
Combinatorics, Probability and Computing (2018) 27, 60–68. c© Cambridge University Press 2017
doi:10.1017/S0963548317000529

Counting Intersecting and Pairs of
Cross-Intersecting Families

P E T E R F R A N K L and A N D R E Y K U P A V S K I I1†

1Department of Discrete Mathematics, Moscow Institute of Physics and Technology, Moscow, Russia
and

Ecole Polytechnique Fédérale de Lausanne, Switzerland
(e-mail: kupavskii@yandex.ru)

Received 5 December 2016; revised 23 August 2017; first published online 16 October 2017

A family of subsets of {1, . . . ,n} is called intersecting if any two of its sets intersect. A classical
result in extremal combinatorics due to Erdős, Ko and Rado determines the maximum size of
an intersecting family of k-subsets of {1, . . . ,n}. In this paper we study the following problem:
How many intersecting families of k-subsets of {1, . . . ,n} are there? Improving a result of Balogh,
Das, Delcourt, Liu and Sharifzadeh, we determine this quantity asymptotically for n � 2k + 2 +
2
√

k logk and k →∞. Moreover, under the same assumptions we also determine asymptotically the
number of non-trivial intersecting families, that is, intersecting families for which the intersection
of all sets is empty. We obtain analogous results for pairs of cross-intersecting families.

2010 Mathematics subject classification: 05D05

1. Introduction

A family is a collection of subsets of an n-element set [n]. Collections F ⊂
([n]

k

)
are called k-

uniform families. A family F is called intersecting if F∩F ′ �= /0 holds for all F,F ′ ∈ F . Similarly,
F ⊂

([n]
k

)
and G ⊂

([n]
l

)
are called cross-intersecting if, for all F ∈ F , G ∈ G, one has F ∩G �= /0.

The research concerning intersecting families was initiated by Erdős, Ko and Rado, who
determined the maximum size of intersecting families.

Theorem 1.1 (Erdős, Ko and Rado [3]). Suppose that n � 2k > 0 and F ⊂
([n]

k

)
is intersect-

ing. Then

|F| �
(

n−1
k−1

)
. (1.1)
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The family of all k-sets containing a fixed element shows that (1.1) is best possible. Hilton and
Milner proved in a stronger form that for n > 2k these are the only families on which the equality
is attained. We say that an intersecting family F is non-trivial if

⋂
F∈F F = /0, that is, if it cannot

be pierced by a single point.

Theorem 1.2 (Hilton and Milner [7]). Let n > 2k > 0 and suppose that F ⊂
([n]

k

)
is a non-

trivial intersecting family. Then

|F| �
(

n−1
k−1

)
−

(
n− k−1

k−1

)
+1. (1.2)

For n = 2k+1 the difference between the upper bounds (1.1) and (1.2) is only k−1. However,
as n−2k increases, this difference gets much larger. The number of subfamilies of F is 2|F |, and
thus the ratio between the number of subfamilies of the Erdős–Ko–Rado family and that of the
Hilton–Milner family is 2k−1 for n = 2k +1 and grows very fast as n−2k increases. This serves
as an indication that most intersecting families are trivial, that is, they satisfy

⋂
F∈F F �= /0.

In an important recent paper Balogh, Das, Delcourt, Liu and Sharifzadeh [1] proved this in the
following quantitative form. Let I(n,k) denote the total number of intersecting families F ⊂

([n]
k

)
.

Theorem 1.3 (Balogh, Das, Delcourt, Liu and Sharifzadeh [1]). If n � 3k +8logk, then

I(n,k) = (n+o(1))2(n−1
k−1), (1.3)

where o(1) → 0 as k → ∞.

One of the main tools of the proof of (1.3) is a nice bound on the number of maximal (i.e.
non-extendable) intersecting families (see Lemma 2.4 below). They obtain this bound using the
following fundamental result of Bollobás.

Theorem 1.4 (Bollobás [2]). Suppose that A ⊂
([n]

a

)
, B ⊂

([n]
b

)
, with A = {A1, . . . ,Am}, B =

{B1, . . . ,Bm}, satisfy Ai ∩Bj = /0 if and only if i = j. Then

m �
(

a+b
a

)
. (1.4)

Note that the bound (1.4) is independent of n. In [2] it is proved in a more general setting,
not requiring uniformity, i.e. for A,B ⊂ 2[n]. The uniform version (1.4) was rediscovered several
years later by Jaeger and Payan [8] and Katona [9].

