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Global stability and resolvent analyses of laminar
boundary-layer flow interacting with viscoelastic
patches
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The attenuation of two-dimensional boundary-layer instabilities by a finite-length,
viscoelastic patch is investigated by means of global linear stability theory. First, the modal
stability properties of the coupled problem are assessed, revealing unstable fluid-elastic
travelling-wave flutter modes. Second, the Tollmien–Schlichting instabilities over a rigid
wall are characterised via the analysis of the fluid resolvent operator in order to determine
a baseline for the fluid-structural analysis. To investigate the effect of the elastic patch
on the growth of these flow instabilities, we first consider the linear frequency response
of the coupled fluid-elastic system to the dominant rigid-wall forcing modes. In the
frequency range of Tollmien–Schlichting waves, the energetic flow amplification is clearly
reduced. However, an amplification is observed for higher frequencies, associated with
travelling-wave flutter. This increased complexity requires the analysis of the coupled
fluid-structural resolvent operator; the optimal, coupled, resolvent modes confirm the
attenuation of the Tollmien–Schlichting instabilities, while also being able to capture the
amplification at the higher frequencies. Finally, a decomposition of the fluid-structural
response is proposed to reveal the wave cancellation mechanism responsible for
the attenuation of the Tollmien–Schlichting waves. The viscoelastic patch, excited by
the incoming rigid-wall wave, provokes a fluid-elastic wave that is out-of-phase with the
former, thus reducing its amplitude.

Key words: flow-structure interactions, boundary layer stability, instability control

1. Introduction

Taking inspiration initially from the surprising ability of swimming animals to move
fast without spending too much energy (Gray 1936; Kramer 1961), passive devices have
been proposed to postpone the laminar–turbulent transition of boundary layers, based on
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compliant viscoelastic patches. This paper is motivated by their potentially favourable
interaction with the dynamics of laminar boundary-layer flows, which may eventually offer
opportunities to decrease the overall drag.

The physics of the flow over compliant walls is rather complex. This paper focuses
on the study of low-level disturbances in a boundary layer over a flat plate without
adverse pressure gradient, and more specifically on the case where the early stages of the
transition to turbulence occur through amplification of the so-called Tollmien–Schlichting
waves. At higher disturbance level, this path to turbulence can be bypassed and other
mechanisms can be dominant (see Kachanov 1994), such as the transient growth and
breakdown of three-dimensional streak-like structures that can appear in the flow. Within
the considered low-disturbance setting, the early stages of the laminar–turbulent transition
can be understood by means of the amplification of external small-amplitude perturbations
such as acoustic noise, free-stream gusts, etc. Waves generated close to the leading edge
are advected by the flow, up to a critical point where an exponential amplification sets in.
This exponential growth is well described by the hydrodynamic linear stability theory.

Under the hypothesis of local disturbances, it is possible to study the propagation of
travelling waves of type A( y) exp i(ωt − kx) (where k is the spatial wavenumber) using
temporal stability analyses (Tollmien 1929; Schlichting 1933) that show that, when the
frequency ω ∈ R is varied, the boundary layer amplifies waves (k ∈ C, Im(k) > 0) in
some frequency range; when the Reynolds number based on the displacement thickness is
greater than 520. The streamwise position in the flow where the perturbations are amplified
also depends on the frequency of the excitation. It is possible to trace the region in the
Reynolds number–frequency space where these perturbations are amplified; the line that
limits this region – and for which a not-growing and not-decaying perturbation is observed
– is called the neutral curve or, very informally, the ‘banana curve’, because of its shape.
At some point, it may happen that the linear amplification grows too large in amplitude
and triggers nonlinear wave interactions, that eventually result in a fully turbulent flow
(Kachanov 1994). Experiments (Schubauer & Skramstad 1947) confirmed the existence of
these unstable, mainly two-dimensional Tollmien–Schlichting waves.

New effects emerge when the solid wall is deformable with its own elasticity – it
is then referred to as an elastic patch/panel, compliant wall or compliant coating. The
Tollmien–Schlichting waves (TSW) are affected by the compliance of the wall, and the
possibility for waves to travel in the solid favours the emergence of a new class of
instabilities, in particular the so-called travelling-wave flutter (TWF).

Thanks to pioneering works by notably Benjamin (1960) and Landahl (1962), it is
by now well known that laminar boundary layers over flexible surfaces are susceptible
to at least three main types of instabilities. A vast literature is devoted to the study
of linear disturbances evolving on a parallel (local analysis), weakly non-parallel or
fully streamwise-evolving flow (global analysis) coupled with an infinite or finite-length
compliant coating. When the medium is supposed to be of infinite extent in the x direction,
it is convenient to study the propagation of local travelling waves, that allow us in particular
to determine the dispersion relation of the coupled solid–fluid problem. However, no
account is taken for the ends of the coating in that case. Although some studies have
been conducted in three dimensions (Yeo 1992; Lucey & Carpenter 1993), the majority of
the approaches deal with two-dimensional geometries, since the instability mechanisms at
play at low-amplitude noise level are essentially two-dimensional (Schlichting 1979). The
well-documented series of papers by Carpenter & Garrad (1985, 1986) and review papers
from Gad-El-Hak (1996) and Carpenter, Lucey & Davies (2001) cover most of the field
between the 1960s and early 2000s.
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Travelling-wave analyses coupling one-dimensional wall model with the
Orr–Sommerfeld equation (Benjamin 1960; Landahl 1962; Carpenter & Garrad
1985) characterised the fluid-elastic TSW instability as a slowly convective,
downstream-travelling wave in the solid, associated with modified TSW in the fluid.
These waves are found to be stabilised by the flexibility of the coating, but destabilised
by viscoelastic damping in the solid. Using a more complex model of the solid – the
two-dimensional elastic Navier equations – Yeo (1988) arrived at the same conclusions.
Using a weakly non-parallel approximation, Yeo, Khoo & Chong (1994) also observed that
the effects of the boundary-layer growth have only a mild influence on TSW, that increases
as the Reynolds number is decreased.

If TSW exist in the rigid case, TWF appears only when the wall is flexible. However,
flexibility and damping play a reversed role: decreasing the stiffness of the coating
destabilises the TWF, and an increase of damping has a stabilising effect (Benjamin
1963). TWF is observed as downstream-travelling waves with a velocity close to those
of the free-surface waves. As noted by Carpenter & Garrad (1986), the stabilising effect
of damping on TWF is more marked than its destabilising effect on TSW. These are
‘dangerous’ instabilities: as noted by Gad-El-Hak (1996), although the frequency band
where the instability occurs is narrower than for the TSW, it extends indefinitely as the
Reynolds number increases downstream. It is actually believed that TWF was the main
route to transition in the experiments by Gaster (1988), as reported by Lucey & Carpenter
(1995). The TWF instability is also found to be more sensitive to non-parallel effects than
TSW: Yeo et al. (1994) showed that strong destabilisation can occur due to boundary-layer
growth in some TWF regimes.

A third type of instability appears when the pressure fluctuation amplitude outweighs
the restoring force due to the stiffness of the coating. Due to this negative added
stiffness mechanism, the instability has been identified as a static divergence (SD)
instability, well known in aeroelasticity (Dowell 1971). This instability has been observed
in water-channel experiments by Gad-El-Hak, Blackwelder & Riley (1984) on the form
very slow two-dimensional waves normal to the flow, and also on the skin of dolphins
and fast human swimmers (Aleyev 1977). Yeo, Khoo & Zhao (1996) showed that the
SD appears when the coating is sufficiently soft, but can be suppressed by decreasing
the thickness of the coating, hence limiting the effective compliance. TWF and standing
wave analyses of the SD instability in infinite panels arrived at the somewhat surprising
conclusion that viscoelastic damping is necessary so as to trigger the instability (Landahl
1962; Carpenter & Garrad 1986; Yeo et al. 1996). The role of damping in finite-length
coatings has been studied by Lucey & Carpenter (1992) using a potential flow approach.
They showed in that case that damping is not necessary anymore for triggering the
instability. According to them, in infinite-length panels, the energy transfer that leads to
divergence is favoured by the slight wave propagation slowdown caused by damping. For
finite-length panels, this role is essentially played by edge boundary conditions. In that
case, viscoelastic damping only acts as its more classical role of attenuating the growth of
the instability. This shows that infinite-length coatings may have a considerably different
behaviour than more realistic finite-length coatings – where waves are reflected when they
reach the end of the coating.

Another class of instability, referred to as the transitional instability, occurs as a
coalescence of TWF and TSW waves. This instability has been documented in particular
by Sen & Arora (1988). In the work by Wiplier & Ehrenstein (2001), transitional
instabilities are also found as a coalescence between an evanescent wave and a
Tollmien–Schlichting wave.

937 A1-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

72
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.72


J.-L. Pfister, N. Fabbiane and O. Marquet

Previous theoretical studies have addressed the problem either by assuming an
infinite-length coating (Duncan, Waxman & Tulin 1985; Duncan 1988), or a finite-length
coating having a very simple behaviour (spring-backed solid) coupled with inviscid flows
(Lucey & Carpenter 1992, 1993) or linearised Navier–Stokes flows (Davies & Carpenter
1997; Stewart, Waters & Jensen 2009; Tsigklifis & Lucey 2017). On the other hand, the
ability of compliant coatings to effectively delay transition in a practically interesting
way is still debated (see Luhar, Sharma & McKeon (2015) for a review of some of the
most recent advances). In particular, it may happen that complex compliant materials
(e.g. having a sandwich structure, strong heterogeneities, etc.) would be requested to
obtain improved results. These special materials can only be partially modelled using
the above-mentioned approaches. For that reason, it is desirable to have at our disposal
a framework that can manage a viscous flow as well as a fully elastic, finite-length
solid. Such approach may for instance open the way for an advanced optimisation of the
structural properties of the coating.

For this reason, we propose here a linearised analysis extended to the case where the
coating is modelled as a two-dimensional, finite-length viscoelastic patch. In some sense,
this approach is therefore a direct extension of global stability analyses, developed for pure
hydrodynamic configurations (Sipp et al. 2010; Sipp & Marquet 2013a), to the fluid-elastic
coupled case.

Due to the special nature of the physical phenomenon at play here (noise-amplifier
boundary-layer flow and mode-vibrating solid), two complementary analyses are gainfully
employed. The modal analysis allows us to capture self-sustained oscillating phenomenon
like TWF. On the other hand, TSW are more naturally analysed in terms of energy
amplification of external disturbances. This dual approach was for instance adopted
recently by Tsigklifis & Lucey (2017), who performed modal and transient growth analyses
for the case of a viscous boundary-layer flow interacting with a finite-length coating
modelled by a spring/damper-backed plate equation. In the same spirit, we consider
here both modal, eigenvalue fluid-elastic analyses, such as that presented in Pfister,
Marquet & Carini (2019), and an energy-amplification-based approach relying on the
resolvent analysis. This second type of approach has been proposed for the case of a
pure hydrodynamic laminar boundary-layer flow by Sipp & Marquet (2013a). Within the
resolvent framework, introducing a general admittance boundary condition to model a
deformable wall, Luhar et al. (2015); Luhar, Sharma & McKeon (2016) also investigated
the means of controlling a turbulent boundary layer through wall viscoelasticity. The basic
idea of these approaches is to treat the physical system as a transfer function in frequency
space that, given some input forcing, returns an output whose energy can be measured.
The mapping between the input and the output is done through the so-called resolvent
operator, whose singular value decomposition allows us to identify which forcing causes
the most important amplification, and to monitor how the level of amplification varies as
a function of the forcing frequency. Similarly to what was done for the modal analysis, we
also introduce in this work a fully coupled fluid-elastic resolvent analysis, which will be
used in complement to the modal analysis to investigate the problem.

