FSΣ.

5. P ≡D Q implies ρ(P) ≡D ρ(Q), for every function symbol renaming ρ.

Thus, the equivalence ≡D is compositional w.r.t. (Ob, {∪, (·)σ, (·) \ σ, ρ(·)}).
Theorem 34 (Full abstraction of ≡D)

The equivalence ≡D is fully abstract w.r.t. (Ob, {∪, (·)σ, (·)\σ, ρ(·)})
Definition 35 (Deletion semantics)

We define the deletion semantics [{ P }] D , of a program P, as {Mf/n(P) | f/n ∈ FSΣ},
where Mf/n(P) is the set of all consistent term models of the rules of P that define

f/n.

The deletion semantics induces the deletion equivalence.
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Proposition 12

P ≡D Q ⇔def [{ P }] D = [{ Q }] D
Thus, the deletion semantics is compositional and fully abstract w.r.t. (Ob,{∪, (·)σ ,

(·) \ σ, ρ(·)}).

8 Introducing hidden symbols

In this section we explore an alternative to modules with an infinite number of rules,

generated by the closure operation, that also supports local constructor symbols.

For this aim we will consider a global or visible signature Σ and a set V of

variable symbols together with a new set Ω of labels that we identify with the set of

module names and module expressions. With this set we obtain a labeled signature

Ω× Σ = (Ω× DSΣ,Ω× FSΣ) which we will consider as protected or non accessible

for users and writers of modules, i.e. hidden. This signature will be only managed by

the module system for internal representation of module expressions. Pairs (M, f)

of Ω× Σ, called labeled symbols, will be denoted by M.f.

As we have seen in section 4.1 the purpose of the closure of a module is to hide

the definitions of function symbols, making only their results visible. To this aim,

the rules of a module are replaced with all (possibly infinite) approximations that

can be derived from them. However, we can obtain an internal representation of the

closure operation, with a finite number of rules, with the aid of labeled symbols,

following an idea that appears in Brogi (1993) applied to the hiding of predicate

definitions in logic programs. We go further into this idea applying it to deal with

local constructor symbols.

8.1 A finite representation of closure

Let P =< σp, σe,R > a module of PMod(Σ⊥) with a finite set of rules. We can

protect its rules translating them to a protected signature by labeling all function

symbols with the module’s name and introducing a bridge rule f(X) → P.f(X)

for each function symbol f/n ∈ σe. In this way we obtain a module P∗ in the

signature Σ⊥ = (DSΣ⊥ , FSΣ⊥ ∪ (Ω× FSΣ⊥)) with an isolated (hidden) part RH , made

up of all translated rules, and a bridge part RB for accessing the isolated part,

made up of all bridge rules. Obviously with this module we can derive the same

approximations, for visible function symbols, as with P in every context. We will call

these modules structured modules to distinguish them from plain modules used up

to now. In general, a structured module will be a module < σp, σe,RV ∪RB ∪RH >
with a visible parameter signature σp, a visible exported signature σe, and a set of

rules with three – possibly empty – parts, a visible part RV made up of rules only

with function symbols in FSΣ, a hidden part RH made up of rules only with function

symbols in Ω×FSΣ, and a bridge part RB made up of bridge rules f(X)→ P.g(X),

for any label P ∈ Ω, such that each symbol P.g has a definition rule in RH . Also,

σe is made up of all function symbols with a definition rule in RV or RB , and

σp is made up of all parameter function symbols which appear in RV . We define
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union, deletion of functional signature and renaming in the same way as we did in

section 4.1, but we will use deletion and renaming involving only visible signature,

and, instead of closure, we define a structured closure for a structured module

P =< σp, σe,RV ∪ RB ∪ RH > as the module P∗ =< ∅, σe,R∗B ∪ R∗H > obtained by

applying the renaming τ(P), that transforms each visible function symbol f of RV
and RB into P.f and maintains all labeled symbols, and adding new bridge rules

corresponding to the function symbols of σe. Now, we can define a representation

morphism from modular expressions made up from finite plain modules to structured

modules in the following way:

• ι(P) = P, for each finite plain module P;

• ι(P∪ Q) = ι(P) ∪ ι(Q), for module expressions P and Q;

• ι(P \ σ) = ι(P) \ σ, for each module expression P and visible signature σ;

• ι(ρ(P)) = ρ(ι(P)), for each module expressionP and visible signature renaming

ρ;

• ι(P) = (ι(P))∗, for each module expression P.

