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Cyclone–anticyclone asymmetry in spontaneous gravity wave radiation from a
co-rotating vortex pair is investigated in an f -plane shallow water system. The
far field of gravity waves is derived analytically by analogy with the theory of
aeroacoustic sound wave radiation (Lighthill theory). In the derived form, the Earth’s
rotation affects not only the propagation of gravity waves but also their source. While
the results correspond to the theory of vortex sound in the limit of f → 0, there is
an asymmetry in gravity wave radiation between cyclone pairs and anticyclone pairs
for finite values of f . Anticyclone pairs radiate gravity waves more intensely than
cyclone pairs due to the effect of the Earth’s rotation. In addition, there is a local
maximum of intensity of gravity waves from anticyclone pairs at an intermediate
f . To verify the analytical solution, a numerical simulation is also performed with
a newly developed spectral method in an unbounded domain. The novelty of this
method is the absence of wave reflection at the boundary due to a conformal mapping
and a pseudo-hyperviscosity that acts like a sponge layer in the far field of waves.
The numerical results are in excellent agreement with the analytical results even for
finite values of f for both cyclone pairs and anticyclone pairs.

Key words: rotating flows, shallow water flows, waves in rotating fluids

1. Introduction

Atmospheric gravity waves (inertia–gravity waves) whose restoring force is
buoyancy and f (Coriolis parameter) are small-scale waves compared to vortical
flows, which directly influence the daily weather system. Nevertheless, it is now
widely known that gravity waves play an essential role in the atmosphere, especially
in the middle atmosphere, where gravity waves drive the general circulation (cf.
Holton et al. 1995; Fritts & Alexander 2003). Since gravity waves propagate far
from their source region, usually the lower atmosphere with high density, they
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carry a significant amount of energy and momentum to the upper atmosphere with
low density. This role of gravity waves is quite important for climate modelling
and simulation, since the general circulation and material transport in the middle
atmosphere significantly affect the climate. It is therefore important to understand
precisely the dynamical processes of gravity waves, i.e. radiation, propagation and
dissipation, in order to obtain reliable projections of future climate change. In the
present study, we focus on an important radiation process of gravity waves, called
‘spontaneous (gravity wave) radiation’ (see Ford, McIntyre & Norton 2000), since
gravity waves are spontaneously radiated from unsteady nearly balanced vortical
flows.

Recently, many observational studies have reported that gravity waves are radiated
not only from orographic sources and convection but also from unsteady flows,
such as polar night jets (Yoshiki & Sato 2000; Sato & Yoshiki 2008), subtropical
jets (Uccelini & Koch 1987; Kitamura & Hirota 1989; Sato 1994; Plougonven,
Teitelbaum & Zeitlin 2003) and tropical cyclones (Pfister et al. 1993; May 1996; Wu
& Eckermann 2008). The radiation process in the atmosphere was initially investigated
by a numerical simulation of the baroclinic life cycle (O’Sullivan & Dunkerton
1995) and is now widely recognized as spontaneous gravity wave radiation. Many
numerical (e.g. Schecter & Montgomery 2004; Zhang 2004; Dritschel & Vanneste
2006; Plougonven & Snyder 2007; Snyder et al. 2007; Viúdez 2007; Wang, Zhang
& Snyder 2009), theoretical (Vanneste 2008; Yasuda, Sato & Sugimoto 2015a,b)
and experimental (Williams, Read & Haine 2003; Williams, Haine & Read 2005;
Afanasyev, Rhines & Lindahl 2008; Williams, Haine & Read 2008) studies have
been made on this topic, from both practical and theoretical perspectives, since the
process is directly related to the accuracy of ‘balanced models’ (for example, the
quasi-geostrophic system). In a balanced model, slow balanced vortical motions are
free from fast inertia–gravity waves, and the time evolution of the flow field is
completely determined by vortical motions. The accuracy of a balanced model is
determined by the time-scale separation of these modes for a small Rossby number
(Ro), which corresponds to strong rotation of the Earth. However, the separation is not
complete, and the time evolution of vortical motions inevitably radiates gravity waves
spontaneously (Ford et al. 2000; Vanneste 2008). Recent comprehensive reviews of
this topic can be found in Vanneste (2013) and Plougonven & Zhang (2014).

A shallow water system is the simplest system in which both vortical flows and
gravity waves exist. If the effect of the Earth’s rotation is negligibly small, this
system is equivalent to a two-dimensional adiabatic gas system with a specific heat
ratio of γs = 2. Then, gravity waves in a shallow water system are analogous to
sound waves in compressible gas systems. In a shallow water system, Ford (1994)
investigated spontaneous gravity wave radiation from a vortex train for the first time.
His study was extended to an unsteady jet (Sugimoto, Ishioka & Yoden 2007b;
Sugimoto, Ishioka & Ishii 2008) and a spherical domain (Sugimoto & Ishii 2012).
Since previous studies reported gravity wave radiation from complicated unsteady
vortical flows, in the present study we use a co-rotating vortex pair, which is one
of the simplest basic states. In the field of fluid dynamics, aeroacoustic sound wave
radiation from a co-rotating vortex pair has been investigated theoretically (e.g. Powell
1964) and numerically (Mitchell, Lele & Moin 1995). We extend those works to an
f -plane shallow water system. In this experimental setting, it is possible to derive an
analytical form of the far field of gravity waves in the presence of the Earth’s rotation,
assuming that point vortices exist and keep their structure. It should be mentioned
that, for the non-rotating cases, Gryanik (1983) derived an analytical estimate of
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sound wave emission from linear vortex filaments. His study was extended by Zeitlin
(1991) to Kirchhoff elliptic vortex focusing on the back-reaction of acoustic radiation.
Further, Plougonven & Zeitlin (2002) used a three-dimensional Kirchhoff vortex to
investigate gravity wave radiation in strongly stratified flows.

In a shallow water system, Zeitlin (2007) described gravity wave radiation from
a co-rotating vortex pair for the non-rotating case and sketched the generalization
to the rotating case. He discussed the effect of the Earth’s rotation on gravity wave
propagation and showed that the propagating gravity waves exist only for large Ro
(> 1) under the influence of inertial cutoff frequency. It is also important that a
shallow water system has an asymmetry between cyclones and anticyclones under the
effect of the Earth’s rotation (e.g. Stegner & Dritschel 2000). In previous numerical
studies (Sugimoto et al. 2008; Sugimoto & Ishii 2012), it has also been reported that
gravity waves are radiated from the source term originating in the Coriolis force at
relatively smaller Ro (6 10) in addition to the usual source term produced by vortical
flows. Moreover, Sugimoto et al. (2008) found that the amplitude of gravity waves
has its local maximum at an intermediate Ro (∼10). In the present study, we focus
on the asymmetry between cyclone pairs and anticyclone pairs through the process
of spontaneous gravity wave radiation. Note that cyclone–anticyclone asymmetry in
gravity waves is also found in continuously stratified systems (cf. Snyder et al. 2007;
Viúdez 2007; Wang et al. 2009; Yasuda et al. 2015b). Although it has been pointed
out that spontaneous radiation in a shallow water system, which is called ‘Lighthill
radiation’, is different from that in a continuously stratified system (see McIntyre
2009), investigating fundamental mechanisms of cyclone–anticyclone asymmetry in
gravity waves in a simplified configuration of an f -plane shallow water system is
a necessary step towards the general understanding of spontaneous gravity wave
radiation from more complex vortical flows in the real atmosphere.

