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Shock waves in plasmas with strongly anisotropic viscosity and thermal conduc-
tivity are considered. The analysis is restricted to the case where the plasma beta
is less than unity. The set of two equations that governs propagation of small-
amplitude MHD waves at small angles with respect to the unperturbed magnetic
field in such plasmas is derived. A qualitative analysis of this set of equations is
carried out. It is shown that the shock structure is described by a solution that
is a separatrix connecting two stationary points: a stable node and a saddle. This
solution describes the structure of a fast quasiparallel shock wave, and it only exists
when the ratio of the magnetic field component, perpendicular to the direction of
shock-wave propagation after and before the shock is smaller than a critical value.
This critical value is a function of the plasma beta. The structures of shock waves
are calculated numerically for different values of the shock amplitude and the ratio
of the coefficients of viscosity and thermal conductivity.

1. Introduction
Structures of small-amplitude quasiparallel MHD shock waves have been stud-
ied extensively. In order to describe these structures, the Cohen–Kurlsrud–Burgers
(CKB) equation has been used (see e.g. Ruderman 1989; Kennel et al. 1990; Wu
and Kennel 1992; Wu 1995). The CKB equation governs the propagation of small-
amplitude nonlinear waves at small angles with respect to the unperturbed magnetic
field in plasmas with isotropic viscosity and electrical conductivity. However, the
solar coronal plasma is an example of a plasma with strongly anisotropic viscos-
ity, electrical conductivity and thermal conductivity (see e.g. Priest 1982; Hollweg
1985; Ruderman et al. 1996). In the solar coronal plasma viscosity can be described
by the first term of Braginskii’s tensorial expression, which is at least five orders
of magnitude larger than the other terms. The term that describes the heat flux
along the magnetic field in Braginskii’s expression for the heat flux is seven orders
of magnetude larger than the other terms, which can consequently be neglected.
Finite resistivity and the Hall effect can be neglected in comparison with viscosity
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and thermal conductivity (see e.g. the discussion in Ruderman et al. 1996). As a
result, we arrive at a model of a plasma with strongly anisotropic viscosity and
thermal conductivity.

The aim of the present paper is to study the structure of small-amplitude
quasiparallel MHD shock waves in plasmas with strongly anisotropic viscosity and
thermal conductivity. The paper is organized as follows. In the next section we
present the set of basic equations and describe the main assumptions. In Sec. 3 we
derive the set of two governing equations for small-amplitude quasiparallel waves.
In Sec. 4 we give a qualitative analysis of the set of governing equations. In Sec. 5 an
analytical solution describing the shock-wave structure for particular values of the
parameters is presented and the results of numerical calculations of the shock-wave
structures are given. Section 6 contains conclusions.

2. Basic equations
In accordance with the discussion in the previous section, the only dissipative
processes taken into account are viscosity and thermal conductivity. We consider
strongly magnetized plasmas where viscosity can be described by the first term of
Braginskii’s tensorial expression, so that the viscosity tensor π̂ takes the form (see
Braginskii 1965)

π̂ = η0(b⊗ b− 1
3 Î)[3b · (b ·∇)v−∇ · v] , (1)

where b = B/B is the unit vector in the direction of the magnetic field and η0 is
the dynamic coefficient of viscosity. The thermal conductivity in the direction of
the magnetic field strongly dominates the thermal conductivity in the directions
perpendicular to the magnetic field. As a result, the expression for the heat flux
can be written as

q = −κ‖b(b ·∇T ) , (2)

where T is the temperature and κ‖ is the coefficient of thermal conductivity. In
what follows, we assume that the quantities η0 and κ‖ are constant.

We adopt Cartesian coordinates (x, y, z) and consider one-dimensional plasma
motions that depend on x only. With the use of (1) and (2), we write the set of MHD
equations in the form

∂ρ

∂t
+
∂(ρu)
∂x

= 0 , (3)

∂u

∂t
+ u

∂u

∂x
= −1

ρ

∂P̃

∂x
+
η0

ρ

∂

∂x

[
b2
x

(
3bxb · ∂v

∂x
− ∂u

∂x

)]
, (4)

∂v⊥
∂t

+ u
∂v⊥
∂x

=
B0

µρ

∂B⊥
∂x

+
η0

ρ

∂

∂x

[
bxb⊥

(
3bxb · ∂v

∂x
− ∂u

∂x

)]
, (5)

∂B⊥
∂t

=
∂

∂x
(B0v⊥ − uB⊥) , (6)

∂T

∂t
+ u

∂T

∂x
+ (γ − 1)T

∂u

∂x
=

(γ − 1)κ‖
Rρ

∂

∂x

(
b2
x

∂T

∂x

)
+

(γ − 1)η0

3Rρ

(
3bxb · ∂v

∂x
− ∂u

∂x

)2

, (7)

p = RρT . (8)
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Here ρ is the density, p the pressure and u the x component of the velocity. B0 is
the x component of the magnetic field, which is constant in accordance with the
induction equation and the equation of solenoidality. v⊥ and B⊥ are the components
of the velocity and magnetic field perpendicular to the x axis. R and γ are the gas
constant and the adiabatic exponent. The total pressure modified by viscosity is
given by

P̃ = p +
B2

2µ
+
η0

3

(
3bxb · ∂v

∂x
− ∂u

∂x

)
. (9)

The set of equations (3)–(9) will be used in what follows in order to describe the
structure of small-amplitude quasiparallel shock waves.