Example 36
Let OrdList and OrdNat be the modules defined in Examples 13 and 14, respectively,
and let P be the name of the module ι(OrdNat). The representation of OrdList ∪
{isnat/1->isbasetype/1}(OrdNat) will be the structured module ι(OrdList) ∪
{isnat/1->isbasetype/1}(P∗), with the following aspect

<{}, {isbasetype/1,leq/2,geq/2,insert/2},

{ % visible rules

insert(X,[]) -> [X] <= isbasetype(X) >< true.

insert(X,[Y|Ys]) -> [X|[Y|Ys]] <= leq(X,Y) >< true.

insert(X,[Y|Ys]) -> [Y|insert(X,Ys)] <= leq(X,Y) >< false.

% bridge rules

isbasetype(X) -> P.isnat(X).

leq(X,Y) -> P.leq(X,Y).

geq(X,Y) -> P.geq(X,Y).

% hidden rules

P.isnat(zero) -> true.

P.isnat(succ(X)) -> P.isnat(X).

P.leq(zero,zero) -> true.

P.leq(zero,succ(X)) -> P.isnat(X).

P.leq(succ(X),zero) -> false <= P.isnat(X) >< true.

P.leq(succ(X),succ(Y)) -> P.leq(X,Y).

P.geq(X,Y) -> P.leq(Y,X). } >

The behaviour of a structured module P =< σp, σe,RV ∪RB∪RH > w.r.t. the visible

signature can be expressed with the aid of the algebra transformer UP: CTAlgΣ →
CTAlgΣ defined, for each A, as UP(A) = TRV∪RB (TωRH (⊥Σ) t A)|Σ, where A is

the extension of A to an algebra of CTAlgΣ obtained by adding functions P.fA
defined as P.fA(t) = 〈⊥〉, for each f/n ∈ FSΣ and P ∈ Ω, and B|Σ means the reduct

of the algebra B ∈ CTAlgΣ obtained by forgetting all functions denoting labeled

function symbols. In this expression, TωRH (⊥Σ) represents all the information which

can be obtained from the hidden rules; this information is added to the extended

algebra because it has to be available for the immediate consequences operator

https://doi.org/10.1017/S1471068402001527 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001527


Composing programs in CRWL 217

corresponding to the visible and bridge rules, to obtain the approximations for

visible functions. The relationship, at the semantical level, between programs and

structured modules is given in the following theorem.

Theorem 37

For each modular expression E, made up from finite plain programs, and its

implementation ι(E), we have TE = Uι(E).

From this theorem we obtain that for two equivalent module expressions P and Q
(i.e. P and Q have the same components but, possibly, different expressions with the

operations), Uι(P) = Uι(Q) although it is possible that ι(P) differs from ι(Q) due to

the occurrence of closure operations. Also, the models of a program module P will

be the pre-fixpoints of Uι(P) and we can define the visible semantics of structured

modules based on this operator. In particular we obtain the deletion semantics by

considering, for each structured module P =< σp, σe,RV ∪RB ∪RH >, the indexed

family of sets of pre-fixpoints of UP\(σe\f) for each f/n ∈ σe.

8.2 Local constructor symbols

To simplify the theoretical study of programs composition in CRWL-programming,

and to capture the idea of module as open program, we have assumed that construc-

tor symbols are common to all programs. However, as it was discussed in section 4,

this assumption prevents to hide constructor symbols, what is not acceptable from

a practical point of view.

We can hide constructor symbols by labeling them as we have done with function

symbols to protect them against user manipulations. Labeled constructor symbols

can only be manipulated in the internal representation of the closure of the module

corresponding to their label. Outside this module, function symbols defined on

labeled constructor symbols can only be applied to variable symbols or to other

function applications that can be reduced to this labeled constructor symbols. To

realize this idea we only need to modify our closure implementation extending it

to manage constructor symbols also. So, we define closure hiding a subsignature

C of constructor symbols for a module P as a (non plain) module PC such that

ι(PC) = P∗C where P∗C is obtained as P∗ but now the renaming τ(P) also transforms

each visible constructor symbol c of C into P.c.