In order to verify the derived analytical form of the far field of gravity waves,
direct numerical simulation is a useful tool. However, there are several difficulties to
simulate spontaneous gravity wave radiation numerically. It is well known that the
energy of gravity waves radiated from vortical motions is very small in a shallow
water system owing to the strong density difference at the free surface. Therefore,
we have to use a numerical model with high resolution and accuracy. Recently, with
the aid of conformal mapping from the closed domain to an unbounded domain,
spectral methods in unbounded domains for the one- and two-dimensional cases were
proposed by Ishioka (2008). It is then possible to position many grid points in the
near field of a vortical region and a few points in the far field of waves. This method
also includes pseudo-hyperviscosity, which acts like usual hyperviscosity in the near
field, while it acts like a sponge layer in the far field to effectively damp waves. The
method enables us to simulate vortical motion accompanied by wave radiation with
high accuracy. The method for a one-dimensional domain has already been applied
to simulate spontaneous gravity wave radiation from an unsteady jet (Sugimoto et al.
2008). In the present study, we apply the method for a two-dimensional domain
to an f -plane shallow water system expressed in cylindrical coordinates in order to
compare the amplitude of gravity waves between the analytical study and numerical
simulation.

The present study has several goals. First, we derive an analytical form of the far
field of gravity waves from a co-rotating vortex pair and reveal cyclone–anticyclone
asymmetry. It will also be shown that the amplitude of gravity waves has its local
maximum at an intermediate f only for the case of anticyclone pairs. Second, we
verify the analytical solution by using the results of a newly developed numerical
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model. The comparison of the analytical results with the numerical ones is aimed at
checking not only the analytical derivation but also the numerical model itself. One
of the important goals is to demonstrate the feasibility of the numerical model and
show a possible path for future studies of gravity wave radiation from more complex
flows.

This paper is organized as follows. In § 2 we describe the basic equations. In § 3
the analytical form of the far field is derived using the Lighthill–Ford equation in
an f -plane shallow water system. In § 4 we report the results of nonlinear numerical
experiments, including the model description and experimental setting. A summary
and discussion are presented in § 5.

2. Basic equation
We consider gravity wave radiation from vortical motions in an f -plane shallow

water system. The basic equations are expressed as

∂uc

∂t
+ uc

∂uc

∂x
+ vc

∂uc

∂y
− fvc =−g

∂h
∂x
, (2.1)

∂vc

∂t
+ uc

∂vc

∂x
+ vc

∂vc

∂y
+ fuc =−g

∂h
∂y
, (2.2)

∂h
∂t
+ uc

∂h
∂x
+ vc

∂h
∂y
+ h

(
∂uc

∂x
+ ∂vc

∂y

)
= 0, (2.3)

where t is the time and h = η + h0 is the total depth of the fluid, in which η is
the surface displacement from the average depth of the fluid h0. The horizontal flow
velocity vector is u= (uc, vc), where uc and vc are the velocity components in the x
and y directions in Cartesian coordinates, respectively. The gravitational acceleration
and Coriolis parameter are g and f , respectively.

Equations (2.1)–(2.3) are the same as for vortex sound if the effect of the Earth’s
rotation is negligibly small. From the flux forms of (2.1)–(2.3), the divergence
and vorticity equations are derived. Combining them with the conservation-of-mass
equation, we obtain the Lighthill–Ford equation (Lighthill 1952; Ford 1994) in this
system: (

∂2

∂t2
+ f 2 − c2

0∇2

)
∂h
∂t
= ∂2

∂xi∂xj
Tij. (2.4)

Here x1= x, x2= y, and we use the Einstein summation convention; and c0=√gh0 and
∇2 denote the phase speed of the fastest gravity wave and the horizontal Laplacian,
respectively. The left-hand side of (2.4) is the wave operator of a linear gravity wave,
and the right-hand side can be regarded as the source of gravity waves. Here, Tij is
written as

Tij = ∂(huiuj)

∂t
+ f

2
(εikhujuk + εjkhuiuk)+ g

2
∂

∂t
(h− h0)

2δij, (2.5)

where ε12 =−ε21 = 1, ε11 = ε22 = 0, u1 = uc, u2 = vc and δij is the Kronecker delta.
The key point in the Lighthill–Ford theory is that we assume the source term Tij

is non-zero only over a small enough region that the right-hand side of (2.4) may be
approximated by a quadrupole point source. A further assumption is that the source
flow Tij may be regarded as being known only in terms of vortex dynamics. Then, we
can compute the source term without knowledge of the wavefield (Ford 1994). In the
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Gravity wave

Co-rotating vortex pairl

O

FIGURE 1. Schematic of experimental configuration.

limit of small Fr (Froude number; the ratio of the flow velocity to the phase speed
of the gravity waves), both assumptions are valid. Then the vortical flow is governed
by the equations for a two-dimensional incompressible fluid, and the wavelength of
gravity waves is O(Fr−1) larger than the scale of vortical flows (Ford et al. 2000).
Note that Fr corresponds to the Mach number (the ratio of the flow velocity to the
phase speed of sound waves) in the field of aeroacoustic sound wave radiation. It
has also been confirmed in previous studies (Sugimoto et al. 2008; Sugimoto & Ishii
2012) that for large Ro (small f ) the primary source of gravity waves is the first term
on the right-hand side of (2.5), which is the usual source term produced by vortical
flows, while the second term, which originates in the Coriolis force, is sometimes
comparable to the first term for relatively smaller Ro (6 10; large f ). Since the third
term is always small, we neglect this term.

3. Far field
In this section, we analytically derive the far field of gravity waves spontaneously

radiated from a co-rotating point vortex pair in an f -plane shallow water system. Here,
we assume point vortices exist and keep their structure, although it is impossible to
realize a point vortex as a balanced state in an f -plane shallow water system. The
depth of the fluid inevitably vanishes at the position of a point vortex, because the
surface elevation, which needs to be in balance with the velocity field induced by a
point vortex, becomes infinite. We use a co-rotating point vortex pair to estimate the
major sources of gravity waves, which are the first and second terms on the right-hand
side of (2.5). As shown later, the second term leads to cyclone–anticyclone asymmetry
in gravity waves.

A vortex pair with the same sign and strength co-rotates due to the flow field
produced by each point vortex. A schematic of this configuration is shown in
figure 1. For aeroacoustic vortex sound wave radiation, several theoretical studies
(e.g. Powell 1964; Howe 2003) and numerical simulations (Mitchell et al. 1995)
of this configuration have been reported. Zeitlin (2007) also derived an analytical
solution for non-rotating shallow water and sketched the generalization to the rotating
case. Here, we extend the previous theory to an f -plane shallow water system and
derive an analytical form of the far field of gravity waves by taking into account the
Coriolis effect in the source of gravity waves.

