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We study the evolution of unidirectional water waves from a randomly forced input
condition with uncorrelated Fourier components. We examine the kurtosis of the
linearised free surface as a convenient proxy for the probability of a rogue wave.
We repeat the laboratory experiments of Onorato et al. (Phys. Rev. E, vol. 70, 2004,
067302), both experimentally and numerically, and extend the parameter space in
our numerical simulations. We consider numerical simulations based on the modified
nonlinear Schrödinger equation and the fully nonlinear water wave equations, which are
in good agreement. For low steepness, existing analytical models based on the nonlinear
Schrödinger equation (NLS) are found to be accurate. For cases which are steep or have
very narrow bandwidths, these analytical models over-predict the rate at which excess
kurtosis develops. In these steep cases, the kurtosis in both our experiments and numerical
simulations peaks before returning to an equilibrium level. Such transient maxima are not
predicted by NLS-based analytical models. Above a certain threshold of steepness, the
steady-state value of kurtosis is primarily dependent on the spectral bandwidth. We also
examine how the average shape of extreme events is modified by nonlinearity over the
evolution distance, showing significant asymmetry during the initial evolution, which is
greatly reduced once the spectrum has reached equilibrium. The locations of the maxima
in asymmetry coincide approximately with the locations of the maxima in kurtosis.

Key words: surface gravity waves, ocean processes, nonlinear instability

1. Introduction

The simplest model of free-surface gravity waves assumes linear dynamics. In this
model, and if the free surface is modelled as a Gaussian random process, wave
amplitudes are well approximated by a Rayleigh distribution (Longuet-Higgins 1952),
and the average shape of large waves is given by the scaled autocorrelation function
(Lindgren 1970; Boccotti 1983). Nonlinearity leads to modifications in the wave statistics
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and the shape of extreme wave events. In particular, when the fluid is deep and the
waves are unidirectional, the Benjamin–Feir instability (Benjamin & Feir 1967) leads to
more large waves than would be expected from the linear model as correlations develop
between Fourier components. A convenient parameter to describe the increased number
of large waves is the kurtosis (or excess kurtosis) of the free surface (Mori & Janssen
2006). Here, we examine how the kurtosis and average shape of an extreme wave evolve in
space from a Gaussian random input condition without correlation between components.
The overarching objective is to improve our understanding of the nature of the nonlinear
physics of surface gravity waves and its impact on wave statistics.

Analysis of this problem originates from Janssen (2003). In this paper the wave field is
assumed to be sufficiently weakly nonlinear that the sea surface is in a near-to-Gaussian
state, meaning that the kurtosis can be expressed in terms of lower-order moments,
following the approach of Hasselmann (1962). Ensemble averaging of the Zakharov
equation and the assumption of spatial homogeneity provide closed-form expressions for
the fourth cumulant and the evolution of kurtosis (see (20) and (28) of Janssen (2003)).
Mori & Janssen (2006) additionally invoked the assumption of narrow bandwidth, which
is consistent with the cubic nonlinear Schrödinger equation (NLS), and assumed an
underlying one-dimensional Gaussian spectrum.

For unidirectional waves, the result of Mori & Janssen (2006) implies an excess kurtosis
that increases with a time scale dependent on the bandwidth of the initial spectrum and the
dominant wave period (Janssen & Bidlot 2009; Mori, Onorato & Janssen 2011). Following
monotonic increase from zero, the dynamic excess kurtosis then levels off tending to
a value of π/(3

√
3) times the Benjamin–Feir index (BFI) squared, where the BFI is a

measure of the ratio of the significant wave steepness to the bandwidth of the waves
(Mori & Janssen 2006). Fedele (2014) obtained an equation for the evolution of excess
kurtosis using the one-dimensional cDZ equation of Fedele & Dutykh (2012), based on
Dyachenko & Zakharov (2011). The cDZ equation is valid for weakly nonlinear four-wave
interactions like the NLS, but does not have any constraints on the spectral bandwidth
unlike the NLS (Fedele 2014). The excess kurtosis based on the cDZ equation is generally
less than predicted by the equivalent NLS expression, and the reduction is greater for
greater bandwidth (see (D16) of Fedele (2014)).

It is important to distinguish conceptually, on the one hand, random wave fields that
are homogeneous in space and evolving and thus non-stationary in time and, on the other
hand, those that are stationary in time and evolving and thus inhomogeneous in space.
The aforementioned authors (Janssen 2003; Mori & Janssen 2006; Janssen & Bidlot
2009; Mori et al. 2011; Fedele 2014) all examined the evolution of spatially homogeneous
fields in time. Using analogous premises to Mori & Janssen (2006), an equation for the
spatial evolution of temporally homogeneous waves has been derived by Fedele et al.
(2010). In the narrow-banded limit, the results of Mori & Janssen (2006) and Fedele et al.
(2010) are equivalent, and mapping between space and time takes place using the group
velocity (see also Chabchoub & Grimshaw 2016), noting that the bandwidth in frequency
is half the bandwidth in wavenumber (Fedele et al. 2010). For the broad-banded cDZ,
mapping between space and time is not straightforward, and we are unaware of any authors
describing the evolution of kurtosis in space for temporally homogeneous waves based on
the cDZ, although a spatial of the Zakharov equation exists (Shemer et al. 2001; Kit &
Shemer 2002).

