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In this paper, we investigate an old classical free streamline problem, namely, the
two-dimensional re-entrant jet cavity flow past an obstacle. It is well known that for the
re-entrant jet model, the direction of the jet is a free parameter that can be specified
arbitrarily. To fix this uncertainty, we make a complementary conjecture: the direction
should be chosen so that the mean kinetic energy of the remote part of the jet is minimal.
Considering cavity flows over an oblique flat plate as an example, we show numerically
that the direction is almost opposite to the incident flow. In addition, we present an
analytical confirmation of this conclusion that is independent of the obstacle shape.
Further, considering again the oblique flat plate as an example, we give an answer to the
following question: What happens when the angle of attack tends to zero and the cavity
number is finite? We demonstrate that for the limiting configurations, the re-entrant jet
vanishes, and the limit is a free-surface flow with a symmetric bubble above the plate and
two stagnation points on the lower side of the plate. For this limit we construct a simple
exact analytical solution.

Key words: cavitation, jets, separated flows

1. Introduction

In the last two decades, numerical methods for studying cavitation flows based on
Reynolds averaged Navier–Stokes equations (RANSE) are rapidly developing (see e.g.
Niedzwiedzka, Schnerr & Sobieski 2016). Despite this, potential models for studying
cavitation phenomena do not lose their significance. Consider, for example, the work
by Vernengo et al. (2016), where the optimal shapes of two-dimensional supercavitating
hydrofoils are found using the potential-based panel method (Kinnas & Fine 1991), and
then the results are verified using a high-precision non-stationary multiphase viscous
solver (Bonfiglio & Brizzolara 2016). However, in the study of cavitation flows, panel
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Figure 1. (a) Sketch of the steady two-dimensional re-entrant jet cavity flow over an oblique flat plate.
(b) The domain in the parametric u-plane together with the streamlines.

methods, even applied to the two-dimensional case, require an iterative procedure to
determine the shape of the interface between the gas and liquid phases. When studying
two-dimensional cavitation flows over polygonal obstacles, the need for such a procedure
completely disappears if the method of conformal mappings is applied. Despite the large
number of works devoted to the development of this method, there are problems that
have not been fully investigated. One of them is a supercavitating re-entrant flow over
an inclined flat plate.

The steady potential re-entrant jet cavity model was proposed independently by Efros
(1946) and Kreisel (1946). The model is characterized by the presence of a stagnation
point in the cavity closure region and by formation of an infinitely long re-entrant jet that is
continued mathematically into a second Riemann sheet. A sketch of the re-entrant jet flow
over an oblique flat plate is shown in figure 1(a). The model is described in all classical
and modern books devoted to studies of the cavitation phenomenon (see, e.g. Birkhoff &
Zarantonello 1957; Gilbarg 1960; Gurevich 1965; Brennen 1995; Franc & Michel 2004;
Terentiev, Kirschner & Uhlman 2011).

Gilbarg & Serrin (1950) carried out a general mathematical investigation of the model
and deduced elegant formulae for the lift and drag forces, L and D:

L = −Qρv0 sinβ − ρv∞Γ, D = −Qρv0 cosβ + ρv∞Q, (1.1a,b)

which are correct for a curved plate of any shape. In (1.1), ρ is the density of the fluid, v∞
is the incident velocity, v0 is the constant fluid velocity along the cavity boundaries, Γ is
the circulation around the body–cavity system, Q is the flow flux in the re-entrant jet, and
β is the angle of inclination of the re-entrant jet with respect to the incident flow direction.

Numerous experiments show that due to the impingement of upper and lower flows
behind the body, the re-entrant jet really forms in the cavity closure region, periodically
disperses, and runs away into the main stream. So, between the re-entrant jet in real
three-dimensional cavity flows (see e.g. Karn, Arndt & Hong 2016) and that shown
in figure 1(a), there is only formal resemblance. The re-entrant jet is only one of the
possible ways of organizing the potential flow in the cavity closure region with all
deficiencies inherent to all potential models of supercavitation. Indeed, the flow in the
cavity closure region is turbulent and essentially unsteady, so it cannot be modelled, in
principle, in the framework of potential models. This leads to different artificial methods
of closing the cavity, which in turn leads to mathematical deficiencies. One of these
deficiencies is mathematical indeterminacy: as a rule, the number of accessory parameters
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occurring in the process of solving is less than that of physically founded conditions
for their determination. For example, for the generalized Riabouchinsky cavity model,
the shape of the artificial body closing the cavity can be chosen arbitrarily; for the
Joukowski–Roshko–Eppler model with artificial parallel walls (Wu 1956; Mimura 1958)
and for the Wu model (Wu 1962) with artificial congruent streamlines, one mathematical
parameter turns out to be indefinite; for the Tulin double spiral vortex model (Tulin 1964),
the number of the superfluous parameters already equals two. The only cavity model that
does not have such a drawback is the Tulin single spiral vortex model with the modification
suggested by Terent’ev (1976) (see also Terentiev et al. 2011).

Thus, to get a closed system of equations with respect to the accessory parameters,
different heuristic artificial conditions are involved. A review of all cavity models reported
to date can be found in Terentiev et al. (2011).