We assume that a vortex pair, each vortex having a circulation Γ and positioning
at distance 2l, co-rotates at an angular velocity of Ω =Γ/4πl2 (cyclone, Ω > 0). The
positions of each point vortex at t are expressed as

x= (x1, x2)=±s≡±(s1(t), s2(t))=±l(cosΩt, sinΩt). (3.1)
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Then, the vorticity distribution ω and velocity v associated with the vortices are
expressed as

ω= Γ k[δ(x− s)+ δ(x+ s)], (3.2)

where k is a unit vector in the z direction, parallel to the vortices, and δ is a delta
function. The vortex convection velocities v= (u1, u2) are

v=±Ωk× s(t) at x=±s(t). (3.3)

We assume the characteristic velocity scale U=Ωl� c0. Then since k× (k× s)=−s,
we have

ω× v=−ΓΩs(t)[δ(x− s)− δ(x+ s)]. (3.4)

On the right-hand side of (2.4), the primary source of gravity waves is the first
term on the right-hand side of (2.5). For Fr≡U/c0� 1 and under the assumption of
a compact source, we can safely assume non-divergent flows, namely, ∇ · v = 0 and
h≈ h0. Then we obtain

∂2(huiuj)

∂xixj
≈ h0∇ · (ω× v)+ h0∇2

(
1
2

u2

)
. (3.5)

Here we neglect the second term on the right-hand side of (3.5) on the assumption that
Fr� 1, since the far field of gravity waves from the second term is O(Fr2) smaller
than that from the first term in the theory of aeroacoustic vortex sound wave radiation
(Howe 2003). Then the source of gravity waves produced by the unsteady motions of
a co-rotating vortex pair is approximated as follows. If we expand (3.5) in powers
of the radius l of the circular orbit for small Fr� 1, the ith component of the first
non-zero term is

(ω× v)i ≈ ∂

∂xj
(2ΓΩsi(t)sj(t)δ(x)). (3.6)

Then, the time variation of

h0∇ · (ω× v)≈ h0
∂2

∂xixj
(2ΓΩsi(t)sj(t)δ(x)) (3.7)

is regarded as the quadrupole source of gravity waves, which corresponds to the first
term on the right-hand side of (2.5).

As mentioned in the previous section, since the second term on the right-hand
side of (2.5) is comparable to the first term for relatively smaller Ro (6 10; large f )
(Sugimoto et al. 2008; Sugimoto & Ishii 2012), we derive the source originating in
the Coriolis force in a similar way. Taking into account the symmetry, we consider
the next term,

∂2

∂xixj

f
2
(εikhujuk + εjkhuiuk)= ∂2

∂xixj
fhεikujuk ≈−fh0∇ · [k× (ω× v)], (3.8)

where we again assume non-divergent flows, ∇ · v = 0 and h ≈ h0, for Fr� 1 and
under the assumption of a compact source. Because k× (k× s)=−s, we have

k× [k× (k× s)] = k× (−s). (3.9)
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Then we have

k× (ω× v)=−ΓΩ[k× s(t)][δ(x− s)− δ(x+ s)]. (3.10)

For small Fr� 1,

−[k× (ω× v)]i ≈ ∂

∂xj
(2ΓΩεiksk(t)sj(t)δ(x)). (3.11)

Now the source originating in the Coriolis force is expressed as follows:

− fh0∇ · [k× (ω× v)] ≈ fh0
∂2

∂xixj
(2ΓΩεiksk(t)sj(t)δ(x)). (3.12)

We regard (3.7) and (3.12) as the sources of gravity waves. As mentioned before, we
neglect the third term on the right-hand side of (2.5), because it is always small.

Next, we derive the far field of gravity waves radiated from (3.7) and (3.12) using
a Green’s function. First, the Green’s function of (2.4) in the two-dimensional domain
incorporating time variation is defined from the following Klein–Gordon equation:(

∇2 − 1
c2

0

∂2

∂t2
−µ2

)
G2(x, t, x′, t′)=−δ(x− x′)δ(t− t′), (3.13)

where µ= f /c0. The form of the Green’s function is given by

G2(x, t, x′, t′)= c0

2π

cos
(
µ
√

c2
0(t− t′)2 − |x− x′|2

)
√

c2
0(t− t′)2 − |x− x′|2 θs(c0(t− t′)− |x− x′|), (3.14)

where θs is the Heaviside function. Using this form of the Green’s function, the far
field of gravity waves radiated from the source (3.7) is estimated analytically by
analogy with the derivation by Howe (2003) as(

∂h(x, t)
∂t

)
V

= 1
c2

0

∫∫∫ ∞
−∞

G2
∂(h∇ · (ω× v))

∂t′
d2x′ dt′

≈ h0

c2
0

∫∫∫ ∞
−∞

G2
∂

∂t′

[
∂2

∂xi
′xj
′ (2ΓΩsi(t′)sj(t′)δ(x′))

]
d2x′ dt′, (3.15)

where subscript V indicates the far field of gravity waves radiated from the source
(3.7), which is related to unsteady motions of the vortex. Then we can integrate the
delta function, which yields(

∂h(x, t)
∂t

)
V

= 2ΓΩh0

c2
0

∂2

∂xixj

∫ ∞
−∞

G2
∂(si(t′)sj(t′))

∂t′
dt′. (3.16)

To proceed further, since
∂

∂xi
= ∂r
∂xi

∂

∂r
= xi

r
∂

∂r
, (3.17)
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where r =√x2
1 + x2

2 is the distance from the origin, we use the following approxi-
mation in the far field (r� 1):

∂2

∂xi∂xj
=
(
δij

r
− xixj

r3

)
∂

∂r
+ xixj

r2

∂2

∂r2
≈ xixj

r2

∂2

∂r2
, (3.18)

where terms in the parentheses vanish for large r. Since (xixj)/r2 is independent of
∂2/∂r2, it follows from (3.16) that(

∂h
∂t

)
V

= 2ΓΩh0

c2
0

∂2

∂r2

∫ ∞
−∞

G2
xixj

r2

∂(si(t′)sj(t′))
∂t′

dt′

= 2ΓΩ2l2h0

c2
0

∂2

∂r2

∫ ∞
−∞

G2 sin(2θ − 2Ωt′) dt′, (3.19)

where θ is the angle in cylindrical coordinates, with x= r(cos θ, sin θ).
In a similar way, using the same form of Green’s function (3.14), we derive the far

field of gravity waves radiated from the source (3.12) as(
∂h(x, t)
∂t

)
F

= − 1
c2

0

∫∫∫ ∞
−∞

G2 fh0∇ · [k× (ω× v)] d2x′ dt′

≈ fh0

c2
0

∫∫∫ ∞
−∞

G2
∂2

∂xi
′xj
′ (2ΓΩεiksk(t′)sj(t′)δ(x′)) d2x′ dt′, (3.20)

where subscript F indicates the far field of gravity waves radiated from the source
(3.12), which originates in the Coriolis force. With the aid of (3.18), we obtain a
similar form to that in (3.19):(

∂h
∂t

)
F

=−ΓΩl2fh0

c2
0

∂2

∂r2

∫ ∞
−∞

G2 sin(2θ − 2Ωt′) dt′. (3.21)

By combining (3.19) and (3.21) with (3.14), we obtain

∂h
∂t
=
(

1− f
2Ω

)
ΓΩ2l2h0

πc0

∂2

∂r2

∫ t

−∞

sin(2θ − 2Ωt′) cos(µ
√
τ)√

τ
θs(c0(t− t′)− r) dt′︸ ︷︷ ︸

B

,

(3.22)
where τ = c2

0(t− t′)2 − r2.
Next, we change variables to calculate the integral in (3.22), which is labelled as

B: i.e. t− t′ = (r/c0) cosh ϕ and
√
τ = r sinh ϕ. Then, we obtain

B = 1
c0

∫ ∞
0

sin
(

2θ − 2Ωt+ 2Ωr
c0

cosh ϕ
)

cos(µr sinh ϕ) dϕ

= 1
2c0

∫ ∞
0

sin
(

2θ − 2Ωt+ 2Ωr
c0

cosh ϕ +µr sinh ϕ
)

dϕ

+ 1
2c0

∫ ∞
0

sin
(

2θ − 2Ωt+ 2Ωr
c0

cosh ϕ −µr sinh ϕ
)

dϕ. (3.23)