Laboratory measurements are almost exclusively made in the time domain at a finite
number of wave gauges (Onorato et al. 2004, 2006; Fedele et al. 2010; Zhang, Guedes
Soares & Onorato 2014; Zhang et al. 2016; Kokorina & Slunyaev 2019). Apart from the
time-domain experiments, spatio-temporal measurements are beginning to be successfully
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made in the laboratory using stereo-imaging techniques (Zavadsky, Benetazzo & Shemer
2017) commonly applied in the field (e.g. Fedele et al. 2013). A restriction of many of the
validation studies in the laboratory is the length of the experiments, meaning that only
the initial stages of the evolution have been compared to theory. We focus herein on the
laboratory experiments of Onorato et al. (2004) (henceforth O04), which were compared
to the theoretical results of Mori & Janssen (2006) by Mori et al. (2007) and to numerical
simulations of the Dysthe equation (Dysthe 1979) by Onorato et al. (2005). In doing so,
we consider evolution of temporally homogeneous (or stationary) waves in space.

Previously, Shemer & Sergeeva (2009) presented experimental results for the spatial
evolution of wave statistics along a wave tank for unidirectional random waves, and
their observed short-term probability distributions were well predicted by the third-order
model of Tayfun & Fedele (2007). Shemer, Sergeeva & Slunyaev (2010b) compared these
experimental results with the cubic NLS and the modified NLS (MNLS), and the MNLS
could provide satisfactory predictions of individual groups in the time domain as well as
statistical parameters. Shemer, Sergeeva & Liberzon (2010a) further examined the impact
of the initial spectral width on the evolution of the wave spectrum, and wave statistics.
Slunyaev & Sergeeva (2012) examined the phase correlation during the initial stage of
evolution and its connection with the evolution of wave statistics.

In nature, storm waves are directionally spread, and this makes a fundamental difference
to the nonlinear physics. Janssen & Bidlot (2009) first showed that kurtosis is generally
reduced by directional spreading. Extending the results of Mori & Janssen (2006) based
on the unidirectional NLS, Fedele (2015) then showed analytically that the normalised
excess kurtosis of directionally spread waves reaches a maximum and eventually tends
monotonically to zero as the wave field reaches a quasi-equilibrium, finding good
agreement with the experimental data of Onorato et al. (2009) and numerical simulations
of Toffoli et al. (2010) (see also Annenkov & Shrira 2009; Xiao et al. 2013). Based on the
2D + 1 NLS, the result for directionally spread waves of Fedele (2015) thus paints a very
different picture with large values of kurtosis and associated rogue waves being transient
(see Janssen & Janssen (2019) for further discussion of the asymptotics).

In this paper, we perform both new laboratory experiments and numerical simulations
to examine how the kurtosis of unidirectional water waves evolves over relatively long
distances. We compare our experimental and numerical results with the experiments of
O04 and with the theoretical solutions for the evolution of the kurtosis of unidirectional
random waves based on the NLS by Mori & Janssen (2006) and based on the cDZ by
Fedele (2014). Throughout, we cite Mori & Janssen (2006), although full details of the
evolution are developed in Janssen & Bidlot (2009) and Mori et al. (2011) and we actually
compare to the closed-form solution given in Fedele et al. (2010) (see appendix A). These
theoretical solutions, with the exception of Fedele et al. (2010), are valid for waves evolving
in time, and we convert these to waves evolving in space using relationships only valid in
the narrow-banded limit (Fedele et al. 2010). Our numerical simulations are performed
using two methods: OceanWave3D (Engsig-Karup, Bingham & Lindberg 2009), which
solves the fully nonlinear (potential-flow) water wave equations, and the MNLS model of
Trulsen et al. (2000).

For the steep cases, both our experiments and our numerical simulations (using both
methods) show that the kurtosis peaks before returning to an equilibrium level. Such
transient maxima are not predicted by the NLS-based and cDZ-based analytical models
of Mori & Janssen (2006) and Fedele (2014). We note that these transient maxima in
kurtosis can also be observed in the experiments of O04 and analogous simulations of
the Dysthe equation (Dysthe 1979) by Onorato et al. (2005), where maxima are noted
but not explored in detail. Peaks in kurtosis are also found in numerical simulations
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of the NLS by Onorato et al. (2016), where the evolution of kurtosis is linked to the
evolution of the spectral bandwidth. Using the MNLS, we study how the properties of
these transient maxima for unidirectional waves depend on input steepness and bandwidth.
We note that this pattern of the kurtosis reaching a peak is superficially similar to what
is predicted and observed for directionally spread behaviour (Onorato et al. 2009; Toffoli
et al. 2010; Fedele 2015), except there the kurtosis is predicted to return to zero at long
distances (Janssen & Janssen 2019), although this may not always be observed (Xiao
et al. 2013). We also examine how the expected shape of an extreme wave group evolves
over the same distance. To our knowledge, this has not previously been examined for this
problem. We find significant asymmetry during the initial evolution. Locations of maxima
in asymmetry coincide approximately with the locations of the maxima in kurtosis. We
emphasise our paper is confined to unidirectional waves, so that its findings cannot readily
be extended to realistic ocean waves. Nevertheless, investigating unidirectional waves as
a limiting case of directionally spread waves is useful for three reasons. First, it will help
elucidate the nonlinear physics at work, especially over longer distances. Second, it will
inform offshore engineering model tests, which are still often conducted in unidirectional
waves. Third, some extreme events can be quite similar in behaviour to the unidirectional
limit (e.g. Adcock, Taylor & Draper 2015). Furthermore, there are analogues between
one-dimensional waves and those in other media such as optical fibres (Dudley et al. 2019).