After having introduced the physical modelling in § 2, the decoupled dynamics of the
viscoelastic patch and fluid is first analysed in § 3.1, making it possible to identify which
vibration modes are likely to interact with the flow. The fluid–solid coupled modes are then
determined for different patch stiffness and viscoelastic damping parameters in § 3.2. In
the case of sufficient viscoelastic damping, all the modes are stable. The resolvent analysis
is then presented and applied in § 4. We first consider the classical rigid-wall case in § 4.1.
The fluid-elastic response to an optimal rigid-wall forcing is then calculated and analysed
in § 4.2, and finally a fully coupled resolvent analysis is presented in § 4.3. A parametric
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Ls = 1014 Lw1 = 25 Lc = 100 Lw2 = 25

Ly = 30

x

y

Hc = 51

Ωf

Ωs

Figure 1. Boundary-layer flow over a finite-length compliant coating. Non-dimensional lengths are indicated,
the reference length being the boundary-layer displacement thickness at the inflow position. The solid domain
�s is represented in orange colour and the computational fluid domain �f in blue colour.

study is eventually presented in § 4.4. Finally, we investigate in more details the mechanism
of TSW attenuation and TWF amplification in § 5.

2. Fluid–solid configuration and equations

2.1. Non-dimensional parameters
The system under study consists in a flat plate in which a rectangular elastic patch
of thickness H∗

c and length L∗
c is embedded at a distance L∗

s + L∗
w1

from the leading
edge. The problem is made non-dimensional with respect to the fluid variables, namely
the far-field velocity U∗∞ and the boundary-layer displacement thickness δ∗

i at the
inlet of the computational domain. Non-dimensional variables are noted without the ∗
superscript (e.g. Hc = H∗

c /δ∗
i , etc.). A sketch of the configuration is reported in figure 1

where non-dimensional lengths have been specified. The incompressible, viscoelastic
solid is characterised by its homogeneous density ρ∗

s , Young’s modulus E∗
s (because

of the incompressibility constraint, the Poisson ratio is exactly 0.5) and viscoelastic
damping coefficient η∗

s . The fluid is considered incompressible with a uniform density
ρ∗

f and a dynamic viscosity ν∗
f . For a water flow the density is ρ∗

f = 1000 kg m−3 and
the dynamic viscosity is approximately η∗

f = 1.00 × 10−3 Pa s. Four non-dimensional
parameters govern the physical properties of the system, namely

Es = E∗
s

ρ∗
f U∗2∞

, Ds = η∗
s

ρ∗
f U∗∞δ∗

i
, Ms = ρ∗

s

ρ∗
f

and Re = δ∗
i U∗∞
ν∗

f
(2.1a–d)

for the non-dimensional Young’s modulus and damping coefficient, solid-to-fluid density
ratio and (inlet) Reynolds number respectively. In addition, three geometrical parameters
also govern the response of the system, namely

Lc = L∗
c

δ∗
i
, Hc = H∗

c

δ∗
i

, and L0 = L∗
0

δ∗
i

= L∗
s + L∗

w1

δ∗
i

(2.2a–c)

for the non-dimensional length and thickness of the patch, and the position of the patch
relative to the leading edge. Physically, the distance L0 fixes the value of the Reynolds
number at the most upstream point of the patch.

The value of the parameters used for the nominal case are detailed hereafter. For
the solid, we consider a stiffness value Es = 1, a damping coefficient Ds = 0.2 and a
density ratio Ms = 1. The inlet Reynolds number is fixed to Re = 3000. For this value,
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E∗
s (Pa) ρ∗

s (kg m−3) U∗∞ (m m−1) δ∗
i (mm) η∗

s (kg m−1 s−1) L∗
c (cm) H∗

c (mm) L∗
0 (m)

1000 1000 1 3 0.6 30 15 3.1
1 × 105 1000 10 0.3 0.6 3 1.5 0.31

Table 1. Example of dimensional quantities corresponding to the set of non-dimensional parameters Es = 1,
Ms = 1 Ds = 0.2, Re = 3000, Lc = 100, Hc = 5 and L0 = 1039.

TSW developing on the steady boundary-layer flow are found to be convectively unstable
(Schmid & Henningson 2012; Sipp & Marquet 2013b). The non-dimensional length of the
patch is set to Lc = 100 and its thickness to Hc = 5. The choice of the (inlet) Reynolds
number fixes the distance Ls = 1014 between the leading edge and the inlet, but we are
still free to choose the distance Lw1 , which is fixed to Lw1 = 25, which gives L0 = 1039.
Then, the local Reynolds number based on the boundary-layer thickness evolves over the
patch between 3036 and 3179.

Parameters have been chosen so as to be, as much as possible, representative
of experimental data. Some dimensional values corresponding to the aforementioned
non-dimensional parameters are reported in table 1. They are in the range reported by
experiments. For instance, in the experiments by Gad-El-Hak et al. (1984) on a laminar
boundary layer of inflow velocity 0.2–1.4 m s−1, materials having an estimated Young’s
modulus between 15 and 37 500 Pa have been used. The materials used in Gaster’s
experiments are found in the same range (Gaster 1988; Lucey & Carpenter 1995). Realistic
values of the solid damping coefficient are much harder to determine a priori. For
instance, low-stiffness, high damping viscoelastic plastisol gels have damping properties
that depend strongly on the temperature or the frequency at which the solid can be loaded
(Nakajima, Isner & Harrell 1981; Nakajima & Harrell 2001). For simplicity, a constant
damping coefficient is considered here.

2.2. Steady Navier–Stokes flow over the rigid configuration
For the range of elastic coefficient Es explored in this paper, preliminary coupled
fluid–solid computations have shown that the steady flow solution comes with only very
small-amplitude static deformations of the compliant patch. For instance, for Es = 0.1
we observed a maximal x displacement of 1.223 × 10−2 and a maximal y displacement
of 6.620 × 10−7 (expressed in non-dimensional units, i.e. relative to δ∗

i ). Therefore, they
will be neglected in the following, and the steady solution of the fluid–solid problem is
approximated by a steady boundary-layer flow developing over a rigid wall. It is then
described by the steady velocity field U(x) and pressure field P(x), that satisfy the
incompressible Navier–Stokes equations

(∇U)U − ∇ · σ (U, P) = 0, ∇ · U = 0 in �f , (2.3a,b)

where the fluid Cauchy stress tensor is classically defined as σ (U, P) = −PI +
2/Re(∇U + ∇UT). In these notations, ∇U is the gradient operator that reads ∂Ui/∂xj
in index notation – the advection term (∇U)U thus reads ∂Ui/∂xjUj – and ∇ · U is
the divergence operator. As mentioned before, the computational domain �f starts at a
non-dimensional distance Ls = L∗

s /δ
∗
i = 1014 from the leading edge of the plate, in such

a way that the Reynolds number based on the displacement thickness is 3000 at the inlet,
where the flow is modelled by a Blasius profile UBlasius. This method is relatively common
in the literature and comes with very small deviations from a true Navier–Stokes solution
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0 20 40 60 80 100 120 140

x

0.95

1.00

1.05

1.10

δ∗

2.58

2.59

2.60

2.61

H

3.04 3.10 3.16 3.22 3.28 3.34 3.40 3.46

Rex × 10–6

Figure 2. Base solution for the linear analysis. The evolution of the displacement thickness (δ∗, solid line
(—–)) and the shape factor (H, dashed line - - -) are reported. The ticks on the x-axis at the top show the
Reynolds number Rex based on the distance from the leading edge.

over the complete plate (Brandt et al. 2011). As said before, the coating is placed at a
non-dimensional distance Lw1 = 25 from the inlet. This ensures that the inflow velocity is
not influenced by the presence of the coating. The distance between the end of the coating
and the outlet is fixed to Lw2 = 25. The no-slip velocity condition U = 0 is applied at the
undeformed fluid–solid interface 	. On the top boundary (y = 30), the streamwise velocity
is fixed to that of the Blasius flow (the transverse component being left free), while at the
outflow boundary (x = Lw1 + Lc + Lw2) the transverse velocity is set to that of the Blasius
flow, the streamwise component being left free.

A few features extracted from the solution Q = [U, P]T to (2.3a,b) are shown in figure 2
as a function of x. The streamwise-varying displacement thickness δ∗(x) is represented,
as well as the shape factor H, which allows us to validate the solution with respect to
the Blasius theory for a laminar boundary-layer flow: the value slightly oscillates around
the theoretical value of 2.59, being fairly stable in the region of interest, i.e. over the
viscoelastic patch.

The computational domain for the fluid region �f is discretised with a structured mesh
made of 72 324 triangles and 36 686 vertices. At the fluid–solid interface, that conforms
with the solid mesh, the grid resolution in the streamwise direction is Δx = 0.15 while
the transverse resolution is Δymin = 0.03. The transverse grid resolution is smoothly
decreased in the y > 0 direction using a sine law and reaches Δymax = 0.3 close to
the upper boundary. The spatial discretisation of the Navier–Stokes equation (2.3a,b)
is performed using finite elements and implemented within the software FREEFEM++
(Hecht 2012). Lagrange elements P2 are considered for the velocity and displacement
unknowns, while P1 elements are taken to represent the pressure and the interface stress
variable. The nonlinear computation of the steady boundary-layer flow from (2.3a,b) is
achieved using a Newton method.

2.3. Unsteady linearised arbitrary Lagrangian Eulerian equations governing the
fluid–solid perturbations

We are interested in capturing the coupled dynamics of infinitesimal fluid-elastic
perturbations developing over the steady pure hydrodynamic flow solution described
previously. The unsteady fluid is thus modelled with the viscous linearised Navier–Stokes
equations – linearised about the steady boundary-layer flow field. Compliant coatings
are often made of rubber or polymer materials (Carpenter & Garrad 1986). The solid
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is therefore described with an incompressible neo-Hookean viscoelastic model, with
a stress–strain relationship taken as being a simple generalisation of the differential
Kelvin–Voigt model (Christensen 2012).

The description of the coupled problem can be treated using the formalism presented by
Pfister et al. (2019) and Pfister (2019). We therefore rely on this approach, which we shall
present briefly in the following, and refer the reader to the aforementioned references for
a more detailed presentation of the approach, as well as validation studies. The starting
point is a formulation of the governing equations using the arbitrary Lagrangian Eulerian
(ALE) framework (Hughes, Liu & Zimmermann 1981; Donea et al. 2004). Specifically, the
Eulerian fluid equations, naturally expressed in the deformed (by the unsteady fluid–solid
deformations) fluid domain are recast in a fixed reference domain �f by means of a
so-called extension operator, introduced so as to propagate the solid interface deformation
onto the whole fluid domain. The particular form of this operator is arbitrary, provided
that sufficient smoothness is guaranteed – a Laplace equation is used here. On the other
hand, the Lagrangian solid equations are kept in their natural form. Once recast in a fixed
domain, displacement, velocity and stress interface conditions are easily enforced, and
linearisation about a steady flow is straightforward, although quite tedious.

For conciseness of the notations, the fluid-elastic perturbations are split into two groups
of variables. The first group q′

s regroups the elastic solid displacement field (extended to
the fluid domain because of the ALE formulation), a displacement velocity variable used
to formulate the elasticity equation first order in time and the solid pressure (introduced
because the neo-Hookean solid model is incompressible). The second group of variables
q′

f regroups the Eulerian fluid velocity recast in the fixed domain, the fluid pressure and a
Lagrange multiplier variable that represents the interface stress. The governing equations
then take the block-operator form(

Bs 0
0 Bf

)
∂

∂t

(
q′

s
q′

f

)
−
(

As Csf
Cfs Af (Q)

)(
q′

s
q′

f

)
=
(

0
P f f ′

)
. (2.4)

In this notation, (Bs, As) represent the linearised solid-extension operators that only
depend on the material parameters Ds, Ms and Es. The fluid operators (Bf , Af ) regroup
the linearised Navier–Stokes equations, that depend on the pure hydrodynamic steady
flow Q = [U, P]T and on the Reynolds number. The off-diagonal operators Csf and Cfs
are the coupling operators, which take into account how the infinitesimal deformation of
the fluid–solid interface affects the flow, and vice versa. These terms reflect the chosen
two-way coupling approach. Finally, the right-hand side term accounts for an external
distributed forcing in the fluid momentum equation, the operator P f being introduced
to adjust the dimension of the vector, i.e. P f f ′ = [ f ′, 0, 0]T. The elasticity problem can
again be decomposed between the solid and extension variables in the following way:

As =
(

Ass 0
Ces Aee

)
and Bs =

(
Bss 0
0 0

)
. (2.5a,b)

The operator Ass corresponds to the elasticity problem, while Aee corresponds to the
extension problem – the block-triangular structure of As reflects the fact that the extension
problem is entirely subordinated to the solid problem. Detailed equations are reported
in Appendix A.