In order to complete the derivation, we use an addition theorem of trigonometric
functions and composition of hyperbolic functions. Finally, with the aid of the integral
form of Hankel’s function (H0(x); see appendix A for special functions), we obtain for
a cyclone pair (Ω > 0, (A 1a)) and an anticyclone pair (Ω < 0, (A 1c)):
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B = 1
2c0

Re

iπH(1)
0

r

√(
2Ω
c0

)2

−µ2

 sin(2θ − 2Ωt)

− sgn( f )sgn(Ω)
1

2c0
Im

iπH(1)
0

r

√(
2Ω
c0

)2

−µ2

 cos(2θ − 2Ωt), (3.24)

where we use (A 2) for (r/c0)
√

4Ω2 − f 2� 1 and the sign function sgn(x), where we
define sgn(0)= 1. By use of (A 3), we obtain

d2B
dr2
≈−

[(
2Ω
c0

)2

−µ2

]
B. (3.25)

Finally, with the aid of (A 4), the far field of gravity waves is estimated by

∂h(x, t)
∂t

= 2ΓΩ4l2h0

c4
0

(
1− f

2Ω

)[
1−
(

f
2Ω

)2
][

Y0

(
r
c0

√
4Ω2 − f 2

)
sin(2θ − 2Ωt)

− sgn( f )sgn(Ω)J0

(
r
c0

√
4Ω2 − f 2

)
cos(2θ − 2Ωt)

]
, (3.26)

where J0 and Y0 are the zeroth-order Bessel functions of the first and second kind,
respectively. Equation (3.26) is applicable for both cyclone pairs and anticyclone pairs
regardless of the signs of f .

In the case of evanescent gravity waves for 4Ω2 6 f 2, the analytical estimate is
also derived in a similar way. Since we have to use (A 1b) for 4Ω2 6 f 2 in (3.23),
B expressed in (3.24) is replaced by

B′ = 1
2c0

Re

iπH(1)
0

ir

√
µ2 −

(
2Ω
c0

)2
 sin(2θ − 2Ωt)

+ 1
2c0

Im

iπH(1)
0

ir

√
µ2 −

(
2Ω
c0

)2
 cos(2θ − 2Ωt). (3.27)

By using (A 7), B′ is expressed as

B′ = 1
c0

K0

r

√
µ2 −

(
2Ω
c0

)2
 sin(2θ − 2Ωt), (3.28)

where K0(x) is the zeroth-order modified Bessel function of the second kind. Finally,
with the aid of (A 8), the far field of evanescent gravity waves is estimated by

∂h(x, t)
∂t

=−4ΓΩ4l2h0

πc4
0

(
1− f

2Ω

)[
1−

(
f

2Ω

)2
]

K2

(
r
c0

√
f 2 − 4Ω2

)
sin(2θ − 2Ωt).

(3.29)
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Equation (3.26) includes the effect of the Earth’s rotation as the second term in the
first and second parentheses and a square root term. In the two-dimensional domain,
we have to perform a long-time integration to estimate the far field of waves, since
the influence of the source persists. In the absence of the Earth’s rotation (in the
limit of f → 0), (3.26) corresponds to the analytical form of the vortex sound from
a co-rotating point vortex pair (Mitchell et al. 1995). It is easy to see that large f
inhibits gravity wave radiation because of a negative value in the square root term.
In addition, the second term in the first parentheses indicates that gravity waves are
radiated from the source originating in the Coriolis force. For cyclone pairs (Ω > 0)
the effect of the Earth’s rotation suppresses gravity wave radiation because of the same
positive signs of Ω and f (> 0). On the other hand, for anticyclone pairs (Ω < 0) the
source originating in the Coriolis force enhances gravity wave radiation because of
the opposite signs of Ω and f . Therefore, the second term in the first parentheses can
be regarded as an indicator of the asymmetry of gravity wave radiation from cyclone
pairs and anticyclone pairs. Since f also leads to the suppression of gravity wave
radiation in the second parentheses, the amplitude of gravity waves for anticyclone
pairs also goes to zero asymptotically for f→|2Ω|. Note that, in the case of reverse
Earth’s rotation for f 6 0, the amplitude of gravity waves is larger from a vortex pair
of Ω> 0 than that from a vortex pair of Ω< 0. It should be mentioned that, while the
analytical results obtained here are basically a combination of the approach of Ford
(1994) with the non-rotating calculation of Mitchell et al. (1995), the novelty is to
include the source (3.12), which leads to cyclone–anticyclone asymmetry. In addition,
it is worth noting that a new approach of (3.18) regarding the space derivatives is
required to derive (3.26) precisely in the presence of f , since space derivatives cannot
be replaced by time derivatives easily as in the case of the acoustic far field. This
is because of the quadratic relation between x and t in the argument of the Green’s
function in (3.14).

Snapshots of several parameter values of Ro≡Ul/f l (Rossby number; the ratio of
the advective term to the Coriolis term) and Fr≡Ul/

√
gh0 are shown in figure 2 for a

cyclone pair. Here, Ul is the typical value of the velocity, and we fix Ω=0.1, Ul=0.5
and l = 0.5. These values are chosen to be consistent with those of the numerical
simulation, as will be shown in § 4. The double spiral pattern clearly illustrates the
rotating quadrupole nature of the radiated waves. For Ro=∞, namely f = 0, (3.26)
corresponds to the analytical form of the vortex sound from a co-rotating point vortex
pair (Mitchell et al. 1995). Note also that gravity waves are cylindrical in the far field
for Fr = 0.6 (gh0 = 25/36) in figure 2(a). For small Fr = 0.3 (gh0 = 25/9), gravity
waves with long wavelength are radiated due to the fast phase speed of gravity waves
in figure 2(b). For relatively small Ro=6.0 ( f =1/6), the radiation and propagation of
small-scale gravity waves is suppressed by the effect of the Earth’s rotation, and the
horizontal scale of the waves becomes large in figure 2(c). This tendency was also
verified by the dispersion relation of gravity waves (Sugimoto et al. 2007b). When
f exceeds the critical value f > 0.2, which corresponds to Ro 6 5, there is no gravity
wave radiation. This is due to inertial cutoff of gravity wave radiation and propagation,
since the square root term in (3.26) is negative (cf. Zeitlin 2007).

The dependence on f /2Ω of the intensity of gravity waves for both cyclone pairs
and anticyclone pairs is shown in figure 3. Here, by defining geopotential Φ ≡ gh, we
calculate

I =
∫ 2π

0

(
dΦ
dt

)2

r dθ (3.30)
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FIGURE 2. (Colour online) Snapshots of the far field (r 6 100) of gravity waves (dΦ/dt,
where Φ ≡ gh) radiated from a co-rotating vortex pair with various parameter values:
(a) Ro=∞ ( f = 0), Fr= 0.6 (gh0 = 25/36), contour interval = 1.5× 10−5; (b) Ro=∞,
Fr = 0.3 (gh0 = 25/9), contour interval = 4 × 10−6; and (c) Ro = 6 ( f = 1/6), Fr = 0.6,
contour interval = 8× 10−6. The circles behind the contours denote r= 5, 10, 20, 30, 40
and 50, respectively.
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FIGURE 3. Analytical estimate of the dependence on f /2Ω of the intensity of gravity
waves (I) calculated from (3.30), for cyclone pairs (Ω > 0) and anticyclone pairs (Ω 6 0).

as the intensity of gravity waves, since this value is the same at any r in the far field
due to (A 6a,b) as follows:

I ≈ 4Γ 2Ω7l4

c3
0

(
1− f

2Ω

)2
(

1−
(

f
2Ω

)2
)3/2

. (3.31)

Note that I depends on f not only from the term f /2Ω in the coefficients in (3.26)
but also from the arguments of Y0 and J0.

