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ABSTRACT

We analyze optimal consumption and pension insurance during the life time of
a consumer using the life cycle model, when the consumer has recursive utility.
The relationship between substitution of consumption and risk aversion is high-
lighted, and clarified by the introduction of this type of preferences.We illustrate
how recursive utility can be used to explain the empirical consumption puzzle
for aggregates. This indicates a plausible choice for the parameters of the utility
function, relevant for the consumer in the life cycle model. Optimal life insur-
ance is considered, as well as the portfolio choice problem related to optimal
exposures in risky securities. A major finding is that it is optimal for the typical
insurance buyer to smooth adverse shocks to the financial market, unlike what
is implied by the conventional model. This has implications for what type of
contracts the life and pension insurance industry should offer.
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1. INTRODUCTION

For the standard life cycle model with additive and separable utility, risk aver-
sion and intertemporal elasticity of substitution in consumption sometimes play
conflicting roles in life and pension insurance. We propose to look at a wider
class of utility functions, namely recursive utility, to sort out some of these prob-
lems. Here, we obtain several new insights of relevance for life and pension in-
surance, thereby extending the early works of Yaari (1965), Hakansson (1969),
Samuelson (1969), Merton (1969, 1971), Fisher (1973) and Cox and Huang
(1989) among others.

The present paper is a companion paper to Aase (2015), extending the anal-
ysis to recursive utility. In the present paper, we focus on issues where the
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conventional model has its most obvious weaknesses, and we illustrate through-
out by using market data.

The paper based on the conventional model demonstrates that when there
is consumption in several periods in a world with a perfect credit market with
no financial risk, this model seems to work well. This is also what the standard
literature takes for granted. In a one period problem with financial uncertainty
and consumption only on the last time point, the so-called timeless situation, the
standard model is still known to give reasonable results. A pure life insurance
contract may, perhaps, be considered in this category. When there is consump-
tion in several periods (at least two) and there is also financial risk, we have
a so-called temporal problem (see e.g., Mossin (1969) and Kreps (1988)). In
such situations induced preferences violate the substitution axiom, so the von
Neumann–Morgenstern expected utility (Eu) theory does not have axiomatic
underpinnings. As it turns out, for such problems the conventional model does
not fit historical data all that well when aggregated over agents. Our alternative
model gives a better description of aggregated data.

With a typical customer of this kind in the life cycle model, we find the
optimal consumption of a consumer, the optimal pension of a pension holder
and the optimal amount of life insurance, all in closed form solutions, and dis-
cuss how these differ from the corresponding quantities in the expected utility
model. A main finding is that a typical recursive utility customer finds it op-
timal to smooth consumption shocks stemming from adverse shocks to the fi-
nancial market. The associated optimal investment strategy explains aggregate
data, where themyopic counterpart fails. Our analysis reveals how themutuality
principle in a dynamic framework, which hinges on expected utility, is no longer
valid with recursive utility.

As is well known (see e.g., Epstein and Zin (1989), Duffie and Epstein
(1992a, b), Duffie and Skiadas (1994), Weil (1989), Kreps and Porteus (1978)),
a major advantage with recursive utility is that it disentangles intertempo-
ral substitution from risk aversion. In the context of the life cycle model,
this specification of preferences tells us how and where these different prop-
erties of an individual consumer, or insurance customer, influence the optimal
consumption.

Amajor, theoretical paper analyzing optimal consumption and portfolio se-
lection is Schroder and Skiadas (1999), in which they discuss a variety of specifi-
cations, while we focus on the Kreps–Porteus specification only. From a formal
point of view, we add to the theory demonstrating how recursive utility can al-
ternatively be analyzed by employing the stochastic maximum principle, which
works well for the version of recursive utility which gives the most unambiguous
disentangling of risk aversion from consumption substitution. Second, we focus
on the smoothing property of optimal consumption, and pension, and the im-
plications for the insurance industry. Third, we illustrate numerically by using
market data.

The paper is organized as follows: In Section 2 we specify the financial mar-
ket, which the agent takes as given in the life cycle model. Here we introduce the
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uncertainty in our model, the wealth dynamics of an agent, and other variables
and concepts that we use later.

In Section 3, we give a brief introduction to recursive utility along the lines
of Duffie and Epstein (1992a, b). In Section 4, we formulate the first order con-
ditions for optimal consumption using the stochastic maximum principle. In
Section 4.1, we present the complete solution to the problem of finding the op-
timal consumption path for an agent with recursive utility, in closed form.

In Section 5, we briefly discuss the classical consumption puzzles in light of
the findings in the previous section, and look at some empirical regularities. In
Section 6 we take a small “detour”, where we explain how to obtain the equity
premium and the equilibrium interest rate using our approach.

In Section 7 we return to the life cycle model, and find the optimal pension
for a typical insurance customer, in closed form. In Section 8 we find the optimal
life insurance contract with recursive utility, and compare to the corresponding
results of the conventional model. In Section 9 we present the solution to the
optimal portfolio choice problem, and Section 10 summarizes. The Appendix
contains some of the more technical proofs/material.

2. THE FINANCIAL MARKET

We consider a consumer/insurance customer who has access to a securities mar-
ket, as well as a credit market and pension and life insurance contracts. The se-
curitiesmarket can be described by the vector νt = μt−rt ·1N of expected returns
of N risky securities in excess of the risk-less instantaneous return rt, 1N is an
N-vector of 1’s. σt is an N× N matrix of diffusion coefficients of the risky asset
prices, normalized by the asset process, so that σtσ

′
t is the instantaneous covari-

ance matrix for asset returns. Both νt and σt are assumed to adapted stochastic
processes. Here, N is the dimension of an underlying Brownian motion B as
well.

We assume that the cumulative return process Rnt is an ergodic process for
each n, n = 1, 2, . . . , N, where dXn

t = Xn
t dR

n
t , and X

n
t is the cum dividend price

process of the nth risky asset.
Underlying is a probability space (�,F, P) and an increasing information

filtration Ft generated by the d-dimensional Brownian motion, and satisfying
the “usual” conditions. Each price process Xn

t is a continuous stochastic process,
and we suppose that σ (0) = 0, so that rt := μ0(t) is the risk-free interest rate,
the return on a zeroth asset, also a stochastic process. T is the finite horizon of
the economy. Our insurance customer lives a random time Tx from age x on,
the time where an insurance contract has been issued. The support of Tx is [0, τ ]
where τ < T. The state price deflator, or stochastic discount factor, π(t) is given
by

πt = ξte− ∫ t
0 rs ds, (1)
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where the “density” process ξ has the representation

ξt = exp
(

−
∫ t

0
η′
s · dBs − 1

2

∫ t

0
η′
s · ηsds

)
. (2)

Here η(t) is the market-price-of-risk for the discounted price process Xte− ∫ t
0 rsds ,

defined by
σ(ω, t)η(ω, t) = ν(ω, t), (ω, t) ∈ � × [0,T], (3)

where the nth component of νt equals (μn(t) − rt), the excess rate of return on
security n, n = 1, 2, . . . , N. From Ito’s lemma, it follows from (2) that

dξt = −ξt η′
t · dBt, (4)

and from (1) it follows that

dπt = −rtπtdt − πtη
′
tdBt, (5)

gives the dynamics of the state price. We assume that Novikov’s condition is
satisfied, so that the density ξt is a martingale.

Abstracting from life insurance for the moment, the agent is represented by
an endowment process e (income) and a utility function U : L+ → R, where

L =
{
c : ct is Ft-measurable, and E

(∫ Tx

0
c2t dt

)
< ∞

}
.

L+, the positive cone of L, is the set of consumption rate processes.
The form of the function U is specified in the section on recursive utility

coming next. The remaining life time Tx of the x year old insurance customer is
assumed independent of the risky securities X. The information filtration Ft is
enlarged to account for events like Tx > t.

In general is utility U defined over the space C of consumption pairs (c, z),
where c is an adapted nonnegative consumption-rate process with

∫ Tx
0 ctdt < ∞

almost surely and z is an FTx-measurable nonnegative random variable describ-
ing terminal consumption, later to be interpreted as the amount of life insur-
ance.

A trading strategy θ = (θ0, . . . , θN) signifies the number of shares of the
different N+1 given assets. It is supposed to satisfy some regularity conditions
that we do not need to specify here. Following Duffie (2001), Ch 9, p. 206, given
initial wealth w0 > 0, we say that (c, z, θ) is budget-feasible, denoted (c, z, θ) ∈
�(w0), if (c, z) is a consumption choice in C and θ is an admissible trading
strategy satisfying

θt · Xt = w0 +
∫ t

0
θsdXs −

∫ t

0
cs ds ≥ 0, t ∈ [0,Tx], (6)

and
θTx · XTx ≥ z. (7)
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The first restriction (6) is that the current market value θt ·Xt of the trading strat-
egy is nonnegative and equal to its initial value w0, plus any gains from security
trade, less the cumulative consumption to date. The second restriction (7) is that
the terminal portfolio value is sufficient to cover the terminal consumption. We
now have the problem, for each initial wealth w0

sup
(c,z,θ)∈�(w0)

U(c, z). (8)

The type of situation described above is known as a temporal problem of
choice. In such a situation, it is far from clear that the time additive and separa-
ble form of utility is the natural representation of preferences (an early reference
is Mossin (1969). See also Kreps (1988)).