We are going to use (1.4) to obtain an upper bound on the number of maximal pairs of cross-
intersecting families. Let CI(n,a,b, t) (CI(n,a,b, [t1, t2])) denote the number of pairs of cross-
intersecting families A⊂

([n]
a

)
,B ⊂

([n]
b

)
with |A| = t (t1 � |A| � t2). We also let

CI(n,a,b) := ∑
t

CI(n,a,b, t).

We prove the following bound for the number of pairs of cross-intersecting families.
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Theorem 1.5. Choose a,b,n ∈ N and put

c := max{a,b}, T :=
(

n−a+b−1
n−a

)
.

For n � a+b+2
√

c logc+2max{0,a−b}, a,b → ∞, and b 
 loga we have

CI(n,a,b) = (1+δab +o(1))2(n
c), (1.5)

CI(n,a,b, [1,T ]) = (1+o(1))
(

n
a

)
2(n

b)−(n−a
b ), (1.6)

where δab = 1 if a = b, and 0 otherwise.

In fact, (1.6) easily implies (1.5) (see Section 2 for details). For a family F ⊂
([n]

k

)
we define

the diversity γ(F) of F to be |F|−Δ(F), where

Δ(F) := max
i∈[n]

|{F : i ∈ F ∈ F}|.

For an integer t, let I(n,k, t) (I(n,k,� t)) denote the number of intersecting families with diversity
t (at least t). In particular, I(n,k,� 1) is the number of non-trivial intersecting families. With the
help of (1.6) we obtain a refinement of Theorem 1.3.

Theorem 1.6. For n � 2k +2+2
√

k logk and k → ∞ we have

I(n,k) = (n+o(1))2(n−1
k−1), (1.7)

I(n,k,� 1) = (1+o(1))n
(

n−1
k

)
2(n−1

k−1)−(n−k−1
k−1 ). (1.8)

Again, it is easy to see that (1.8) implies (1.7) (see Section 3 for details). In the next section
we present the proof of Theorem 1.5, and in Section 3 we give the proof of Theorem 1.6.

2. Cross-intersecting families

Let us define the lexicographic order on the k-subsets of [n]. We have F ≺ G in the lexicographic
order if minF \G < minG\F holds. For example, {1,10} ≺ {2,3}. For 0 � m �

(n
k

)
, let L(k)(m)

denote the family of first m k-sets in the lexicographic order. For example,

L(k)
((

n−1
k−1

))
=

{
F ∈

(
[n]
k

)
: 1 ∈ F

}
.

Next we state the Kruskal–Katona theorem [11, 10], which is one of the most important results
in extremal set theory.

Theorem 2.1 (Kruskal [11], Katona [10]). If A ⊂
([n]

a

)
and B ⊂

([n]
b

)
are cross-intersecting,

then L(a)(|A|) and L(b)(|B|) are cross-intersecting as well.
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Computationwise, the bounds arising from the Kruskal–Katona theorem are not easy to handle.
Lovász [13] found a slightly weaker but very handy form, which may be stated as follows.

Theorem 2.2 (Lovász [13]). Let n � a + b, and consider a pair of cross-intersecting families
A⊂

([n]
a

)
, B ⊂

([n]
b

)
. If |A| =

( x
n−a

)
for a real number x � n−a, then we obtain

|B| �
(

n
b

)
−

(
x
b

)
. (2.1)

Note that for x � k− 1 the polynomial
(x

k

)
is a monotone increasing function of x. Thus x is

uniquely determined by |A| and a.
We would also need the following result, whose proof is based on Theorem 2.1 and which

is a combination of a result of Frankl and Tokushige [5] (Theorem 2 in [5]) and two results of
Kupavskii and Zakharov [12] (part 1 of Theorem 1 and Corollary 1).