As to the re-entrant jet model, here, the direction of the jet is an undefined parameter
that can be chosen arbitrarily. To have a closed system of equations, Gilbarg & Serrin
(1950) suggested specifying the circulation around the body–cavity system. Following
this, DeLillo, Elcrat & Hu (2005) computed several examples of re-entrant jet flows over
obstacles of different shapes, but the authors did not make any analysis of the influence
of the circulation on the hydrodynamic properties. In the second edition of the book
by Gurevich (1979), the computations over an oblique flat plate were carried out under
the assumption that the re-entrant jet is directed opposite to the incident flow (β = π).
Terentiev et al. (2011, p. 53) calculated several examples of the re-entrant cavity flow over
an oblique flat plate under the same assumption.

As has been mentioned already, the re-entrant jet occurs due to the impact of the upper
and lower flows in the vicinity of the cavity closure region. So a part of the kinetic energy
of the impinging flows is spent in the formation of the jet. To find the inclination angle
β of the re-entrant jet, we put forward the following heuristical principle: the direction of
the jet should be chosen so that the average kinetic energy K of the remote part of the jet
is minimal. Thus we assume that the flow self-organizes in such a way as to minimize the
expenditure of energy for the re-entrant jet formation.

An analogous uncertainty appears in the problem of the oblique impact of two jets of
different widths: the directions of one of the outgoing jets turns out to be indefinite (see
e.g. Birkhoff & Zarantonello 1957; Gurevich 1965; Milne-Thomson 1968). It seems that
Palatini (1916) was the first to apply an energy criterion for fixing such an uncertainty.

One of the most important dimensionless parameters that characterize cavity flows is
the cavitation number

σ = p∞ − p0

ρv2∞/2
= v2

0
v2∞

− 1, (1.2)

where p∞ and p0 are the pressures at the incident flow and inside the cavity, respectively.
As an example of application of the energy conjecture, we consider the cavity flow over

an oblique flat plate and demonstrate that the principle gives a quite definite direction of the
re-entrant jet for any angle of attack α and any positive cavity number σ . Moreover, in the
range of σ ∈ (0, 1], the re-entrant jet direction, defined by the principle, almost coincides
with the direction that is opposite to the incident flow. The difference between the two
directions is less or slightly higher than one degree, and the corresponding hydrodynamic
properties, such as the lift, drag and moment coefficients, agree with each other at least up
to four decimal places. This fact allows us to use the assumption made by Gurevich (1979)
and Terentiev et al. (2011): the direction of the re-entrant jet should be opposite to the
incident flow. Since the result β ≈ π is independent of the angle of attack α, we believe
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that the same will be true for a curved plate of any shape. This last conclusion has been
confirmed by approximate analytical formulae that are based on assumptions independent
of the obstacle shape.

Studying systematically the re-entrant jet flows over oblique flat plates, we have
established that there exists a range of angles of attack α ∈ (0, α1) at which the lift force
L increases as the angle of attack α decreases, i.e. dCL/dα < 0 for α ∈ (0, α1), where
CL is the lift coefficient. An analogous range was found in the monograph by Terentiev
et al. (2011, figure 2.3.4) for the Tulin single spiral vortex model, but the authors did
not consider the limiting passage α → 0. In the present paper, this passage has been
investigated numerically. So we give an answer to the following question, which has never
been studied before: What happens when the angle of attack α tends to zero and the cavity
number σ is finite? We demonstrate that for the limiting configurations, the re-entrant jet
vanishes, and the limit is a free-surface flow with a symmetric bubble above the plate and
two stagnation points on the lower side of the plate. For this limit we construct a simple
exact analytical solution.

2. Mathematical formulation of the problem

Consider a two-dimensional re-entrant jet flow over an oblique flat plate (see figure 1a).
The origin of the Cartesian coordinate system is located at the trailing edge B, and the
incident flow is parallel and co-directional with the x-axis. The flow is assumed to be
steady and irrotational, and gravity and capillary forces are neglected. The length of the
plate l, the incident velocity v∞, the angle of attack α and the cavity number σ , defined by
(1.2), are assumed to be given.

Let w = ϕ + iψ be the complex potential of the flow. We map conformally the flow
region in the physical plane z = x + iy onto the upper right quadrant in the parametric
plane u = ξ + iη. Under the conformal mapping, the streamlines in the physical z-plane
transform to the streamlines in the parametric u-plane shown in figure 1(b). In this figure,
the points u = 0,∞, ik, 1, u∞, u0 are, respectively, the images of the leading edge A,
trailing edge B, stagnation point K, infinity I of the re-entrant jet, infinity D of the main
stream, and the stagnation point C in the cavity closure region.

Making use of Chaplygin’s singular point method (see Gurevich 1965), we find that

dw
du

= l0v0 f (u), f (u) = u(u2 + k2)(u2 − u2
0)(u

2 − u0
2)

(1 − u2)(u2 − u2∞)2(u2 − u∞2)2
, (2.1a,b)

where the overbars mean the complex conjugate values, v0 = v∞/
√

1 + σ is the known
constant velocity on the boundary of the cavity, and l0 is an unknown positive constant,
which has the dimension of length.