It is convenient to represent trading strategies in terms of fractions ϕ′
t =

(ϕ
(1)
t , ϕ

(2)
t , . . . , ϕ

(N)
t ) of total wealth held in the risky securities. That is, for a

given trading strategy θ , we let

ϕnt := θnt X
n
t

θt · Xt
, θt · Xt �= 0,

with ϕnt = 0 if θt · Xt = 0.
Given a consumption process c and an adapted process ϕ, our problem is to

find a nonnegative wealth processWt satisfying

dWt = (
Wt(ϕ

′
t · νt + rt) − ct

)
dt + Wtϕ

′
t · σtdBt, W0 = w. (9)

In order for W to remain nonnegative, an admissible control (c, ϕ) has the
property that ϕt = 0 and Wt = ct = 0 for t larger than the stopping time
inf{s : Ws = 0}.

The above formulation of our problem invites the use of dynamic program-
ming. This problem can alternatively be formulated as a constrained optimiza-
tion problem, where the agent maximizes his/her utility subject to a budget con-
straint (see e.g., Pliska (1986), Cox and Huang (1989)). This is made use of in
the Part I paper (Aase, 2015). This invites the use of Kuhn–Tucker, as demon-
strated in Section 4, as well as in the Appendix. With ordinary time additive, ex-
pected utility this method works well and actually gives a more general solution
technique for this problem than that of dynamic programming. The solutions
coincide under an assumption about complete markets.

3. RECURSIVE UTILITY

We now introduce recursive utility. An important property with this type of
utility representation is that uncertainty is “dated” by the time of its resolution,
and the individual regards uncertainties resolving at different times as being
different. The consumer can thus prefer late resolution of uncertainty to early,
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or vice versa, which naturally makes this theory somewhat complex, but at the
same time more realistic.

We use the framework established by Duffie and Epstein (1992a,b) and
Duffie and Skiadas (1994) which elaborates the foundational work byKreps and
Porteus (1978) of recursive utility in dynamicmodels. This approach leads to the
separation of risk aversion from the elasticity of intertemporal substitution in
consumption, within a time-consistent model framework.

The recursive utility U : L → R is defined as follows by two primitive func-
tions: f : R × R → R and A : R → R.

The function f (ct,Vt) represents a felicity index at time t, and A is associated
with a measure of absolute risk aversion (of the Arrow–Pratt type) for the agent.
In addition to current consumption ct, the function f also depends on future
utility Vt time t, a stochastic process with volatility σ̃V(t) at time t.

Focusing on optimal consumption, let τ be the planners horizon. The utility
process V for a given consumption process c, satisfying Vτ = 0, is given by the
representation

Vt = Et
{ ∫ τ

t

(
f (cs,Vs) − 1

2
A(Vs) σ̃V(s)′σ̃V(s)

)
ds

}
, t ∈ [0, τ ]. (10)

If, for each consumption process ct, there is a well-defined utility process V, the
stochastic differential utility U is defined by U(c) = V0, the initial utility. The
pair ( f, A) generating V is called an aggregator.

One may think of A as associated with a concave function h : R → R such
that A(v) = − h′′(v)

h′(v)
, where h is twice continuously differentiable.U is monotonic

and risk averse if A(·) ≥ 0 and f is jointly concave and increasing in consump-
tion. Then, the term 1

2A(Vs) σ̃V(s)′σ̃V(s) becomes the Arrow–Pratt approxima-
tion to the certainty equivalent.

The equation (10) is a quadratic backward stochastic differential equation
(BSDE), and existence and uniqueness of solutions to such equations is in gen-
eral far from granted. These topics have been dealt with in the original paper
Duffie and Epstein (1992b), and are also part of contemporary research in ap-
plied mathematics, see e.g., Øksendal and Sulem (2014), or Peng (1990). For the
particular BSDE (10) existence and uniqueness follows from Duffie and Lions
(1992).

The representation (10) is motivated from the corresponding discrete time
model of Epstein and Zin (1989). The common starting point for recursive util-
ity is that utility at time t is given by Vt = g(ct,m(Vt+1)) for some function g,
wherem is a certainty equivalent at time t. If h is a von Neumann–Morgenstern
index, then m(V) = h−1(E[h(V)]). The certainty equivalent m is then assumed
to satisfy some smoothness properties. With Brownian information Vt is an Ito
process, and based on this Duffie and Epstein (1992b) demonstrate how (10) is
justified.

Stochastic differential utility disentangles intertemporal substitution from
risk aversion: In the case of deterministic consumption, σ̃V(t) = 0 for all t. The
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risk aversion A is then irrelevant since it multiplies a zero variance. Thus cer-
tainty preferences, including the willingness to substitute consumption across
time, are determined by f alone. Only risk attitudes are affected by changes in
A for f fixed. In particular, if

Ã(·) ≥ A(·),
where U and Ũ are utility functions corresponding to ( f, A) and ( f, Ã) respec-
tively, then Ũ is more risk averse than U in the sense that any consumption
process c rejected by U in favor of some deterministic process c̄ would also be
rejected by Ũ.

We work with the so-called Kreps–Porteus specification, which corresponds
to the aggregator ( f, A) with the constant elasticity of substitution (CES) form

f (c, v) = δ

1 − ρ

c(1−ρ) − v(1−ρ)

v−ρ
and A(v) = γ

v
. (11)

The parameter δ ≥ 0 is the agent’s impatience rate, ρ ≥ 0, ρ �= 1 is the time pref-
erence and γ ≥ 0, γ �= 1, is the relative risk aversion. The parameter ψ = 1/ρ
is the elasticity of intertemporal substitution in consumption, referred to later
as the EIS-parameter. The higher the value of ρ, the higher the agent’s aversion
to consumption fluctuations across time in a deterministic world. The higher
the value of γ , the more aversion the agent has to consumption fluctuations in
the next period, due to the different possible states of the world that can occur.
Clearly, these two properties of an individual’s preferences are different. In the
conventional model γ = ρ.

Let us now consider the following ordinally equivalent specification. When
the aggregator ( f, A) is given corresponding to the utility functionU, there ex-
ists a strictly increasing and smooth function g(·) such that the ordinally equiv-
alent Û = g ◦U has the aggregator ( f̂ , Â) where

f̂ (c, v) = ((1 − γ )v)
− γ

1−γ f (c, ((1 − γ )v)
1

1−γ ), Â= 0. (12)

The current connection is

Û = 1
1 − γ

U1−γ .

This specification we sometimes find convenient to work with, in particular in
connection with life insurance. Here, f̂ has the CES form

f̂ (c, v) = δ

1 − ρ

c(1−ρ) − ((1 − γ )v)
1−ρ

1−γ

((1 − γ )v)
γ−ρ

1−γ

, Â(v) = 0. (13)

It is emphasized in the above references that the reduction to a normalized ag-
gregator ( f̂ , 0) does not mean that intertemporal utility is risk neutral, or that
we have lost the ability to separate risk aversion from consumption substitution.
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The normalized version is used to prove existence and uniqueness of the
solution to the BSDE, see Duffie and Epstein (1992b) and Duffie and Lions
(1992).

The standard additive and separable utility has aggregator

f1(c, v) = u(c) − δv, A1 = 0, (14)

in this framework (an ordinally equivalent representation). Clearly, the agent
with the conventional utility is not risk neutral even if A1 = 0.

In the next section, we demonstrate how to analyze problems involving re-
cursive utility using the stochastic maximum principle. Both version (11) and
(13) can be analyzed by our method. The remaining analysis will be valid for
both versions. When it comes to solving for the optimal consumption path, or
the optimal life insurance contract, we use version (13). Identical results can be
obtained by our method from using the ordinally equivalent representation (11)
instead.

The analysis is seemingly more technically involved once we depart from the
separable and additive expected utility. Despite of this we demonstrate below
that simple, intuitive and transparent results still emerge using this more general
framework.

4. THE FIRST ORDER CONDITIONS OF OPTIMAL CONSUMPTION

The typical consumer’s problem is to solve the problem (8). Instead of solving
this problem directly, we solve an equivalent one. As is well known (e.g., Cox and
Huang (1989) or Pliska (1986)), in a complete market the dynamic program (8),
(9) has the same solution as the following simpler, yet more general problem

supc∈LU(c),

subject to

E
{ ∫ τ

0
ctπtdt

}
≤ E

{ ∫ τ

0
etπtdt

}
,

where e is the consumer’s given endowment process. Here, we focus on the ter-
minal condition Vτ = 0. Mortality will be taken up in Section 7.