3. Derivation of governing equations for small-amplitude quasiparallel
waves

We consider one-dimensional small-amplitude perturbations propagating in the
positive direction of the x axis. All unperturbed quantities are constant. The plasma
is assumed to be unperturbed at infinity, so that all quantites tend to their unper-
turbed values as x → ∞. The term ‘quasiparallel’ means that the angle between
the direction of wave propagation and the unperturbed magnetic field is small. This
implies that the perpendicular component of the unperturbed magnetic field, B⊥0,
is small in comparison with the parallel componentB0: |B⊥0|�B0. In what follows,
the subscript ‘0’ indicates an unperturbed quantity.

We introduce the dimensionless characteristic amplitude of perturbations ε� 1
and use the singular perturbation method in order to derive the governing equations
for small-amplitude perturbations. In accordance with this method, we introduce
the running variable ξ = x− V t, where V is a constant velocity to be determined.
In addition, we have to introduce the so-called ‘slow’ time. In the case of ideal
plasmas the corresponding governing equation was derived by Cohen and Kurlsrud
(1974). This equation contains a nonlinear term that is cubic with respect to the
wave amplitude ε. As a result, the effect of nonlinearity becomes important on a
timescale of the order of ε−2 multiplied by the wave period. We assume that the
same is true in the case of viscous thermal conductive plasmas considered in the
present paper and introduce the ‘slow’ time τ = ε2t. Then we rewrite (3)–(7) and
(9) as

ε2
∂ρ

∂τ
− V ∂ρ

∂ξ
+
∂(ρu)
∂ξ

= 0 , (10)

ε2
∂u

∂τ
− V ∂u

∂ξ
+ u

∂u

∂ξ
= −1

ρ

∂P̃

∂ξ
+
η0

ρ

∂

∂ξ

[
b2
x

(
3bxb · ∂v

∂ξ
− ∂u

∂ξ

)]
, (11)

ε2
∂v⊥
∂τ
− V ∂v⊥

∂ξ
+ u

∂v⊥
∂ξ

=
B0

µρ

∂B⊥
∂ξ

+
η0

ρ

∂

∂ξ

[
bxb⊥

(
3bxb · ∂v

∂ξ
− ∂u

∂ξ

)]
, (12)

ε2
∂B⊥
∂τ
− V ∂B⊥

∂ξ
=

∂

∂ξ
(B0v⊥ − uB⊥), (13)

ε2
∂T

∂τ
− V ∂T

∂ξ
+ u

∂T

∂ξ
+ (γ − 1)T

∂u

∂ξ
=

(γ − 1)κ‖
Rρ

∂

∂ξ

(
b2
x

∂T

∂ξ

)
+

(γ − 1)η0

3Rρ

(
3bxb · ∂v

∂ξ
− ∂u

∂ξ

)2

, (14)
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P̃ = p +
B2

2µ
+
η0

3

(
3bxb · ∂v

∂ξ
− ∂u

∂ξ

)
. (15)

We now look for the solution to the set of equations (8) and (10)–(15) in the form
of expansions in series with respect to ε. For v⊥ and B⊥, these expansions take the
form

v⊥ = εv(1)
⊥ + ε3v(3)

⊥ + . . . , (16)

B⊥ = εB(1)
⊥ + ε3B(3)

⊥ + . . . . (17)

For all other quantities, we write the expansions as

f = f0 + ε2f (2) + . . . , (18)

where f0 represents an unperturbed quantity. For consistency, we should write
terms of order ε2 in the expansions (16) and (17). However, we should then find
that these terms are proportional to the first terms in the expansions (16) and (17),
and consequently could be included in these first terms. Therefore, for the sake of
mathematical simplicity, we drop these terms of order ε2 from the very beginning.

Now, in order to derive governing equations for small-amplitude waves, we cal-
culate the successive approximations with respect to ε. In the first-order approxi-
mation we collect terms of order ε in (10)–(15). Such terms are only present in (12)
and (13), so that the equations of the first approximation are

V
∂v(1)
⊥
∂ξ

+
B0

µρ0

∂B(1)
⊥

∂ξ
= 0 , (19)

V
∂B(1)
⊥

∂ξ
+B0

∂v(1)
⊥
∂ξ

= 0 . (20)

It follows from these equations that

v(1)
⊥ = − V

B0
(B(1)
⊥ − B(1)

⊥0) , V =
B0

(µρ0)1/2
, (21)

where B(1)
⊥0 = ε−1B⊥0. When deriving (21) we have taken into account that v⊥ → 0

and B⊥ → B⊥0 as ξ →∞.
In the second order approximation we collect terms of the order ε2. Such terms

are present in (8), (10), (11), (14), and (15), while they are absent in (12) and (13).
As a result we have

V
∂ρ(2)

∂ξ
− ρ0

∂u(2)

∂ξ
= 0 , (22)

V
∂u(2)

∂ξ
=

1
ρ0

∂P̃ (2)