For anticyclone pairs, a local maximum, Imax, appears at f /2Ω = −0.4, which
corresponds to medium Ro = 12.5 ( f = 2/25). From (3.31), Imax is about 1.51
times larger than that for the case of Ro = ∞ ( f = 0). On the other hand, the
amplitude of gravity waves for cyclone pairs decreases monotonically as f increases
(Ro decreases). Cyclone–anticyclone asymmetry appears due to the signs of Ω;
the direction of rotation of vortex pairs. The Ro dependence for anticyclone pairs
corresponds to previous numerical results of gravity wave radiation from unsteady jet
flows (Sugimoto et al. 2008), in which the gravity wave flux has a local maximum
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at intermediate Ro ∼ 10. Further, previous numerical studies (Sugimoto et al. 2008;
Sugimoto & Ishii 2012) have reported that gravity waves are radiated from the
source originating in the Coriolis force for relatively smaller Ro (610), which is also
consistent with the analytical estimate obtained here.

4. Numerical simulation
4.1. Experimental setting

In this section, we perform numerical simulations in order to verify the analytical
solution derived in § 3. First, in this subsection we explain the experimental setting.

There are several difficulties in investigating gravity wave radiation from vortical
motions in a numerical simulation. These difficulties include the large extent of
the far field of gravity waves compared to the near field of vortical motions, the
small energy of the wavefield, the possibility that numerical discretization may serve
as a significant source of waves, and the errors arising from inaccurate boundary
conditions. Gravity waves are so much faster than vortical flows that they soon
propagate to the boundary, and wave reflection from the boundary often influences
the results. Since gravity waves in an f -plane shallow water system exhibit dispersion,
there is no accurate non-reflective boundary condition. Applying a sponge layer is not
an efficient way of introducing a boundary condition, because we have to prepare a
very wide region, and trial and error is required to determine the damping coefficient
and the width of the sponge layer. Furthermore, for parameter sweep experiments,
different coefficients and widths of the sponge layer will be needed because of
variations of the phase speed of gravity waves.

In order to avoid the above difficulties, it is advantageous to use a spectral method
in an unbounded domain on a non-uniform grid system without reflection of waves.
An effective method has been proposed recently by Ishioka (2008), as an extension of
earlier work (Matsushima & Marcus 1997). In the present study, we apply this method
to an f -plane shallow water system. While a test simulation for a collapsing vortex has
already been performed in preliminary work (Murakami 2008), we will further check
the numerical model by comparing the results with the analytical estimates in a wide
range of Ro. We also perform simulations with different resolutions and several values
of hyperviscosity to confirm the applicability of the numerical model. Note that the
basic idea in Ishioka (2008) is applicable to several equations and is not limited to a
shallow water system.

In order to implement the method, we start with a shallow water system on an
f -plane in cylindrical coordinates for the basic equations, which are derived by the
coordinate transformation from (2.1) to (2.3):

∂u
∂t
+ u

r
∂u
∂θ
+ v ∂u

∂r
+ uv

r
+ fv =−g

r
∂h
∂θ
, (4.1)

∂v

∂t
+ u

r
∂v

∂θ
+ v ∂v

∂r
− u2

r
− fu=−g

∂h
∂r
, (4.2)

∂h
∂t
+ 1

r
∂(hu)
∂θ
+ 1

r
∂(rhv)
∂r
= 0. (4.3)

Here, u and v are the velocities in the azimuthal (θ ) and radial (r) directions,
respectively.

The basic equations (4.1)–(4.3) are transformed to the equations of relative vorticity
ζ , divergence γ and geopotential Φ≡ gh for the convenience of numerical calculation.
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Then, (4.1)–(4.3) are reduced to

∂ζ

∂t
=−1

r
∂(rvζa)

∂r
− 1

r
∂(uζa)

∂θ
, (4.4)

∂γ

∂t
= 1

r
∂(ruζa)

∂r
− 1

r
∂(vζa)

∂θ
−1(E+Φ), (4.5)

∂Φ

∂t
=−1

r
∂(rvΦ)
∂r

− 1
r
∂(uΦ)
∂θ

, (4.6)

where

relative vorticity ζ = 1
r
∂(ru)
∂r
− 1

r
∂v

∂θ
, ζ =1ψ, (4.7)

divergence γ = 1
r
∂(rv)
∂r
+ 1

r
∂u
∂θ
, γ =1χ, (4.8)

Laplacian 1= 1
r
∂

∂r

(
r
∂

∂r

)
+ 1

r2

∂2

∂θ 2
, (4.9)

kinetic energy E= 1
2(u

2 + v2), (4.10)
absolute vorticity ζa = f + ζ , (4.11)

and ψ and χ are the stream function and velocity potential, respectively.
To solve (4.4)–(4.6), we use a mapping method (Ishioka 2008). In this method, we

use a conformal mapping from a sphere with radius R in spherical coordinates (λ, φ)
to a plane in cylindrical coordinates (r, θ) with the aid of the following relation:

r= 2R tan
(
φ

2
+ π

4

)
. (4.12)

A schematic of this mapping is shown in figure 4. Then, the transformation of the
coordinates is expressed as

∂

∂r
= 1− sin φ

2R
∂

∂φ
,

1
r
∂

∂θ
= 1− sin φ

2R cos φ
∂

∂λ
. (4.13a,b)

By this mapping, we can calculate the phenomena on a two-dimensional unbounded
plane from the phenomena on a sphere with an ordinary spectral method, such as
spherical harmonics. In addition, we set the grid points non-uniformly so that many
grid points are positioned in the near field of vortical flows, while few are in the far
field of gravity waves. This model enables us to simulate gravity wave radiation from
vortical flows localized in the centre region with high accuracy.

In addition, the Laplacian on the plane is easily related to that on the sphere by the
following equation:

1= (1− sin φ)2

4R2
1s. (4.14)

Here 1s is the Laplacian on the sphere expressed as

1s = 1
cos2 φ

∂2

∂λ2
+ 1

cos φ
∂

∂φ

(
cos φ

∂

∂φ

)
. (4.15)
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SP

NP

FIGURE 4. Schematic of the mapping method from Pi(λ, φ) on a sphere to Qi(r, θ) on
a plane.

Since ζ and γ are obtained by the Laplacian of ψ and χ , respectively, (4.4)–(4.6)
are easily calculated on a sphere by the usual properties of spherical harmonics, as
follows:

1sŶm
n =−n(n+ 1)Ŷm

n . (4.16)

A notable feature of this method is pseudo-hyperviscosity. In the numerical
simulation, we include the following type of hyperviscosity:

ν(−1)p+1

(
1s

R2

)p

P, (4.17)

where ν, p and P = (ζ , γ , Φ) are the viscosity coefficient, order of viscosity and
physical variables, respectively. This form of hyperviscosity has two advantages. One
is that the hyperviscosity (4.17) acts as a sponge layer far from the vortical region,
since (4.17) is transformed from (4.14) to

ν(−1)p+1

(
41

(1− sin φ)2

)p

P. (4.18)

It can be easily seen that, while this term acts as usual hyperviscosity for small φ,
the viscosity becomes very large far from the vortex region for large φ. Since this
role is directly linked to a sponge layer, we call this type of hyperviscosity ‘pseudo-
hyperviscosity’.