Now define Vc
t := Vt and Z(t) := σ̃V(t). The pair (Vc

t , Z(t)) is then the
solution of the BSDE

{
dVt = − f̃ (t, ct,Vt, Z(t)) dt + Z(t) dBt
Vτ = 0,

(15)
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where

f̃ (t, ct,Vt, Z(t)) =
{
f (ct,Vt) − 1

2A(Vt) Z(t)′Z(t), if version (11) is used;
f̂ (ct,Vt), if version (13) is used;

(16)
Notice that (15) covers both the versions (11) and (13). Important is here that
the volatility Z(t) := σ̃V(t) is part of the preference specification.

Existence and uniqueness of solutions of the BSDE (15) is treated in the
general literature on this subject. For a reference, see Theorem 2.5 in Øksendal
and Sulem (2014), or Hu and Peng (1995). For the aggregator of the Kreps and
Porteus type, a Lipschitz condition in the above references related to the drift
term of the BSDE is not satisfied, however, existence and uniqueness has then
been proven in Duffie and Lions (1992) for diffusion processes.

For a multiplier α > 0, define the Lagrangian of the optimization problem
by

L(c; α) = U(c) − α E
( ∫ τ

0
πt(ct − et)dt

)
.

Suppose for each α > 0 we can find an optimal cα
t such that

supcL(c; α) = L(cα; α), (17)

without constraints. Next, suppose we can find an α0 such that

E
( ∫ τ

0
πt(c

α0
t − et)dt

)
= 0. (18)

Then
c∗ := cα0,

is optimal for the original constrained problem. In view of this, we firstmaximize
L(c; α) over all c without constraints, for given α > 0.

Here, we utilize the stochastic maximum principle (see Pontryagin (1959)),
Bismut (1978), Kushner (1972), Bensoussan (1983), Peng (1990), and Øksendal
and Sulem (2014)): We are given the backward stochastic differential equation
(BSDE) (15). The objective function is the Lagrangian L(c; α) defined above.

The Hamiltonian for this problem is

H(t, c, v, z, y) = yt f̃ (t, ct, vt, zt) − α πt(ct − et), (19)

where yt is the adjoint variable.
Sufficient conditions for the existence of a unique optimal solution to the

stochastic maximum principle can be found in the literature, see e.g., Theorem
3.1 in Øksendal and Sulem (2014). Hu and Peng (1995) also study existence and
uniqueness of the solution to coupled FBSDE. A unique solution exists in the
present case provided this also holds for the BSDE (10).
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The adjoint equation is{
dYt = Yt

(
∂ f̃
∂v

(t, ct,Vt, Z(t)) dt + ∂ f̃
∂z (t, ct,Vt, Z(t)) dBt

)
,

Y0 = 1.
(20)

where we use the notation Z(t) = σ̃V(t) as explained, and z as the generic vari-
able. If c is optimal, we therefore have

Yt = exp
( ∫ t

0

{
∂ f̃
∂v

(s, cs,Vs, Z(s)) − 1
2

(
∂ f̃
∂z

(s, cs,Vs, Z(s))
)2}

ds

+
∫ t

0

∂ f̃
∂z

(s, cs,Vs, Z(s)) dB(s)
)

a.s., (21)

Maximizing the Hamiltonian with respect to c gives the first order condition

y
∂ f̃
∂c

(t, c, v, z) − α π = 0,

or

α πt = Y(t)
∂ f̃
∂c

(t, ct,V(t), Z(t)) a.s. for all t ∈ [0,T]. (22)

Notice that the state price deflator πt at time t depends, through the adjoint
variable Yt, on the entire, optimal paths (cs,Vs, Zs)) for 0 ≤ s ≤ t, which means
that the economy may not display the usual Markovian structure. One of the
strengths of the stochasticmaximumprinciple is that theHamiltonian is allowed
to depend on the state.

When γ = ρ then Yt = e−δt for the aggregator (14) of the conventional
model, so the state price deflator is a Markov process, and dynamic program-
ming is appropriate. If γ �= ρ on the other hand, we use the stochastic maximum
principle in the continuous-time model of this paper.

4.1. The optimal consumption

Wenow solve for the version (13) of recursive utility. In theAppendix, we present
the technical details. From the equations (22) and (16), we have the following
first order conditions

απt = Yt f̂c(cα
t ,Vt), (23)

since f̃c = f̂c for this version. For simplicity of notation, we write f̂ = f from
now on. For this version, we obtain that

Vt = Et
( ∫ τ

t
f (cα

s ,Vs)ds
)
, (24)
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which implies that {
dVt = − f (cα

t ,Vt) dt + Z(t) dBt,
Vτ = 0,

(25)

and

Yt = exp
( ∫ t

0
fv(cα

s ,Vs)ds
)
. (26)

Here, the dynamic representation for Yt can be written

dYt = Yt fv(cα
t ,Vt) dt, (27)

and we notice that for this version Y is a process of bounded variation, which is
not the case for the other version. From (13) we find ct, using that

fc(c, v) := ∂ f (c, v)

∂c
= δ

c−ρ(
(1 − γ )v

) γ−ρ

1−γ

.

Solving for ct, the theory guarantees the existence of a Vt and a σ̃V(t) such that

cα
t =

(απt((1 − γ )Vt)
γ−ρ

1−γ

δYt

)− 1
ρ

. (28)

In the Appendix, it is shown that the optimal consumption has the dynamics

dcα
t

cα
t

= μc(t) dt + σc(t) dBt, (29)

where

μc(t) = 1
ρ

(rt − δ) + 1
2ρ

(
1 + 1

ρ

)
η′
tηt − (γ − ρ)

ρ2
η′
t σV(t)

+1
2

(γ − ρ)γ (1 − ρ)

ρ2
σ ′
V(t)σV(t), (30)

and

σc(t) = 1
ρ

(
ηt + (ρ − γ )σV(t)

)
. (31)

Here, σV(t) and Vt exist as a solution to the system of forward/backward
stochastic differential equations explained in the Appendix.

By Ito’s formula, it follows that

cα
t = c0 e

∫ t
0 (μc(s)− 1

2 σc(s)′σc(s))ds+
∫ t
0 σc(s)dBs , (32)

where μc(t) and σc(t) are as determined above.
From (28) and the fact that the recursive utility function we work with is

homogeneous of degree one, there is a one-to-one correspondence between c0
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and α. Given a suitable integrability condition (see the Appendix), there is a
unique c0 that satisfies the budget constraint with equality with corresponding
α0. Under these assumptions we have a complete characterization of the opti-
mal consumption in terms of the primitives of the model, by The Saddle Point
Theorem.

Since the agent takes themarket as given, it is of interest to study how shocks
to the state price π affect the optimal consumption. To this end, it is convenient
to rewrite the expression for the optimal consumption in terms of the state price.
Using the dynamics of π in (5), we can write (32) as

c∗
t = c0π

− 1
ρ

t e
∫ t
0 (− δ

ρ
+ 1

2ρ (γ−ρ)(1−γ )σ ′
V(s)σV(s))ds+ 1

ρ
(ρ−γ )

∫ t
0 σV(s) dBs . (33)

In terms of the density process ξ the expression is

c∗
t = c0ξ

− 1
ρ

t e
∫ t
0 ( 1

ρ
(rs−δ)+ 1

2ρ (γ−ρ)(1−γ )σ ′
V(s)σV(s))ds+ 1

ρ
(ρ−γ )

∫ t
0 σV(s) dBs , (34)

where
πt = e− ∫ t

0 rsdsξt = e− ∫ t
0 rsdse− ∫ t

0 ηsdBs− 1
2

∫ t
0 η′

sηsds . (35)

It can be shown that the same consumption dynamics as given in (29)–(34)
also result for the specification (11) of recursive utility, which then leads to the
same expression for the optimal consumption. For example, the expected opti-
mal consumption at time t as of time zero given by

E(c∗
t ) = c0E

{
e
∫ t
0 (μc(s)ds

}
. (36)

When ρ = γ , or γ = 1/ψ , the optimal consumption dynamics for the con-
ventional model results. As a direct comparison with (33) and (34) the conven-
tional model gives

c∗
t = c0π

− 1
ρ

t e− δ
ρ
t = c0ξ

− 1
ρ

t e
∫ t
0

1
ρ
(rs−δ)ds

(when ρ = γ ). (37)

Comparing with the corresponding expressions for the conventional model
(ρ = γ ) we notice several important differences. Recall that the state price re-
flects what the consumer is willing to pay for an extra unit of consumption. In
particular, with the conventional model in mind, it has been convenient to think
of πt as high in “times of crises” and low in “good times”. Start with the opti-
mal consumption given in (32) with σc(t) as in (31), and consider for example
a “shock” to the economy via the state price πt. It is natural to think of this
as stemming from a shock to the term

∫ t
0 ηsdBs via the process B. Assuming η

positive, this lowers the state price, and seen in isolation, increases optimal con-
sumption (see (33) and (35)). This is as for the conventional model. However, a
shock from B has also an effect on the last factor in (31). Assuming σV positive,
the direction of this shock depends on the sign of (ρ − γ ). When the individual
prefers early resolution of uncertainty too late (γ > ρ), this shock has the op-
posite effect on c∗

t . As a consequence, the individual wants to dampen shocks to
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TABLE 1

KEY US-DATA FOR THE TIME PERIOD 1889–1978. CONTINUOUS-TIME COMPOUNDING. κ̂M,c = 0.4033.