2. Methods

2.1. Experimental set-up
The experiments were carried out in the Multifunction Towing Tank at Shanghai Jiao
Tong University. The tank is 300 m by 16 m and has a flat bed with a water depth of
7.5 m, giving a non-dimensional water depth for our experiments of k0d = 13.4 based
on the spectral peak. There are 40 hinged-flap-type wavemakers at one end of the flume.
Linear wave generation theory was applied, and the impact of second-order error waves on
the overall wave statistics was analysed carefully and found not to significantly affect the
results. There was a parabolic beach at the far end of the flume opposite the wavemakers.
Reflection analysis suggests that less than 3 % of the energy is reflected. The wave surface
elevation was measured by 10 capacitance probes at 100 Hz with excellent calibration
characteristics. However, the wave probes could only be installed on a movable carriage. To
track the wave evolution over a wider range, the experiments were repeated with different
carriage positions. Irregular wave repeatability tests showed very consistent wave statistics
at the same position over five repeats.

2.2. Numerical methods
We use two numerical modelling approaches in this paper. First, we solve the fully
nonlinear potential flow equations for water waves using OceanWave3D (Engsig-Karup
et al. 2009). The numerical wave tank length in the wave propagation direction is 778
m, which we discretise with 10 242 nodes giving a spatial resolution of 0.076 m. The
water depth of the wave tank is 7.5 m covered by 15 clustered nodes. Care has been
taken, following the approach of Barratt, Bingham & Adcock (2020), to ensure sufficient
resolution to accurately capture the nonlinear physics. The simulation time is 1920 s –
identical to that of the experiments. Waves are generated using a relaxation zone at the
start of the domain and are absorbed by a damping zone at the end of the flume. A
wave-breaking model is applied, which is triggered by downward Lagrangian particle
accelerations on the free surface that are larger than 0.4g. After determining these breaking
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events, a filter is applied to the local free-surface region to remove energy from the waves
until the downward particle accelerations are below the threshold.

We also use a faster code which solves the MNLS model of Trulsen et al. (2000).
Using this MNLS model, which unlike our fully nonlinear model does not capture wave
breaking, should give us confidence that the physics we are observing is not influenced by
wave breaking. The fast computation times also mean that the MNLS results can be run
repeatedly, reducing the uncertainty in the estimated kurtosis sufficiently that confidence
bands associated with statistical variability are not required. The model set-up is similar
to that described above with waves generated using a relaxation zone and absorbed at the
far end of the domain. We use a very high (for an envelope model) spatial discretion of
23 points per wavelength. In addition to standard numerical checks, we can also test this
code for energy conservation by studying the related problem of the evolution of a ‘sea
state’ covering the entire domain with wrap-around boundary conditions at the end. For
this problem with the same initial spectrum, energy loss over 100 wave periods is less than
0.5 %.

3. Results: kurtosis

In this section, we first compare the experimental results and numerical simulations with
both analytical results for the evolution of normalised dynamic excess kurtosis based on
the NLS (Mori & Janssen 2006) and the cDZ (Fedele 2014) equations and the experiments
of O04. To broaden the parameter space, we further examine a range of input ‘sea-state’
parameters using the MNLS with Gaussian input spectra.

3.1. Comparison with the experiments of O04

3.1.1. ‘Sea-state’ parameters
We choose to study cases based on the seminal experiments of O04. These are

summarised in table 1. The cases are based on the JONSWAP spectrum with different
peak enhancement factors. The BFI is computed following the method recommended in
Serio et al. (2005), who base their recommendation on a review of various methods:

BFI = √
m0k0Qp

√
2π, (3.1)

where m0 = H2
s /16 is the zeroth moment of the energy spectrum with Hs the significant

wave height, k0 is the peak wavenumber and Qp is a dimensionless parameter that
describes the spectral bandwidth (Goda 2000). The parameter Qp has less sensitivity to the
high-frequency tail of the spectrum (and cut-off frequency) than other bandwidth metrics
(Serio et al. 2005), and is given by

Qp = 2
m0

2

∫ ∞

0
fS2( f ) df , (3.2)

where S( f ) is the variance density spectrum. We note that the BFI is not the most robust
numerical parameter, as its precise value is strongly dependent on the way the bandwidth
is calculated. The waves we generated during the experiment were slightly steeper and
considerably more narrow-banded than those in the experiments of O04 (see table 1).
For completeness, we report in table 1 the values of the parameters corresponding to our
experiments, to the experiments of O04 calculated with the method used in our paper
(in parentheses) and to the experiments of O04 as reported in its table 1 (in
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Case γ Hs (m) ε = k0Hs/2 ν Qp BFI

1 1.0 0.125 (0.116) [0.11] 0.113 (0.103) [0.098] 0.14 (0.15) 3.87 (3.88) 0.6 (0.5) [0.2]
2 3.3 0.162 (0.143) [0.14] 0.144 (0.129) [0.125] 0.09 (0.13) 6.71 (5.92) 1.3 (0.9) [0.9]
3 6.0 0.182 (0.168) [0.16] 0.160 (0.150) [0.142] 0.08 (0.12) 8.68 (7.69) 1.9 (1.3) [1.2]