∂ξ
− 3ν
B0

∂

∂ξ

(
B(1)
⊥ ·

∂v(1)
⊥
∂ξ

+ 2
3B0

∂u(2)

∂ξ

)
, (23)

(γ − 1)T0
∂u(2)

∂ξ
− V ∂T

(2)

∂ξ
= χ

∂2T (2)

∂ξ2 , (24)

P̃ (2) = p(2) +
1

2µ
(B(1)
⊥ )2 +

ρ0ν

B0

(
B(1)
⊥ ·

∂v(1)
⊥
∂ξ

+ 2
3B0

∂u(2)

∂ξ

)
, (25)

p(2) = R(ρ0T
(2) + T0ρ

(2)) , (26)
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where

ν =
η0

ρ0
, χ =

(γ − 1)κ‖
ρ0R

. (27)

It follows from (21)–(26) that

ρ(2) =
ρ0

V
u(2) , (28)

and u(2) satisfies the equation

4
3 νχ

∂2u(2)

∂ξ2 +
(

4
3 νV + χ

γV 2 − c2
S

γV

)
∂u(2)

∂ξ
+ (V 2 − c2

S)u(2)

=
νχV

B2
0

∂2(B(1)
⊥ )2

∂ξ2 +
(2ν + χ)V 2

2B2
0

∂(B(1)
⊥ )2

∂ξ
+
V 3

2B2
0

[(B(1)
⊥ )2 − (B(1)

⊥0)2]. (29)

In the third-order approximation we collect terms of order ε3 in (12) and (13)
and obtain

V
∂v(3)
⊥
∂ξ

+
B0

µρ0

∂B(3)
⊥

∂ξ
=
∂v(1)
⊥

∂τ
+ u(2) ∂v(1)

⊥
∂ξ

+
B0

µρ2
0
ρ(2) ∂B(1)

⊥
∂ξ

− ν

B2
0

∂

∂ξ

[
B(1)
⊥

(
3B(1)
⊥ ·

∂v(1)
⊥
∂ξ

+ 2B0
∂u(2)

∂ξ

)]
, (30)

V
∂B(3)
⊥

∂ξ
+B0

∂v(3)
⊥
∂ξ

=
∂B(1)
⊥

∂τ
+
∂

∂ξ
(u(2)B(1)

⊥ ). (31)

The left-hand sides of (30) and (31) coincide with the left-hand sides of (19) and
(20). The set of equations (19) and (20) considered as linear homogeneous algebraic
equations with respect to ∂v(1)

⊥ /∂ξ and ∂B(1)
⊥ /∂ξ posseses a non-trivial solution. This

implies that the set of equations (30) and (31) considered as linear inhomogeneous
algebraic equations with respect to ∂v(3)

⊥ /∂ξ and ∂B(3)
⊥ /∂ξ is compatible only if the

right-hand sides of (30) and (31) satisfy the compatibility condition. In order to
derive this compatibility condition, we multiply (31) by V/B0 and extract the result
from (30). As a result, we obtain the equation for variables of the first and second
approximations, which, with the use of (21) and (28) can be reduced to

∂B(1)
⊥

∂τ
+

1
2
∂

∂ξ
(u(2)B(1)

⊥ )− 3ν
4B2

0

∂

∂ξ
B(1)
⊥

(
∂(B(1)

⊥ )2

∂ξ
− 4B2

0

3V
∂u(2)

∂ξ

)
= 0. (32)

We now return to the variables t and x and use the approximate equalitites u ≈
ε2u(2) and B⊥ ≈ εB(1)

⊥ to arrive at

4
3 νχ

∂2u

∂x2 +
(

4
3 νV + χ

γV 2 − c2
S

γV

)
∂u

∂x
+ (V 2 − c2

S)u

=
νχV

B2
0

∂2(B⊥)2

∂x2 +
(2ν + χ)V 2

2B2
0

∂(B⊥)2

∂x
+
V 3

2B2
0

[(B⊥)2 − (B⊥0)2], (33)

∂B⊥
∂t

+ V
∂B⊥
∂x

+
1
2
∂

∂x
(uB⊥)− 3ν

4B2
0

∂

∂x
B⊥

(
∂(B⊥)2

∂x
− 4B2

0

3V
∂u

∂x

)
= 0. (34)

This set of equations describes small-amplitude quasiparallel waves in plasmas with
strongly anisotropic viscosity and thermal conductivity under the assumption that
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the perturbations of all quantities except B⊥ vanish as x tends to infinity and
B⊥ → B⊥0 as x → ∞. When ν = χ = 0, it is straightforward to show that the set
of equations (33) and (34) is reduced to the Cohen–Kulsrud equation (Cohen and
Kulsrud 1974).

In the next section the set of equations (33) and (34) is used in order to study
the structure of small-amplitude quasiparallel shock waves.