Expectation Standard dev. Covariances

Consumption Growth 1.81% 3.55% σ̂cM = 0.002268
Return S&P-500 6.78% 15.84% σ̂Mb = 0.001477
Government Bills 0.80% 5.74% σ̂cb = −0.000149
Equity Premium 5.98% 15.95%

the economy.More precisely, the optimal strategy for the consumer is to smooth
consumption provided the agent prefers early resolution of uncertainty to late.

A shock to the interest rate (in isolation) has the same effect on the recursive
consumer as the conventional one. We summarize our findings in the following
theorem.

Theorem 1. Assume the preferences are such that σV is positive, and the market-
price-of-risk η is positive. The individual with recursive utility will then prefer to
smooth market shocks provided the consumer prefers early resolution of uncer-
tainty to late (γ > ρ).

When the expected utility consumer just follows is the wake of others as in
a flock of sheep, the contents of themutuality principle, the recursive individual
displays amore sophisticated behavior undermarket uncertainty. It may depend
on whether the individual has preference for early, or late resolution of uncer-
tainty. With these two possibilities the mutuality principle does not necessarily
hold for recursive utility. This is of importance for pension insurance. Some of
the conventional wisdom has to be rewritten in presence of recursive utility.

The investment strategy that attains the optimal consumption of the agent
is presented in Section 9. The recursive agent does not behave myopically, in
contrast looks at several periods at the time. When times are good he consumes
less than the myopic agent, invests more for the future, and can hence enjoy
higher consumption when times are bad than the expected utility maximizer.

5. SOME EMPIRICAL IMPLICATIONS OF THE RECURSIVE MODEL

In society aggregate consumption is observed to be smooth, with a relatively
high growth rate, see e.g., Table 1, where the summary statistics of the data used
in the Mehra and Prescott (1985) paper is presented1. By σcM(t) we mean the
instantaneous covariance rate between the return on the index S&P-500 and
the consumption growth rate, in the model a measurable, ergodic process. Simi-
larly, σMb(t) and σcb(t) are the corresponding covariance rates between the index
M and government bills b and between aggregate consumption c and Govern-
ment bills, respectively2. κM,c(t) is the associated instantaneous correlation co-
efficient.

https://doi.org/10.1017/asb.2015.20 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2015.20


84 KNUT K. AASE

The first major problem with the conventional life cycle model is to explain
the smooth path of aggregate consumption observed in society. That is, we now
imagine that the consumer plays the role of the representative agent, who con-
sumes the aggregate consumption.3 Observe that the volatility in (31) can be
made arbitrarily small i.e., when the market-price-of-risk ηt ≈ (γ − ρ)σV(t),
then σc(t) ≈ 0. In contrast, when σc(t) = ηt/γ for γ = ρ as in the expected
utility model, it follows that only the first term on the right-hand side is present.
For the estimated value of ηt, this requires an unreasonably large value of γ to
match the low estimate of the consumption volatility. In the recursive model,
this is seen to be very different.

The second major problem with the conventional model is to explain the
relatively large estimate of the growth rate of aggregate consumption in society
for plausible values of the parameters. For the estimated value of ηt, and the
large value of γ required to match the low estimated volatility, this leads to a
low value of the impatience rate δ in (30) when γ = ρ to match the estimate of
the consumption growth rate.

With the additional terms in (30) this is different. Here, ρ takes the role that γ
plays in the two first terms in the conventional model, but unlike for that model,
ρ needs not be large to fit the US-consumption and stock market data ofMehra
and Prescott (1985), summarized in Table 1, due to the last two terms in (30).

As an example, consider a situation where γ > ρ. By inspection of the forth
term on the right-hand side in (30), depending on the values of σV(t), a large
consumption growth rate is possible when ρ < 1. The third term puts a limit
on how much larger than ρ the risk aversion γ can be in order to match the
estimated value of the growth rate. Other combinations can of course be found,
again depending on the term σV(t).

Summarizing, an important part of the asset pricing and consumption puz-
zles is related to how aggregate consumption can be so smooth at such a rela-
tively large growth rate as indicated by the data summarized in Table 1, and still
conform to the conventional model. This is much better accounted for by the
recursive model, as demonstrated by the expressions (30) and (31).

6. THE EQUILIBRIUM INTEREST RATE AND THE EQUITY PREMIUM

In this paper, the agent takes the market as given in the life cycle model. How-
ever, one may also consider a “representative agent” equilibrium, where the
agent takes the aggregate consumption as given (Lucas (1978)). Here, the ob-
jective is to determine equilibrium risk premiums and the equilibrium interest
rate, where the agent on the margin just holds the market portfolio. This agent
is, of course, not like the individual we have considered in the life cycle model.
For once, this agent does not hold any insurance in equilibrium, nor does he or
she hold any government bonds. But note, still such instruments can be prices
in this model: The equilibrium price is the one where the agent is just indifferent
to holding the instrument. The advantage of considering this construction here,
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is that the preferences of the customer should be close to the preferences of the
representative agent in an equilibrium setting, or, at least the latter will serve
as a guide to determine the preferences of the former. We should in general
consider a model that aggregates to something reasonable. We now explore the
consequences of the market clearing condition.

As a direct consequence of the above expressions for the growth rate of con-
sumption and the volatility of consumption, when consumption is considered as
aggregate consumption in society and the consumer is the representative agent,
from (3) we get the following equilibrium equity premium

ϕ′
tσtηt = μW(t) − rt,

where ϕ′
tσt = σ ′

W(t) is the volatility of the wealth portfolio. Here, we have used
the representation of the wealth portfolio (9). Sometimes the market portfolio
is considered a proxy for the wealth portfolio, (but this is not always a good
assumption). This is market clearing in the market for risky securities. We just
give a short illustration of what this might lead to.

Using (31) and rearranging, we get

μW(t) − rt = ρσ ′
c(t)σW(t) + (γ − ρ)σ ′

V(t)σW(t). (38)

Provided a representative agent equilibrium exists, Aase (2014) shows that in
equilibrium σW(t) = (1−ρ)σV(t)+ρσc(t) for all t, for either version of recursive
utility. This relationship determines the volatility of thewealth portfolio in terms
of primitives of the model, which are preferences (σV(t) and ρ) and aggregate
consumption (σc(t)).

Using (38) and solving for σV(t) in the above equilibrium relationship, this
gives σV(t) = 1

1−ρ
(σW(t)−ρσc(t)), and the following risk premium of the wealth

portfolio

μW(t) − rt = ρ(1 − γ )

1 − ρ
σ ′
c(t)σW(t) + γ − ρ

1 − ρ
σ ′
W(t)σW(t). (39)

This formula can be extended to yield the equilibrium risk premium of any risky
asset having volatility σR(t). The result is

μR(t) − rt = ρ(1 − γ )

1 − ρ
σ ′
c(t)σR(t) + γ − ρ

1 − ρ
σ ′
W(t)σR(t). (40)

The first term on the right-hand side corresponds to the consumption based
CAPM of Breeden (1979), while the second term corresponds to the market
based CAPM of Mossin (1966), the latter only valid in a “timeless” setting, i.e.,
a one period model with consumption only on the terminal time, in its original
derivation.

A formula for the equilibrium risk-free interest rate we now obtain as fol-
lows: We insert the market-price-of-risk ηt obtained from (31) in the expression
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for μc(t) in (30). This gives

ρμc(t) = rt − δ + 1
2

(
1 + 1

ρ

)
(ρσ ′

c(t) + (γ − ρ)σ ′
V(t))(ρσc(t)

+ (γ − ρ)σV(t)) + 1
ρ

(ρ − γ )(ρσ ′
c(t) + (γ − ρ)σ ′

V(t))σV(t)

+1
2

γ

ρ
(1 − ρ)(γ − ρ)σ ′

V(t)σV(t).