Example 38

Let us suppose a module LNat for lists of natural numbers exporting the function

symbols isnat/1, _<_/2 and _++_/2, and consider the following module for binary

search trees where tree constructors nil/0 and mktree/3 are used.

BST =
<{isnat/1, _<_/2, _++_/2}, {empty/0, insert/2, inorder/1},
{empty -> nil .
insert(N,nil) -> mktree(N,nil,nil) <= isnat(N) >< true .
insert(N,mktree(M,T1,T2)) -> mktree(M,T1,T2) <= N >< M, isnat(N) >< true .
insert(N,mktree(M,T1,T2)) -> mktree(M,insert(N,T1),T2) <= N<M >< true .
insert(N,mktree(M,T1,T2)) -> mktree(M,T1,insert(N,T2)) <= M<N >< true .
inorder(nil) -> [] .
inorder(mktree(M,T1,T2)) -> inorder(T1)++[M|inorder(T2)] <= isnat(M) >< true .}>
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We may hide the tree constructors by considering (LNat ∪ BST){nil,mktree}. This module

will have the following representation:

<{}, {isnat/1, _<_/2, _++_/2, empty/0, insert/2, inorder/1},
{ ... % bridge rules of LNat
empty -> BST.empty . % bridge rules of BST
insert(N,T1) -> BST.insert(N,T1) .
inorder(T1) -> BST.inorder(T1) .

... % hidden part of LNat
BST.empty -> BST.nil . % hidden part of BST
BST.insert(N,BST.nil) -> BST.mktree(N,BST.nil,BST.nil)

<= BST.isnat(N) >< true .
BST.insert(N,BST.mktree(M,T1,T2)) -> BST.mktree(M,T1,T2)

<= N >< M, BST.isnat(N) >< true .
BST.insert(N,BST.mktree(M,T1,T2)) -> BST.mktree(M,BST.insert(N,T1),T2)

<= N NBST.< M >< true .
BST.insert(N,BST.mktree(M,T1,T2)) -> BST.mktree(M,T1,BST.insert(N,T2))

<= M MBST.< N >< true .
BST.inorder(BST.nil) -> [] .
BST.inorder(BST.mktree(M,T1,T2)) -> BST.inorder(T1) BST.++ [M|BST.inorder(T2)]

<= BST.isnat(M) >< true .}>

We can use this module, only using the exported signature and visible constructor

symbols, as is done in the following module for sorting lists:

LSort =

<{empty/0, insert/2, inorder/1},

{listTotree/1, lsort/1},

{listTotree([]) -> empty .

listTotree([N|L]) -> insert(N,listTotree(L)) .

lsort(L) -> inorder(listTotree(L)) .} >

The behavior of a structured module P =< σp, σe,RV ∪ RB ∪ RH > with hidden

constructor symbols w.r.t. the visible signature can be expressed with the aid of

the algebra transformer UP: CTAlgΣ → CTAlgΣ defined, for each A, as UP(A) =

TRV∪RB (TωRH (⊥Σ) t A)|Σ, where now A is the extension of A to an algebra of

CTAlgΩ×Σ obtained by adding functions P.fA, defined as P.fA(t) = 〈⊥〉, for each

f/n ∈ FSΣ and P ∈ Ω, and defining fA(t) = fA(t
∗
) where tuple t

∗
is obtained

from t by changing each term beginning with a labeled constructor term for ⊥, for

each f/n ∈ FSΣ, and B|Σ means the reduct of the algebra B ∈ CTAlgΩ×Σ obtained

by restricting the carrier to CTerm⊥ and forgetting all functions denoting labeled

function symbols.

Obviously, the representation of the closure w.r.t. the functional signature is a

particular case of closure hiding a set of constructor symbols when this set is empty.

9 Discussion

Research in component-based software development is currently becoming a very

active area for the logic programming community. In fact, we can find several

proposals in the field of computational logic for dealing with the design and

development of large software systems. Other related fields, like functional-logic

programming are now proving that the integration of logic variables and functions

may increase the expressive power of a programming language. A number of
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attempts are being made in this direction (Hanus, 1994, 1998) to achieve a consensus

on the characteristics a functional-logic language has to present.