TABLE 1. ‘Sea-state’ parameters of the three test cases measured at the first probe, with T0 the

peak period and ν =
√

m0m2/m2
1 − 1 the bandwidth parameter, where mn are nth-order spectral

moments of the variance density spectrum S(ω) in angular frequency ω. Also shown are the
‘sea-state’ parameters of the experiments of O04 calculated with the method used herein (in
parentheses) and the ‘sea-state’ parameters of the experiments of O04 as reported in their table 1
(in square brackets).
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FIGURE 1. Spatial evolution of kurtosis: (a) results from Onorato et al. (2004) and (b) our
results. Error bars show the 95 % of confidence interval based on standard deviation. The distance
from the wavemaker is denoted by x and λ0 is the peak wavelength.

square brackets). We emphasise the considerably higher values of BFI we obtain in
comparison those reported in table 1 of O04. Whilst the waves made numerically agree
very well in terms of the spectral shape with those desired (the input conditions in O04),
we found the waves created experimentally to be somewhat larger in terms of significant
wave height and considerably more narrow-banded (see table 1). This should be allowed
for in the comparisons that follow.

3.1.2. Spatial evolution of kurtosis
We start by comparing our experimental results with those of O04. Figure 1 shows

the evolution of kurtosis for the three cases. Despite the slight mismatch in the size of
the waves, there is good basic agreement in the shape of the curves between the different
experiments. With more probes positioned around the kurtosis peak, we are able to provide
a better insight as to where the kurtosis reaches its peak, which is most clearly observable
for case 3.

Figure 2 presents the spatial evolution of the normalised excess kurtosis for the three
cases using the different approaches (experiments, OceanWave3D and MNLS). The
excess kurtosis, Cd

4, is corrected for the presence of bound waves using the method of
Tayfun (1980). We have ensemble-averaged the value of excess kurtosis to provide a
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FIGURE 2. Evolution of normalised dynamic excess kurtosis at different distances from the
wave generator: (a) case 1, (b) case 2 and (c) case 3. Shading represents the 95 % confidence
intervals for OceanWave3D (OW3D) simulation with eight different random seeds. A total of
120 different random seeds are used in MNLS simulations. Consequently, for the MNLS, the
error bars are negligible and have been omitted for clarity. The parameter Cd

4 is dynamic excess
kurtosis, ν is the input bandwidth and λ0 is the peak wavelength.

clearer overall trend. The fluctuations that remain, especially for the experiments and
OceanWave3D simulations, are the result of a relatively small number of ensemble
members owing to their significant (computational) costs. Only five ensemble members
were used for the experiments and nine for the OceanWave3D simulations. Hence, we
have added confidence intervals for the experimental and OceanWave3D results. Both
numerics and experiments show the same general trends. In the simulations presented,
the MNLS captures the overall trend in all cases. Figure 2 also shows the theoretically
predicted solution of excess kurtosis of Mori & Janssen (2006) based on the NLS and
of Fedele (2014) based on the cDZ (see appendix A for the exact equations we use).
Both the theoretical predictions assume Gaussian input spectrum, which is different
from the JONSWAP spectrum for experiments and simulations. It is worth mentioning
that both solutions are given for spatially homogeneous waves evolving in the time
domain in the original papers. We convert these to the temporally homogeneous waves
evolving in space we study using the group velocity, which is valid in the context of
the already narrow-bandwidth restricted NLS (Fedele et al. 2010) but only valid in
the narrow-bandwidth limit of the cDZ. What we label cDZ in figure 2 is only the
leading-order correction for broad bandwidth from Fedele (2014) (see appendix A).
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The agreement of the two theoretical solutions, which give comparable predictions, with
the experiments is very good over the whole course of the evolution for case 1 (the least
steep and most broad-banded case). The experiments and theoretically predicted solutions
start with an excess kurtosis of zero for all cases. Asymptotic analysis (see Janssen &
Bidlot (2009) and § 3.2) of the analytical solution based on the NLS suggests that the
initial growth rate of kurtosis should be quadratic in space. In cases 2 and 3 (the steeper
cases), there appears to be a delay in the onset of the kurtosis increasing in the experiments
compared to both theoretical solutions, as also observed in Fedele et al. (2010). After
different non-dimensional length scales, cases 2 and 3 both depart entirely from the
theoretical solutions. Both cases peak without exceeding the theoretical value. The excess
kurtosis then slowly decreases until it reaches a steady-state value. Before we interpret the
results in figure 2, we note that they depend strongly on the initial value of BFI, since its
square acts as the normalising factor on the vertical axis. We also present a version of this
figure in which excess kurtosis is normalised by steady-state BFI in appendix B.

To interpret these results, we note that the theoretical solutions based on the NLS and
the cDZ are based on small-steepness and narrow-bandwidth approximations (with the
cDZ accounting for a wider bandwidth than the NLS; cf. appendix A). Thus, we would
expect these solutions to work best in the region where the approximation is most valid,
i.e. for the lower steepness waves with narrower bandwidths. Taking into account the
leading-order balance between these two effects, the theoretical solution should work best
when their ratio, as captured by the BFI, is smallest. This is consistent with our finding in
the present paper, since the theory works best for the low-BFI case where the bandwidth
of the spectrum is largest. Although the cDZ does explain a small reduction in kurtosis
predictions compared to the NLS, it does not predict a maximum.

Hypothesising what happens at the level of a wave group, a spatial contraction of the
wave group takes place around a large wave, which can be thought of as a local expansion
of bandwidth. This effect is dependent on the BFI of the ‘sea state’ (see for instance (3.12)
in Adcock & Taylor (2009)). It is important when considering the limitations of NLS-type
equations not to base the bandwidth limitation on the input spectrum but on the local
extremes which occur within the simulation.