From this expression we obtain the equilibrium risk-free interest rate in terms
of σV(t) as

rt = δ + ρ μc(t) − 1
2
ρ(1 + ρ) σ ′

cσc − ρ(γ − ρ)σ ′
c(t)σV(t)

−1
2
(γ − ρ)(1 − ρ)σ ′

V(t)σV(t). (41)

The final step is to use the expression for σV(t) = 1
1−ρ

(σW(t) − ρσc(t)) in this
formula. The result is

rt = δ + ρμc(t) − 1
2

ρ(1 − ργ )

1 − ρ
σ ′
c(t)σc(t) + 1

2
ρ − γ

1 − ρ
σ ′
W(t)σW(t). (42)

The present derivation is different from the ones in the literature, showing that
the results (38) and (41) are robust.

In their seminal paper on the subject, Duffie and Epstein (1992a) derives
the same expression (40) for the risk premium, based on dynamic program-
ming. They have no expression for the equilibrium, real interest rate rt. In their
derivation, using the Bellman equation, the volatilities involved needed to be
constants.

We see that when time preference can be separated from risk preferences,
the former is contained in all the terms appearing in the conventional model,
since only consumption related parameters occur in that framework. When the
quantity σV(t) enters, the relative risk aversion γ also appears.

Consider for example the three first terms on the right-hand side of rt in
(41). The two first terms are as in the classical Ramseymodel, where there are no
risky securities (see Ramsey (1928)). The third term is the precautionary savings
term, still only depending on the individual’s time preference. Risk aversion only
appears in the last two terms, where also the wealth portfolio of risky securities
enters.

Also the structure of the risk premium in (38) is noteworthy. The first term is
the covariance rate between aggregate consumption and the wealth portfolio, in
which case the time preference enters. Only when γ is different from ρ a second
term appears, where the risk aversion also enters.
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Consider a calibration to the data summarized in Table 1. By fixing the im-
patience rate δ to some reasonable value, δ = 0.02 say, one solution to the two
equations (39) and (42) yields γ = 2.11 and ρ = 0.74. Here, we have assumed
σW(t) = 0.10 and with an instantaneous correlation with the market portfolio
M, κW,M = 0.80. The resulting preference parameters seem plausible, and many
other reasonable combinations fit the equations as well.

In contrast, a similar calibration of the conventional Eu-model leads to the
(unique) values γ = 26 and δ = −0.015, none of which are very plausible.

7. CONSEQUENCES OF RECURSIVE UTILITY FOR OPTIMAL
CONSUMPTION/PENSIONS

7.1. Optimal consumption

We now return to the life cycle model with our typical insurance customer, hav-
ing recursive utility with parameters that may take values as described in the
previous section.

The consequences of recursive preferences are noteworthy for the life cycle
model. Of particular importance is the separation between risk aversion and
time preference. We have demonstrated that this model can be calibrated to give
reasonable values for the preference parameters, which is not the case for the
conventional model.

The recursive model thus opens up possibilities to discuss pension plans
based on a model for behavior that (i) fits data when aggregated, (ii) has an
axiomatic underpinning, and (iii) deviates from the simple and naive solution
of the myopic model.

Having summarized important properties of optimal consumption in The-
orem 1, we now take a look at what the life cycle model tells us about optimal
pensions.

7.2. The optimal pension insurance contract

We now discuss optimal pensions in the life cycle model. For this, we will need
the following standard actuarial concepts: Let the survival probability of an x-
year old pension insurance customer be given by P(Tx > t) = lx+t/ lx, where
l(x) is the decrement function. The single premium of an annuity paying one
unit per unit of time is given by the formula

ā(r)
x =

∫ τ

0
e−rt lx+t

lx
dt, (43)
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where r is the short term interest rate, and the single premium of a “temporary
annuity” which terminates after time n is

ā(r)
x:n̄| =

∫ n

0
e−rt lx+t

lx
dt. (44)

For simplicity of exposition, we assume there to be only one risky asset (N = 1),
where σt, νt, rt and σV(t) are all deterministic and constant in time.

Recall the basic optimization problem of Section 4.Withmortality included,
the associated Lagrangian is

L(c; α) = U(c) − α E
( ∫ τ

0
πt(ct − et)P(Tx > t)dt

)
. (45)

where

U(c) = V0 = E
{ ∫ τ

0

(
f (cs,Vs) − 1

2
A(Vs) σ̃V(s)′σ̃V(s)

)
P(Tx > t)ds

}
. (46)

Consider the following income process et:

et =
{
y, if t ≤ n;
0, if t > n

(47)

where y is a constant, interpreted as the consumer’s salary when working, and
n is the time of retirement for an x-year old. Equality in the budget constraint
can then be written

E
( ∫ τ

0
(et − c∗

t )πt P(Tx > t)dt
)

= 0.

This is the “Principle of Equivalence” ofActuarial Science in the present setting.
Here, [0, τ ] is the support of the remaining life time Tx of an x-year old pension
customer. The above condition can be written∫ n

0

(
yE(πt)

lx+t
lx

− E(c∗
t πt)

lx+t
lx

)
dt +

∫ τ

n
(−1)E(c∗

t πt)
lx+t
lx

dt = 0.

Now we use that c∗
t and πt are both geometric Brownian motions under the

assumptions of this section. Using (30) and (31) in (32) and the representation
for πt given in (5), we find that c0 can be written

c0 = y
ā(r)
x:n̄|
ā(r̃)
x

,
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where

r̂ = r − 1
ρ

(r − δ) + 1
2
1
ρ

(
1 − 1

ρ

)
η′η + 1

ρ

(
1
ρ

− 1
)

(ρ − γ ) ησV

− 1
ρ

(γ − ρ)
( 1
ρ

(γ − ρ) + 1
2
(1 − γ )

)
σ 2
V. (48)

By inspection of equation (28) for the optimal consumption and the represen-
tation given in (32), we notice that this also determines the Lagrange multiplier
α0 > 0. From the results in Section 4.1, it follows that the optimal life time
consumption (t ∈ [0, n]) and pension (t ∈ [n, τ ]) is

c∗
t = y

ā(r)
x:n̄|
ā(r̂)
x

exp
{ (

1
ρ

(r − δ) + 1
2ρ

η2 + 1
2ρ

(γ − ρ)(1 − γ )σ 2
V

)
t

+ 1
ρ

(η + (ρ − γ )σV)Bt

}
, (49)

provided the agent is alive at time t (otherwise c∗
t = 0), where the expressions

for μc and σc given in (30) and (31) have been used.
The premium intensity pt at time t while working is given by pt := y − c∗

t ,
an Ft-adapted process for (t ∈ [0, n]), provided the agent is alive at time t.

As can be seen, the optimal pension is being smoothened in the same man-
ner as the optimal consumption in Section 4.1, summarized in Theorem 1. A
positive shock to the economy via the term Bt increases the optimal pension
benefits via the term ηBt, which may be mitigated, or strengthened, by the term
(ρ − γ )σVBt, depending on the sign of (γ − ρ)σV. Similarly, a negative shock is
dampened in the optimal pension provided γ > ρ, when σV > 0. This indicates
that the pensioner in this model behaves considerably more sophisticated than
the one modeled by expected utility. We summarize as follows:

Theorem 2. Under the same assumptions as in Theorem 1, the individual with re-
cursive utility will prefer a pension plan that smooths market shocks provided the
consumer prefers early resolution of uncertainty to late (γ > ρ).

This indicates that the pension customer may prefer a defined benefit pension
plan to a defined contribution, or unit linked plan under these assumptions.

How can this optimal pension be implemented in the real world? When an
insurance company takes over the responsibility of investing the pension fund
on behalf of its customers, the company needs to find a strategy that works. This
has been possible in the past, so it should also be possible in the future. Again
the optimal investment strategy for each individual is presented in Section 9.