Taking into account that∣∣∣∣ dw
v0 dz

∣∣∣∣
u=ξ

= 1, Im
(

e−iα dw
v0 dz

)
u=iη

= 0, (2.2a,b)

and applying Chaplygin’s method to the complex conjugate velocity, we get

dw
v0 dz

= eiαF(u), F(u) = (u − ik)(u − u0)(u + u0)

(u + ik)(u − u0)(u + u0)
. (2.3a,b)

Equations (2.1) and (2.3) give a general solution to the problem, and all features of
the flow can be determined completely in terms of l0, f (u) and F(u). In particular, the
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derivative dz/du of the function z(u) that maps the parametric u-plane onto the physical
z-plane is

dz
du

= l0 e−iα G(u), G(u) = f (u)
F(u)

= u(u + ik)2(u + u0)
2(u − u0)

2

(1 − u2)(u2 − u2∞)2(u2 − u∞2)2
. (2.4a,b)

Let us introduce the notations

u∞ = a + ib, u0 = c + id. (2.5a,b)

As one can see, (2.1)–(2.4) contain six unknown real accessory parameters: l0, a, b, c, d
and k. To determine these parameters, one needs to deduce six equations. Since the length
l of the plate is given, integrating (2.4a) along the imaginary η-axis yields

l = l0 J(a, b, c, d, k), (2.6)

where

J =
∫ ∞

0
G1(η) dη, G1(η) = η(η + k)2[(η + d)2 + c2]2

(η2 + 1)[η4 + 2(a2 − b2)η2 + (a2 + b2)2]2 . (2.7a,b)

Equation (2.6) allows us to express l0 in terms of a, b, c, d and k, namely, l0 = l/J.
Now we deduce equations that do not contain l0. At the point u = u∞, the complex

conjugate velocity equals v∞. Taking into account (2.3) and (2.5), we have

[a + i(b − k)][a − c + i(b − d)][a + c + i(b − d)]
[a + i(b + k)][a − c + i(b + d)][a + c + i(b + d)]

− R e−iα = 0, (2.8)

where

R = v∞
v0

= 1√
1 + σ

. (2.9)

Since (2.8) is written in complex form, it contains two real-valued equations.
One more complex-valued equation is obtained from a so-called closure condition that

implies the possibility of surrounding the body–cavity system by a closed contour. The
latter means that in the expansion of the function dz/du in the vicinity of the point u∞, the
coefficient of the term (u − u∞)−1 vanishes. Therefore, the residue of the function G(u)
at this point is zero:

res
u=u∞

G(u) = 0, i.e.
d
du

[
(u − u∞)2 G(u)

]
u=u∞

= 0. (2.10a,b)

Making use of the logarithmic derivative in (2.10) yields

i
a + ib

ab
− 2(a + ib)
(a + ib)2 − 1

+ 4[a + i(b + d)]
[a + i(b + d)]2 − c2 + 2

a + i(b + k)
= 0. (2.11)

At this stage, all physically grounded conditions have been used, but to determine the
five parameters a, b, c, d and k, we have only four real equations, which can be derived
by calculating real and imaginary parts of (2.8) and (2.11). This is just the uncertainty
mentioned in the Introduction, inherent to the re-entrant jet cavity model.

Let us assume that the angle β, which defines the direction of the re-entrant jet, is given.
Then we infer from (2.3) that F(1) = e−i(α+β), or

(1 − ik)(1 − c − id)(1 + c − id)
(1 + ik)(1 − c + id)(1 + c + id)

− e−i(α+β) = 0. (2.12)

In spite of the fact that (2.12) is written in complex form, it gives only one real-valued
equation because the moduli of both terms in (2.12) equal unity identically.
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Thus, from the relationships (2.8), (2.11) and (2.12), we can derive five real-valued
equations for finding five accessory parameters a, b, c, d and k. The sixth parameter is
l0 = l/J, where J is determined in (2.7).

The algorithm for solving the system (2.8), (2.11) and (2.12) is presented in the file
Algorithm.pdf stored in the supplementary materials available at https://doi.org/10.1017/
jfm.2022.25.

Let N be the normal force acting on the plate, and let M be the moment about the
trailing edge B. The positive direction of the moment M is anticlockwise. We introduce
the following hydrodynamic coefficients:

CN = 2N
ρv2∞l

, CL = 2L
ρv2∞l

, CD = 2D
ρv2∞l

, CM = 2M
ρv2∞l2

. (2.13a–d)

Let r be the distance between the centre of pressure on the plate and the trailing edge B.
Since we calculate the moment about the trailing edge, the formula for r takes the form
r/l = −CM/CN .

We denote by Lc the length of the cavity defined as the distance between the extreme
left and right vertical lines that touch the cavity surface. Analogously, Hc is the width of
the cavity defined as the distance between the extreme above and below horizonal lines
that touch the same surface. Thus Lc and Hc determine the minimal rectangle in which
it is possible to inscribe the plate–cavity system, located on the main sheet of the flow
region.

For all hydrodynamic coefficients defined by formulae (2.13) as well as for
dimensionless geometric characteristics δ/l, r/l, Lc/l and Hc/l, we have deduced exact
analytical formulae in terms of elementary functions of the accessory parameters a,
b, c, d and k. An integral-free formula has also been derived for the dimensionless
conformal mapping z(t)/l. The derivations are also presented in the file Algorithm.pdf
of Supplementary materials.