The different fluid–solid operators involved in (2.4) are also modelled via finite elements
and implemented within the software FREEFEM++ (Hecht 2012). The extension region is
made as a layer (of non-dimensional width of 5) of cells around the compliant patch.
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The computational domain of the solid region is discretised with a structured mesh made
with 17 982 triangles and 9352 vertices. The eigenvalue and resolvent computations are
handled with the eigenvalue library ARPACK (Lehoucq, Sorensen & Yang 1997) which
is based upon an algorithmic variant of the Arnoldi process called the implicitly restarted
Arnoldi method. The use of a shift-and-invert strategy enables eigenvalues to be obtained
in the vicinity of a given complex shift. The numerical computation of the singular values
in the global resolvent analysis (§ 4) is based on the reformulation of the singular value
problem as an eigenvalue problem (Sipp & Marquet 2013b). The direct sparse lower–upper
(LU) solver multifrontal massively parallel sparse direct solver (MUMPS) (Amestoy et al.
2013) is used for all matrix inverse operations needed by the algorithms.

3. Eigenvalue analysis

We investigate in this section the long-term stability of the boundary-layer flow interacting
with the compliant patch. The eigenvalue analyses of the decoupled fluid and solid
problems are first performed in § 3.1. The computation of the solid modes in absence
of fluid – in vacuo modes – allows for an estimation of the characteristic frequencies of
the isolated patch, and by comparison with the purely fluid spectrum, the identification of
a range of stiffness values that are likely to result in a strong interaction between the patch
and the fluid. The eigenvalue analysis of the coupled fluid–solid problem is then presented
in § 3.2.

3.1. Decoupled eigenvalue analysis
The purely fluid eigenvalue problem is obtained by considering only the fluid operator in
(2.4). Modes are sought on the form

q′
f (x, t) = q◦

f (x) exp
(
(λr + iλi)t

)
(3.1)

with damping λr and circular frequency λi, resulting in the eigenvalue problem{
(λr + iλi)Bf − Af (Q)

}
q◦

f =0, (3.2)

where Q = [U, P]T is the fluid steady flow (cf. § 2.2). For the steady flow as well as for
the perturbation problem, no-slip boundary conditions are considered at the wall (patch
included). The obtained fluid spectrum is reported by the open diamonds in figure 3; it
reveals the branch of modes responsible for the TSW (Ehrenstein & Gallaire 2005; Åkervik
et al. 2008) and, hence, the frequencies of interest of the fluid instability, ranging between
0.02 and 0.1.

Similarly, in vacuo solid modes are obtained by considering only the solid operator.
Looking for modes on the form q′

s(x, t) = q◦
s (x) exp((λr + iλi)t) in (2.4), we obtain the

solid eigenvalue problem {
(λr + iλi)Bs − As(Es, Ds)

}
q◦

s =0. (3.3)

This problem is a combined elastic–extension vibration problem, that is strictly equivalent
to an elastic-only problem, since the extension problem is entirely subordinated to the
elastic one. The only component of interest in q◦

s is thus the solid displacement ξ◦. A
zero-displacement boundary condition is prescribed at the bottom and side edges of the

937 A1-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

72
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.72


J.-L. Pfister, N. Fabbiane and O. Marquet

λ(1) = 0.185 i

λ(2) = 0.381 i

λ(3) = 0.541 i

λ(4) = 0.623 i

λ(5) = 0.636 i

λ(6) = 0.911 i

λ(7) = 0.929 i

λ(8) = 0.990 i

–1 0 1

(ξ°)y

0 0.2 0.4 0.6 0.8 1.0
λi

–0.04

–0.02

0

0.02

λr

87654321

TSW

Unstable

Stable

Figure 3. Decoupled eigenvalue analysis. Two in vacuo spectra are reported for the solid: a case without
(Ds = 0, orange circles ◦, orange) and a case with viscoelastic damping (Ds = 0.2, orange squares �, orange).
The fluid spectrum (blue diamonds ♦, blue) is also reported as a reference. The insets at the bottom represent
the y displacement component of eight representative solid in vacuo modes, highlighted in black and marked
1, 2, . . . , 8 in the figure on top. Dashed contours indicate negative values.

viscoelastic patch, while – in the absence of the surrounding fluid – a stress-free condition
is applied on the upper side of the patch.

Spectrum and mode shapes solution to (3.3) for Es = 1 and Ds = 0, and the nominal
geometry for which Lc = 100 and Hc = 5, are reported by the open circles in figure 3.
As there is no damping or coupling with the fluid, no temporal growth or decay process
is involved: all modes are neutrally stable (λr = 0). The free-vibration eigenvalues for a
non-zero damping coefficient are also reported by the open squares in figure 3. In presence
of damping, the eigenvalues are no longer imaginary as is the case when Ds = 0 but
present a negative growth rate, i.e. they are akin to damped oscillations. The higher the
frequency, the more negative the growth rate is, as is traditionally observed for damped
linear oscillators. The decay of the growth rate can be for instance evaluated as λr =
−3Ds/(2Es)(λ

i
0)

2, where λi
0 is the frequency of the modes without damping. Interestingly,

note that all modes are located above a threshold frequency of approximately λi = 0.18. In
the bottom part of figure 3, eight modes shapes are represented in increasing order in terms
of their frequency. The y displacement is shown together with the interface deformation for
a better visualisation. This zoology of modes shows the great variety of modal behaviours
that can be found. Because the length of the coating is finite, the admissible streamwise
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Boundary-layer flows interacting with viscoelastic patches

wavelengths are actually L∗
c , L∗

c/2, . . . , L∗
c/n, . . . , with n ∈ N, which results in a great

variety of patterns.
To better understand what is the physical origin of the solid modes, and also explain the

presence of a low-frequency cutoff, it is useful to relate these modes to those that can be
calculated for a patch of infinite length. In this latter case, results have been obtained with
a travelling-wave analysis notably by Duncan et al. (1985) and Gad-El-Hak et al. (1984),
by looking in the linearised Navier elasticity equation for waves that travel freely in the
horizontal x direction – there are no side edges anymore in this case. We then consider the
same elasticity equation as before, but now discard the side edges boundary condition, and
search for travelling waves in the form of a streamfunction φ(x, y, t) = φ̂( y) exp(λt − ikx),
such that

[ξ ′∞]x = ∂φ

∂y
=
(

dφ̂

dy
e−ikx

)
︸ ︷︷ ︸

[ξ◦∞]x

eλt and [ξ ′∞]y = −∂φ

∂x
=
(

ikφ̂( y) e−ikx
)

︸ ︷︷ ︸
[ξ◦∞]y

eλt, (3.4a,b)

where again λ = λr + iλi, and the displacement is noted ξ∞ to mark the difference from
the finite-length case. Note also that, for consistency with the rest of the paper, the original
non-dimensionalisation is kept, even if it is not the most appropriate for a solid-based
analysis. Based on this decomposition, it can be shown that, for each value of k ∈ R,
solving an eigenvalue problem gives the corresponding values of λ ∈ C, which eventually
allows us to reconstruct the dispersion relation in the (k, λ) plane but also to compute
mode shapes. The reader is referred to Appendix C for the technical details, including the
precise form of the obtained equations.

For the case Es = Ms = 1 and Ds = 0, the dispersion relation is reported in figure 4(a)
with black curves. We observe that it is composed of several branches of increasing
frequency, and each branch is marked with a frequency cutoff at low wavenumbers
(i.e. large spatial wavelengths in the x direction). In this limit, everything happens as
if the coating was experiencing a bulk displacement over its whole length, and the
frequency limit of each branch thus corresponds to the different natural frequencies for
this transverse movement. The material is strongly dispersive for small k: waves having
different wavenumbers can share almost the same frequency. On the other hand, at larger
values of k (i.e. smaller spatial wavelengths in the x direction) the lowest-frequency branch
asymptotically reaches the non-dispersive dispersion relation established by Rayleigh
(1885) for a semi-infinite medium (represented by the red dashed line). Note that, because
the material is incompressible, there is only one finite characteristic wave speed associated
with the problem (that of shear waves). In the case of a compressible material, one would
also have a characteristic velocity associated with dilatational waves (its velocity scales
with 1/

√
1 − 2ν) where ν is the Poisson coefficient of the material) which would modify

the distribution of the solid eigenfrequencies and also introduce new type of modes. This
case is not considered in this study, but would certainly deserve further investigation. Mode
shapes are reported in figure 4(b), for each branch a, b and c and two values of k. We
observe that the number of transverse vibration nodes of the mode shape increases when
we go from branch a to branch b then c. The wavenumber k has also a noticeable influence
on the form of the modes, especially for those located on branch b.

The infinite-length mode shapes ξ◦
∞ can be used as a projection basis to evaluate what

is the ‘infinite-length content’ of the finite-length modes ξ◦. Specifically, we introduce a
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Figure 4. Infinite-length patch for the case Es = Ms = 1 and Ds = 0. (a) Dispersion relation (black lines),
Rayleigh’s dispersion relation for a semi-infinite (red dashed line) and modes of the finite-length patch (colour
circles and black crosses to mark the representative modes displayed in figure 3). The three lowest frequency
branches are labelled a, b, c. (b) Real part of the y displacement of the mode shapes for k = 0.1 (black solid
line) and k = 2 (dashed line), for modes located on branches a (left), b (middle) and c (right).

modal assurance criterion

MAC(ξ◦; k, α) = | 〈ξ◦
∞,α(k), ξ◦〉 |

‖ξ◦
∞,α(k)‖ ‖ξ◦‖ |α ∈ {a, b, c}, (3.5)

where 〈·, ·〉 is the standard scalar product on the finite-length solid displacement space
and ‖ · ‖ the associated norm. For a given mode ξ◦, calculating argmink,α MAC(ξ◦; k, α)

allows us to evaluate to which infinite-length branch of modes α, and to which wavenumber
k this mode is most closely related. This exercise has been done for the in vacuo modes
presented in figure 3. This then allows each mode – whose best k and α values have been
calculated – to be superimposed on the dispersion relation: the frequency (as obtained from
(3.3)) gives the y-ordinate and the estimated k value gives the x-ordinate. Points with α = a
are represented in red colour, those with α = b in green colour and those α = c in blue
colour. As can be seen in figure 4(a), an excellent match is found : finite-length modes are
essentially infinite-length modes of type a, b or c ‘truncated’ at some value of k compatible
with the boundary conditions. In particular, the representative modes (1), . . . , (8) shown
in figure 3 have been highlighted on the graph, showing that modes (1), (2) and (4) are
mostly related to branch a, modes (3) and (5) to branch b and modes (6), (7) and (8) to
branch c.