Clearly it involves time diversification, which requires a proper regulatory
regime, and long term budgeting practices rather than the current short term
(yearly), and adequate equity capital.
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7.3. Comparative statics

In the present model, we have the possibility to investigate what happens to op-
timal consumption when conditions in the market for risky assets change. As an
example, consider the partial effect on the expected value of optimal consump-
tion at time t, as seen from time t = 0, of an increase in the market-price-of-
risk. From this, it follows that the expected value as of time zero of the optimal
consumption/pension at any time t in (36) is

E(c∗
t ) = y

ā(r)
x:n̄|
ā(r̂)
x

exp
{ 1
ρ

(
r − δ + 1

2

(
1 + 1

ρ

)
η′ · η + 1

ρ
(ρ − γ ) ησV

+ γ

2ρ
(γ − ρ)(1 − ρ)σ 2

V

)
t
}
. (50)

From (48), we see that the expected optimal consumption grows with time
provided

r > δ − 1
2

(
1 + 1

ρ

)
η2 − 1

ρ
(ρ − γ )ησV − γ

2ρ
(γ − ρ)(1 − ρ)σ 2

V. (51)

The corresponding condition in the classical Ramsey model is r > δ.
In order to compute the derivative of E(c∗

t ) in (50) with respect to themarket-
price-of-risk parameter η, we notice that η (when N = 1) appears both in the
exponential function in the numerator, as well as in the adjusted interest rate r̂
in the denominator. After some routine calculations, we then find the expression

∂E(c∗
t )

∂η
= y

ā(r)
x:n̄|
ā(r̂)
x

(
exp

{ 1
ρ

(
r − δ + 1

2

(
1 + 1

ρ

)
η′ · η + 1

ρ
(ρ − γ ) ησV

+ γ

2ρ
(γ − ρ)(1 − ρ)σ 2

V

)
t
})

·
((

η
1
ρ

(1 + 1
ρ

) + 1
ρ2

(ρ − γ )σV

)
(t − t̂1)

)
,

(52)

where

t̂1 =
1
ρ
( 1

ρ
− 1)(η + (γ − ρ)σV)

1
ρ
(1 + 1

ρ
)η + 1

ρ2 (ρ − γ )σV
t̂, (53)

and t̂ is determined by the equality∫ τ

0
s
lx+s
lx

e−r̂ s ds = t̂
∫ τ

0

lx+s
lx

e−r̂ s ds = t̂ ā(r̂)
x ,

by the first mean value theorem for integrals.
From this, we can investigate what effect an increase in the expected rate of

return of the risky asset has on the expected optimal consumption. We consider
four situations:
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1. Suppose t̂1 > 0 and the factor (η 1
ρ
(1+ 1

ρ
)+ 1

ρ2 (ρ −γ )σV) > 0, the expected
consumption would first decrease for t < t̂1, and then increase for t > t̂1.
When γ > ρ and ρ < 1 this holds. Since, σV may depend on the preference
parameters, this situationmay also occurwhen ρ > γ and ρ > 1, depending
on σV. This corresponds to a substitution effect.

2. If η(1 + ρ) > (γ − ρ)σV > 0, η + (γ − ρ)σV > 0 and ρ > 1, or if
η(1 + ρ) > (γ − ρ)σV > 0, η + (γ − ρ)σV < 0 and ρ < 1, the expected
consumption is an increasing function of η. Typically, this happens if ρ > γ

and ρ > 1. This corresponds to an income effect.
3. If η(1 + ρ) < (γ − ρ)σV and 1

ρ
( 1

ρ
− 1)(η + (γ − ρ)σV) < 0, the expected

consumption is an increasing function in η for 0 ≤ t ≤ t̂1 and a decreasing
function for t > t̂1. This can happen for γ > ρ > 1, but also for ρ > γ and
ρ > 1 depending on the values of σV.

4. If η(1 + ρ) < (γ − ρ)σV and 1
ρ
( 1

ρ
− 1)(η + (γ − ρ)σV) > 0, the expected

consumption is a decreasing function in η for all t. In this case, ρ < 1. This
can happen when γ > ρ, but also when 1 > ρ > γ , depending on the values
of σV.

We illustrate with an example.
For the standard recursive model when σV = (σW − ρσc)/(1 − ρ) (repre-

sentative agent), and γ > ρ and ρ < 1, the first category above may apply and
E(c∗

t ) as of time zero would first decrease for t < t̂1, and then increase for t > t̂1.
If ρ > 1 on the other hand, then the income effect dominates.

This shows that the recursive model can give a variety of results. For in-
stance an increase in the market-price-of-risk can lead to a decrease in expected
consumption early in life, and an increase later when t > t̂1. The substitution
effect then dominates the income effect for the consumer/insurance customer.
The conventional model is only consistent with the income effect, and no sub-
stitution, since γ is larger than one for this model.

7.4. Consequences for the insurance industry

When stock market uncertainty is present, a main result about optimal pen-
sions is summarized in Theorem 2. Insurance companies pay the pensions from
funds, which in bad times are lower than in good times. Such companies have
the possibility and ability, however, to take a long term view and “harvest” the
equity premium in the financial markets by diversification across time.

Because of the equity premium puzzle, there has been expressed doubt
whether the equity premium is “too large”. This is an observed (estimated)
quantity, and as the results of Sections 5 and 6 indicate, there may simply be
nothing wrong with the “high” equity premium of the last century, nor with the
“low” equilibrium interest rate, the “smooth” aggregate consumption and the
“large” growth rate of the latter. It was just the map that did not fit the terrain.

With this perspective in mind, insurance companies could consider provid-
ing the type of pension and life insurance contracts that many people seem to
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prefer, namely that of smoothening life time consumption across both time and
states of nature. Since individuals have a much shorter time perspective than
the insurance industry, they are not equally well prepared to “time diversify”
the way this industry can. Even so, the solution to the investment problem is
presented in Section 9.

With regard to the part of the pensions paid by governments each year to the
whole generation of people above a certain age, from the conventional model we
conclude that it is not optimal to insure the entire society against crises and bad
times on a year by year basis. If aggregate consumption in society is down in one
particular year, everyone is in principle worse off, by the mutuality principle.
However, this principle is typically related to a one-period setting, and as we
have demonstrated, in the multi-period framework it hinges on the assumption
of expected utility.

The dynamic, recursive model tells an additional story. It points towards
more consumption smoothening and immunization to market swings when γ >

ρ, and a strengthening of market movements when γ < ρ. How can society help
implement the former? Also governments sometimes chose to take a long term
view and average across time as well as over the states of nature. However, a
discussion of this topic leads us into fiscal policy and macroeconomics, which
is beyond the scope of this presentation.

8. LIFE INSURANCE

We now turn to life insurance in the recursive model. Since life insurance has
many of the characteristics of an ordinary insurance contract, onewould conjec-
ture that risk aversion is the more prominent property for this type of contracts,
while consumption substitution is more essential for pensions. We now address
this distinction.

Recursive utility is now a function U : L+ × L+ → R. The problem can be
formulated as follows:

sup
z,c≥0

U(c, z),

subject to
E

(
πTxW(Tx)

) ≥ E
{
πTxz

}
,

whereW(t) is the consumer’s net saving at time t given by

Wt = (πt)
−1

∫ t

0
πs(es − cs)ds. (54)

This budget constraint says that the present value of the terminal wealth is suf-
ficient to cover the amount of life insurance. In life and pension insurance this
constraint is in expectation, meaning pooling over the population. It is this el-
ement that gives the individual the benefit of using the life and pension insur-
ance market to save for longevity. Without such a market, the budget constraint
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would instead be an (a.s.) inequality between the corresponding random vari-
ables. Clearly the above constraint is less strict, hence gives at least as large life
time consumption, including life insurance, as without insurance available.

We proceed as before and assume first a fixed horizon τ in the initial speci-
fication of recursive utility. Then future utility is given by

Vt = E
( ∫ τ

t
f (cs,Vs)ds + u(z)

)
,

assuming u is a bequest utility function (Schroder and Skiadas (1999) treat ter-
minal utility), where z is the amount of life insurance payable at time of death of
the insured. As for the conventional model, this quantity is a random variable.
Here, the assumption is that the agent is alive at time t. Recursive utility is now
given by U(c, z) = V0.

The Lagrangian of the problem is

L(c, z; α) = U(c, z) − αE
[
πTxz−

∫ τ

0
πt(et − ct)

lx+t
lx

dt
]

.

Using directional derivatives (see the appendix), the first order condition in c is

cL(c, z; α; c̃) = 0, ∀c̃ ∈ L+,

which is equivalent to

απt = Yt
∂ f
∂c

(ct,Vt) a.s. for all t ∈ [0, τ ],

independent of the horizon τ , and of mortality, since the survival probability
simply cancels. This leads to the optimal consumption/pension for any α > 0

ct =
(απt((1 − γ )Vt)

γ−ρ

1−γ

δYt

)− 1
ρ

.

Likewise, the first order condition in the amount of life insurance z is

zL(c, z; α; z̃) = 0, ∀z̃ ∈ L+,

which is equivalent to

E
{(
YTx

∂u(z)
∂z

− απTx

)
z̃
}

= 0, ∀z̃ ∈ L+. (55)

Here, z and z̃ are F ∨ σ(Tx) - measurable. It is at this stage we extend to the
horizon Tx. For (55) to hold true, it follows that

z = u′−1
(απTx

YTx

)
, (56)

assuming the derivative of the bequest utility function u′ is invertible.
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As an illustration suppose u(z) = 1
1−θ

z1−θ , so that θ is the relative risk aver-
sion of the bequest utility function. Then, the optimal amount of life insurance is

z =
(απTx

YTx

)− 1
θ

. (57)

Comparing this with the corresponding expression zcm for the conventional
model, which is

zcm =
(απTx

YTx

)− 1
γ

(conventional model),

where YTx = e−δTx , we notice that this is quite analogous, except for a more
complicated formula for the adjoint variable Y in the recursive model.