3. On the direction of the re-entrant jet

In the system of (2.8), (2.11) and (2.12), the parameter β, which defines the direction of
the re-entrant, can be specified arbitrarily. In § 1, we put forward the heuristic criterion
for determining β, namely, β = βopt, where βopt is the direction of the re-entrant jet that
provides the minimum of the average kinetic energy of the remote part of the jet. Consider
any remote part of the re-entrant jet between two sections I and II, perpendicular to the
boundaries of the jet (as shown in figure 1a). Let the distance between the sections be λ.
Then the kinetic flow energy of this part is ρv2

0δλ/2, where δ is the width of the jet. The
average kinetic energy per unit length is K = ρv2

0δ/2.
According to (1.2), v0 = v∞/

√
1 + σ , thus at fixed v∞ and σ , the principle is equivalent

to minimizing the function δ(β). First, we present simple reasoning from which it follows
immediately that the angle βopt always exists and βopt ≈ π. It is well known that if
the cavity number is small enough, then all potential cavity models, independently of a
method of organizing the flow in the cavity closure region, give similar results for integral
properties. The choice of the direction of the re-entrant jet can be considered as one of
such methods. Therefore, the drag forces calculated at different β must be approximately
identical.
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Figure 2. The dependencies of K/K∗ on β. Curves 1–5 are plotted for α = 1◦, 10◦, 30◦, 60◦, 90◦; dashed
lines are obtained from the approximate analytical formula (3.2).

Let us denote by an asterisk the hydrodynamic properties calculated at β = π. Then, as
follows from (1.1) and (1.2),

D = δρv2
∞

[√
1 + σ − (1 + σ) cosβ

]
, D∗ = δ∗ρv2

∞
(√

1 + σ + 1 + σ
)
, D ≈ D∗.

(3.1a–c)

This gives

K
K∗ = δ

δ∗
≈ 1 + √

1 + σ

1 − √
1 + σ cosβ

. (3.2)

Equation (3.2) yields immediately that βopt = π, i.e. the direction of the re-entrant jet is
opposite to the incident flow. Let us now check this conclusion numerically.

Consider the graphs shown in figure 2. These graphs are the dependencies of
the ratio K/K∗ = δ/δ∗ on the inclination angle β for five fixed angles of attack
α = 1◦, 10◦, 30◦, 60◦, 90◦ and three fixed cavity numbers σ = 0.1, 0.5, 1. The graphs
demonstrate the existence of explicit minima that are located approximately at β = 180◦.
Moreover, the dependencies are practically independent of the angle of attack α.

In figure 2, the results of the computations by the approximate formula (3.2) are shown
by the dashed lines. The coincidence between numerical and approximate analytical results
looks surprisingly good for any α and σ . It is to be noted that (3.1c), from which (3.2)
follows, is approximately correct for curved plates of any shape. So at a fixed cavity
number σ and any curved plate, the dependence of K/K∗ on β must be approximately
universal, and the minimum of K/K∗ will always be attained at β ≈ π.

In table 1, the values of βopt for different α and σ are presented. The table reveals that
βopt is not exactly equal to π, but in the range of cavity numbers σ ∈ (0, 1], the difference
between β = 180◦ and β = βopt is less or slightly higher than one degree.

According to the data of table 1, the maximal difference between β = βopt and β = 180◦
is attained at α = 20◦ and σ = 1. In figure 3, we have plotted together the cavity shapes at
β = π (solid lines) and β = βopt = 181.194◦ (dashed lines) for these values of α and σ .
Graphically, the results are almost indistinguishable. We have the same result for all angles
of attack in the range of σ ∈ (0.1]. Moreover, the hydrodynamic properties, such as the
lift, drag and moment coefficients, computed at β = βopt and β = π, agree at least up to
four decimal places. These facts allow us to use in almost all further computations the
conjecture made in the books by Gurevich (1979) and Terentiev et al. (2011) that states
that the direction of the re-entrant jet is opposite to the incident flow.

936 A30-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

25
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.25


D.V. Maklakov and A.I. Lexina

α (deg.)
σ 0.1 1 5 10 20 30 45 60 90

0.1 179.954 180.065 180.145 180.08 180.036 180.021 180.011 180.006 180.0
0.2 179.946 179.954 180.34 180.26 180.133 180.079 180.041 180.022 180.0
0.3 179.945 179.875 180.428 180.455 180.268 180.165 180.088 180.048 180.0
0.4 179.947 179.825 180.429 180.615 180.421 180.27 180.147 180.08 180.0
0.5 179.95 179.794 180.385 180.729 180.579 180.386 180.215 180.118 180.0
0.6 179.953 179.775 180.321 180.798 180.73 180.509 180.291 180.161 180.0
0.7 179.957 179.765 180.251 180.832 180.869 180.634 180.371 180.208 180.0
0.8 179.961 179.76 180.182 180.839 180.994 180.756 180.454 180.257 180.0
0.9 179.965 179.759 180.117 180.826 181.102 180.875 180.539 180.308 180.0
1.0 179.969 179.761 180.058 180.8 181.194 180.988 180.623 180.36 180.0

Table 1. The values of βopt for different α and σ .

–1.0 –0.5 0.5

0.5

0.4

0.3

0.2

0.1

y/l

x/l
Figure 3. The plate and the cavity shape at α = 20◦ and σ = 1. The solid and dashed lines are plotted for

β = π and β = βopt = 181.194◦, respectively. The left and right disks show the stagnation points.