The solid vibration frequencies can be tuned mainly by changing the Young’s modulus
and/or the density of the material, since the frequency scales as

√
Es/Ms. Apart from

the material constants, the geometry also influences the vibration frequencies. Especially,
the effect of changing the length of the patch is represented in figure 5, where the
patch vibration frequencies λi are reported as a function of Lc (for the case Hc = 5 and
Ds = 0). For a given value of Lc, each point in the graph corresponds to a modal vibration
frequency. As the geometry is modified, we observe that these frequencies also evolve
on branches. As exposed above, these branches are related to the branches observed
in the infinite-length coating: adding side boundary conditions essentially amounts to
constraining the admissible values for the spatial wavenumber in the x direction. In order
to facilitate the reading of the figure, each point on the graph is also coloured according
to the branch of infinite modes on which its projection is the largest. We observe that
lowest-frequency modes are related to infinite-length branch a, then branch b and branch
c. The region where these different mode types are found overlap, meaning that at a given
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Boundary-layer flows interacting with viscoelastic patches

1.0
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0.6

0.4

0.2

0

100 101

Lc/Hc

λi

a b c

Figure 5. Evolution of in vacuo solid vibration frequencies as a function of Lc/Hc (for Hc = 5), for the case
Es = 1 and Ds = 0. Each point is coloured according to the branch of infinite modes on which its projection
is the largest (red for branch a, green for branch b and blue for branch c). The three lowest frequencies when
k → 0 computed with the travelling-wave analysis are represented with a dashed line (cf. figure 4a).

frequency several modes of different type can be found. For the sake of comparison,
the three lowest frequencies (in the limit of a zero longitudinal wavenumber, i.e. k → 0)
computed with the travelling-wave analysis are reported with a dashed line (see figure 4).
Now the influence of the length of the patch can be assessed: for low aspect ratios, the
cutoff frequency tends to move higher. For instance, for the extreme case where Lc = 1
the lowest frequency is found slightly below 0.75. However, as Lc increases the lowest
frequency quickly reaches its absolute minimum, meaning that the length of the patch as
only a mild influence on the lowest frequency it can carry as long as Lc/Hc � 10. Finally,
the frequency of the modes is also related to the thickness Hc of the coating: increasing
the thickness decreases the vibration frequencies, which evolve as 1/Hc.

3.2. Coupled eigenvalue analysis
Let us now move on the coupled analysis. For that purpose, the fluid and solid variables
are decomposed on the form of a coupled fluid-elastic global mode, i.e.(

q′
s

q′
f

)
(x, t) =

(
q◦

s
q◦

f

)
(x) exp

(
(λr + iλi)t

)
(3.6)

where again λr is the growth rate and λi is the angular frequency. Injecting that ansatz in
the linearised problem (2.4) – without any forcing term – gives the eigenvalue problem{

(λr + iλi)

(
Bs 0
0 Bf

)
−
(

As(Es, Ds) Csf
Cfs Af (Q)

)}(
q◦

s
q◦

f

)
= 0. (3.7)

First, we consider a case without viscoelastic damping (Es = 1 and Ds = 0). The
eigenvalue spectrum of the fully coupled, linearised fluid–solid operators is displayed in
figure 6, while a few representative eigenvectors are reported in figure 7. The spectrum is
described in the following. Although resulting from a fully coupled analysis, one still finds
the trace of the decoupled modes (solid and fluid) in this spectrum.

The stable ensemble of modes the closest to the real axis is clearly related to
the TSW and it can also be found in the rigid-wall spectrum (cf. figure 3). The
eigenvector corresponding to the most unstable of these modes is reported in figure 7(a).
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Figure 6. Coupled eigenvalue analysis. The spectra of the coupled fluid-structural system for a purely elastic
wall (Ds = 0) are reported by open circles (◦), and the ones for a viscoelastic wall (Ds = 0.2) by open squares
(�). The elasticity coefficient is Es = 1 in both cases. The labelled modes highlighted in red are reported in
figure 7.
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Figure 7. Mode shapes corresponding the eigenvalues labelled (a–d) in figure 6. Dashed contours indicate
negative values.
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Boundary-layer flows interacting with viscoelastic patches

The exponential growth along the streamwise direction causes the localisation of the
perturbation in the outflow region.

Although the individual two-dimensional modes are stable, an appropriate superposition
of them may exhibit a transient growth (Ehrenstein & Gallaire 2005); the dynamics of the
TSW has indeed more to do with receptivity and energy-amplification mechanisms than
modal behaviour (Schmid 2007). For that reason, a resolvent analysis is performed in § 4.

Unstable modes can be found in figure 6 at frequencies above 0.35; figure 7(b) reports
the mode at lowest frequency related to this ‘branch’ of modes, and figure 7(c,d) the first
(when the stiffness increases) and the most unstable ones. These modes are clearly related
to the destabilisation of the free-vibration solid modes (cf. figure 3) via the interaction
with the fluid. In the following, we refer to these modes as the TWF modes. Note that the
frequency of the coupled modes is slightly shifted towards lower frequencies because of
added mass effects, compared with in vacuo frequencies. This part of the spectrum is in
qualitative agreement with what was observed in the global mode analysis by Tsigklifis
& Lucey (2017) in the case without damping: one branch of unstable modes was found
in approximately the same frequency range. In the present case, more than one branch of
structural modes is observed, as reported in figure 6: a second branch of structural modes
is found at frequencies higher than approximately 0.5, since our solid model enables to
carry many more types of modes than the spring-backed solid considered by Tsigklifis
& Lucey. We observe ‘discontinuities’ in the arrangement of modes as the frequency
increases. These slope breaks are probably related to the transition from one type of solid
mode to another (cf. figure 4), but quantitatively it is difficult to clearly associate the solid
component of each coupled modes with one or the other branch of in vacuo solid modes
(for instance using projection on the modal basis as was done in § 3.1), as the modes shapes
are strongly impacted by the fluid–structure coupling.

It is well known that the eigenvalues related to the TSW are sensitive to the location and
type of boundary conditions considered (Ehrenstein & Gallaire 2005). We also observed
this phenomenon by varying the distance between the end of the coating and the outflow.
With the chosen dimensions for the domain, the region that drives the instability is indeed
not completely covered by the computational grid. This is, however, not really an issue,
because we are rather interested by the effect of variations of the material parameters
than by the absolute values. On the other hand, the eigenvalues related to the solid-based
instabilities are completely insensitive to the dimensions of the domain. In that case, the
region that drives the instability is indeed located in the vicinity of the patch.

The presence of these unstable modes obviously excludes the possibility of controlling
the flow with a purely elastic patch. As one can see from the eigenvalues reported for the
case Ds = 0.2 in figure 6, conferring a viscous behaviour to the material adds sufficient
damping so that the TWF modes are eventually stable. On the other hand, the TSW branch
remains mostly unchanged.

Let us now investigate the effect of varying the parameters in a more general way. In
particular, it is interesting to investigate what happens when the stiffness is decreased:
in this case TWF modes are shifted towards lower frequencies, and our fully coupled
approach would then allow us to capture (if any) a merging of TWF and TSW modes.
Spectra for Es = 0.5, Es = 0.25 and Es = 0.1, with and without damping, are reported in
figure 8(a). It can be seen that the lowest TWF frequency decreases with Es, up to the
point it reaches the TSW mode region. However, this does not lead to a destabilisation of
the TWFs in this region: there is finally little interaction there. On the other hand, modes
become very unstable at higher frequencies (between 0.2 and 0.3), and we observe in
particular that damping has little effect on these modes. A quite similar behaviour can be
observed when the thickness of the patch is increased, as reported in figure 8(b). There are
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Figure 8. Effect of (a–f ) decreasing the stiffness and (g–j) increasing the thickness of the patch on the
fluid–solid coupled eigenmodes.

some important differences, however. Specifically, the magnitude of λr does not increase
with the increase in thickness, unlike the case of decreasing stiffness. Moreover, it seems
that the frequency at which the TWF modes become unstable seems to decrease as 2/Hc
when the patch is sufficiently thick. Finally, note that we do not observe any low- or
zero-frequency unstable eigenvalues (divergence modes). Specifically, all zero-frequency
modes visible in figure 8 have a negative growth rate. Using potential flow calculations and
a travelling-wave analysis, Duncan et al. (1985) could determine a (conservative) estimate
for the threshold of divergence, which was found to occur for flow speeds U∗∞ = 2.86CT ,
where CT = √

E∗
s /3ρ∗

s is the velocity of elastic shear waves. Translated to the notations
of the present study, this gives a threshold at Es = 0.37. Obviously, no such instability
is observed in the range of stiffnesses covered in the study: divergence should happen at
lower stiffness values and the estimate by Duncan et al. (1985) can indeed be considered
very conservative.
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Figure 9. Influence of the viscoelastic damping Ds and stiffness Es on the fully coupled fluid–solid spectrum.
(a) Reports the real part of the most unstable eigenvalue λcr , and (b) its rescaled imaginary part: the dashed
lines separate the stable and unstable regions of the parameter space. The imaginary part has been scaled with
the solid quantities, i.e. by the square root of Young’s modulus Es. The crosses indicate the combinations of
(Es, Ds) for which the spectrum has been computed.

This effect of viscosity and stiffness on the stability properties of the coupled system is
now investigated in a more systematic manner. By looking for the eigenvalues of largest
real part for different values of the stiffness Es and damping Ds, we can determine the
region in this parameter space where the configuration is globally stable or unstable.

The influence of the stiffness Es and the viscoelastic damping Ds on the most unstable
eigenvalues λcr is reported in figure 9. From the real part of λcr (figure 9a), one can
identify the regions in the parameter space for which the system is unstable (red shade)
and stable (blue shade). The dashed line indicates the border between these two regions,
i.e. the critical boundary. The rigid-wall limit is recovered there, with the system becoming
stable for large values of Es: in this limit the patch does not interact with the fluid and the
two systems behave as decoupled, with the solid modes being stable or neutrally stable
depending on the viscosity term. The imaginary part of the most unstable eigenvalue is
also reported in figure 9(b), scaled by the square root of Young’s modulus Es. Thanks to
this scaling, it is possible to identify where in the TWF branch is located λcr: an orange
shade indicates an eigenvalue of the type (d) in figure 7, while a green shade an eigenvalue
of the type (a).

The combined information given by the two figures tells us the stabilisation scenario
is by the material’s viscosity. Let us consider a fixed Young’s modulus, e.g. Es = 1: (i)
without viscosity (Ds = 0) the system is unstable (red shade in figure 9a), with the most
growing mode of the type (d) (orange shade in figure 9b); (ii) increasing Ds, the system
becomes neutrally stable (white contour in figure 9a), with the mode of type (d) still
being the closest to the imaginary axis; (iii) further increasing the viscosity pushes the
eigenvalues deeper in the stable region (blue shade in figure 9a), letting the mode of type
(a) be the closest to the imaginary axis (green shade in figure 9b).

In the following, we consider a globally stable case (Es = 1 and Ds = 0.2), and consider
the resolvent analysis.
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4. Resolvent analysis

The development of the TSW in boundary-layer flows is conveniently analysed in terms of
the receptivity of the flow to external perturbations (Schmid 2007). Even in linearly stable
systems, strong energy amplifications may indeed occur because of the transient energy
growth provoked by the non-normality of the linearised Navier–Stokes operator. We first
apply a resolvent analysis in the rigid-wall configuration. This allows us to determine
which perturbation in the flow leads to the strongest response of the flow, independently of
any elasticity effect. Then, considering this optimal, rigid-wall perturbation, the response
in the viscoelastic case is computed and analysed. Finally, the optimal forcings and their
responses are computed for the coupled fluid–viscoelastic system. This two-stage approach
allows us in particular to dissociate one-way coupling effects from two-way coupling
effects in the fluid–solid dynamics. Unless otherwise stated, we consider here the globally
stable case Es = 1 and Ds = 0.2 identified in § 3.