4. Structure of shock waves: qualitative analysis
We look for solutions to the set of equations (33) and (34) that describe structures
of shock waves. They are solutions in the form of travelling waves with permanent
shapes moving in the positive direction of the x axis with velocities of shock waves.
We write the velocity of a shock wave as V (1 + ε2C), so that solutions describing
the structures of shock waves depend on θ = l−1[x − V (1 + ε2C)t], where l =
V −1(ν2 + χ2)1/2 is the dissipative length. Then (33) and (34) are reduced to

8
3 ν̄χ̄

d2U

dθ2 + [ 8
3 ν̄ + 2χ̄(1− βγ−1)]

dU

dθ
+ 2(1− β)U

= 2ν̄χ̄
d2h2

dθ2 + (2ν̄ + χ̄)
dh2

dθ
+ h2 − h2

0 , (35)(
2C − U − 2ν̄

dU

dθ
+ 3

2 ν̄
dh2

dθ

)
h = 2Ch0 , (36)

where we use the notation

β =
c2
S

V 2 , ν̄ =
ν

V l
, χ̄ =

χ

V l
, U =

u

ε2V
, h =

B⊥
εB0

. (37)

Note that ν̄2 + χ̄2 = 1.
Let us first consider the particular case where Ch0 = 0. Then it follows from (36)

that

2ν̄
dU

dθ
+ U = 2C + 3

2 ν̄
dh2

dθ
. (38)

A solution to the set of equations (35) and (38) that describes the structure of
a shock wave has to satisfy the condition that h → h0, U → 0 as θ → ∞ and
h → h1, U → U1 as θ → −∞, where h1 and U1 are constants. However, (35) and
(38) constitute a set of linear homogeneous differential equations with constant
coefficients with respect to h2 and U . This set of differential equations does not
possess a non-trivial solution that tends to constant quantities as θ → ±∞. Hence
in the case under consideration there are no solutions to the set of equations (35)
and (36) that describe the structures of shock waves. In particular, there is no
solution that describes the structure of the switch-on shock wave where h → 0 as
θ →∞.

We now proceed to the general case where Ch0 � 0. In this case, in particular
B⊥0� 0. Up to now, ε has been an arbitrary small constant. In what follows we de-
termine it exactly and take ε = |B⊥0|/B0, so that h0 = 1. Then it is straightforward
to see that ε is approximately equal to the angle between the equilibrium magnetic
field and the direction of wave propagation. We choose a coordinate system such
that h0 is in the positive direction of the y axis. Then it follows from (36) that
hz ≡ 0 and hy does not change sign because it cannot take the value zero. This, in
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particular, implies that there are no solutions to the set of equations (35) and (36)
describing the structure of intermediate shock waves. Since hy → 1 as θ →∞, this
quantity is positive everywhere, so that hy = h and we can rewrite (36) as

2ν̄
dU

dθ
+ U = 3ν̄h

dh

dθ
+ 2C

h− 1
h

. (39)

We substitute (39) into (35) to arrive at

2
3 [4ν̄ + χ̄(1− 3βγ−1)]

dU

dθ
+ 2(1− β)U = 2

[
2ν̄h + χ̄

(
h− 4C

3h2

)]
dh

dθ
+ h2 − 1 . (40)

It is straightforward to reduce (39) and (40) to a set of two ordinary differential
equations of first order:

κ(h)
dh

dθ
= −3ν̄γh(h− 1)[4C(1− β)− h(h + 1)]− ζh2

(
U − 2C

h− 1
h

)
, (41)

κ(h)
dU

dθ
= − 9

2 ν̄γh
2(h− 1)[4C(1− β)− h(h + 1)]

−1
2[3ζh3 + ν̄−1κ(h)]

(
U − 2C

h− 1
h

)
, (42)

where

κ(h) = ν̄χ̄[8γC − 3(γ + 3β)h3] , ζ = 2γν̄(1− 3β)− χ̄(γ − 3β) . (43)

There are three stationary points of the set of equations (41) and (42), given by
h = 1, U = 0 and h = h1,2, U = U1,2, where h1,2 are the roots of the equation

h2 + h− 4(1− β)C = 0 , (44)

and

U1,2 = 2C(1− h−1
1,2) . (45)

These three positions are the stationary points of the set of equations (41) and (42)
if κ(1)� 0 and κ(h1,2)� 0.

When ζ� 0, the right-hand sides of (41) and (42) are also simultaneously equal
to zero when h = h3 and U = U3, where h3 and U3 are given by

κ(h3) = 0 , (46a)

U3 =
3(h3 − 1)

4γζ
{4γ2ν̄(h3 + 1)− h2

3(γ + 3β)[4γν̄ + χ̄(γ − 3β)]} . (46b)

However, the point (h3, U3) is not a stationary point, since κ(h) is also a coefficient
of the derivatives on the left-hand sides of (41) and (42). Hence (h3, U3) is a singular
point of the set of equations (41) and (42).

The solution to the set of equations (41) and (42) that describes the structure of
a shock wave has to be a separatrix connecting two stationary points. Since h > 0,
the whole separatrix has to be in the right half of the phase plane (h, U ). Hence the
necessary condition for the existence of the solution describing the structure of a
shock wave is that equation (44) possesses a positive root. This condition takes the
form (1−β)C > 0. In what follows, we denote the positive root of (44) by h1. Then
h2 = −(1 +h1) < 0, and the separatrix that describes the structure of a shock wave
has to connect the stationary points (1, 0) and (h1, U1).