Theorem 2.3 (Frankl and Tokushige [5], Kupavskii and Zakharov [12]). Let n > a+b and
suppose that the families A ⊂

([n]
a

)
,B ⊂

([n]
b

)
are cross-intersecting. If, for some real number

α � 1, we have (
n−α
n−a

)
� |A| �

(
n−a+b−1

n−a

)
,

then

|A|+ |B| �
(

n
b

)
+

(
n−α
a−α

)
−

(
n−α

b

)
. (2.2)

Note that the upper bound on |A| in this theorem is exactly the same as in (1.6).
We now begin the proof of Theorem 1.5. First we show that (1.6) implies (1.5). Without loss of

generality we may assume for this paragraph that c = b � a. For b > a we have T �
(n

a

)
and thus

CI(n,a,b, t) = 0 for t > T . Therefore, we have CI(n,a,b) = CI(n,a,b,0)+CI(n,a,b, [1,T ]). If
a = b, then T =

(n−1
a−1

)
, and it follows from Theorem 2.1 that if A,B ⊂

([n]
a

)
are cross-intersecting,

then min{|A|, |B|} �
(n−1

a−1

)
. Therefore, in the case a = b we have

2CI(n,a,b,0)−1 � CI(n,a,b) � 2(CI(n,a,b,0)+CI(n,a,b, [1,T ])).

The ‘−1’ in the first inequality stands for a pair of empty families, which is counted twice. At
the same time, we have CI(n,a,b,0) = 2(n

b). Thus, in both cases b > a and b = a it is sufficient

to show that the right-hand side of (1.6) is o(2(n
b)). We first note that n− a− b � √

n for b � a,
n � a+b+2

√
b logb, since 4b logb � a+b+2

√
b logb. The rest is done by a simple calculation:

CI(n,a,b, [1,T ])

2(n
b)

=
(

n
a

)
2−(n−a

b ) � 2n−(b+
√

n
b ) = o(1).

Next, we discuss the proof of the lower bound in (1.6). To obtain that many pairs of intersecting
families, take

A := {A},A ∈
(

[n]
a

)
, B(A) := {B ∈

(
[n]
b

)
: B∩A �= /0}.
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Next, choose an arbitrary subfamily B ⊂ B(A). We only need to ensure that few of these pairs
of subfamilies are counted twice. In fact we count a pair of families twice only in the case when

a = b and both A,B consist of one set. The number of such pairs is
([n]

a

)2
, and is negligible

compared to the right-hand side of (1.6).
We pass to the proof of the upper bound.

(i) 2 � |A|� n−a. Applying Theorem 2.1, the size of the (unique) maximal family B′ that forms
a cross-intersecting pair with A is maximized if A consists of two sets A1,A2 that intersect in
a−1 elements. Therefore,

|B′| �
(

n
b

)
−

(
n−a+1

b

)
+

(
n−a−1

b−2

)
.

Any other family B that forms a cross-intersecting pair with A must be a subfamily of B′.
So we can bound the number of pairs of cross-intersecting families A,B with 2 � |A| � n−a

as follows:

∑n−a
t=2 CI(n,a,b, t)

2(n
b)−(n−a

b )
�

n−a

∑
t=2

((n
a

)
t

)
2(n

b)−(n−a+1
b )+(n−a−1

b−2 )

2(n
b)−(n−a

b )
� 2n2

2−(n−a−1
b−1 ) = o(1).

(ii) n−a+1 � |A| �
(n−u

n−a

)
, where u =

√
c logc+max{0,a−b}. Note that n−a+1 =

(n−a+1
n−a

)
.

In this case the bound is similar, but we use Theorem 2.2 to bound the size of |B|. For A with

|A| = t :=
(

n−u′

n−a

)
,

where u � u′ � a−1, we get

|B| � 2(n
b)−(n−u′

b ),

and since
((n

a)
t

)
� 2nt, we have the following bound:

CI(n,a,b, t)

2(n
b)−(n−a

b )
�

((n
a

)
t

)
2(n

b)−(n−u′
b )

2(n
b)−(n−a

b )
� 2n(n−u′

n−a)2−(n−u′−1
b−1 ).

At the same time we have n � a+b+2u and
(n−u′

n−a

)
(n−u′−1

b−1

) =
n−u′

b

n−a−b−1

∏
i=0

n−b−u′ − i
n−a− i

� n
b

n−a−b−1

∏
i=0

n−a−
√

c logc− i
n−a− i

� n
b

e−
√

c logc(∑n−a
i=b+1(1/i)) � 1

2n
(2.3)

for sufficiently large c. Indeed,

√
c logc

n−a

∑
i=b+1

1
i

�
√

c logc
b+2

√
c logc

∑
i=b+1

1
i

� (1+o(1))
2(
√

c logc)2

c
= (2+o(1)) logc,
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which justifies (2.3) for n � b3/2. For n > b3/2 we have

√
c logc

n−a

∑
i=b+1

1
i

� (1+o(1))
√

c logc log
n
b

� (1+o(1))
√

c logc logn2/3 
 logn,

which justifies (2.3) for n > b3/2.
We conclude that

(n−u
n−a)
∑

t=n−a+1

CI(n,a,b, t)

2(n
b)−(n−b

b )
� 2−

1
2 (n−u′−1

b−1 ) = o(1).