4.1. Resolvent analysis in the rigid-wall case
In our framework, the governing equations for the fluid velocity and pressure perturbation
q′

f developing about the boundary-layer flow past a rigid wall, and excited by some
momentum forcing f ′, corresponds to the subproblem

Bf
∂q′

f

∂t
− Af q′

f = P f f ′, (4.1)

deduced from (2.4). In the linear framework, the response to a generic forcing akin
to free-stream perturbations (gusts, etc.) can be computed as the sum of independent
responses to each harmonic component of the original forcing, thanks to the superposition
principle. Hence, we assume a harmonic forcing

f ′(x, t) = f (x) eiωt + c.c. (4.2)

where c.c. stands for the complex conjugate. Because of the linearity of (4.1), this
harmonic forcing leads to a harmonic fluid response

q′
f (x, t) = q̂f (x) eiωt + c.c., (4.3)

where the state q̂f (x) represents a fluid pressure–velocity mode. Introducing the fluid
resolvent operator Rf (ω) = (iωBf − Af )

−1, the fluid response q̂f to a momentum forcing
f (x) reads, in the rigid configuration, is

q̂f = Rf (ω)P f f . (4.4)

The TSW developing in the rigid-wall configuration can be characterised by varying the
frequency ω and by looking for the spatial distribution of f (x) that gives the greatest
amplification G(ω) of the fluid velocity perturbations uf (x) – extracted from q̂f (x) – akin
to these unstable waves (Sipp & Marquet 2013b). Namely, we set

σ 2
0 (ω) = max

‖f ‖2=1
‖uf ‖2 with‖f ‖2 =

∫
�f

|f |2 dΩ = 〈 f , f 〉 = f †Qf f ,

‖uf ‖2 =
∫

�f

|uf |2 dΩ = 〈
q̂f , q̂f

〉
u = q̂†

f Qfuq̂f ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (4.5)

the perturbation kinetic energy measured over the whole fluid domain, normalised by
the forcing energy. The matrices Qf and Qfu correspond to the discrete operators used
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Figure 10. Optimal energetic amplification in the rigid-wall configuration. The optimal energetic gain (σ0,
solid line —–) is reported as a function of the frequency ω, as well as the first (σ1, dot-dashed line – · –) and
the second (σ2, dotted line · · · · · · ) suboptimals. The resolvent modes associated with the points ◦ (ω = 0.061)
and ♦ (ω = 0.095) are displayed in figure 11.

to compute the spatial norms over the fluid computational domain. Using (4.4) and the
adjoint resolvent operator Rf (ω)† – which corresponds numerically to the Hermitian
transpose of Rf (ω)) – the solutions to this constrained optimisation problem can be
obtained by solving the generalised eigenvalue problem (Brandt et al. 2011)(

PT
f Rf (ω)†QfuRf (ω)P f

)
f = σ 2Qf f . (4.6)

The eigenvalues σ 2
0 > σ 2

1 > · · · are positive since the left- and right-hand sides of this
problem are Hermitian. In the present case, the explicit form of the adjoint resolvent
operator does not need to be determined: the discrete adjoint approach is considered. Once
the forcing field is determined, the velocity perturbation response can by computed using
(4.4). The triplet (σ0, ( f )0, (q̂f )0) is called optimal (gain, forcing, response), because the
momentum forcing field ( f )0 yields to the most amplified velocity perturbation (uf )0 – by
a factor σ0 according to the kinetic energy norm. The triplets (σi, ( f )i, (q̂f )i) are called
suboptimum of order i > 0, and form less amplified couples of forcing and response,
that can nevertheless still participate in the instability process if their amplification is not
negligible compared with the optimal instability mode. Note that these fields are given
for each value of the forcing frequency: both the gain, the forcing and the response field
depend on ω.

For values of the forcing frequency 0 ≤ ω ≤ 0.8, solving the eigenvalue problem (4.6)
results in the gain curve displayed in figure 10. A peak of amplification at σ0(ω = 0.061) =
3066 = σ TSW

f is observed, in the frequency range typical of that of the TSW instabilities.
The optimal response curve largely dominates over the others: the suboptimal peak of
amplification is found at σ1(ω = 0.095) = 691. From ω = 0.2 to the maximum frequency
considered (ω = 0.8), a monotonic decrease of the gains is observed.

The spatial structure of the forcing and response fields corresponding to the optimal
and suboptimal gain peaks in figure 10 are reported in figure 11. They are similar to
those shown and described by Sipp & Marquet (2013b) at lower Reynolds numbers
0 ≤ x∗U∗∞/ν∗

f ≤ 1490, and we refer the reader to this paper for more details. The real
parts for the forcing and response are displayed. The corresponding imaginary parts are
similar but out of phase, thus describing a downstream convection of the perturbations (i.e.
a left-to-right propagation). The response is also amplified in the downstream direction,
which is in agreement with the fact that convectively unstable waves are found for the
Reynolds number chosen. The forcing is made of elongated waves inclined against the
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Figure 11. Perturbation fields associated with the rigid case. The contours report the real part of the transverse
velocity; (a,b) show the optimal response (a) and forcing (b) corresponding to the point ◦ in figure 10, while
(c,d) the first suboptimal ones (♦ in figure 10). In each panel the displacement thickness is reported by the
thick, grey line is a reference. Dashed contours indicate negative values.

flow stream, whose maximal amplitude is found upstream to the response. This structure
of the forcing indicates that the Orr mechanism is at play (Åkervik et al. 2008). The same
features are observed for the first suboptimal mode (figure 11c,d); however, in this case,
two maxima of forcing/response are observed in the streamwise direction (before and after
x  100 for the response and x  50 for the forcing).

4.2. Fluid-elastic response to an optimal rigid-wall forcing
We now investigate the effect of the viscoelastic properties of the patch on the response
to the optimal fluid momentum forcing determined in the rigid case. The solid and fluid
responses qs and qf are determined using the coupled fluid–structure resolvent operator,
by introducing the optimal forcing determined in (4.6) as the forcing term in (2.4),(

qs
qf

)
=
{

iω
(

Bs 0
0 Bf

)
−
(

As Csf
Cfs Af (Q)

)}−1 ( 0
P f f (ω)

)
. (4.7)

We introduce here the amplification gain G, which measures (as in the rigid case) the
kinetic energy of the fluid perturbation, i.e.

G(ω) = ‖uf ‖, (4.8)
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Figure 12. TSW attenuation by a compliant wall. The figure reports the energetic amplification (G, dashed
line - - -) of the coupled fluid-structural response (Es = 1, Ds = 0.2) to the optimal forcing computed for the
rigid-wall scenario. The optimal rigid-wall response (σ , solid line —–) is also reported as a reference. The
coupled responses at ω = 0.055 (•) and at ω = 0.4 (�) are reported in figure 13 and figure 14, respectively.

where uf is the velocity component of qf . Although G measures the same physical quantity
as σ , a separate notation is introduced here to emphasise the fact that G is a measure of the
response to a known (possibly generic) forcing, whereas σ is the result of an optimisation
process between forcing and response. Specifically, for each value of the forcing frequency
ω, we compute here the viscoelastic response to the optimal forcing determined in § 4.1 for
the rigid case. The gain curve computed from (4.8) is displayed in figure 12. Two distinct
amplification ranges emerge: at low frequency, a strong response related to the TSW,
while at higher frequencies, the amplification is clearly related to TWF. This distinction
characterises the whole of the following analysis.

The low-frequency peak in figure 12 related to the TSW is attenuated with respect
to the rigid case by approximately 25 %. This is in qualitative agreement to the early
studies by e.g. Benjamin (1960) and Carpenter & Garrad (1985) on the beneficial role
of coating flexibility on the attenuation of this type of convective instability. Furthermore,
the frequency range where the TSW amplification occurs is reduced.

The spatial structure of the responses corresponding to the TSW peak (black circle in
figure 12) is depicted in figure 13(a). The transverse component of the real part of the
velocity response uf is represented in the fluid and solid regions. For a better visualisation,
the solid has been deformed according to the real part of the solid deformation field,
scaled with an arbitrary amplitude. The fluid perturbation is similar to the one observed in
the rigid case: however, its amplitude is reduced and its structure is shifted downstream.
Two different scales have been used to represent the solid and fluid velocities, since
the solid velocity perturbations are much smaller than those in the fluid. In particular,
the solid velocity perturbation in the vicinity of the interface is very small compared
with the fluid velocity perturbations, i.e. approximately 1 % of the maximal velocity
fluctuations. The longitudinal wavelength of the solid deformation/velocity is the same
as that of the surrounding TSW. The displacement – shown via the mesh deformation – is
in phase quadrature with the velocity since us = iωξ , while the solid velocity is in phase
opposition with respect to the fluid one.

The space–time diagrams in figure 13(b,c) show the evolution in time of the response
via the perturbation pressure in the fluid (b) and in the solid (c). The pressure in the solid
is directly part of the solid response, because of the incompressibility constraint. The fluid
wave propagation is not much altered by the presence of the solid – the presence of almost
straight oblique stripes – between x = 25 and x = 125. The graph related to the solid (c)
shows how the edge of the patch alters the wave propagation in the solid. Contrary to what
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Figure 13. Perturbation field for the coupled response to the rigid, harmonic, optimal forcing at the TSW
amplification peak (• in figure 12). The blue and orange shaded contours in (a) report respectively the real part
of the transverse velocity for the fluid and solid media; dashed contours indicate negative values. (b,c) Report
the pressure perturbation as a function of space and time; (b) shows the response in the fluid phase at y = 1,
and (c) in the solid phase at y = −1.

was shown in the modal analysis, the response to the rigid-wall forcing generates only a
downstream-travelling wave in both media.

The amplification curve in figure 12 shows a second amplification peak around the
forcing frequency ω = 0.4. Unlike the TSW range, the amplification in this higher
frequency range has no corresponding peak in the curve related to the rigid case. In fact,
the amplification is due to the same fluid–structure mechanism responsible of the unstable
modes identified in § 3.2, i.e. the TWF. The mode corresponding to the peak of the
response in this frequency range (black diamond in figure 12) is displayed in figure 14(a).
The mode takes the form of a downstream-travelling wave whose amplitude rapidly decays
after the coating’s end. As for the global modes, the perturbation has the same order of
magnitude in the solid and in the fluid, where it is spatially amplified while travelling in
the vicinity of the coating.

Another difference with respect to the TSW scenario is given by the space–time diagram
in figure 14(b,c). The response presents a similar travelling-wave pattern that develops in
the upstream region in both the fluid and the solid, however, the interaction in the vicinity
of the downstream edge of the patch is much stronger and visible also in the fluid phase.

Even if the system is linearly stable, the mechanism of the TWF is able to amplify
significantly the fluid–structure response. This behaviour is also present when considering
the suboptimal forcings computed for the rigid-wall scenario, reported in figure 15.
Both are able to trigger an amplification in the TWF frequency range, with the peak
corresponding to the second suboptimal being higher than the one corresponding to the
optimal rigid forcing. The responses corresponding to these peaks all share very similar
features to the one reported in figure 14 for the optimal rigid forcing.

These observations push for determining the optimal perturbation in a fully elastic
framework, that is, by taking into account the fluid–structure interaction when determining
the optimal perturbation.
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Figure 14. Perturbation field for the coupled response to the rigid, harmonic, optimal forcing at the TWF
amplification peak (� in figure 12). The blue and orange shaded contours in (a) report respectively the real part
of the transverse velocity for the fluid and solid media; dashed contours indicate negative values. (b,c) Report
the pressure perturbation as a function of space and time; (b) shows the response in the fluid phase at y = 1,
and (c) in the solid phase at y = −1.
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Figure 15. Coupled response (Es = 1 and Ds = 0.2) to the suboptimal rigid forcings. The energetic
amplification (G) to the first and second suboptimals are reported by the dot-dashed (– · –) and dotted (· · · · · · )
lines, respectively.