In what follows, we restrict our analysis to the case β < 1, as in the solar corona.
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Let us study the stationary point (h1, U1). First, we note that (h1, U1) is not a
stationary point when κ(h1) = 0. Then there is no solution that tends to (h1, U1)
when θ → −∞, and consequently there is no solution to the set of equations (41) and
(42) describing the structure of a shock wave. Therefore we assume that κ(h1)� 0
in what follows. We now introduce the perturbations of quantities h and U , and
write them as

h = h1 + h̃ , U = U1 + Ũ . (47)

We now substitute (47) into (41) and (42), and linearize the obtained equations with
respect to h̃ and Ũ . As a result, we arrive at

κ1
dh̃

dθ
= a11h̃ + a12Ũ , (48a)

κ1
dŨ

dθ
= a21h̃ + a22Ũ , (48b)

where κ1 = κ(h1), and the coefficients aij are given by

a11 = 2[γν̄(3h3
1 − 4C)− Cχ̄(γ − 3β)] , (49a)

a12 = −ζh2
1 , (49b)

a21 = γh−2
1 (3h3

1 − 4C)(3h3
1ν̄ − 2Cχ̄) , (49c)

a22 = −γ[3ν̄(1− 3β)h3
1 − χ̄(3h3

1 − 4C)] . (49d)

In deriving (49), we have used the relation

4C(1− β) = h1(h1 + 1) . (50)

The characteristic equation takes the form

κ2
1λ

2 − κ1λ(a11 + a22) + a11a22 − a12a21 = 0 , (51)

where λ is the characteristic exponent. For the discriminant D of this equation, we
obtain

D = κ2
1{γν̄[8C − 3(1 + 3β)h3

1] + 3χ̄[γh3
1 − 2(γ − β)C]}2

+12κ2
1ν̄χ̄βγ(γ − 1)(4C − 3h3

1)2 , (52)

so that D > 0. This implies that the stationary point (h1, U1) is either a node or a
saddle. In order to distinguish between these two possibilities, we calculate det(aij).
As a result, we have

det(aij) ≡ a11a22 − a12a21 = − 3
2 γκ1h1(h1 − 1)(2h1 + 1) . (53)

The quantity κ(h1) plays an important role in the analysis. It is straightforward
to show that κ1 > 0 when h1 < hc, and κ1 < 0 when h1 > hc, where hc is given by

hc =
γ + [γ2 + 6γ(1− β)(γ + 3β)]1/2

3(1− β)(γ + 3β)
. (54)

The dependence of hc on β is shown in Fig. 1 for γ = 5
3 . The function hc(β) decreases

monotonically for β < 1
6 (3−γ) and increases monotonically for β > 1

6 (3−γ). When
β = βm = 1

6 (3− γ), it takes its minimum value

hmc =
2

(3 + γ)2 {2γ + [2γ(γ2 + 8γ + 9)]1/2} .
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Figure 1. The dependence of hc on β for γ = 5
3 .

It is straightforward to show that hmc > 1. For γ = 5
3 , we have βm = 2

9 and
hmc ≈ 1.146. For β � 1, as in the solar corona, hc = 1

3 (1 + 71/2) ≈ 1.215 for any
γ > 1.

Let us now consider three cases:

(i) 0 < h1 < 1. In this case κ1 > 0, so that det(aij) > 0, and the stationary point
(h1, U1) is a node. In addition, we get

a11 + a22 = − h1

2(1− β)
{2γν̄[(1− 3β)2h2

1 + 2(1− h1)(1 + 2h1)]

+3χ̄[γ(1− β)(1− h1)(1 + 2h1) + β(γ − 1)(1 + h1)]} < 0 . (55)

This inequality implies that both roots of (51) are negative, and consequently
the stationary point (h1, U1) is a stable node. Hence there is no integral curve
that tends to (h1, U1) as θ → −∞, i.e. no integral curve can start from (h1, U1),
and consequently there is no solution to the set of equations (41) and (42) that
describes the structure of a shock wave.

(ii) 1 < h1 < hc. In this case det(aij) < 0, and the point (h1, U1) is a saddle.
Consequently there are exactly two integral curves starting from this point.

(iii) h1 > hc. In this case κ1 < 0 and h1 > 1, so that det(aij) > 0, and the stationary
point (h1, U1) is once again a node. The quantity a11 + a22 can be written as

a11 + a22 =
2Cν̄χ̄[12βγ(γ − 1)ν̄ + (γ − 3β)2χ̄]− γκ1[(1 + 3β)ν̄ + χ̄]

ν̄χ̄(γ + 3β)
> 0 , (56)

so that (h1, U1) is once again a stable node, and there is no solution describing
the structure of a shock wave.