In both models, risk aversion is seen to be the essential property for the opti-
mal amount of life insurance, not consumption substitution. Recall, in the con-
ventional model there is only one parameter (with two distinct interpretations).
This is not to say that the time preference ρ does not matter for the recursive
specification (YTx depends on both γ and ρ), but ρ does not affect the state price
deflator πt at the terminal time, which is the important issue here.

As with pensions, the multiplier α is determined from equality in the budget
constraint. Thus we consider the equation

E
[
πTxz−

∫ τ

0
πt(et − ct)

lx+t
lx

dt
]

= 0.

With a constant income of y up to the time n of retirement, and a pension
thereafter as the basis for determining the endowment process e, we obtain the
equation

α− 1
θ E

{∫ τ

0
exp

(
−

(
r
(
1 − 1

θ

)
t − 1

2
η′η

1
θ

(
1 − 1

θ

)
t − η

(
1 − 1

θ

)
Bt

+ 1
θ

∫ t

0
fv(cu,Vu)du

))
fx(t)dt

}
+ α

− 1
ρ ā(r̂)

x = yā(r)
x:n̄|, (58)

where r̂ is as given in (48), equation (26) for Y has been used, and fx(t) is the
probability density function of Tx. The formula for fv(ct,Vt) is given in (A.18) in
the appendix, we have used the constant relative risk aversion (CRRA) bequest
function u′(z) = z−θ , and made the common assumption that lx+τ = 0. This
determines the multiplier α0. It is at this point that pooling takes place in the
contract. In this situation, the optimal consumption (t ∈ [0, n]) and pension
(t ∈ (n, τ )) is given by

c∗
t = α

− 1
ρ

0 exp
{(

1
ρ

(r − δ) + 1
2ρ

η2 + 1
2ρ

(γ − ρ)(1 − γ )σ 2
V

)
t

+ 1
ρ

(η + (ρ − γ )σV)Bt

}
, (59)
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provided the agent is alive at time t, and the optimal amount of life insurance
at time Tx of death of the insured is

z∗ =
(α0πTx

YTx

)− 1
θ

. (60)

The premium intensity paid while working is pt = y− c∗
t , which is naturally

larger than without life insurance included.
When ρ = γ , the equation (58) for α0 simplifies to

α− 1
θ

(
1 − r1ā(r1)

x

) + α
− 1

ρ ā(r̂)
x = yā(r)

x:n̄|, (61)

where

r1 := r − 1
θ
(r − δ) + 1

2
η′η

1
θ

(
1 − 1

θ

)
,

which is the same result as obtained in the conventionalmodel. Also, the optimal
amount of life insurance is determined jointly, through the constant α0, with the
optimal consumption/pension.

9. PORTFOLIO CHOICE WITH RECURSIVE UTILITY

We now address the optimal investment strategy that the recursive utility con-
sumer will use in order to obtain the optimal consumption.

Consider an agent with recursive utility who takes the market introduced in
Section 2 as given. In this setting, we now analyze optimal portfolio choice. We
then have the following result

Theorem 3. The optimal portfolio fractions in the risky assets are given by

ϕ(t) = 1 − ρ

γ − ρ
(σtσ

′
t )

−1νt − ρ(1 − γ )

γ − ρ
(σtσ

′
t )

−1(σtσ
∗
c (t)),

assuming γ �= ρ. Here, σc∗(t) is the volatility of the optimal consumption growth
rate of the individual.

Proof. First, we recall the dynamics of the optimal consumption for the in-
dividual investor under consideration. The volatility σc∗(t) has been shown in
(31) of Section 4.1 to be

σc∗(t) = 1
ρ

(
ηt + (ρ − γ )σV(t)

)
,

where σtηt = νt is the market-price-of-risk given in Section 2. Also, the volatility
of utility is given by

σV(t) = 1
1 − ρ

(σW(t) − ρσc∗),
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as shown in Aase (2014), where σW(t) is the volatility of the agent’s wealth port-
folio. The dynamics of the wealth is given in (9) of Section 2, implying that
σW(t) = σ ′

tϕt (see Section 6). This leads to a single equation for ϕt, and the
solution is given by the above formula.

The optimal fractions with recursive utility depend on both risk aversion and
time preference as well as the volatility σc∗ of the optimal consumption c∗

t of the
agent. This latter quantity is usually not directly observable for an individual.
However, for institutions this matter is different.

In each period, the consumer both consumes and invests for future consump-
tion. Compared to the expected utility consumer, the recursive agent consumes
less in good times, and then invests more for future consumption, and vice versa
in bad times. This is how this consumer can average consumption across time
in a more efficient manner than the conventional theory predicts. The recur-
sive utility maximizer considers more than one period at the time which al-
lows for a smoother consumption path. Here, the expected utility agent is just
myopic.

Based on the conventional, pure demand theory of this paper, by assuming
a relative risk aversion of around two, the optimal fraction in equity is 119% fol-
lows from the standard formula ϕ = 1

γ
(σtσ

′
t )

−1νt (see Mossin (1968), Merton
(1971), Samuelson (1969)), using the summary statistics of Table 1, and assum-
ing one single risky asset, the index itself. In contrast, depending upon estimates,
the typical household holds between 6% to 20% in equity. Conditional on par-
ticipating in the stock market, this number increases to about 40% in financial
assets. Recent estimates are close to 60%, including indirect holdings via pen-
sion funds invested in the stock market. In the above application, this formula
reduces to ϕ = 1

γ
(σRσ

′
R)

−1(μR − r). Notice that here γ = ρ.
One could object to this that the conventional model is consistent with a

value for γ around 26 only. Using this value instead, the optimal fraction in
equity is down to around 9%, which in isolation seems reasonable enough.How-
ever, such a high value for the relative risk aversion is considered implausible, as
discussed before.

As an illustration of the general formula, consider the standard situation
with one risky and one risk-free asset, interpreting the S&P-500 index as the
risky security, and employ the data of Table 1. The recursive model explains
an average of 14 per cent in risky securities for the following parameter values
γ = 2.6 and ρ = 0.96. Given participation in the stock market, when γ = 2.5
and ρ = 0.74, then ϕ = 0.40. If ϕ = 0.60, this can correspond to γ = 2.0 and
ρ = 0.7, etc., a potential resolution of this puzzle.

In addition to the insurance industry, other interesting applications would
be to management of funds that invests public wealth to the benefits of the cit-
izens of a country, or the members of a society large enough for an estimate of
the volatility of the consumption growth rate of the group to be available. One
such example is the Norwegian Government Pension Fund Global (formerly
the Norwegian Petroleum Fund).
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10. SUMMARY

Expected utility in a temporary setting is demonstrated to fail capitally on most
accounts. AlreadyMossin (1969) indicated this, but then there were few alterna-
tives to extending expected utility to several periods. Today this is different, and
there are alternatives, the most promising one being recursive utility, the topic
of this paper.

For the version of recursive utility that we consider, the agent is not my-
opic, and consumes less and invests more in good times than the expected util-
ity agent, thereby having more to consume in bad times. The same conclusions
carry over to pension insurance. This behavior explains aggregate data. Not so
for the Eu-model, where several serious puzzles remain.

The agent in the life cycle model both consumes and invests in every period,
yet the optimal investment strategy in the Eu-theory does not depend on the
optimal consumption. This changes with the recursive model. Also here the op-
timal investment policy explains aggregate data, where puzzles abound in the
Eu-version.

Consequences of all this for pension insurance are pointed out in the paper.
A section on life insurance is also included.4

NOTES

1. There are of course newer data sets, and for other countries than the US, but they all retain
these basic features. The data is adjusted from discrete-time to continuous-time compounding.

2. These quantities are “estimated” directly from the original data obtained from R. Mehra,
assuming stationarity, and estimates are denoted by σ̂cM, etc.

3. Such a construction cannot serve as a typical pension insurance customer, but is included
here to get a feeling for the preference relation used.

4. I am happy to acknowledge the contribution of the referees for the end result of this paper.
Any remaining errors, or opaque formulations, are my responsibility.

5. The topic of such systems constitutes an active research field in parts of applied mathematics
today, see e.g., Øksendal and Sulem (2013).
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APPENDIX A

In this Appendix, we present the analysis for the version (13). Starting with the first order
condition (22), which is true for both versions, we get immediately that

απt = Yt f̂c(ct,Vt). (A.1)

The dynamics of V and Y can be found from (15) and (20) recalling that A(v) = γ /v in these
equations must be replaced by Â(v) = 0 for the ordinally equivalent version, and f̂ replaces
f . We now write f for f̂ . From this we obtain that

Vt = Et
( ∫ τ

t
f (cs,Vs)ds

)
, (A.2)

and

Yt = exp
( ∫ t

0
fv(cs,Vs)ds

)
. (A.3)

Here, the dynamic representation for Yt can be written

dYt = Yt fv(ct,Vt) dt, (A.4)

and we notice that for this version Y is a process of bounded variation. From (A.1) we find
ct, using that

fc(c, v) := ∂ f (c, v)

∂c
= δ

c−ρ(
(1 − γ )v

) γ−ρ
1−γ

.