4. ‘Abnormal’ range of angle of attack

In figure 4(a), we show the dependencies of the lift coefficient CL on the angle of attack
α for different fixed cavity numbers σ . The graphs have been constructed in the range of
angles of attack 0 ≤ α ∈≤ 90◦ for the fixed cavity numbers σ that change from 0.1 to unity
with a step of 0.1. We should remark that we are not able to solve the system of (2.8), (2.11)
and (2.12) at α = 0, but for any α > 0, the solution can be obtained. For example, we were
able to carry out the computations at α = 10−10◦.

Inspecting the graphs of figure 4(a), one can notice that at any fixed cavity number σ ,
each graph of the figure has a local minimum at a certain point α = α1, and a local
maximum at a certain point α = α2 > α1. So at α ∈ (0, α1), we have an abnormal
behaviour of the lift force L, which increases as α decreases, i.e. dCL/dα < 0. It is well
known that in the cavity closure region, the flow is essentially unsteady. If the cavity
length is long enough, then the influence of this unsteadiness can be neglected, and all
steady potential cavity models produce similar results, which are in satisfactory agreement
with experiments. According to Brennen (1995, § 8.8), for small angles of attack α, the
cases dCL/dα < 0 are physically impossible due to unsteady oscillations of the cavity.
On the basis of the linearized theory applied to the flat plates, Brennen demonstrated
that for supercavitation, dCL/dα < 0 when 1 < Lc/l < 4/3, where Lc is the length of
the cavity. So the Brennen criterion of unsteady supercavitation is Lc/l ≤ 4/3. Analysing
experiments carried out for a circular segment of width 6.9 %, Wade & Acosta (1966) put
forward an analogous criterion for the unsteadiness of supercavitating flows: Lc/l ≤ 1.2
(see also Wade 1964). In figure 4, the points of local minima of the function CL(α)
at α = α1 are marked by circles, and those where Lc/l = 1.2 are labelled by disks. So,
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Figure 4. (a) The dependencies of the lift coefficient CL on the angle of attack α. (b) The dimensionless
distance r/l from the centre of pressure to the trailing edge B versus α. The graphs are constructed at fixed
cavity numbers σ that change from 0.1 to unity with a step of 0.1. The circles mark the points of local minima
of the function CL(α) at α = α1; the disks label the points for which Lc/l = 1.2 at α = α0. Solid lines are
constructed for β = π; dashed and dash-and-dot lines are constricted for β = 5π/3 and 2π/3, respectively.

σ CL(α → 0) α0 CL(α0) α1 CL(α1) Lc(α1)/l α2 CL(α2)

0.1 0.154941 1.26013 0.121468 1.60519 0.12036 1.32527 39.1375 0.566634
0.2 0.30597 2.48782 0.241485 3.12673 0.23956 1.31737 38.8063 0.621315
0.3 0.453556 3.69272 0.360001 4.60315 0.3574 1.31283 38.3009 0.678248
0.4 0.598077 4.88138 0.47701 6.06052 0.473777 1.31088 37.6407 0.737509
0.5 0.739848 6.05882 0.592477 7.52547 0.588566 1.31161 36.8332 0.7992
0.6 0.87913 7.22921 0.706358 9.02822 0.701633 1.31545 35.8744 0.863448
0.7 1.01615 8.39626 0.8186 10.6061 0.812811 1.32312 34.7471 0.930424
0.8 1.15109 9.56344 0.929134 12.3133 0.921874 1.33601 33.4128 1.00036
0.9 1.28412 10.7341 1.03788 14.2436 1.02849 1.35706 31.7905 1.07361
1.0 1.41538 11.9116 1.14474 16.6084 1.1321 1.39388 29.679 1.15073

Table 2. The values characterizing the behaviour of the function CL(α) at different fixed σ .

according to Brennen (1995) or Wade & Acosta (1966), the parts of the graphs in figure 4
that are to the left of the circles or disks are non-realistic and have only a theoretical
meaning.

Let us denote by α0 the angle of attack at which Lc/l = 1.2. In table 2, we present
the values that characterize the behaviour of the functions CL(α) at different fixed cavity
numbers σ . It is clear that, theoretically, the maximum lift coefficient satisfies

CL max = max[CL(α → 0),CL(α2)]. (4.1)

As follows from table 2, at small cavity numbers, the range [0, α1] is also small but always
exists. With increase of the cavity numbers, this range becomes larger, and for σ ≥ 0.6,
the value of CL as α → 0 is maximal for the whole curve. It is interesting to note that
according to table 2, Lc/l ≈ 4/3 ≈ 1.33 at α = α1, as was predicted by Brennen (1995)
with the help of the linear theory.

In figure 4(b), graphs analogous to those in figure 4(a) are plotted for the dimensionless
distance r/l from the centre of pressure to the trailing edge B. Here we observe that as
α → π/2, the centre of pressure tends to the middle of the plate (r/l → 1/2), which is
not surprising due to the symmetry with respect to the x-axis, but we have the same as
α → 0, which is rather unexpected. Graphs analogous to those shown in figure 4 were
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constructed in the monograph by Terentiev et al. (2011, p. 44) for the Tulin single spiral
vortex model, but the authors did not investigate the limiting passage α → 0.

As one can see from the behaviour of the dashed and dash-and-dot lines in figure 4,
the graphs of integral hydrodynamic properties plotted at β = π, 5π/3, 2π/3 are almost
indistinguishable. Thus the conjecture of minimum kinetic energy of the re-entrant jet
made in § 1 removes the uncertainty inherent to the re-entrant jet model but cannot improve
the results of comparison either with experiments or with computations by RANSE
methods. At the same time, it is to be noted that the abnormal range of angles of attack
exists independently of the values of β.