Let us now study the stationary point (1, 0). Since the separatrix does not exist
for h1 6 1 and h1 > hc, we restrict our analysis to the case where 1 < h1 < hc.
In order to study the stationary point (1, 0), we take h = 1 + h̃ and U = Ũ , and
linearize the set of equations (41) and (42) with respect to h̃ and Ũ . As a result, we
arrive at the same set of linear equations (48) with the coefficients aij given by the
same expressions (49), but with 1 substituted for h1. In particular, κ1 is replaced
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Figure 2. Integral curves of the set of equations (41) and (42) for ν̄ = χ̄ = 2−1/2, γ = 5
3 ,

and h1 = 1.1: (a) β = 0.15 and ζ > 0; (b) β = 0.5 and ζ < 0.

by κ0 = κ(1). Correspondingly, the expression for D is given by (52) with 1 and κ0

substituted for h1 and κ1, so that D > 0. In addition, we have

det(aij) = 3
2 γκ0(h1 − 1)(h1 + 2) , (57)

a11 + a22 = −(1− β)−1{γν̄[(1− 3β)2 + 2(h1 − 1)(h1 + 2)]

+ 3
2 χ̄[(γ − β)(h1 − 1)(h1 + 2) + 2β(γ − 1)]

}
< 0 . (58)

It is straightforward to obtain

κ0 = (1− β)−1[2γh1(h1 + 1)− 3(1− β)(γ + 3β)]

> (1− β)−1[(1− 3β)2 + (γ − 1)(1 + 3β)] > 0 . (59)

The inequality D > 0 together with (57)–(59) implies that the stationary point
(1, 0) is a stable node.

Summarizing the analysis of the stationary points, we conclude that the separa-
trix starting from the stationary point (h1, U1) and ending at the stationary point
(1, 0) can exist if 1 < h1 < hc. It is shown in the Appendix that this separatrix
does exist. Hence the ratio of the perpendicular component of the magnetic field
after and before the shock wave is h1. The quantity h1 − 1 can be considered as
the dimensionless shock-wave amplitude. To avoid misunderstanding, we have to
make the following point. In this paper we consider small-amplitude shock waves.
However, this does not mean that the quantity h1 − 1 is small. Instead, it means
that perturbations of all quantities in the shock structure are of order ε� 1. To
ensure this, it is enough to impose the condition that h1|B⊥0| be of order εB0. Since
ε = |B⊥0|/B0, this condition is reduced to h1 ∼ 1. As we have already seen, the
solution describing the shock structure only exists when h1 < hc. Since hc ∼ 1 for
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all β < 1 except for β very close to unity, the condition h1 ∼ 1 is automatically
satisfied unless β is very close to unity.

Two illustrative examples of the picture of integral curves in the phase plane
(h, U ) are shown in Fig. 2, where (a) corresponds to ζ > 0 and (b) to ζ < 0. N and S
indicate the (stable) node and the saddle. Since the component of the magnetic field
perpendicular to the propagation direction increases across the shock wave and does
not change sign, the separatrix describes the structure of a fast shock wave. Hence,
in contrast to the CKB equation (see e.g. Wu 1995), the set of equations (33) and
(34) describes neither the structure of a switch-on shock wave nor the structures of
an intermediate shock wave.

5. Structure of shock waves: analytical solution and numerical
examples

In this section we present an analytical solution for particular parameter values
and the results of numerical calculations.

Let us consider the particular case ζ = 0. Although this condition has no special
physical meaning, it is important from a mathematical point of view. We shall see
in what follows that an analytical expression for the separatrix can be obtained
when ζ = 0. The condition ζ = 0 can be satisfied when either β < 1

3 or β > 1
3γ. If β

is in one of these two intervals, this condition determines the (positive) ratio ν̄/χ̄.
Since, by definition, ν̄2 + χ̄2 = 1, we then obtain

ν̄ =
|γ − 3β|

[4γ2(1− 3β)2 + (γ − 3β)2]1/2
, (60a)

χ̄ =
2γ|1− 3β|

[4γ2(1− 3β)2 + (γ − 3β)2]1/2
. (60b)

When ζ = 0, (41) reduces with the aid of (50) to

κ(h)
dh

dθ
= −3γν̄h(h− 1)(h1 − h)(h + h1 + 1) , (61)

so that the structure of a shock wave is described by

θ = − 1
3γν̄

∫ h κ(h̄) dh̄
h̄(h̄− 1)(h1 − h̄)(h̄ + h1 + 1)

. (62)

In principle, the integral on the right-hand side of (62) can be expressed in terms
of elementary functions. However, this expression is very long and complicated, so
we do not write it down here.

Let us now obtain an analytical expression for the separatrix in the phase plane.
The set of equations (41) and (42) can be reduced to a single linear equation for
the function U . In principle, the solution to this equation can be found in the form
of a quadrature. However, the calculations are very lengthy, and, in addition, it is
not so trivial to select the separatrix from the obtained one-parameter family of
integral curves. Therefore we prefer to use a different approach and simply guess
the general form of the solution corresponding to the separatrix. We look for the
solution to the set of equations (41) and (42) in the form

U (h) = 2αC
h− 1
h

+ (1− α)
h2 − 1

2(1− β)
, (63)
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Figure 3. The dimensionless perpendicular component of the magnetic field h as a function
of θ in the shock wave structure for γ = 5

3 and β = 0.1: (a) ν̄/χ̄ = 0.1; (b) 1; (c) 10. The lower,
middle and upper curves in all three parts correspond to h1 = 1.05, 1.1 and 1.15 respectively.

where α is a constant to be determined. It is straightforward to check that U (1) = 0
and U (h1) = U1, so that the curve determined by (63) connects the stationary points
(1, 0) and (h1, U1) for any value of α. We substitute (63) into (41) and (42) and find
that (63) gives a solution when ζ = 0 and α is given by