3.1.3. Spatial evolution of the spectrum
Figure 3 shows the spatial evolution of the spectrum for case 3. It can be seen that all the

spectral change takes place during the initial phase of the simulation before the kurtosis
reaches its peak (see also Shemer et al. 2010a).

To examine this further, we consider what happens if, during the evolution, we
randomise the phase of the simulations removing all the correlations between components.
We do this only using the MNLS as phase randomisation is more straightforward when
bound waves are not directly simulated. Figure 4 presents the results of these simulations.
Where phase randomisation occurs, the excess kurtosis is zero (i.e. at x/λ0 = 168, 380).
The energy of the system is kept as constant at each randomisation. Following the
randomisation, the kurtosis increases rapidly although over a slightly longer length scale
at each randomisation, presumably due to the slightly broader spectrum at each successive
randomisation. After each successive randomisation, the kurtosis reaches a peak before
slowly settling back to a steady-state value. We find that after each randomisation the
maximum value and the steady-state value are slightly lower. This demonstrates that
prescribed uncorrelated initial random phase distribution is different from the correlated
phase distribution at steady state as a result of nonlinear evolution (see also Slunyaev &
Sergeeva 2012). Comparing figures 4(a) and 4(b), it is evident that the peaks in kurtosis
go hand in hand with an overshoot in the broadening of the spectrum.
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FIGURE 3. Spatial evolution of the frequency spectrum of case 3 averaging over multiple fully
nonlinear simulations using OceanWave3D. The dashed vertical line shows the location of peak
kurtosis.
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FIGURE 4. (a) Spatial evolution of the dynamic excess kurtosis for case 3 with phases
randomised at x/λ0 = 168, 380. The dashed lines indicate the steady-state excess kurtosis value.
(b) Corresponding spectral evolution at different locations. The dashed vertical line shows the
location of peak kurtosis.

3.1.4. Wave breaking
In the above discussion, we have ignored the effect of wave breaking. Wave breaking is

modelled in the fully nonlinear simulations and is, of course, present in the experiments.
Wave breaking is most active in the steepest and most nonlinear cases. Although this may
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play some role in our results, we suspect that breaking is of relatively minor importance,
as our MNLS results, which do not include breaking, show very similar general results.
Of course, over very long distances wave breaking will dissipate energy from the system.
This takes place on a length scale much greater than we have considered.

3.2. Gaussian input spectra
To explore the parameter space further, we consider a second set of simulations where we
just utilise the MNLS model. We do this to explore a significantly wider parameter space.
We use Gaussian input spectra as it is more straightforward to define a bandwidth for such
spectra than for spectra with an algebraic frequency tail, such as the JONSWAP spectrum
used in the experiments of O04. Furthermore, the theoretical solutions of Mori & Janssen
(2006) assume a narrow-banded Gaussian input spectrum. The Gaussian input spectrum
is defined as

S(k) =
(

Hs

4

)2 1

Δf
√

2π
exp

(−( f − f0)
2/(2Δf 2)

)
, (3.3)

where f0 is the peak frequency and Δf controls the bandwidth of the spectra. We vary input
steepness and bandwidth, but note our test matrix is not uniformly spaced in steepness and
bandwidth. This irregular spacing was to explore as wide a range of values as possible
without running cases that were too nonlinear or would take very long distances to reach
a steady state. Since the leading-order broad-bandwidth correction from the cDZ (Fedele
2014) is small, we only compare to NLS-based (Mori & Janssen 2006) theory here.

We will start by considering the initial rate of increase of the kurtosis. For spatially
homogeneous waves that evolve in time, Janssen & Bidlot (2009) showed that the
theoretical solutions of Mori & Janssen (2006) reduce to a quadratic initial evolution of
normalised excess kurtosis with respect to time (see also Mori et al. 2011; Fedele 2015).
Noting that for these narrow-banded spectra evolution in time can simply be expressed as
evolution in space using the group velocity (Fedele et al. 2010), this quadratic evolution in
time corresponds to the following initial quadratic evolution in space of normalised excess
kurtosis, C4

d/BFI2, for the temporally homogeneous, unidirectional waves we study:

C4
d

BFI2 = 1
2
ξ 2 for ξ � 1, (3.4)

where the intrinsic dimensionless length ξ ≡ 4πν2x/λ0, x is the dimensional length and
λ0 is the peak wavelength. If we express ξ as the ratio of distance from the wavemaker
x and what we call the initial growth length scale Ls, we can express (3.4) as C4

d/BFI2 =
(1/2)(x/Ls)

2. We can now compare the theoretical prediction of the length scale Lsξ ≡
λ0/(4πν2) to an estimate from our data, which we obtain from the inverse of the rate of
change of the square root of normalised excess kurtosis for ξ < 0.5:

Ls =
⎛
⎝ d

dx

√
2C4

d

BFI2

⎞
⎠

−1

for x � λ0

4πν2
. (3.5)

Figure 5(a) presents a comparison of our estimate of the initial growth length scale from
simulations of the MNLS Ls to its theoretically predicted counterpart Lsξ . For the most
narrow-banded cases, the growth length scale is quite close to the theoretical values.
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FIGURE 5. Analysis of kurtosis of random waves from an initially Gaussian spectrum: (a) ratio
between the initial growth length scales of normalised excess kurtosis predicted by the simulation
Ls and theory Lsξ , (b) maximum value of kurtosis C4

d|max reached during the simulation,
(c) steady-state value of normalised excess kurtosis C4

d|ss/BFI2 and (d) steady-state value of
kurtosis C4

d|ss as a function of the initial steepness (ε) for three different initial bandwidths
(Δf /f0). The grids in (a,c) and the dashed lines in (d) show the theoretical prediction based
on Mori & Janssen (2006). The error bars in (b–d) show 95 % confidence interval based on the
standard deviation.