4.3. Fluid-elastic resolvent analysis
As seen in § 4.2, if the dynamics of the TSW interacting with the flexible coating is well
described in terms of the response to a forcing determined in the rigid configuration, this
is not so much the case for the TWF. We therefore extend here the resolvent analysis
presented in § 4.1 to the coupled fluid-elastic system. Namely, we seek the optimal
harmonic forcing

f ′(x, t) = f (x) eiωt + c.c. (4.9)

of the fluid momentum equations, that produces in return a fluid-elastic response(
q′

s(x, t)
q′

f (x, t)

)
=
(

qs(x)

qf (x)

)
exp(iωt) + c.c.. (4.10)

As a measure of the response, we consider the fluid velocity as previously. This analysis
gives the worst-case scenario for the development of instabilities in the fluid, since we
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allow the forcing to be distributed everywhere in the fluid, and measure the response
everywhere in the fluid. We did not include the solid region in the forcing nor in the
response norm, because we are primarily interested in the influence of the coating on the
development of the instabilities in the fluid. Note that including a solid forcing could make
sense if one aims at determining the effects of external solid vibrations on the development
of the instabilities. By introducing this decomposition in the linearised problem (2.4), we
obtain {

iω
(

Bs 0
0 Bf

)
−
(

As Csf
Cfs Af (Q)

)}(
qs
qf

)
=
(

0
P f f

)
(4.11)

which is very similar to (4.7), except that the forcing is now unknown and will be
determined by an optimisation process. Introducing the fluid–solid resolvent operator

Rfsi(ω) =
{

iω
(

Bs 0
0 Bf

)
−
(

As Csf
Cfs Af (Q)

)}−1

and P fsi =
(

0
P f

)
(4.12a,b)

and following the same path as in § 4.1, the optimal forcing is now the solution of the
eigenvalue problem (

PT
fsiRfsi(ω)†P fsiQfuPT

fsiRfsi(ω)P fsi

)
f = σ 2Qf f . (4.13)

Note that the values of σ shown here represent the optimal gain for the coupled
fluid–solid system. In contrast, a pure hydrodynamic optimisation (fluid decoupled from
the solid) was considered in § 4.1. Nevertheless, it is associated with the same measure,
i.e. the perturbation energy limited only to the fluid phase.

For the viscoelastic case Es = 1, Ds = 0.2, the gain curve obtained by solving (4.13) is
reported in figure 16. The solid line shows two large peaks of amplification for the coupled,
optimal forcing, while the suboptimal gains reach only a very much lower amplitude. The
instabilities in the TWF region are more amplified than the TSW. For the latter, the fully
coupled optimal gain is almost equal to the one obtained with the rigid optimal forcing
(cf. figure 12). In the TWF region, the fully coupled optimal gain has its peak centred
around the different peaks previously obtained as a response to the rigid forcings, while
no suboptimal peaks are here observed. The optimal gain curve as computed with the
resolvent analysis essentially corresponds to a slice of the pseudospectrum (Trefethen
& Embree 2005). This establishes a link with the coupled fluid–solid eigenvalues. We
observe that the peak at ω = 0.40 associated with TWF (cf. figure 16) matches quite
well the frequency of the least stable TWF mode (cf. figure 6, case Ds = 0.2) found
in the region where these modes follow a ‘bump’ shape (frequencies around the locally
least stable mode at λi = 0.39). However, at lower frequencies (λi < 0.2), even if there
are TWF eigenvalues that are even less stable, they are not associated with a significant
resolvent response. This means that strong non-normal effects are at play when it comes
to TWF modes, since it is not the eigenvalues closest to the imaginary axis that cause
the largest resolvent amplification response (or stated differently, the pseudospectrum
amplification levels in the complex plane are far from being circular). When it comes
to Tollmien–Schlichting (TS) modes, the least stable unsteady eigenvalue has a frequency
λi = 0.037 while the resolvent response has its peak at ω = 0.056.

From figure 17(a), we observe that the coupled optimal response at the TSW peak shows
similar features as the one shown in figure 13 for the rigid optimal forcing; moreover, the
coupled optimal forcing (figure 17b) is very similar to the rigid one, reported in figure 11(b)
for a slightly higher ω. Regarding the TWF, the fully coupled optimal response (figure 17c)
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Figure 16. Optimal energetic amplification in the viscoelastic configuration (Es = 1.0 and Ds = 0.2). The
optimal energetic gain (σ , solid line —–) is reported as a function of the frequency ω, as well as the first (σ1,
dot-dashed line – · –) and the second (σ2, dotted line · · · · · · ) suboptimals. The resolvent modes associated with
the TSW (• at ω = 0.056) and TWF (� at ω = 0.4) are displayed in figure 17.
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Figure 17. Perturbation field for the fully coupled response to the fully coupled harmonic optimal forcing. The
contours report the real part of the transverse velocity; (a) shows the response at the peak in the TSW frequency
range (• in figure 16), and (c) the one in the TWF range (� in figure 16). The optimal forcings resulting in (a,c)
are shown in (b,d), respectively. In each panel the displacement thickness is reported by the thick, grey line as
a reference. Dashed contours indicate negative values.

shows also the same spatial structure as the response to the rigid case optimal. The main
discrepancy between the two solutions is a larger space separation between the region
having the largest forcing (located upstream, figure 17d) and the region having a large
response (figure 17(c), located more downstream) in the fully coupled case.
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Figure 18. Influence of the material stiffness Es and viscoelastic damping Ds on the amplification of TSW
(a) and TWF (b). The gains are normalised by the maximal TSW amplification in the rigid case. (a) Peak gain
in the TSW frequency range. (b) Peak gain in the TWF frequency range.

4.4. Influence on amplification of stiffness and viscous damping
Similarly to § 4.4, a parametric study on the viscoelastic properties of the patch – namely,
Young’s modulus Es and the viscous coefficient Ds – has been conducted. The optimal
energetic gain G has been computed in the linearly stable region of the space of parameters:
figure 18 reports the amplification maxima in the TSW frequency region (a) and in the
TWF region (b). The values are normalised using the maximum amplification in the
rigid-wall case: this allows us to easily identify the sets of parameters for which the coupled
response is larger than the rigid one.

The TSW peak is attenuated for all the explored parameters, see figure 18(a). A more
flexible patch – i.e. with a smaller Es – results in a greater attenuation of the fluid
convective instability, confirming again early studies. Consistently, increasing values of
Es leads to a TSW amplification equal to that of the rigid case. Notably, the viscous
coefficient Ds has almost no effect on the capability of the patch to attenuate TSWs: this is
a further clue that the attenuation effect is due to the elastic response and not to an energy
absorption by the patch of the perturbation energy in the fluid, as already suggested by
Benjamin (1963).

Solid viscosity plays instead a more relevant role in the amplification of the TWF, see
figure 18(b). In the TWF frequency range, the coupled system is capable of generating
amplifications up to a factor of ten greater than in the rigid case, as indicated by the
saturated magenta region. This result is of particular interest since it reduces the ‘allowed’
region of the parameter space, foreclosing those combinations with the largest TSW
attenuation.

In the light of these considerations, the following section is dedicated to the physical
analysis of the mechanisms of attenuation and amplification of disturbances by the
viscoelastic patch.

5. Mechanisms of TSW attenuation and TWF amplification

We focus finally on the physical mechanisms by which the viscoelastic coating mitigates
the growth of TSW and amplifies the TWF observed in the previous section. An analysis
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Figure 19. Fluid energy. The solid line (—–) reports the perturbation energy Kf for the optimal coupled
response – as computed in § 4.3 – while the dashed line (− − −) shows the rigid response to the same forcing.

of the total energy budget is first proposed to investigate the global energy fluxes in
and in between the fluid and the solid phases. A decomposition of the flow variables
is then proposed to breakdown the fluid, solid and coupling contributions to energy
and production and to identify the flow waves specifically resulting from the interaction
between the two phases.

5.1. Energy budget
We analyse here the energy budget of the harmonic perturbation defined in (4.10). After
time averaging over one period of oscillation 2π/ω, the kinetic energy of the fluid
perturbation integrated over the domain Ω is defined as

Kf = 〈
qf , qf

〉
u =

∫
�f

|uf |2 dΩ, (5.1)

where uf is the (complex) fluid velocity field. The fluid kinetic energy Kf of the optimal
coupled response, as defined in § 4.3, is displayed by the solid curve in figure 19 as
a function of ω. It exhibits two peaks related to the amplification of TSW and TWF
perturbations at low and high frequency, respectively; this is similar to the evolution of the
optimal energetic amplification σ already shown in figure 16, simply because Kf = σ 2.
The dashed line reports instead the rigid-wall response to the same optimal coupled
forcing. Similarly to figure 12, only the TSW peak is present.

Clarification of the difference between the two responses – the one with the viscoelastic
wall and the one with the rigid one – can be found in the energy budget of the fluid energy,
as presented in Appendix B

ωKf = Im
(Pf + Df + Ws→f + Wf

)
(5.2)

where Pf and Df are the production and diffusion terms, respectively, while Ws→f and Wf
are the powers transferred at the interface and produced by the forcing term, respectively.
We also recall that Im(·) represents the imaginary part. When a rigid wall is considered,
two terms are identically zero: the power transfer at the wall Ws→f (since the wall is not
moving) and the imaginary part of diffusion term Df (because of the symmetry of the
operator). The latter is not generally true when a flexible wall is considered, because of the
ALE terms that render the diffusion operator non-symmetric; however, in our scenario,
the contribution of Df remains very small with respect to the other terms, and it can be
neglected for practical reasons. Moreover, the forcing term Wf is also found to be very
small with respect to production: this is not surprising, since the forcing optimisation
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Figure 20. Energy budget. The dot-dashed line (– · –) reports the imaginary part of the energy transfer term
Ws→f between the solid and the fluid via the flexible interface. The solid line (—–) and the dashed line (- - -)
report respectively the production term Pf for the coupled optimal response and the rigid-wall response to
the same forcing. All the terms are normalised by the forcing frequency ω and the fluid kinetic energy Kf ,
according to (5.2).

procedure promotes the energy harvest from the mean flow in order to minimise the
forcing, i.e. maximise the response (Sipp & Marquet 2013a). These considerations allow
us to approximate (5.2) as

rigid wall: ωKf ≈ Im
(Pf

)
,

compliant wall: ωKf ≈ Im
(Pf + Ws→f

)
.

}
(5.3)

Figure 20 reports the imaginary part of the active terms in the energy budget, normalised
by the forcing frequency ω and the respective fluid kinetic energy Kf – the normalisation
by the energy also allows us to compare directly responses with different amplifications
by looking to a specific representation of each term. The dot-dashed line shows power
transferred at the interface Ws→f : energy is transferred to the fluid both in the frequency
range of the TSW and of the TWF, although an attenuation of energy is found for the
former and an amplification in the latter, as shown in figure 19. This energy injection
by the viscoelastic patch results in a reduction of the production term, according to the
energy budget presented here: this is clearly shown by the solid and dashed lines in
figure 20, reporting the production term Pf for the compliant and rigid walls, respectively.
A reduction of the specific production is not only found in the frequency range where
the TSW attenuation takes place, but also in the TWF range, where a large amplification
is observed. To better clarify this mechanism, a decomposition of the system response is
introduced in the following.

5.2. Response decomposition
Recalling the fully coupled response in (4.11), the distributed forcing f on the fluid
momentum equation triggers the amplification of fluid waves. These waves excite the
viscoelastic patch, and its vibration can in return modify the amplification of the fluid
waves because of the off-diagonal coupling terms. To better distinguish the interaction of
these effects, we decompose the fluid–solid response as(

qs
qf

)
=
(

0
q̂f

)
+
(

q̂s
0

)
+
(

rs
rf

)
, (5.4)

where the first term q̂f is the fluid response in the rigid-wall configuration, computed from
(4.4). The second term q̂s is the solid state – deformation, velocity and pressure – induced
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Figure 21. Production decomposition according to (5.7). The production term for the coupled optimal response
(
〈
qf , qf

〉
P, solid line —–) is decomposed into the contributions of the rigid-wall response (

〈
q̂f , q̂f

〉
P, dashed line

- - -), the feedback fluid–solid response (
〈
rf , rf

〉
P, dot-dashed line – · –) and the cross-product term (

〈
rf , q̂f

〉
P +

c.c., dotted line · · · · · · ). The dashed grey vertical lines indicate the frequencies for which the decomposed
responses are reported in figures 23 and 24.

by the fluid response, that we define as the solution of

(iωBs − As) q̂s = Csf q̂f . (5.5)

Finally, the third term in the above decomposition is the feedback fluid–solid response,
solution of the forced problem{

iω
(

Bs 0
0 Bf

)
−
(

As Csf
Cfs Af (Q)

)}(
rs
rf

)
=
(

0
Cfsq̂s

)
. (5.6)

This system is similar to (4.7) but the right-hand side forcing is given by the solid state
induced by the fluid forcing instead of the fluid forcing itself.