5. Numerical investigation of the limiting passage α → 0

The results of the previous section demonstrate that in the framework of the potential
re-entrant jet cavity model, for any cavity number σ > 0, there exists a range of angles
attack α ∈ (0, α1) in which the lift coefficient CL increases as α decreases. Hence at
α ∈ (0, α1), the maximum lift coefficient CL is attained as α = 0. Before rejecting this
‘abnormal’ range of α as unrealistic, one has yet to understand the reasons for its
appearance.

Consider figure 5, where the shapes of the cavities for four small angles of attack α = 2◦,
1◦, 0.5◦ and 0.05◦ at the cavity number σ = 0.6 are shown. As one can see, at α ≤ 2◦, the
cavity closure region becomes close to the trailing edge B. With decrease of angles of
attack, the width δ of the re-entrant almost vanishes, and the cavity tends to be symmetric
with respect to the axis that is perpendicular to the plate surface and goes through the
middle of the plate. This symmetry explains why r/l → 1/2 as α → 0. Figures 5(e–h)
demonstrate the cavity closure regions including the cavity shapes and the shapes of
dividing streamlines. A surprising fact is that at α = 0.05◦, the inner stagnation point
migrates downwards and locates lower than the x-axis.

In figure 6, the distributions of the pressure coefficient

Cp = p − p0

ρv2∞/2
(5.1)

are presented for the same cavity number, σ = 0.6, as in figure 5, at angles of attack
α = 8◦, 5◦, 2◦, 1◦, 0.5◦, 0.05◦ (curves 1–6). All these α are from the ‘abnormal’ range of
angles of attack α ∈ (0, α1]. Curves 3–6 in figure 6 correspond to figures 5(e–h). Figures 5
and 6 explain the increase of CN and CL with decrease of α. Indeed, in the ‘abnormal’
range, the inner stagnation point C in the cavity closure region locates very closely to the
trailing edge B. Since at the stagnation point C the pressure achieves its maximum, this
maximum influences the pressure distribution near the trailing edge, and the normal force
increases together with the lift as the stagnation point approaches the trailing edge.

Let us continue to diminish the angles of attack (see figure 7). In the scale of the length l,
the full cavity shapes for α < 0.05◦, are almost indistinguishable from that in figure 5 at
α = 0.05◦. So for α < 0.05◦, we have plotted in figure 7 only the cavity closure regions.
The arrows indicates the direction of the flow, abbreviations RJ and DSL mean ‘re-entrant
jet’ and ‘dividing streamline’, respectively.

At α = 0.03◦, the inner stagnation point is very close to the lower side of the plate. At
α = αcrit = 0.0293412◦, the stagnation point locates directly on the lower plate surface
(see figure 7b). Mathematically, this means that the accessory parameter is c = 0. The
angles of attack at which c = 0 we shall call critical and denote by αcrit. At β = π, the
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Figure 5. The shapes of the plate and cavities at β = π, σ = 0.6, and different small angles of attack α.
Panels (e–h) show the corresponding cavity closure regions.
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Figure 6. The distribution of the pressure coefficient Cp, determined by (5.1), at σ = 0.6 and α = 8◦, 5◦, 2◦,
1◦, 0.5◦, 0, 05◦ (curves 1–6). The x-axis is directed along the plate.

angle αcrit depends only on the cavity number σ . In table 3, we present the angles αcrit for
several values of σ , and as one can see, these angles turn out to be very small.

At α < αcrit, the parameter c becomes imaginary, which gives rise to two stagnation
points lying directly on the lower side of the plate (see figure 7c, α = 0.027◦). In the
parametric t-plane, the images of these points are u01 = c + id and u02 = −c + id, and
because c is imaginary, both images lie on the imaginary axis η. Nevertheless, all equations
that have been deduced earlier remain correct, although one should take into account that
in (2.1) and (2.3), u0 = c + id, but u0 = c − id (as before), in spite of the fact that c is
imaginary.

For all three cavity closure regions shown in figure 7, the width δ of the re-entrant jet is
less than 10−4l. It is worthwhile noting also that at α < αcrit (figure 7c), a small segment
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Figure 7. The cavity closure regions at β = π, σ = 0.6, and very small angles of attack α. The arrows
indicate the directions of the velocity vectors.

σ 0.2 0.4 0.6 0.8 1.0

αcrit 0.00148549 0.0100785 0.0293412 0.0608145 0.105028

Table 3. Critical angles of attack versus the cavity number σ .

appears between two stagnation points on the plate surface, where the direction of the flow
is opposite to the x-axis. As α → 0, the length of the segment increases, the width of the
re-entrant jet δ tends to 0, the right stagnation point tends to the trailing edge B, and the
left one shifts to the left, tending to a quite definite location. The limit is the flow that will
be investigated in the next section.