α = − 2γ(1− 3β)
γ − 9β + 3γβ + 9β2 . (64)

Hence in the case where ζ = 0 the separatrix is determined by

U = F (h) ≡ (h− 1)[3h(h + 1)(γ − 3β)− 8γC(1− 3β)]
2h(γ − 9β + 3γβ + 9β2)

. (65)

It can be shown that F (h) increases monotonically both for β < 1
3 and for β > 1

3γ.
In Fig. 3 the behaviour of h in the shock wave structure is shown for β = 0.1,

γ = 5
3 , and different values of ν̄/χ̄ and h1. We can see that the thickness of the

shock structure grows when h1 is decreased. The characteristic thickness of the
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shock-wave structure is of the order of the dissipative length l when ν̄ � χ̄, while
it is a few times larger than l when ν̄ >∼ χ̄. Hence the quantity l can be considered
as a characteristic thickness of the shock structure for all values of the coefficients
of viscosity and thermal conductivity and for all but very small (< 0.05) values
of the dimensionless shock-wave amplitude h1 − 1. The important property is that
the thickness of the structure is independent of the angle ε between the equilibrium
magnetic field and the direction of wave propagation. This result is in contrast to
the corresponding result for the CKB equation, where the thickness of the shock-
wave structure is proportional to ε−2νi (when there is no electrical resistivity or
thermal conductivity), where νi is the coefficient of isotropic viscosity.

6. Conclusions
In this paper the structures of small-amplitude quasiparallel shock waves in plasmas
with strongly anisotropic viscosity and thermal conductivity have been studied. A
set of two equations for the parallel velocity and the perpendicular component
of the magnetic field has been derived with the use of the singular perturbation
method. This set of two equations describes the propagation of small-amplitude
perturbations at small angles with respect to the equilibrium magnetic field and
with phase velocities close to the Alfvén velocity. In particular, it describes the
structures of small-amplitude quasiparallel MHD shock waves. The analysis of the
shock-wave structures here has been restricted to the case where the plasma beta is
smaller than unity. The plasma beta was introduced as the ratio of the sound speed
to the Alfvén speed. The quantity h1, which is the ratio of the values of the magnetic
field component perpendicular to the direction of the wave propagation after and
before a shock wave, plays an important role in the analysis. The quantity h1 − 1
can be considered as the shock-wave amplitude. It has been shown that the derived
set of two equations describes the structure of fast shock waves where h1 > 1 under
the condition that h1 < hc. The quantity hc depends on the plasma beta, and tends
to infinity when the plasma beta tends to unity. In contrast to the CKB equation,
the derived set of two equations does not describe the structure of a switch-on shock
wave or the structure of an intermediate shock wave.

The fact that the derived set of equations does not describe the structures of fast
shock waves when h1 > hc, switch-on shock waves or intermediate shock waves im-
plies that in these cases the strongly anisotropic viscosity and thermal conductivity
alone cannot build-up the shock-wave structure. Other dissipative mechanisms, such
as isotropic shear viscosity, isotropic thermal conductivity and/or finite electrical
resistivity, have to be taken into account.

Note that the solution found in the present paper does not describe the structure
of slow shocks either. However, this results from the assumption that β < 1. The
set of equations (33) and (34) is obtained under the assumption that perturbations
propagate with a velocity close to V . The velocities of fast and slow small-amplitude
quasiparallel shocks are close to V and cS respectively when β < 1, while they are
close to cS and V respectively when β > 1. Hence the set of equations (33) and
(34) does not describe the structure of a slow shock when β < 1, while it does not
describe the structure of a fast shock when β > 1.

The structures of shock waves have been calculated numerically for different
values of the coefficients of the anisotropic viscosity and thermal conductivity and
for different values of h1. The numerical results show that for all but very small
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(<0.05) values of the dimensionless shock-wave amplitude h1 − 1, the thickness of
the shock structure is of order l = V −1(ν2 + χ2)1/2, where ν is the kinematic coef-
ficient of viscosity and χ is proportional to the coefficient of thermal conductivity
(see (27)). The important property is that this thickness is independent of the angle
ε between the equilibrium magnetic field and the direction of shock-wave prop-
agation. This result is in contrast to the theory of small-amplitude quasiparallel
shock waves in isotropic plasmas described by the CKB equation. The characteristic
thickness of the structure of these shock waves is proportional to ε−2.

Let us now apply the results obtained to some typical coronal conditions. We
take the temperature T0 = 106 K, the electron number density ne = 1015 m−3 and
the magnetic field B0 = 1 mT. Then, for the collisional times of electrons and ions,
we obtain τe ≈ 2 × 10−2 s and τi ≈ 1 s. The electron and ion gyrofrequencies are
ωe ≈ 2×108 s−1 and ωi ≈ 105 s−1, so that τeωe ≈ 4×106 and τiωi ≈ 105. Braginskii
(1965) gives the following approximate expressions for η0 and κ‖:

η0 ≈ kBneT0τi , κ‖ ≈ 3k2
Bm
−1
e neT0τe , (66)

where kB is the Boltzmann constant (we assume that the temperatures of ions
and electrons are equal and so are their number densities). With the use of (66),
we obtain η0 ≈ 1.4 × 10−2 kg s−1 m−1 and κ‖ ≈ 1.2 × 104 kg m s−3K−1. Then
ν ≈ 1010 m2 s−1 and χ ≈ 4.3 × 1011 m2 s−1. For the Alfvén velocity, we have
V ≈ 2.2 × 106 m s−1, and finally we obtain for the characteristic thickness of the
shock wave structure l ≈ 2× 105 m.