However, theory seems to over-predict the initial growth length scale for broad-banded
cases. Steepness has only a small role.

Figure 5(b) shows the normalised peak kurtosis C4
d|max/BFI2 reached during each

simulation. The NLS-based theory of Mori & Janssen (2006) predicts the steady-state
value to be at π/(3

√
3) ∼ 0.604. This is close to the value reached by the least nonlinear

case we considered. However, as either steepness increases or bandwidth decreases, the
peak value of kurtosis normalised by the value of the BFI squared decreases. This
behaviour, and the discussion of the physical reasons for it, is consistent with that presented
above for the cases based on the JONSWAP spectrum.
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Finally, we consider the steady-state value that is reached at the end of the simulations.
Reaching a steady state takes a different distance for different simulations. We determine
steady-state kurtosis C4

d|ss as the averaged kurtosis over a distance of Δx/λ0 = 50, where
the maximum variation in the excess kurtosis over this distance is less than 10 % of
the maximum excess kurtosis. Figure 5(c) presents the steady-state value of normalised
steady-state kurtosis for a range of input conditions. The trends are very similar to
those for peak kurtosis. Essentially, the higher the starting BFI, which results in a
larger denominator for the normalised kurtosis, the smaller is the steady-state normalised
kurtosis.

Additional insight into the steady-state values of kurtosis is given by considering
steady-state kurtosis without normalisation for cases with different steepnesses but the
same bandwidths. Figure 5(d) shows the results for three different bandwidths, where
we have also added the theoretical predictions based on Mori & Janssen (2006). For
sufficiently small steepness, we observe an increase in the steady-state kurtosis with
steepness, as expected. The values of kurtosis measured from simulations agree well
with the theoretical predictions. However, above a certain initial steepness, which depends
on the initial bandwidth, the steady-state kurtosis appears to flatten off as steepness is
increased further. This flattening also causes the measured kurtosis at steady state to depart
from the theoretical predictions. This figure further demonstrates the discrepancy between
numerical simulations and theoretical predictions for the steady-state values of normalised
kurtosis in figure 2.

4. Results: group shape

In a linear model of wave evolution, the theory of quasi-determinism can be used to
describe the shape of extreme waves (Lindgren 1970; Tromans, Anaturk & Hagemeijer
1991; Boccotti 2000). As part of this theory, the average shape of an extreme crest is given
by the scaled auto-correlation function (Boccotti 1983) and the shape of a wave with the
largest crest-to-trough height by the scaled difference of two time-shifted auto-correlation
functions (Boccotti 1989). In the time domain, the expected shape of an extreme crest
η = ηmax at any location x (with the largest crest shifted to occur at t = 0) is given by

η(t, x) = ηmax

m0

∫ ∞

0
S( f , x) cos(2πft) df , (4.1)

where S( f , x) is the power spectral density function at the location of the measurement x
and m0 = H2

s /16 is the zeroth moment of the energy spectrum at that location. Nonlinear
physics might be expected to modify this. For deep-water waves, the effect of nonlinear
physics on the shape of a nonlinear event has mainly been studied for wave groups (e.g.
Baldock, Swan & Taylor 1996). For a unidirectional wave group, analytical results based
on the NLS predict that the group would contract spatially, and this is dependent on the
amplitude-to-width ratio of the group (analogous to the BFI but for a group) (Adcock
& Taylor 2009). Little attention has been paid to unidirectional random waves, with the
study of Lo & Mei (1985) and the recent work of Dematteis et al. (2019) being exceptions.
In this section, we consider the shape (in the time domain) of extreme events throughout
the spatial evolution using the MNLS with input Gaussian spectra.

Figure 6(a) presents the measured average shape of the 20 largest crests at
different locations in the numerical tank. The bandwidths at the different locations are
ν = {0.12, 0.15, 0.18, 0.18, 0.18, 0.17} corresponding to x/λ0 = {0, 10, 20, 30, 40, 50}.
Figure 6(b) presents the linear predictions of these events at the same position based on
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FIGURE 6. Normalised average of (a) the 20 largest crest profiles out of over 6400 waves and
(b) predicted crest profiles based on the theory of quasi-determinism at x/λ0 =
0, 10, 20, 30, 40, 50 for random waves with a Gaussian input spectrum with Δf /f0 = 0.054 and
ε = 0.044.

the theory of quasi-determinism. The second-order bound harmonics are excluded in the
figure, as the MNLS code computes the free wave directly without second-order bound
harmonics. When generated, the group is symmetric and consistent with linear theory. As
the waves evolve in space, the shape of the wave groups is modified by nonlinear physics.
The main characteristics of this modification are a movement to the front of the wave
group of the largest wave and a contraction of the wave group. We also present the shape
of the crest profiles predicted by the theory of quasi-determinism (figure 6b). The changes
in the predicted profiles in figure 6(b) are only due to changes in the wave spectrum with
x (cf. (S( f , x) in (4.1)). Additionally, we present the averaged shape of the wave with the
largest crest-to-trough height in appendix C.