Solving for ct, the theory guarantees the existence of a Vt and a σ̃V(t) such that

ct =
(απt((1 − γ )Vt)

γ−ρ
1−γ

δYt

)− 1
ρ

. (A.5)

Recall that the standard additive and separable utility has aggregator

f̃ (c, v) = u(c) − δv, Ã= 0.

in this framework. When γ = ρ then Yt = e−δt and since α is arbitrary, the expression for the
optimal consumption in (A.5) then becomes the same as for the conventional model, which
is

c∗
t = (αeδtπt)

− 1
γ a.s., t ≥ 0. (A.6)

For this model, the state price deflator is a Markov process, and dynamic programming is an
appropriate technique to apply.

From the equations (A.2) and (A.4) we get, when substituting in from (A.5)

dYt = h(t,Yt,Vt) dt; 0 ≤ t ≤ τ, (A.7)

Y0 = 1 (forward SDE), (A.8)

and

dVt = −g(t,Yt,Vt) dt + σ̃V(t) dBt; 0 ≤ t ≤ τ, (A.9)

Vτ = 0 (backward SDE), (A.10)
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where

h(t,Yt,Vt) = Yt fv
((απt((1 − γ )Vt)

(1−ρ)
(1−γ )

−1

δYt

)− 1
ρ

,Vt
)
, (A.11)

and

g(t,Yt,Vt) = f
((απt((1 − γ )Vt)

(1−ρ)
(1−γ )

−1

δYt

)− 1
ρ

,Vt
)
. (A.12)

The system (A.7)–(A.10) is a coupled system of forward-backward stochastic differential
equations5. In equations (A.9) and (A.10), both V and σ̃V(t) are determined.

A.1. Directional derivatives

As a comment, the above first order conditions can alternatively be found using directional
derivatives. Recall that the Lagrangian for the problem is given by

L(c; α) = U(c) − αE
( ∫ τ

0
πt(ct − et)dt

)
.

In order to find, for any α > 0, the first order condition for the representative consumer’s
problem, several approaches are possible. Duffie and Epstein (1992a) use dynamic pro-
gramming. In the above, we used the stochastic maximum principle and forward/backward
stochastic differential equations. Here, we useKuhn–Tucker and variational calculus. The lat-
ter two methods are both very general, and in particular neither relies on aMarkov structure.

In maximizing the Lagrangian of the problem, we calculate the directional derivative
(U(c))(h) where U(c) is the gradient of U at c. The directional, or Gateau derivative is
defined as (U(c))(h) = limα→0

U(c+αh)−U(c)
α

.
SinceU is continuously differentiable, this gradient is a linear and continuous functional,

and thus, by the Riesz representation theorem, it is given by an inner product. By dominated
convergence this utility gradient is

(U(c))(ht) = E
( ∫ τ

0
Yt

∂ f
∂c

(ct,Vt) ht dt
)
. (A.13)

where

Yt = exp
( ∫ t

0

∂ f
∂v

(cs,Vs) ds
)

a.s., (A.14)

see Duffie and Skiadas (1994). The first order condition is that the directional derivative of
the Lagrangian is zero at the optimal ct, called cα

t , in all directions h ∈ L:

L(cα, α; h) = 0 for all h ∈ L.

This is equivalent to

E
{∫ τ

0

(
Yt

∂ f
∂c

(cα
t ,Vt) − απt

)
ht dt

}
= 0 for all h ∈ L. (A.15)

The result is that for the Riesz-representation of the gradient of U to be equal to the state
price deflator πt it is necessary and sufficient that

απt = Yt fc(cα
t ,Vt), a.s. for all t ∈ [0,T], (A.16)

the same as (A.1) obtained by the stochastic maximum principle.

https://doi.org/10.1017/asb.2015.20 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2015.20


LIFE INSURANCE AND PENSION CONTRACTS II 101

A.2. The dynamics of the optimal consumption

Finally, we find the dynamics of the optimal consumption c∗
t of equation (A.5). We use the

notation for the volatility function σ̃V(t)

σ̃V(t) = (1 − γ )VtσV(t),

where σV(t) is a vector of volatilities of the (normalized) growth rate of Vt. The quantity σV(t)
is assumed to be an ergodic stochastic process. This transformation accomplishes two things.
First, the model for the stochastic utility is moved to percentage form, which is innocuous.
Second, the multiplication of utility by (1− γ ) secures that the sign of σV is positive, since V
and (1 − γ ) have the same sign. This only requires V �= 0.

The consumer takes the stockmarket as given, where the state price deflator π is assumed
to satisfy

dπt = −rtπtdt − πtη
′
tdBt, (A.17)

where ηt is the market-price-of-risk, an ergodic stochastic process, and rt is the risk free in-
terest rate, also a stochastic process. We now use Ito’s lemma for the variables πt, Vt and Yt
in order to find the optimal consumption. We use the notation c = c(πt,Vt,Yt) := cα

t , where
the latter is given in (A.5), for c : R3 → R, a real and smooth function. First, we need to
compute the following partial derivatives.

∂c(πt,Vt,Yt)
∂π

= − 1
ρ

( cα
t

πt

)
,

∂c(πt,Vt,Yt)
∂v

= − 1
ρ

(γ − ρ

1 − γ

)( cα
t

Vt

)
,

∂c(πt,Vt,Yt)
∂y

= 1
ρ

( cα
t

Yt

)
,

∂2c(πt,Vt,Yt)
∂π 2

= 1
ρ

( 1
ρ

+ 1
)( cα

t

π 2
t

)
,

∂2c(πt,Vt,Yt)
∂π∂v

= γ − ρ

ρ2(1 − γ )

( cα
t

πtVt

)
,

∂2c(πt,Vt,Yt)
∂v2

= cα
t (ρ − γ ) γ (ρ − 1)
V2
t ρ2 (1 − γ )2

.

Since, Yt is of bounded variation, we get the following from the multidimensional version of
Ito’s lemma

dcα
t = ∂c

∂π
dπt + ∂c

∂v
dVt + ∂c

∂y
dYt + 1

2
∂2c
∂π 2

dπ 2
t + ∂2c

∂π∂v
dπtdVt + 1

2
∂2c
∂v2

dV2
t .

Using the representations for the variables πt given in (A.17), for Vt given in (A.9), (A.10)
and (A.12) and for Yt given in (A.7), (A.8) and (A.11), and the following partial derivative

fv(c, v) := ∂ f (c, v)

∂v
= δ

1 − ρ

(
c1−ρ

(
(1 − γ )v

)− 1−ρ
1−γ (ρ − γ ) + (γ − 1)

)
, (A.18)

this altogether gives
dcα

t

cα
t

= μc(t) dt + σc(t) dBt, (A.19)

where

μc(t) = 1
ρ

(rt − δ) + 1
2
1
ρ

(
1 + 1

ρ

)
η′
tηt − (γ − ρ)

ρ2
η′
t σV(t)

+1
2

(γ − ρ)γ (1 − ρ)

ρ2
σ ′
V(t)σV(t), (A.20)
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and

σc(t) = 1
ρ

(
ηt + (ρ − γ )σV(t)

)
. (A.21)

Here, ψ = 1/ρ, and σV(t) is as defined above. This gives the optimal consumption path cα
t

in (32) of Section 4.1 for any α > 0, and is also the basis for the optimal pensions and the
optimal amount of life insurance, satisfying the budget constraint of the agent, in this paper.

Finally, we address the existence issue of an optimal consumption: The utility function
we work with satisfiesU(λc) = λU(c) for any λ > 0. As a consequence, there is a one-to-one
correspondence between c0 and α. Tomake things simple, suppose cα

t is a geometric Brownian
motion. Then

E
( ∫ τ

0
πtc0 e

∫ t
0 (μc(s)− 1

2 σc(s)′σc(s))ds+
∫ t
0 σc(s)dBs )dt

)

= c0E
( ∫ τ

0
πt e

∫ t
0 (μc(s)− 1

2 σc(s)′σc(s))ds+
∫ t
0 σc(s)dBs )dt

)
= E

(∫ τ

0
πt et dt

)
< ∞. (A.22)

The first term on the left-hand side is finite by Schwartz’ inequality, since the variance of a
geometric Brownian motion is finite. The first equality follows since c0 ∈ R is a real constant.
By assumption e ∈ L+ so the last inequality follows. The second equality now follows by
choice of c0, so that the budget constraint holds with equality. For more general cases, see
Schroder and Skiadas (1999) and Duffie and Lions (1992).
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