For the isotropic coefficient of viscosity, we get (see Braginskii 1965)
νi ≈ ν(τiωi)−2 ≈ 1 m2 s, and the characteristic thickness of the structure of a
shock wave is of the order ε−2νiV

−1 ≈ 5×10−6ε−2 m. Even for an extremely small
shock-wave amplitude ε = 10−2, we obtain that the characteristic thickness of a
shock wave is 5× 10−2 m, i.e. six orders of magnitude smaller than the character-
istic thickness of shock waves in plasmas with strongly anisotropic viscosity and
thermal conductivity. Hence the use of the isotropic viscosity for the estimation of
the characteristic thickness of shock-wave structures in the solar corona can lead
to incorrect results.
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Appendix
In this appendix we proof that the separatrix connecting the two stationary points
(1, 0) and (h1, U1) of the set of equations (41) and (42) does exist under the conditions
that β < 1 and 1 < h1 < hc. We give only a sketch of the proof, omitting details.

Let us rewrite the set of equations (41) and (42) as

dW
dθ

= H(h, U ) , (A 1)

where W = (h, U ) and the phase velocity vector H = (H1, H2) is determined by the
right-hand sides of (41) and (42). We start our proof with a consideration of the
curve in the phase plane determined by the condition H1 = 0. It is straightforward
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Figure 4. Reciprocal location of the separatrix and the curves U = F (h) and U = G(h) in
the phase plane: (a) ζ > 0; (b) ζ < 0. The curve U = F (h) is the upper curve in (a) and the
lower curve in (b). The curve U = G(h) is the lower curve in (a) and the upper curve in (b). In
both parts the separatrix is shown by the middle curve. The arrows show the phase velocity
vector H.

to show that this curve is given by

U = G(h) ≡ h− 1
ζh
{3γν̄h(h + 1)− 2C[4γν̄ + χ̄(γ − 3β)]} . (A 2)

It is easy to see that G(1) = 0 and G(h1) = U1, so that this curve connects the
stationary points (1, 0) and (h1, U1). When U = G(h), we have

H2 =
3γ(h− 1)(h1 − h)(h + h1 + 1)

2ζh
, (A 3)

so that the phase velocity vector H is directed upwards when ζ > 0 and downwards
when ζ < 0. The curve U = G(h) is shown in Fig. 4(a) for ζ > 0 (the lower curve)
and in Fig. 4(b) for ζ < 0 (the upper curve). The arrows show the vector H.

Let us now consider the curve U = F (h), where F (h) is given by (65). It is
straightforward to find that

ζ[F (h)−G(h)] =
3(h− 1)(h1 − h)(h + h1 + 1)[12γβν̄(γ − 1) + χ̄(γ − 3β)2]

2h(γ − 9β + 3γβ + 9β2)
> 0. (A 4)

Hence F (h) > G(h) for ζ > 0, and F (h) < G(h) for ζ < 0. In Fig. 4(a), U = F (h)
is the upper curve, while in Fig. 4(b) it is the lower curve. We denote the region
between the curves U = F (h) and U = G(h) by D. It can be shown that at the
curve U = F (h) the following inequalities are valid for the components of the phase
velocity vector:

H1 < 0 , ζ

(
H2

H1
− dF

dh

)
> 0 . (A 5)

It follows from (A 5) that at the curve U = F (h) the phase velocity vector is directed
into the region D. Since the phase velocity vector is directed into D at its boundary,
no integral curve can leave D.

Let W = W(θ) ≡ (h̄(θ), U (θ)) be the equation of the integral curve that leaves the
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saddle point (h1, U1) in the unstable direction and satisfies the condition dh̄/dθ < 0
at this point. In the vicinity of the point (h1, U1) there is an inverse function θ = θ̄(h),
so that the equation of this curve can be written as U = U (h) ≡ U (θ̄(h)). It can be
shown that at h = h1 the inequality(

dU

dh
− dF

dh

)(
dU

dh
− dG

dh

)
< 0 (A 6)

holds. This inequality implies that the curve U = U (h) lies in the region D for 0 <
h1−h� 1. Then, in accordance with the results of this appendix, the integral curve
W = W(θ) cannot leave the region D. Therefore there are only two possibilities.
The first is that the curve W = W(θ) ends at the same stationary point (h1, U1).
The second is that this curve ends at the stationary point (1, 0). However, it can
be shown that the two integral curves that come to the stationary point (h1, U1)
from the stable directions lie outside the region D in the vicinity of this stationary
point, so that the first possibility cannot be realized. Therefore the integral curve
W = W(θ) has to end at the stationary point (1, 0). Hence the separatrix connecting
the stationary points (h1, U1) and (1, 0) does exist.

It is straightforward to see that H1 < 0 inside the region D, so that dh/dθ < 0.
This implies that h increases monotonically in the shock-wave structure when θ
changes from +∞ to −∞.
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