We quantify the changes to group shape using two parameters (following Tang, Tromans
& Adcock 2019). The first is a measure of the width of the group and the second a measure
of the asymmetry. We begin by defining σ1 and σ2 as the durations when the envelope
height exceeds 80 % of the peak height of the envelope obtained by averaging the envelope
corresponding to the 20 largest waves, where the envelope is obtained using a Hilbert
transform. As illustrated in figure 7, σ1 denotes the duration of the front flank of the group
(passing the observer at earlier time) and σ2 the duration of the rear flank (passing the
observer at later time). We now define the parameters B1 and B2 to be the durations σ1 and
σ2 as fractions of what would be predicted by linear theory from the local spectrum (i.e.
from the theory of quasi-determinism):

B1 = σ1,measured

σ1,quasi-determinism
, B2 = σ2,measured

σ2,quasi-determinism
. (4.2a,b)
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FIGURE 7. Illustration of the envelope duration when the normalised envelope height
|U|/|U|max exceeds 80 % of its peak height.

The ratios B1 and B2 quantify the nonlinear modifications to both sides of the measured
envelope shape compared to linear theory. We then define Bmean and ΔB as parameters
respectively measuring changes in width and asymmetry relative to linear evolution:

Bmean = B1 + B2

2
, ΔB = B2 − B1. (4.3a,b)

Thus, a positive value of 1 − Bmean implies the group has contracted relative to the shape
expected under linear evolution. A positive value of ΔB implies the largest wave has moved
towards the front of the group.

Figure 8 presents the evolution of the parameters for asymmetry and change in group
duration. Different initial bandwidth values are given in different panels with different
lines for different steepnesses. In all cases, we observe a positive asymmetry, that is, the
largest wave moves to the front of the group and arrives earlier. Spatially, the pattern is
similar to that of kurtosis. For most cases, there is a peak in the asymmetry parameter
during the initial phase before settling down to a smaller near-zero equilibrium value. As
for kurtosis, the length scale for equilibrium to be reached is faster for narrower bandwidth.
The degree of contraction of the wave group behaves differently. It increases steadily until
it flattens off as equilibrium is achieved. The contraction occurs on a different, much
longer, spatial scale from the transient asymmetry.

5. Discussion and conclusions

This paper has examined experimentally and numerically how the kurtosis and the
shape of large waves evolve over relatively long distances for unidirectional surface gravity
waves. In doing so, we have revisited the seminal unidirectional laboratory experiments of
Onorato et al. (2004), which we repeat, extend and complement with numerical solutions
of the fully nonlinear water wave equations and the MNLS of Trulsen et al. (2000). We
concentrate on the spatial evolution from a random boundary condition without correlation
between components. Following nonlinear evolution, the kurtosis must eventually settle
down to a steady state for unidirectional waves (without higher-order nonlinearity), in
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FIGURE 8. Group shape during nonlinear evolution in space: (a,c,e) envelope asymmetry (ΔB)
and (b,d, f ) nonlinear change in the duration when the envelope height exceeds 80 % of its peak
height (1 − Bmean) with different initial bandwidths (a,b) Δf /f0 = 0.054, (c,d) Δf /f0 = 0.09
and (e, f ) Δf /f0 = 0.126.

which changes to the spectrum no longer occur, and the kurtosis has a fixed value greater
than that of a Gaussian ‘sea state’. We have investigated the transition between these two
states and the dependence of the final state on the input conditions.

The picture we find is consistent across the different models and the different cases
investigated. For the unidirectional cases studied here, we do not find any significant
difference in overall behaviour between JONSWAP and Gaussian spectra, although we
note that there is significant ambiguity when calculating the spectral bandwidth for the
JONSWAP spectrum. For an input spectrum which is not too narrow-banded or steep
(low BFI), theories based on either the NLS (Mori & Janssen 2006) or cDZ (Fedele &
Dutykh 2012) are excellent models matching both experiments and simulations. However,
if the input spectrum is steep or narrow, as captured by a high value of the BFI, the
evolution of the excess kurtosis departs from these models. Significant changes occur to
the spectrum over relatively short distances. Over the same short distances, excess kurtosis
rapidly increases and peaks. The overshoot can be interpreted as being driven by the initial
departure of phases from their equilibrium distribution (as can be seen by randomising
the phases once steady state has been achieved). Over longer distances excess kurtosis
then drops until it reaches a steady-state value with no further evolution of the spectrum.
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The peak and hence the final value are at a lower kurtosis than that predicted theoretically
based on the NLS and cDZ. For cases which are sufficiently nonlinear to depart from the
theoretical curve, the kurtosis at steady state appears to be primarily dependent on the
initial bandwidth of the spectrum (rather than the steepness).

We note that Janssen (2003) was already aware of the absence of an overshoot in
his theoretical calculations based on the kinetic approach; these calculations based on
the kinetic approach ultimately led to the result of Mori & Janssen (2006) we have
compared to herein. Janssen’s (2003) numerical simulations for the time evolution of
spectral width show a similar overshoot to what we have observed for kurtosis (cf. his
figure 3). This overshoot is also present in numerical simulations based on the NLS in
Onorato et al. (2016) (their figure 1, where the overshoot is also present in bandwidth). This
overshoot, Janssen (2003) notes, is likely ignored in his theoretical calculations owing to
the assumption that the action density varies slowly, an assumption which was later relaxed
in the generalised kinetic equation of Annenkov & Shrira (2006). In this paper we have
examined a scenario where the spectrum undergoes a transient broadening at the location
of the peaks in kurtosis. We thus envisage that calculations based on the generalised kinetic
equation of Annenkov & Shrira (2006) will predict the behaviour of kurtosis for steep and
narrow-bandwidth spectra identified herein.