6. The limiting flow configurations as α → 0

A sketch of the limiting flow at α = 0 is shown in figure 8(a). The flow is symmetric with
respect to the axis that is directed vertically upwards and goes through the middle of the
plate. The flow has a symmetric cavity located above the plate, and two stagnation points
K and C, the re-entrant jet being absent (δ = 0). The incident velocity v∞ and the cavity
number σ , defined by (1.2), are assumed to be given. As the parametric domain, we choose
the upper semicircle of the t-plane shown in figure 8(b). By virtue of symmetry, the images
of the stagnation points K and C are m and −m, respectively, and the image of the point
D at infinity is in, i.e. it lies on the imaginary axis. Making use of Chaplygin’s method of
singular points (see Gurevich 1965), we find

dw
dt

= l0v0 f (t), f (t) = (1 − t2)(t2 − m2)(1 − m2t2)
(t2 + n2)2(1 + n2t2)2

, (6.1a,b)

where l0 is an unknown positive constant, which has the dimension of length.
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Figure 8. (a) Sketch of the limiting flow configuration at α = 0. (b) Parametric t-plane together with
streamlines.

Further, by the same method we determine

dw
v0 dz

= F(t), F(t) = m2 − t2

1 − m2t2
, (6.2a,b)

dz
dt

= l0
f (t)
F(t)

= G(t), G(t) = (t2 − 1)(1 − m2t2)2

(t2 + n2)2(1 + n2t2)2
. (6.3a,b)

So the problem has three unknown accessory parameters: l0, m and n. To determine
these parameters, we deduce the three equations

1 − 3n2 − 3m2n2 + m2n4 = 0,
m2 + n2

1 + m2n2 = R, l = l0 J(m, n), (6.4a–c)

where R is defined by (2.9), and J = ∫ 1
−1 G(ξ) dξ . Equation (6.4a) follows from the closure

condition res
t=in

G(t) = 0, (6.4b) is a consequence of the relation F(in) = R, analogous to

(2.8), and (6.4c) connects the length l of the plate with the parameter l0.
The solution to the system of (6.4a) and (6.4b) is

m =
√
(2 − U)(U + 1)
(2 + U)(U − 1)

, n =
√

U − 1
U + 1

, U =
√

1 + √
1 + σ . (6.5a–c)

Since we have m ≥ 0, we conclude from (6.5a) that U ≤ 2 and therefore 0 < σ ≤ 8.
For the parameter J and the conformal mapping z(t), after a little algebra, we obtain

J = 4μ
n2 + 1

(
R + 1

R

)
− 4γ

π
tan−1 n, (6.6)

where

μ = lim
t→in

f (t)(t − in)2 = (1 + U)3

2U(U2 + U − 2)2
, (6.7)

γ = −2πi res
t=in

f (t) = −π

2
(1 + U)7/2(U2 − 2)
(U − 1)5/2(U + 2)2

, (6.8)

z(t) = 1
J
ζ(t)− 1

2
, ζ(t) = − 2μt

R(t2 + n2)
− 2μRt

1 + n2t2
+ 4γR

π
tan−1(nt). (6.9a,b)

936 A30-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

25
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.25


D.V. Maklakov and A.I. Lexina

0.5

1.1

1.0

0.9

0.8

0.7

0.6

0.4

0.3

0.2

0.1

–0.8 –0.6 –0.4 –0.2 0 –0.8 –0.6 –0.4 –0.2 0

y/l

x/l x/l

(a) (b)

Figure 9. The shapes of the cavity bubbles for the limiting flows (solid lines). The numbers in front of the
leading edges on the ordinate axis correspond to the cavity number σ . The dashed lines show the circular
segments inscribed in the cavities.

The lift force N for the limiting flows over the plate is computed by the Kutta–Joukowski
theorem: N = −ρv∞Γ , where the circulation satisfies Γ = l0v0γ . Therefore,

CN lim = CL lim = −2γ
√

1 + σ/J. (6.10)

Due to d’Alembert’s paradox, CD = 0 for the limiting flows.
In figure 9, the shapes of the cavities for the limiting flows are presented. The number

in front of the leading edges on the ordinate axis indicates the cavity number σ at which
the limiting configuration has been constructed. The configurations are shifted by 0.1 with
respect to each other in the vertical direction. An interesting fact is that in each of the
limiting cavities, it is possible to inscribe a very simple geometric figure, namely, a circular
segment of the same width h as that of the cavity. In figure 9, these segments are plotted
by the dashed lines.

7. Comparison with experimental data

Dawson & Bate (1962) measured the pressure distribution on the lower side of the
cavitating wedge with angle 6◦ at the vertex. The wedge was located in a free-surface water
tunnel, and one of the investigated depths (maximal) was 2.16 model chords. Assuming
that such a depth is enough to neglect the influence of the free surface, we compare
the results of our computations with the experimental data by Dawson & Bate (1962).
The comparison is shown in figure 10, and as one can see, the agreement looks quite
satisfactory.

Wade (1964) and Wade & Acosta (1966) reported the results of the experiments for
cavitating flows over a circular segment of width 6.9 %. The report by Wade (1964)
contains tables with the data for CL, CD and the coefficients of the moment measured
with respect to the middle of the plate. The data are presented for four angles of attack:
α = 4◦, 6◦, 8◦, 10◦. It is evident that

CN = CL cosα + CD sinα, CM = CMW − 1
2 (CL cosα + CD sinα), (7.1a,b)

Cτ = CD cosα − CL sinα, (7.2)

where Cτ is the coefficient of the force tangential to the plate (in the ideal fluid, Cτ = 0),
and CMW is the moment coefficient from Wade’s tables taken with opposite sign, due to
the mirror location (with respect to ours) of the hydrofoil and the incident flow in the
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Figure 10. Distribution of the pressure coefficient Cp, determined by (5.1), at α = 8◦, 10◦, 12◦, 14◦. The
corresponding cavity numbers are σ = 0.115, 0.111, 0.127, 0.12. The x-axis is directed along the plate. The
disks, circles, triangles and filled triangles are the experimental results by Dawson & Bate (1962).

experiments by Wade (1964). Thus, using (7.1) and (7.2), we have recalculated Wade’s
data for CN , CM and Cτ .