(iii)
(n−u

n−a

)
< |A| � T , where u =

√
b logb+max{0,a−b}. Using the Bollobás set-pair inequal-

ity, it is not difficult to obtain the following bound on the number of maximal pairs of cross-
intersecting families.

Lemma 2.4. The number of maximal cross-intersecting pairs A′ ⊂
([n]

a

)
,B′ ⊂

([n]
b

)
is at most

[(
n
a

)(
n
b

)](a+b
a )

.

We note that the proof is very similar to the proof of an analogous statement for intersecting
families from [1].

Proof. Find a minimal B′-generating family M⊂A′ such that

B′ =
{

B ∈
(

[n]
b

)
: B∩M �= /0 for all M ∈M

}
.

We claim that |M| �
(a+b

a

)
. Indeed, due to minimality, for each set M′ ∈M the family

B′′ :=
{

B ∈
(

[n]
b

)
: B∩M �= /0 for all M ∈M−{M′}

}

strictly contains B′. Therefore, there is a set B in B′′ \B′ such that B∩M′ = /0,B∩M �= /0 for all
M ∈ M−{M′}. Applying the inequality (1.4) to M and the collection of such sets B, we get
that |M| �

(a+b
b

)
.

Interchanging the roles of A′ and B′, we get that a minimal A′-generating family has size at
most

(a+b
b

)
as well. Now the bound stated in the lemma is just a crude upper bound on the number

of ways one can choose these two generating families out of
([n]

a

)
and

([n]
b

)
, respectively.

Combined with the bound (2.2) on the size of any maximal pair of families with such cardin-
alities, we get that

CI(n,a,b, [
(n−u

n−a

)
,T ])

2(n
b)−(n−a

b )
�

[(
n
a

)(
n
b

)](a+b
a ) 2(n

b)+(n−u
n−a)−(n−u

b )

2(n
b)−(n−a

b )
� 22n(a+b

b )2(n−u
n−a)−(n−u−1

b−1 ). (2.4)
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We also have (a+b
b

)
(n−u−1

b−1

) =
n−u

b

b−1

∏
i=0

a+b− i
n−u− i

� n

(
a+b
n−u

)b

� 1
4n

.

Indeed, the last inequality is clearly valid for n � (a + b)2,b → ∞. If n < (a + b)2, then the
penultimate expression is at most

elogn−(b(n−a−b−u))/(n−u) � e2log(a+b)−(b(u+max{0,a−b}))/(O(a+b)) � e2log(a+b)−Ω(min{b,u}).

Since by the assumption we have b 
 log(a + b) and also, obviously, u 
 log(a + b), the last
expression is at most e−4log(a+b) < 1/(4n).

Taking into account (2.3), which is valid for u′ = u, we conclude that the right-hand side of
(2.4) is o(1).

3. Intersecting families

We need a theorem due to Frankl [4], proved in the following, slightly stronger form in [12].

Theorem 3.1 (Frankl [4], Kupavskii and Zakharov [12]). Let F ⊂
([n]

k

)
be an intersecting

family, and n > 2k. Then, if γ(F) �
(n−u−1

k−u

)
for some real 3 � u � k, then

|F| �
(

n−1
k−1

)
+

(
n−u−1

k−u

)
−

(
n−u−1

k−1

)
. (3.1)

We go on to the proof of Theorem 1.6. Let us first show that (1.8) implies (1.7). Indeed, using
that n−2k−1 � √

n and k → ∞ in the assumptions of Theorem 1.6, we get

I(n,k,� 1)

2(n−1
k−1)

∼ n

(
n−1

k

)
2−(n−k−1

k−1 ) � 2n+logn−(k+
√

n
k−1 ) = o(1).

Therefore,

I(n,k,� 1) = o(2(n−1
k−1)).

On the other hand, it is easy to see that

I(n,k,0) = (n+o(1))2(n−1
k−1)

(for the proof see [1]).
Let us prove the lower bound in (1.8). For S ∈

([n]
k

)
, i ∈ [n]\S, define the family

H(i,S) := {S}∪
{

H ∈
(

[n]
k

)
: i ∈ H,H ∩S �= /0

}
.