The second advantage is that the Laplacian operator on a sphere is easily calculated
by spherical harmonics (4.16). Thus, the pseudo-hyperviscosity (4.17) is easy to code
in the numerical simulation as follows:

ν(−1)p+1

(
1s

R2

)p

P= ν(−1)p+1

(−n(n+ 1)
R2

)p

P. (4.19)

While it has been reported that results using hyperviscosity do not always simulate
inviscid dynamics nor molecular-diffusive dynamics (e.g. Jiménez 1994; Mariotti,
Legras & Dritschel 1994; Yao, Zabusky & Dritschel 1995), we include hyperviscosity
to prevent numerical instability and set a value of the viscosity coefficient ν as
small as possible to keep the intensity of vortex and to damp radiated gravity waves
effectively in the far field. We will discuss the influence of hyperviscosity later.
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FIGURE 5. Basic state of an initial Gaussian vortex (cyclone) for the run with Ro =
20 ( f = 1/20) and Fr= 0.6 (Φ0= 25/36): (a) vorticity ζ , (b) velocity u in the θ direction,
and (c) geopotential height Φ. One vortex is shown.

As an initial state, we use a co-rotating Gaussian vortex pair, which is expressed
as

ζ =±A exp
{
−‖r − r1(l, θ1)‖2

2σ 2

}
± A exp

{
−‖r − r2(l, θ1 +π)‖2

2σ 2

}
, (4.20)

where A and σ determine the amplitude and radius of the vortices, respectively. The
signs in (4.20) are positive for a cyclone pair and negative for an anticyclone pair. The
depth of the fluid Φ is set to be in gradient wind balance with the Gaussian vortex.
Although the vortices are assumed to be point vortices in § 3, it is not possible to
produce a balanced state of the vortices in a shallow water system in the presence
of surface elevation. Note that, since the Coriolis force acts in opposite directions
for cyclones and anticyclones, the vortices in an f -plane shallow water system have
cyclone–anticyclone asymmetry for the depth of the fluid, especially for large f .

The non-dimensional parameters in the numerical simulation are defined by the
initial state of the Gaussian vortex:

Ro≡ Ui

f l
, Fr≡ Ui√

Φ0
. (4.21a,b)

We fix A= 20 and σ = 0.05 in (4.20). This leads to the maximum velocity Ui ∼ 0.5
in the θ direction for the initial vortices. The initial positions of the vortices are also
fixed to l= 0.5 and θ1=π/4. Then Ro and Fr are the non-dimensional reciprocals of
f and Φ0 = gh0, respectively. Note that the definitions of (4.21) correspond to those
of the analytical study in § 3.

An example of an initial Gaussian vortex (cyclone) with Ro = 20 ( f = 1/20) and
Fr = 0.6 (Φ0 = 25/36) is shown in figure 5. The vorticity ζ , velocity u in the θ
direction and geopotential height Φ along the section of the centre of the vortices are
shown. Since we use strong vortices at the initial state, both cyclones and anticyclones
have a shallower depth at the centre of the vortices, where the term ‘anticyclone’
indicates an anticyclonic rotation, not a high-pressure system.

In the numerical simulation, we set R= 8 and T = 682, where T is the truncation
wavenumber of the spherical harmonics for the spectral method, in order to match
the numerical results with the analytical estimates sufficiently. Then there are 2048
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and 1024 grid points in the θ and r directions, respectively. Using this resolution, the
grid intervals in the r direction (1r) in the near field (r 6 2) are 1r 6 0.0249, and
the farthest grid points are positioned at r ∼ 13 632. We set ν = 10−11 and p = 3 to
prevent any artificial disturbance. A time integration is performed by the fourth-order
Runge–Kutta method with an increment time of 0.025. The numerical calculation is
continued to the end of time 200, which corresponds to 8000 total time steps.

The computational cost per time step is O(NT) for this spectral method, where N
is the number of grid points and T is the truncation wavenumber. Although this cost
is higher than that for the finite difference method (O(N)), we adopt the spectral
method for the following three advantages. First, the present spectral method has
higher accuracy than the finite difference method with the same resolution. Second,
a longer time step can be used for the present method than for the finite difference
method because the present method can relax the severe Courant–Friedrichs–Lewy
(CFL) condition arising from the concentration of the grid points near the origin.
Third, the present method can suppress the spurious reflection of waves from
the boundary of the computational domain thanks to the pseudo-hyperviscosity as
explained above.

4.2. Cyclone pair (Ro= 20 and Fr= 0.6)

Here we compare the results of the numerical simulation with those of the analytical
study for a co-rotating cyclone pair. The non-dimensional parameters are set to be
Ro= 20 ( f = 1/20) and Fr= 0.6 (Φ0= 25/36). Although these values are not realistic
for slow vortical phenomena in the atmosphere on the Earth, the results are typical and
easy to understand for cyclone–anticyclone asymmetry in spontaneous gravity wave
radiation.

Snapshots of the time evolution for a run of a cyclone pair are shown in figure 6.
Three prognostic physical variables, ζ , γ and Φ, are shown here, because we use them
to integrate (4.4)–(4.6) numerically. The near field (r62) of vortices is enlarged in the
left and right columns, while the far field (r 6 100) of gravity waves is shown in the
centre column. As a vortex pair co-rotates, gravity waves with double spiral structure
are radiated in the divergent field (centre). While gravity waves with small scales and
amplitudes are radiated from the initial geostrophic adjustment process (centre panels
in figure 6b,c), they are dissipated subsequently by pseudo-hyperviscosity as they
propagate to the far field (centre panels in figure 6d,e). As the initial vortices radiate
gravity waves, they are weakened slightly due to energy dissipation by gravity wave
radiation and hyperviscosity. Nevertheless, they keep enough strength to co-rotate,
and it is clearly seen that gravity waves are radiated continuously in the divergent
field. Initially, one turnover time is 64 as a rough estimate, and it takes longer for
another turnover. Then, a wave of about four wavelengths is radiated at t = 120
(figure 6e). Note that the divergent field is depicted in the area which gravity waves
reach from the initial time (t= 0). In the vorticity field, there is also a weak vorticity
spreading all around the streamlines connecting the hyperbolic points because of
hyperviscosity. However, it is confirmed that these vorticity filaments do not radiate
significant gravity waves in the present study.

Figure 7 shows snapshots of the far field (r 6 100) of gravity waves, dΦ/dt, for
a run of a cyclone pair at t = 150 in comparison with the analytical estimate (3.26)
with the same parameter values: dΦ/dt is estimated from (4.6) except for the effect of
the hyperviscosity. Since the initial Gaussian vortices in the numerical simulation are
not point vortices as assumed in the analytical study, we estimate the intensity of the
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FIGURE 6. Snapshots of the time evolution of a run of a cyclone pair with Ro= 20 and
Fr= 0.6: (left) vorticity ζ , (centre) divergence γ and (right) geopotential height Φ, with
ζ and Φ shown in the near field (r 6 2) and γ shown in the far field (r 6 100). The time
steps are (a) t= 0, (b) t= 30, (c) t= 60, (d) t= 90 and (e) t= 120. The circles behind
the contours in the centre panels denote r= 5, 10, 20, 30, 40 and 50, respectively.

vortices Γ ∼ 0.98× (2πσ 2A) (thus Ω = Γ/4πl2 ∼ 0.098) in the analytical calculation
of (3.26) in order to ensure that the rotation rate, namely, angular velocity Ω , has
the same value as that in the numerical simulation. This intensity is nearly consistent