Examining simultaneously the effect of nonlinear evolution on shape of the largest
waves, there is a tendency for the largest wave in a packet to move towards the front
of the group. This asymmetry follows a similar path to the kurtosis, showing a clear
peak during the early stage of evolution before reducing to become relatively small
once equilibrium is reached. There is also a reduction in the width of an extreme event
making the extreme event appear more transient. This follows a different evolution as it
increases monotonically before reaching equilibrium on a longer spatial scale than the
spatial scale associated with the asymmetry. The locations of the maxima of kurtosis
coincide approximately with the locations of the maxima of asymmetry of the average
shape of extreme events.

We conclude by emphasising that our paper is confined to unidirectional waves, so that
its findings cannot directly be extended to real-world ocean waves, which are directionally
spread. For directionally spread ocean waves, peaks in kurtosis also occur (Annenkov
& Shrira 2009; Onorato et al. 2009; Toffoli et al. 2010; Xiao et al. 2013; Fedele 2015;
Annenkov & Shrira 2018), yet as a result of very different underlying physics.

Acknowledgements

This work was funded by UK/China ORE funding (EPSRC/NERC/NSFC EP/R007632/1),
the De-Risk project funded by Innovation Fund Denmark, the National Natural Science
Foundation of China (51761135012 and 11872248) and the Ministry of Science and
Technology of China (no. 2017YFE0132000). T.S.v.d.B. acknowledges a Royal Academy
of Engineering Research Fellowship.

Declaration of interests

The authors report no conflict of interest.

Appendix A. Evolution of excess kurtosis

In this appendix, we explicitly provide the equations we use to evaluate the analytical
solutions shown in figure 2.
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FIGURE 9. Evolution of normalised dynamic excess kurtosis at different distances from the
wave generator: (a) case 1, (b) case 2 and (c) case 3. Shading represents the 95 % confidence
intervals for OceanWave3D (OW3D) simulation with eight different random seeds. A total of
120 different random seeds are used in MNLS simulations. Consequently, for the MNLS, the
error bars are negligible and have been omitted for clarity. The parameter Cd

4 is dynamic excess
kurtosis, BFIss is the BFI at steady state, ν is the input bandwidth and λ0 is the peak wavelength.
This figure is equivalent to figure 2 except for the normalisation by the steady-state BFI (this
figure) rather than the input BFI (figure 2).

A.1. The NLS (Mori & Janssen 2006)
Mori & Janssen (2006) present the evolution of excess kurtosis for the time evolution of
spatially homogeneous unidirectional waves that are initially normally distributed in the
form of a three-dimensional integral (their (14)), which is subsequently evaluated in the
narrow-bandwidth and large-time limit for Gaussian spectra (their (28)). Without taking
the large-time limit, but invoking the other two solutions, this integral can be evaluated in
closed form (Fedele et al. 2010) (see also Fedele 2015; Janssen & Janssen 2019):

Cd
4,NLS(x)

BFI2 = π

3
√

3

[
1 − 6

π
Im

(
i arcsin

1 + 2iα
2

)]
, (A 1)

where Cd
4,NLS is the dynamic excess kurtosis based on the NLS, Im is the imaginary part,

α = 2ν2x/λ0 and ν is the bandwidth of the frequency spectrum. To obtain (A 1), we have
also converted from time to space (see Fedele et al. 2010).
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FIGURE 10. Average shape of the five largest crest-to-trough wave height profiles out of over
6400 waves profiles (a) and wave profiles predicted by the theory of quasi-determinism (b) at
x/λ0 = 0, 10, 20, 30, 40, 50 for random waves with a Gaussian input spectrum with Δf /f0 =
0.054 and ε = 0.044.

A.2. The cDZ (Fedele 2014)
Fedele (2014) also proposes a correction of Cd

4,NLS based on the cDZ:

Cd
4,cDZ = Cd

4,NLS(1 − 0.4ν2
k ). (A 2)

Here, νk ≈ 2ν is the spectral bandwidth of the wavenumber spectrum S(k) and ν that of
the frequency spectrum S( f ). Then,

Cd
4,cDZ = Cd

4,NLS(1 − 1.6ν2), (A 3)

for narrow-band waves (small ν).
We do not use the full model derived in Fedele (2014), which is valid for waves evolving

in time, but only the leading-order correction in bandwidth given here.

Appendix B. Figure with BFI at steady state

In figure 9 we show the same results as in figure 2 but with excess kurtosis normalised
at steady state by BFI2

ss. We thus obtain better agreement with theoretical results at
large distances but worse agreement at small distances. Evidently, neither normalisation
captures the occurrence of a maximum.
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Appendix C. Averaged shape of the wave with the largest crest-to-trough height

The theory of quasi-determinism predicts the shape of the wave with the largest
crest-to-trough height as the scaled difference of two time-shifted auto-covariance
functions (Boccotti 1989, 2000).

Figure 10(a) presents the average shape of the five largest crest-to-trough wave profiles
at different locations. The general trend of the shape evolution is very similar to that of the
largest crest events presented in figure 6. We also observe a movement of the largest crest to
the front of the wave group and a contraction of the wave group for extreme crest-to-trough
events. Figure 10(b) presents the predictions from the (linear) theory of quasi-determinism
(Boccotti 1989, 2000). All the changes to the group shape in figure 10(b) are due to changes
in the wave spectrum.
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