The results of the comparison are shown in figure 11. As one can see, the agreement
again looks satisfactory even for cases of short cavities when Lc/L < 1.2, i.e. when Wade’s
instability criterion of the cavity is fulfilled. As can be expected, the experimental values
of Cτ turn out to be small. When Lc/L < 1.2, these values become negative, which can be
explained by the influence of the re-entrant jet.

In figure 11, the dashed lines are plotted with the help of simple analytical formulae of
the linear theory presented in the paper by Geurst (1960). As one can see, this theory gives
results that are very close to ours, which is not surprising because in the experiments by
Wade & Acosta (1966), the angles of attack are small (from 4◦ to 10◦).

8. Concluding remarks

In the paper, we have demonstrated that the uncertainty of the potential re-entrant jet cavity
model can be fixed by minimizing the kinetic energy of the jet. Our calculations of cavity
flows over oblique flat plates, based on the energy criterion, confirm the conjecture made
by Terentiev et al. (2011) that the direction of the re-entrant jet should be opposite to the
incident flow. Since for the flat plate the conclusion turns out to be correct for any angle
of attack α and any cavity number σ ≤ 1, we assume that the energy principle will lead
to the same result for a curved plate of any shape. The approximate formula (3.2), whose
deduction is independent of the plate shape, confirms this conclusion too.

An oblique flat plate is the simplest lifting shape, and the cavity flow over such a shape
can be considered as a test problem for any cavity model. Another question studied in the
paper is that of the limiting passage when the cavity number σ > 0 is fixed and the angle
of attack α tends to zero. A natural limit of uniform flow here is impossible because the
cavity number remains finite. In our opinion, such a limit gives a general characteristic of
any cavity model. Let us compare the limit for the re-entrant jet model with that given by
the linear theory (see Geurst 1960) for which

CL = CN = π
(
4α2 + σ 2)

2
(√

4α2 + σ 2 + 2α
) , CL(α → 0) = CL lim = π

2
σ. (8.1a,b)
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Figure 11. Solid lines are the graphs of CN(σ ) (positive values) and CM(σ ) (negative values). Disks are the
results of Wade (1964) recalculated by formulae (7.1a,b). The disks close to the σ -axes are the results for the
coefficients Cτ of the tangential force. The arrows together with the figures above them indicate the cavity
numbers σ at which the corresponding Lc/l are attained. The dashed lines are obtained from formulae of the
linear theory (Geurst 1960).

In the linear theory, a slight singularity at the end of the cavity occurs in a natural way
from the solution of the corresponding boundary-value problem. So in the linear theory,
we do not have any artificial bodies in the cavity closure region. For the re-entrant jet
model, such bodies are also absent. Making use of formulae (6.5)–(6.8) and (6.10), for the
limiting re-entrant jet flow, we get the expression

CL lim = π

2
σ + O(σ 2). (8.2)

Comparing (8.1b) and (8.2), one can see that at α = 0 and σ → 0, the linear theory and
the re-entrant jet model give the same results.

The limiting passage α → 0 is characterized by the following features.

(i) At small α ∈ (0, α1), the lift force L displays an abnormal behaviour: the lift
coefficient CL increases as α decreases (see figure 4 and table 2).

(ii) As α → 0, the width of the re-entrant jet δ and the drag coefficient CD tend to zero,
whereas the lift coefficient CL tends to a finite and rather significant value.

(iii) The stagnation point C migrates downwards and at a certain α = αcrit locates on the
lower side of the plate AB very closely to the trailing edge B (see figures 5 and 7,
and table 3).

(iv) An almost symmetric bubble forms above the plate, which becomes fully symmetric
at α = 0 (see figures 5 and 9).
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On the direction of the re-entrant jet

If the stable bubble from point (iv) or something similar to it were realizable, then
the large lift at small angle of attack α would be possible too. So the question is how
such a bubble could be created. Our computations show that the bubble forms when the
cavity length is very short (Lc/l < 4/3). According to Brennen (1995), this is the transition
regime from steady cavity flow to cloud cavitation. Here some methods of control of the
cloud cavitation can be helpful (see Kawanami et al. 1997; Zhang, Chen & Shao 2018).

In the literature, we have not found comparison of the results obtained by the re-entrant
jet cavity model with experimental data. In § 7 of our paper, we make such a comparison
and reveal good agreement.

In the supplementary materials to the paper, we store the file Algorithm.pdf, which
contains the description of the algorithm for finding the accessory parameters and the
deduction of pure analytical, integral-free formulae for all hydrodynamic properties.
Also in these materials there are files ReentrantJet.m and ReentrantJet_Usage.nb. In
the Wolfram Mathematica package ReentrantJet.m, the algorithm and formulae from
Algorithm.pdf are programmed, and the notebook ReentrantJet_Usage.nb explains the
usage of the package ReentrantJet.m.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2022.25.
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