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

20
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.209


Cyclone–anticyclone asymmetry in gravity wave from co-rotating vortex pair 97

0

0

00

0
0

0

0

0
0

0

0
0

0

0

0

0 0

0

0

0

0

0

0

0
0

0
0

0

–2

–1

0(a) (b)

FIGURE 7. (Colour online) Snapshots of the far field (r 6 100) of gravity waves (dΦ/dt)
for a cyclone pair with Ro= 20 and Fr= 0.6: (a) the analytical estimate (3.26), contour
interval = 1.5× 10−5; and (b) the numerical simulation (at t= 150), contour interval 1.5×
10−2. The circles behind the contours denote r= 5, 10, 20, 30, 40 and 50, respectively.

with that of the analytical estimate for a Gaussian vortex,

Γ =
∫

S
ω · dS=

∫ 2π

0

∫ ∞
0

A exp
(
− r2

2σ 2

)
r dr dθ = 2πAσ 2, (4.22)

where S indicates a plane perpendicular to the direction of ω. The reason that Γ in
the numerical simulation is slightly smaller than that in the analytical estimate (4.22)
might be due to the effect of hyperviscosity, which weakens vortices in the time
evolution gradually. We also choose an appropriate time for the analytical estimate
to coincide with the numerical results. The double spiral structures are quite similar
between the two cases. Since two gravity waves are radiated in one turnover time of
2π/Ω ∼ 64.1, the wavelength is estimated to be 32.06× c0(∼0.8333)∼ 26.7. Figure 7
indicates that the process of spontaneous gravity wave radiation, propagation, phase
speed and wavelength are sufficiently well simulated in the numerical model. Note that
the rotation rate is modified by the finite wave speed and may be derived analytically.
It is, however, almost the same as that for the non-rotating (or barotropic) case for
large Ro, because the separation distance between vortices is sufficiently smaller than
the deformation radius, 2l�√Φ0/f .

Moreover, the amplitudes of gravity waves in the far field between the two results
are almost the same. Figure 8 shows line plots of radiated gravity waves from
a cyclone pair, dΦ/dt, against r for both the analytical estimate (solid line) and
numerical simulation (broken line). The line plot in the θ =π/4 section at t= 200 is
shown for the numerical simulation, while we again choose an appropriate time for the
analytical estimate to coincide with the numerical results. The results of the numerical
simulation are in excellent agreement with those of the analytical estimate, especially
at 65 6 r 6 105. It should be emphasized that our configuration of the numerical
experiments is not the same as that of the analytical study, since we assume point
vortices in (3.26) excluding a surface elevation. Nevertheless, radiated gravity waves
are quite similar, in both spatial scale and amplitude. A slight difference of the phase
in the numerical simulation appears in the inner part (r< 65). This might be due to
the effect of hyperviscosity, which weakens vortices in the time evolution gradually
but shortens the separation distance. It is possible to set smaller Ω (< 0.098) for the
analytical estimate to coincide with the results of the numerical simulation for r< 65
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FIGURE 8. The far field (r 6 150) of gravity waves (dΦ/dt) for a cyclone pair with
Ro = 20 and Fr = 0.6 for the analytical estimate (3.26) (solid line) and numerical
simulation in the θ =π/4 section at t= 200 (broken line).

(for later time). In that case, the far field of gravity waves (656 r) does not coincide
with the analytical estimate as a trade-off. Note that deviations at the inner region
(r 6 10) in the numerical simulation are not gravity waves that propagate to the far
field but a balanced component associated with vortical motions.

4.3. Cyclone–anticyclone asymmetry in gravity wave radiation
We perform the numerical simulation with several Ro (= 4, 6, 8, 10, 12, 15, 20,∞)
for fixed Fr= 0.6 for both cases of cyclone pairs and anticyclone pairs to investigate
cyclone–anticyclone asymmetry in gravity wave radiation. The other experimental
setting is the same as a cyclone pair of Ro = 20 and Fr = 0.6 as shown in § 4.2.
As an anticyclone pair co-rotates in the opposite direction to a cyclone pair, gravity
waves are spontaneously radiated from vortical flows in the same way as a cyclone
pair (not shown). The structure in the far field of gravity waves is also a double spiral,
while the direction of rotation is opposite to that from a cyclone pair. Although the
spontaneous gravity wave radiation from an anticyclone pair is qualitatively similar to
that from a cyclone pair, the amplitude of gravity waves is different at finite values
of f .

In order to elucidate cyclone–anticyclone asymmetry, line plots of radiated gravity
waves from cyclone pairs (a,c,e) and anticyclone pairs (b,d, f ) are shown in figure 9
for Ro = ∞, 12 and 8, respectively. Both the analytical estimate (solid line) and
numerical simulation (broken line) of dΦ/dt are shown. The line plots in the θ =π/4
section at t = 200 are shown for the numerical simulation, while we again choose
an appropriate time for the analytical estimate to coincide with the numerical results.
The results of the numerical simulation are in excellent agreement with those of
the analytical estimate. The important result is that gravity waves radiated from
anticyclone pairs have larger amplitude than those from cyclone pairs for a finite
value of f . For an anticyclone pair with Ro = 12, the amplitude of gravity waves
is larger than that with Ro = ∞ and 8, which clearly indicates a local maximum
at around Ro = 12. On the other hand, the amplitudes of gravity waves for cyclone
pairs monotonically decrease as Ro decreases. Note that for Ro= 8 a slight deviation
appears in the far field (1206 r), which is larger for an anticyclone pair. One reason
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FIGURE 9. The far field (r 6 150) of gravity waves (dΦ/dt) for (a,c,e) cyclone pairs and
(b,d, f ) anticyclone pairs for the analytical estimate (3.26) (solid line) and the numerical
simulation in the θ = π/4 section at t = 200 (broken line) with Fr = 0.6: (a,b) Ro=∞,
(c,d) Ro= 12 and (e, f ) Ro= 8.

might be due to gravity wave radiation from an initial geostrophic adjustment process.
It is supposed that gravity waves are damped by the effect of hyperviscosity, since
pseudo-hyperviscosity acts as a sponge layer in the far field. At relatively smaller Ro
(610), the phase differences between analytical estimates and numerical results may
also be caused by the modification of the rotation rate due to the finite deformation
radius.

Furthermore, the intensity of gravity waves (I) is calculated from (3.30) for the
numerical simulation. Figure 10 shows the dependence on f /2Ω of I normalized by
that of f = 0 (I/If=0) for the analytical estimate (solid line) and numerical simulation
(symbols). Again, numerical results agree very well with analytical ones for both
cyclone pairs (crosses) and anticyclone pairs (circles). In figure 10, the analytical
estimate excluding the source (3.12) is also shown (dotted line). It is clear that
cyclone–anticyclone asymmetry comes from the source (3.12), which originates in
the Coriolis force.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

20
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.209


100 N. Sugimoto, K. Ishioka, H. Kobayashi and Y. Shimomura

 0.5

 0

1.0

1.5

0–1.0 –0.5 0.5 1.0

In
te

ns
ity

 o
f 

gr
av

ity
 w

av
es

FIGURE 10. The dependence on f /2Ω of the intensity of gravity waves normalized by
that of f = 0 (I/If=0) for the analytical estimate (solid line) and the numerical simulation
(symbols). Circles and crosses are for anticyclone pairs and cyclone pairs with Ro= 8, 12,
20 and ∞. The dotted line shows the analytical estimate excluding the source (3.12).