Due to Theorem 1.2, these families are the largest non-trivial intersecting families. We have

|H(i,s)| =
(

n−1
k−1

)
−

(
n− k−1

k−1

)
+1,

and each such family contains no fewer than

2(n−1
k−1)−(n−k−1

k−1 )− k2(n−2
k−2) = (1+o(1))2(n−1

k−1)−(n−k−1
k−1 ) (3.2)
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non-trivial intersecting subfamilies, as k → ∞. Indeed, a subfamily of H(i,S) containing S is
non-trivial unless all sets containing i contain also a fixed j ∈ S. In other words, they must be a
subset of a family

I(i, j,S) := {S}∪
{

I ∈
(

[n]
k

)
: i, j ∈ S

}
.

The number of subfamilies of I(i, j,S) containing S is 2(n−2
k−2). Next, we have

(
n−1
k−1

)
−

(
n− k−1

k−1

)
−

(
n−2
k−2

)
�

(
n−3
k−2

)
,

and thus the last inequality in the displayed formula above holds since 2(n−3
k−2) 
 k. Denote the set

of all non-trivial subfamilies of H(i,S) by H̃(i,S).
Therefore,

∑
S∈(n

k),i/∈S

|H̃(i,S)| = (1+o(1))n
(

n−1
k

)
2(n−1

k−1)−(n−k−1
k−1 ).

On the other hand, the pairwise intersections of these families are small: the families from
H̃(i,S)∩ H̃(i,S′) form the set I(n,k,2), and we do (somewhat implicitly) show in the proof
that I(n,k,2) = o(I(n,k,1)). It could also be verified by a simple, direct, but somewhat tedious
calculation. Therefore, the lower bound is justified.

Next we prove the upper bound. For i ∈ [n] and F ⊂
([n]

k

)
we use the standard notation

F(i) := {F −{i} : i ∈ F ∈ F} ⊂
(

[n]−{i}
k−1

)
,

F(ī) := {F ∈ F : i /∈ F} ⊂
(

[n]−{i}
k

)
.

Note that if F is intersecting then F(i) and F(ī) are cross-intersecting.
We count the number of families with different diversity separately. The number of families

F with i being the most popular element and γ(F) �
(n−3

k−2

)
is at most the number of cross-

intersecting pairs F(ī), F(i).
Therefore, we may apply (1.6) with n′ := n−1, a := k, b := k−1, and get that the number of

such families F is at most

(1+o(1))
(

n−1
k

)
2(n−1

k−1)−(n−k−1
k−1 ).

Note that n′ � a + b + 2
√

a loga + 2 and, in terms of Theorem 1.5, we have T =
(n−3

k−2

)
for our

case. Multiplying the number of such families by the number of choices of i, we get the claimed
asymptotic.

It remains only to prove that there are few families with diversity larger than
(n−3

k−2

)
. Using the

upper bound
(n

k

)(2k−1
k−1 ) for the number of maximal intersecting families in

([n]
k

)
obtained in [1] (see

Lemma 2.4 for the proof of a similar statement), combined with the bound (3.1) on the size of
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any maximal family with such diversity, we get that

I(n,k,�
(n−3

k−2

)
)

2(n−1
k−1)−(n−k−1

k−1 )
�

(
n
k

)(2k−1
k−1 ) 2(n−1

k−1)+(n−4
k−3)−(n−4

k−1)

2(n−1
k−1)−(n−k−1

k−1 )
� 2n(2k−1

k−1 )2(n−4
k−3)−(n−5

k−2). (3.3)

Putting n = 2k + x, we have(n−4
k−3

)
(n−5

k−2

) =
(n−4)(k−2)

(n− k−1)(n− k−2)
� (2k + x)k

(k + x−2)2
� 1− x2

(k + x)2
� 1− 1

k
.

On the other hand, (2k−1
k−1

)
(n−5

k−2

) =
n−4
k−1

k

∏
i=1

2k− i
n−3− i

� n

(
2k

n−3

)k

� 1
2kn

,

where the last inequality is clearly valid for n � 2k + 2 + 2
√

k logk and sufficiently large k. We
conclude that the right-hand side of (3.3) is at most 2− 1

2k (n−5
k−2) = o(1).
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