Therefore, the fluid response is composed of two terms: the rigid-wall response q̂f and
the response rf induced by the coupling with the coating dynamics. Similarly, the solid
dynamics decomposes into the external excitation by the fluid waves on the rigid-wall
configuration, q̂s, and the self-excitation response rs generated by the coupling with the
fluid.

The contribution of each component to the production for coupled optimal response can
be highlighted by injecting the decomposition in the definition of Pf ,

Pf = 〈
qf , qf

〉
P = 〈

q̂f , q̂f
〉
P + 〈

rf , rf
〉
P +

(〈
rf , q̂f

〉
P + 〈

q̂f , rf
〉
P

)
, (5.7)

where 〈·, ·〉P is the internal product that defines the production term, see Appendix B.
The term

〈
q̂f , q̂f

〉
P is the production as computed for the rigid-wall response. The term〈

rf , rf
〉
u is the contribution of the coupled response rf , while the cross-term

〈
rf , q̂f

〉
u + c.c.

traces the interaction between the rigid and the coupled response. Figure 21 reports each
contribution to the production decomposition. As already observed in § 5.1, the production
is reduced in the presence of the compliant patch (solid line), with respect to the rigid-wall
response (dashed line). Moreover, the contribution of the coupling (dot-dashed line) is
found to be positive in all the investigated frequency range, with a very large contribution
in the TWF range; this is a further sign that this kind of waves is characterised by a strong
coupled interaction between the fluid and the solid. The only negative contribution to the
decomposition is given by the cross-term (dotted line). This term is negative where we
observe an attenuation of the energy amplification by the compliant wall – i.e. in the TSW
range – and slightly positive where a large energy amplification is observed, dominated
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Figure 22. Energy decomposition according to (5.8). The coupled, optimal perturbation energy in the fluid
(
〈
qf , qf

〉
u = σ 2, solid line —–) is decomposed into the energy of the rigid-wall response (

〈
q̂f , q̂f

〉
u, dashed line

- - -), the energy of the feedback fluid–solid response (
〈
rf , rf

〉
u, dot-dashed line – · –) and the cross-product

term (
〈
rf , q̂f

〉
u + c.c., dotted line · · · · · · ). The dashed grey vertical lines indicate the frequencies for which the

decomposed responses are reported in figures 23 and 24.

by the fluid-structural coupling – in the TWF range. This reveals that the reduction in the
production term in the TSW is related to the interaction of the rigid response (q̂f ) with the
one generated by the coupling with the solid (rf ).

A similar decomposition can be introduced also for the fluid kinetic energy Kf

Kf = 〈
qf , qf

〉
u = 〈

q̂f , q̂f
〉
u + 〈

rf , rf
〉
u +

(〈
rf , q̂f

〉
u + 〈

q̂f , rf
〉
u

)
. (5.8)

The rigid-wall term
〈
q̂f , q̂f

〉
u and the coupling one

〈
rf , rf

〉
u are positive by definition and,

hence, their sum cannot explain the attenuation of the energy of the coupled response〈
qf , qf

〉
u observed in § 5.1 in the TSW frequency range. The only possible negative

contribution is the cross-product term
〈
rf , q̂f

〉
u + c.c.; this is indeed the case, as reported

in figure 22. The solid and the dashed lines show respectively the perturbation energy for
the compliant and rigid-wall responses, as in figure 19, while the dot-dashed line reports
the contribution of the coupling response rf . The cross-term, responsible for the energy
reduction in the TSW range, is depicted by the dashed line; it is observed negative in the
TSW range and it explains the energy attenuation for this type of perturbation. Note that
the cross-product term traces the interaction between the rigid and the coupled responses
and it is linked to a phase shift between the q̂f and rf ; this opens to the interpretation of
the attenuation mechanism as a wave cancellation operated by the compliant wall.

5.2.1. Wave-cancellation mechanism for the Tollmien–Schlichting instabilities
The different components of the decomposition introduced above are reported in figure 23
for a forcing frequency in the TSW range, i.e. ω = 0.056, left vertical dashed line in
figures 21 and 22. The real part of the transverse velocity is displayed in the fluid and solid
phase for all the different components. Figure 23(a) reports the rigid-wall response q̂f : the
TSW is excited by the optimal coupled forcing in figure 17(b) and develops downstream
in the fluid domain. This induces the response q̂s in the solid, as depicted in figure 23(b);
as can be seen with the help of the shaded vertical lines, the two responses are phase
shifted by a half-wavelength from one another. This can be explained as follows: the
forcing term Csf q̂f in (5.5) corresponds to the pressure and viscous stresses applied to
the solid interface; the transverse component is dominated by the pressure and, since this
pressure excitation has a frequency that is away from the solid resonances, the resulting
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Figure 23. Decomposition of the coupled response in the TSW range. For a forcing frequency ω = 0.056, the
optimal, fluid-elastic response (qs, qf ) (d) is decomposed into its rigid q̂f (a), solid q̂s (b) and coupled (rs, rf )

(c) components, cf. (5.4). The real parts of the transverse velocity in the fluid and in the solid are reported by
the contours; dashed lines indicate negative values.

solid acceleration is in phase and the corresponding displacement is out of phase. This
phase opposition with respect to the rigid response is retained also in the fluid part rf
of the coupling component, reported in figure 23(c). Hence, it is observed that a TSW
rf is induced by the solid in phase opposition to the incoming wave q̂f ; this explains the
energy transfer from the solid to the fluid observed in figure 20, and the fact that the
coupling response rf has positive energy and production, as shown in figures 21 and 22.
This phase delay, driven by the fluid–solid interaction, yields a wave-cancellation effect
and the superposition of q̂f , q̂s and rf results indeed in the attenuated response reported qf
in figure 23d.

5.2.2. Amplification mechanism for the TWF instabilities
The TWF, instead, is dominated by the coupling component [rf , rs]. Figure 24 reports
the decomposition for the TWF peak at ω = 0.4, i.e. the high-frequency vertical line in
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Figure 24. Decomposition of the coupled response in the TWF range. For a forcing frequency ω = 0.4, the
optimal, fluid-elastic response (qs, qf ) (d) is decomposed into rigid q̂f (a), solid q̂s (b) and coupled (rs, rf ) (c)
components, cf. (5.4). The real parts of the transverse velocity in the fluid and in the solid are reported by the
contours; dashed lines indicate negative values.

figures 21 and 22. The rigid-wall response q̂f to the optimal coupled forcing reported in
figure 17(d) is reported in figure 24(a): the response presents a relatively small amplitude,
similarly to the forced response in the solid q̂s displayed in figure 24(b). The coupling
response [rf , rs] – figure 24(c) – is largely dominant in amplitude with respect to the other
two components; comparing them from an energetic point of view, the latter presents the
larger energy and production (dot-dashed line in figures 22 and 21). The cross-energy
product

〈
q̂f , rf

〉
u (dotted line in figure 22) is positive for the TWF, indicating that the

rigid response q̂f and the coupling response rf ; this is indeed the case, as can be visually
verified with the help of the vertical lines in figure 24. Hence, [rf , rs] provides the main
contribution to the full response showed in figure 24(d), confirming that the TWF response
is dominated by a strong fluid–structure coupling.

The energy exchange between the fluid and the compliant patch is dominated by the
normal stresses at the wall – i.e. the pressure perturbation. This has been shown by
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Carpenter & Gajjar (1990) who extend the theory by Benjamin (1963); some energy is
indeed transferred via the tangential viscous forces, but their contribution is a far lower
magnitude with respect to the pressure contribution (see Tsigklifis & Lucey (2017) for
further examples for the boundary layer).

6. Conclusions

The physical coupling between a boundary-layer flow and a finite-length viscoelastic patch
mounted on a wall has been studied by means of global stability and resolvent analyses.
The combined use of these two methods is of a particular interest for the investigated
system since, depending on the viscoelastic parameters of the patch, it becomes globally
unstable or exhibits large forced responses.

The global eigenvalue analysis has shown that self-sustained TWF instabilities arise
when the solid patch is very flexible. The viscous behaviour of the material can mitigate
the rising of this fluid–structure instability, in accordance with the seminal studies
(Benjamin 1960; Landahl 1962) and many subsequent works. The stabilisation of TWF
instabilities thanks to the material viscosity is a preliminary step when investigating
the passive control of TSW via a compliant patch, since their attenuation relies on the
elasticity property of the wall. The performance of a flexible insert in attenuating the
TSW has been assessed by analysing the fluid–structure resolvent operator in two ways.
First, the harmonic flow momentum forcing was optimised for a rigid-wall configuration
(without an elastic patch) so as to determine the flow perturbation of largest kinetic
energy, and in particular the amplification of TSW at low frequency. By computing the
harmonic fluid–structure perturbation induced by this optimal forcing, we could assess
the attenuation of this convective flow instability by the compliant patch. We have also
characterised the amplification of TWF instabilities at higher frequency. In particular, we
have shown that strong amplifications may also occur for suboptimal forcings and not
necessarily in the expected ranking order. To overcome that deficiency, we have thus
performed a fluid–structure resolvent analysis, which allows us to compute the optimal
flow forcing in the compliant wall configuration. The attenuation of TSW at low frequency
and the amplification of TWF are large frequency are then characterised only by the
optimal resolvent modes.

Finally, we have investigated the physical mechanisms responsible for the attenuation
of TSW and amplification of TWF instabilities. In agreement with previous studies, the
energy budget of the harmonic response showed that the presence of the compliant patch
reduces the specific production term in the fluid kinetic energy equations. A decomposition
of the response is proposed to unravel the flow contributions due to the forcing (decoupled
response) and to the interaction with the elastic patch (coupled response). In the
high-frequency range, the TWF instability is dominated by the coupled fluid-structural
response. It may be large even for weak forcing, due to the existence of weakly damped
fluid–structure eigenmodes. In the low-frequency range, the cross-interaction of the
decoupled and coupled responses is responsible for the attenuation of the TSW instability.
The cross-energy term is found to be negative suggesting that the attenuation of this type
of wave can be interpreted as a wave-cancellation process operated by the fluid-structural
coupling. This is also confirmed by visualisations of the decomposed response, where it is
clear that the fluid-structural coupling generates a counter-phase wave that, superimposed
on the original one, reduces the overall perturbation amplitude.