The current work tries to contribute to all these efforts by presenting a notion

of module in the context of functional-logic programming, and by providing a

number of operations (satisfying some expected algebraic properties) expressive

enough to model typical modularization issues like export/import relationships,

hiding information, inheritance, and a sort of abstraction. We have chosen the

Constructor-based Conditional Rewriting Logic (González-Moreno et al., 1999) to

develop our proposal and, in this context, we have explored a rather wide range

of semantics for program modules and we have studied some of their relevant

properties, in particular, those concerning compositionality and full abstraction

w.r.t. the observation function Ob(P) = MP and the set {∪, (·)σ, (·) \σ, ρ(·)} of

module operations.

Although these features are interesting enough from a theoretical point of view,

they present a special significance when module reusing, module refining or module

transforming are involved. The least model semantics, [{ · }] LM , is a fully abstract

semantics, which is only compositional w.r.t. {(·)σ, ρ(·)}, but only for injective function

renamings ρ. On the contrary, the T-semantics, [{ · }] T , is compositional (w.r.t. all

operations), but is not fully abstract. The third proposal, the loose model-theoretic

semantics, [{ · }]M , is also compositional (except for the deletion operation), although

the full abstraction property is not satisfied. A fully abstract semantics, [{ · }] CM ,

may be obtained by considering a consistency property on term algebras, which is

also compositional w.r.t. the union, closure and renaming operations. To recover

the compositionality w.r.t. deletion we need a finer semantics able to capture the

‘independent’ meaning of each function in a module; this is the case of the deletion

semantics, [{ · }] D , which still is fully abstract and compositional w.r.t. all operations.

We have also studied the (T t Id)-semantics, [{ · }] TtI , but we have not included

this study in this paper because it exhibits the same properties as the T-semantics.

Table 1 summarizes the properties satisfied by each one of the analyzed semantics.

It is possible to establish a semantics hierarchy ranging from the model-theoretic

semantics to the T-semantics on the basis of the order ≡T v≡TtIdv≡D v≡CM
v≡C for the equivalence relationships induced by these semantics, where they are

ordered upon their strength. The T-equivalence relation, ≡T , is the strongest one,

and it is contained obviously into the (Tt Id)-equivalence relation, ≡TtId. Taking

into account that this equivalence relation is compositional but not fully abstract,

it will be contained in ≡D , which is also contained in the consistent term-model

equivalence, ≡CM . Obviously, the least term-model equivalence, ≡LM , is the weakest

one.

To establish some conclusions about the compositionality and the full abstraction

of all these semantics, we are going to discuss the information exhibited in Table 1.

In this table, we can observe a sort of dependency between fulfilling composition-

ality/full abstraction and the strength of the equivalence relationship defined by

the semantics, in such a way that the strongest ones are compositional whereas

the weakest ones are fully abstract. The best semantics must be an intermediate

semantics satisfying both properties; in our case, the semantics [{ · }] D . A similar
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Table 1. Compositionality (C) and full abstraction (FA)

∪, (·)σ, (·)\σ, ρ(·) ∪, (·)σ, ρ(·) (·)σ, ρ(·) (·)σ

[{ · }] T C C C C

[{ · }] TtI C C C C

[{ · }] D FA C C C C

[{ · }] CM FA FA C C C

[{ · }] LM FA FA FA FA C

study was already made by Brogi and Turini (1995) in the field of logic program-

ming, but he did not deal with variables, and avoided the complexity inherent to

the non-ground term algebras. Another difference (apart from the context) with

respect to the current work is the set of operations we are considering, which does

not coincide with the set of inter-module operations defined by Brogi. One of the

most significative operations described by him is the intersection of programs. This

operation makes the (Tt Id)-semantics compositional and fully abstract in a logic

programming context. However, the difficult justification of this operation in our

framework (the functional-logic programming paradigm) has inclined us to think in

an alternative: the deletion operation. We believe that this operation is more natural

(as a composing mechanism) than program intersection. This has an inconvenience:

the (Tt Id)-semantics is not fully abstract (although it is compositional) w.r.t. our

operations. In fact, the intersection of programs is a very powerful tool to distinguish

programs (more than the deletion operation), and it can be used to delete a single

rule, whereas our deletion operation only can be used to delete a whole set of rules

defining a function. Nevertheless, we have found a fully abstract and compositional

semantics, also for the deletion operation, which completes the results provided by

this work.
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