As already evoked by Carpenter, Davies & Lucey (2000), viscoelastic patches tailored
for the local flow environment are a promising way of mitigating the development of
boundary-layer instabilities. The approach presented in this paper enables the possibility

937 A1-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

72
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.72


J.-L. Pfister, N. Fabbiane and O. Marquet

of optimising the spatial distribution of elastic and viscous material properties, hence
allowing us to design technologically practicable types of compliant patches in the future.
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Appendix A. Details of the governing equations

We list here explicit equations corresponding to the problem (2.4), with the solid
variable q′

s = [ξ ′, u′
s = ∂tξ

′, p′
s, ξ

′
e, u′

e = ∂tξ
′
e]T and fluid variable q′

f = [u′
f , p′, λ′]T. Note

that more details are available in Pfister et al. (2019); Pfister (2019).
In the solid domain �s the infinitesimal solid displacement field ξ ′(x, t) and velocity

field u′
s(x, t) = ∂tξ

′ satisfy the linearised elasticity equation

Ms
∂u′

s

∂t
− ∇ · σ s(ξ

′, u′
s, p′

s) = 0, ∇ · ξ ′ = 0 in �s, (A1a,b)

where the solid pressure p′
s is introduced so as to enforce the incompressibility constraint

∇ · ξ ′ = 0. The infinitesimal solid stress tensor reads

σ s(ξ
′, u′

s, p′
s) = −p′

sI + Es

3

(
∇ξ ′ + ∇ξ ′T)+ Ds

2

(
∇u′

s + ∇u′
s
T
)

. (A2)

In this expression, the second term models the linear elastic behaviour while the third
term accounts for the viscous dissipation. The solid is assumed to be clamped (ξ ′ = 0)
everywhere but on the fluid–solid interface 	 = �f ∪ �s. Velocities and normal stresses
are continuous across this interface, after linearisation of the ALE formulation, these
coupling conditions read

u′
s = u′

f on 	, (A3)

σ s(ξ
′, u′

s, p′
s)n = (

σ (u′
f , p′) + σ ′(U, P, ξ ′

e)
)

n on 	, (A4)

where u′
f and p′ are the fluid velocity and pressure perturbations. In the second

equation that expresses the continuity of stresses, the fluid stress is composed of the
classical Cauchy stress (first term) and an additional term that depends on the extension
displacement variable ξ ′

e. The fluid Lagrange multiplier variable also corresponds to
σ s(ξ

′, u′
s, p′

s)n. Defined in the fluid domain, it is the solution of the Laplace extension
problem

∇2ξ ′
e = 0 in �f , ξ ′

e = ξ ′ on 	, (A5a,b)

which smoothly extends the interface solid displacement onto the fluid domain. In the fluid
domain �f , fluid velocity and pressure perturbations satisfy the linearised Navier–Stokes
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equations rewritten within the ALE framework,

∂u′
f

∂t
+ (∇U)

(
u′

f − ∂ξ ′
e

∂t

)
+ (∇u′

f )U − ∇ · σ (u′
f , p′) + · · ·

(∇U)�′(ξ ′
e)U − ∇ · σ ′(U, P, ξ ′

e) = f ′ in �f , (A6)

∇ · u′
f + ∇ · (�′(ξ ′

e)U
) = 0 in �f . (A7)

Additional terms – compared with the classical linearised Navier–Stokes equations –
allow us to account for the deformation of the domain, via the extension displacement ξ ′

e.
For instance, in the linearised momentum equation (first equation above), the convection
velocity of the fluid perturbation by the steady flow is modified by the extension velocity
∂tξ

′
e. The linearised fluid stress tensor, already present in (A4), reads

σ ′(U, P, ξ ′
e) = σ (U, P)�′(ξ ′

e) − 1/Re
(∇U∇ξ ′

e + (∇U∇ξ ′
e)

T) , (A8)

where σ (U, P) is the usual Cauchy stress tensor and �′(ξ ′
e) = (∇ · ξ ′

e)I − ∇ξ ′
e is a

deformation operator. Zero-velocity conditions are taken at the inflow boundary, no-slip
conditions are taken along the plate and stress-free conditions are considered elsewhere.

Appendix B. Derivation of the energy budget for harmonic perturbations

We establish here the energy budget for harmonic fluid and solid perturbations in the form

q′
f = qf eiωt + c.c. and q′

s = qs eiωt + c.c.. (B1a,b)

The fluid and solid kinetic energies time averaged over one period of oscillation 2π/ω and
integrated over the domain Ω are respectively defined as

Kf = 〈
qf , qf

〉
u =

∫
�f

u∗
f · uf and Ks = Ms

∫
�s

u∗
s · us, (B2a,b)

where Ms is the non-dimensional mass and (·)∗ denotes the complex-conjugate operation.

B.1. Fluid energy budget
To establish the equation governing the fluid kinetic energy, we inject the harmonic
decomposition into the fluid momentum equation (A6). Multiplying by the complex
conjugate fluid velocity and integrating over the fluid domain �f , we obtain

iωKf = Pf + Df + Ws→f + Kf (B3)

where Pf and Df are the production and diffusion terms, while Ws→f and Wf are power
transmitted to the flow by the solid and the forcing, respectively. The real part of the
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equation represents the averaged power balance in a period,

0 = Re
(Pf + Df + Ws→f + Kf

)
, (B4)

while the imaginary part represents the equilibrium for the fluctuation part of the energy
during one period,

ωKf = Im
(Pf + Df + Ws→f + Kf

)
. (B5)

The production term Pf is defined as

Pf = 〈
qf , qf

〉
P = −

∫
�f

u∗
f · [(∇U)

(
uf − iωξ e

)+ (∇uf )U − ∇p + (∇U)�′(ξ e)U
]

dΩ

+
∫

�f

(∇u∗
f ) : (P�′(ξ e)) dΩ, (B6)

where ‘:’ denotes the doubly contracted tensorial product. The diffusion term Df , obtained
after using the divergence theorem, reads

Df = − 1
Re

∫
�f

(∇u∗
f ) :

[(∇uf + (∇uf )
T + ∇U∇ξ e + (∇U∇ξ e)

T)] dΩ, (B7)

and the transfer of energy (from the fluid to the solid) at the interface Ws→f is noted

Ws→f =
∫

Γ

u∗
f ·
(

σ (uf , p) + σ (U, P)�′(ξ e) − 1
Re

(∇U∇ξ e + (∇U∇ξ e)
T))n dΓ.

(B8)
Finally, the power of the forcing is given by

Wf =
∫

Γ

u∗
f · f dΓ. (B9)

When a rigid wall is considered, the ALE terms the diffusion term reduces to

Df = − 1
Re

∫
�f

(∇u∗
f ) :

(∇uf + (∇uf )
T) dΩ. (B10)

It is clear that, because of the symmetry of the integrated function, the resulting number
is a real number, with no imaginary part.

B.2. Solid energy budget
Considering now the solid perturbation in the domain �s, the complex velocity field us =
iωξ is governed by the elasticity equation

iωMsus − ∇ · σ s(us, ps, ω) = 0. (B11)

Introducing the notation ∇sus = (∇us + ∇us
T) for conciseness, the solid stress σ s reads

σ s(us, ps, ω) = −psI +
(

−i
Es

3ω
+ Ds

2

)
∇sus, (B12)

which now depends on the pressure and velocity fields, as well as the inverse of the
frequency ω through the elastic part term. Multiplying (B11) with the complex conjugate
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of the solid velocity, integrating over the solid domain and using the divergence theorem,
we obtain

(iω)Ks +
∫

�s

(∇us
∗) : σ s dΩ −

∫
	

us
∗ · (σ s(us, ps, ω) · n) dΓ = 0. (B13)

Note that the boundary integral is restricted to the fluid–solid interface 	 because the
clamped boundary conditions ensures that the complex solid velocity is zero on other
boundaries. The volume integral can be developed as∫

�s

(∇u∗
s ) : σ s dΩ

= −
∫

�s

(∇u∗
s ) : ( psI) dΩ +

(
− iEs

3ω
+ Ds

2

)∫
�s

(∇u∗
s ) : (∇sus) dΩ. (B14)

The first term vanishes because the solid velocity is divergence free. Since the volume
integral in the second term is a real coefficient, the above expression can be separated
between its real and imaginary part according to∫

�s

(∇u∗
s ) : σ s dΩ

= Ds

[
1
2

∫
�s

(∇u∗
s ) : (∇sus) dΩ

]
− iEs

[
3
ω

∫
�s

(∇u∗
s ) : (∇sus) dΩ

]
. (B15)

By introducing this decomposition into (B13), we obtain

(iω)Ks + Ds − iEs = Wf →s, (B16)

where the real coefficients Es and Ds represent the elastic and damping terms, defined as

Ds = Ds

2

∫
�s

(∇u∗
s ) : (∇sus) dΩ and Es = 3Es

ω

∫
�s

(∇u∗
s ) : (∇sus) dΩ, (B17a,b)

while the complex coefficient Wf →s defined as

Ws→f =
∫

	

u∗
s · (σ s(us, ps, ω) · n) dΓ (B18)

accounts for the transfer of energy at the interface from the solid to the fluid. It is easily
shown that the real part of (B16) represents the time-averaged energy equilibrium. Over
one period, there is no variation of the kinetic energy and the time-averaged energy
transferred from the fluid to the solid is exactly balanced by the dissipative term, i.e.

Ds = Re
(Wf →s

)
. (B19)

The imaginary part of (B16) represents the equilibrium for the fluctuation part of the
energy during one period, according to

ωKs − Es = Im
(Wf →s

)
. (B20)

The fluctuation of energy induced by the flow at the interface is balanced by the elastic
term.
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Appendix C. Vibration modes of an infinite-length plate

The limit case where the length of the coating is assumed to be infinite is convenient, for
it allows us to compute the dispersion relation of the coating and thus gives us a clear
physical overview of the vibration dynamics in the coating. With that aim we introduce a
solid streamfunction φ such that

[ξ ′]x = ∂φ

∂y
and [ξ ′]y = −∂φ

∂x
, (C1a,b)

which enables the incompressibility condition ∇ · ξ ′ = 0 to be automatically satisfied.
Inserting this ansatz in (A1), we obtain the following momentum equations,

Ms
∂3φ

∂t2∂y
= −∂ps

∂x
+
(

Es

3
+ Ds

2
∂

∂t

)(
∂3φ

∂x2∂y
+ ∂3φ

∂y3

)
, (C2)

−Ms
∂3φ

∂t2∂x
= −∂ps

∂y
−
(

Es

3
+ Ds

2
∂

∂t

)(
∂3φ

∂x3 + ∂3φ

∂y2∂x

)
, (C3)

for the x and y components respectively. The pressure can be eliminated from the above
equations by considering the difference between the x component differentiated with
respect to y and the y component differentiated with respect to x, giving

Ms
∂2

∂t2

(
∇2φ

)
=
(

Es

3
+ Ds

2
∂

∂t

)(
∇4φ

)
. (C4)

We then seek for modes φ(x, y, t) = φ̂( y) exp(λt − ikx) propagating in the homogeneous
x direction, with k ∈ R the wavenumber and λ ∈ C. The imaginary part of λ represents the
temporal frequency of the mode, while the real part represents the temporal amplification
rate. In particular when Ds = 0 (no damping) then λ is a pure imaginary number. The
previous equation then becomes

λ2Ms

(
d2φ̂

dy2 − k2φ̂

)
−
(

Es

3
+ λD′

s

2

)(
d4φ̂

dy4 − 2k2 d2φ̂

dy2 + k4φ̂

)
= 0. (C5)

The modes should satisfy the zero-displacement condition at the bottom at yb = −Hc/δ
∗
i

and stress-free conditions at y = 0. The first condition reads

dφ̂

dy

∣∣∣∣∣
yb

= kφ̂( yb) = 0, (C6)

while the stress-free condition is obtained by evaluating σ s( p′
s, ξ

′)n at the interface. The
normal vector being aligned with the y axis, we obtain(

Es

3
+ λDs

2

)
d2φ̂

dy2

∣∣∣∣∣
0

+ k2φ̂(0) = 0,

λ2Ms
dφ̂

dy

∣∣∣∣∣
0

−
(

Es

3
+ λDs

2

)(
d3φ̂

dy3

∣∣∣∣∣
0

− 3k2 dφ̂

dy

∣∣∣∣∣
0

)
= 0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(C7)

In the second term of the above relation (y component), the pressure appearing in the stress
has been eliminated using the x equilibrium equation.
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After discretisation in the y direction (practically, second-order centred finite differences
in a regularly spaced grid, with ghost cells to handle the boundary condition), (C5), (C6)
and (C7) form an eigenvalue problem of type (λ2A(k) + λB(k) + C(k))φ = 0, that can be
solved numerically for various wavenumbers k, giving couples (λ, φ̂) and the dispersion
relation (k, λ(k)). Since the problem has a relatively small size (less than 500 unknowns
are required for converging the first modes), all the eigenvalues are explicitly computed
using dense algebra routines implemented within the Python package NUMPY, and the
lowest-frequency eigenvalues are then retained. Note that Gad-El-Hak et al. (1984) and
Duncan et al. (1985) obtained an explicit formula for the dispersion relation, looking
for solutions projected on the basis {sin, cos, sinh cosh} and then applying the boundary
conditions (C6) and (C7), giving a 4 × 4 determinant that must be zero. We have rather
chosen the present approach because it gives, in addition to the vibration frequencies, the
associated mode shapes.
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