The overall results indicate that the analytical solution derived in § 3 is verified
successfully by the newly developed numerical model. Note that we additionally
perform numerical simulations with different Fr. The results in the numerical
simulations coincide sufficiently with those of the analytical study (not shown).
We have checked the results with different values of the hyperviscosity and different
resolutions (with different radius R). With a smaller hyperviscosity (ν 6 10−12),
while the gravity waves radiated from a co-rotating vortex pair are qualitatively the
same, gravity waves are not damped in the far field (r > 150), thus eventually the
numerical simulation collapses. In contrast, with a large hyperviscosity (ν > 10−10),
the amplitude of vortices gradually weakens and broadens. Then the numerical results
do not coincide with the analytical estimate. Gravity waves with small scales and
amplitudes are also radiated from the weakened vortex pair through the mechanism
of geostrophic adjustment by the dissipation. This is also true for a simulation with
a medium resolution of T = 341 with a larger value of hyperviscosity. Excellent
agreements with the analytical estimate are obtained only for the T = 682 simulation
with ν=10−11. The main difficulty is that we have to keep the Gaussian vortex similar
to the point vortex in the numerical simulation because we assume point vortices in
the analytical study. Thus a high-resolution numerical model with sufficiently small
hyperviscosity is required to mimic a pair of point vortices. It is also necessary to
damp gravity waves propagating to the far field by the effect of pseudo-hyperviscosity.

While the results for T = 341 deviate slightly from those of the analytical estimate
owing to the weakened and broadened vortices, the overall features of the radiated
gravity waves are reproduced sufficiently well. It should be emphasized that the
discrepancy between the analytical results and numerical ones does not mean that
the numerical model is insufficient, but merely indicates that it is impossible to
keep the Gaussian vortex similar to the point vortex in the numerical model with
given resolution and hyperviscosity. It is supposed that our numerical model will
have sufficient accuracy to investigate spontaneous gravity wave radiation from more
complex vortical flows from which we cannot derive the far field of gravity waves
analytically. In future work, it would be possible to use a medium resolution for
parameter sweep experiments of gravity wave radiation from several configurations
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of vortical flows. Note that we set a very small hyperviscosity in high-resolution
simulations to keep the intensity and shape of vortices so that vortices in the
numerical simulations will mimic point vortices in the analytical study. For different
types of vortical motions, such as coalescence of vortices, collapsing vortex and
turbulent flows, it is safe to set a larger hyperviscosity to avoid accumulation of
enstrophy at small scales. It should also be mentioned that, when focusing on the
small-scale phenomena such as turbulent flows or vortex filaments, careful treatment
of hyperviscosity is required, since it is possible to maintain ‘spurious’ small scales
by the effect of hyperviscosity as revealed in several studies (e.g. Jiménez 1994;
Mariotti et al. 1994; Yao et al. 1995).

5. Summary and discussion

Cyclone–anticyclone asymmetry in spontaneous gravity wave radiation from a co-
rotating vortex pair is investigated in an f -plane shallow water system both analytically
and numerically. We derived analytically the far field of gravity waves by analogy with
the theory of aeroacoustic sound wave radiation (Lighthill theory) in the presence of
the Earth’s rotation. The newly derived form is a natural extension of the theory of
sound wave radiation from a co-rotating vortex pair, but the Earth’s rotation affects
not only the propagation of gravity waves but also their source. In the limit of f→ 0
the results correspond to the previous theory of vortex sound. For finite values of
f , however, there is an asymmetry of gravity wave radiation between cyclone pairs
and anticyclone pairs due to the effect of the Earth’s rotation. It was shown that
an anticyclone pair radiates gravity waves more intensely than a cyclone pair under
the same parameter values. Furthermore, the local maximum of intensity of gravity
waves appears at an intermediate value of f only for anticyclone pairs. To verify the
analytical solution, series of numerical simulations with experimental configuration
similar to analytical study are also performed.

In the numerical simulation, we use a spectral method for an unbounded domain
with the aid of a conformal mapping from a sphere to a plane. It is then possible
to position many grid points in the near field of vortices and few points in the far
field of waves. In addition, the model includes pseudo-hyperviscosity, which acts
as usual hyperviscosity in the near field and as a sponge layer in the far field to
damp waves. Thus, we are able to simulate vortical motion accompanied by wave
radiation with high accuracy. The results of the numerical simulation were compared
with those of the analytical study, and the results were found to be in excellent
agreement with each other. Again, cyclone–anticyclone asymmetry in spontaneous
gravity wave radiation appeared at finite values of f in the numerical simulation. It
was also confirmed that the amplitude of the gravity waves from an anticyclone pair
was always larger than that from a cyclone pair under the same parameter values.
Therefore, analytical derivation is verified successfully by the numerical simulations.
Moreover, it is confirmed that the developed numerical model has sufficient accuracy
to estimate amplitudes of gravity waves far from vortical flows.

A key finding in the present study is the cyclone–anticyclone asymmetry in
spontaneous gravity wave radiation. This asymmetry comes from the Coriolis effect
in the source of gravity waves. In Sugimoto et al. (2008), it was reported that a local
maximum of the gravity wave flux due to an unsteady jet appears, because the source
originating in the Coriolis force is larger than that produced by unsteady motions of
the vortex at a medium value of f . It is strongly suggested that the local maximum
appears because of gravity wave radiation from anticyclones as shown in the present
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study. Cyclone–anticyclone asymmetry has also been reported in a linear stability
analysis (Sugimoto, Ishioka & Yoden 2007a). While in rotating shallow water linear
stability analysis (Stegner & Dritschel 2000) and nonlinear simulations for one layer
(Polvani et al. 1994) and two layers (Lahaye & Zeitlin 2012a) show that anticyclones
tend to be more stable than cyclones due to the effect of the finite deformation
radius, gravity wave radiation is enhanced for anticyclones in the present study. The
physical mechanism for cyclone–anticyclone asymmetry in gravity wave radiation has
not yet been clarified. The enhancement of gravity wave radiation is caused by the
opposite signs of Ω and f . While the Coriolis and centrifugal forces act in the same
directions for cyclones, they act oppositely for anticyclones. One possible mechanism
might be that anticyclones tend to fluctuate when the Coriolis and centrifugal forces
are comparable at an intermediate Ro. Another possible mechanism may be that
background rotation f intensifies the apparent Ωa in a rotating reference frame for
the case of anticyclones, while it weakens Ωa for cyclones. A promising next step
is to investigate cyclone–anticyclone asymmetry in gravity wave radiation in a wide
parameter space of Ro and Fr, focusing on the frequency of the source originating in
the Coriolis force. It would also be interesting to investigate gravity wave radiation
from several configurations of vortical flows, such as the merger of a cyclone pair
and an anticyclone pair, in a collapsing vortex and for turbulent flows as in the case
of sound wave emission (e.g. Knio, Collorec & Juvé 1995)

Since an f -plane shallow water system is introduced on the assumption of strong
stratification, this system has external gravity waves that propagate only in the
horizontal direction. This leads to a large spectral gap between balanced and
unbalanced motions and large Ro (> 1) is required to radiate gravity waves (cf.
Zeitlin 2007). As a consequence, very weak gravity waves are spontaneously radiated
from prescribed sources of vortical flows. This is the feature of ‘Lighthill radiation’
(Ford et al. 2000). Further, there is no wave capture mechanism (Bühler & McIntyre
2005) in this system. In contrast, in a continuously stratified system where scale
separation between inertial gravity waves and vortical flows is no longer large,
gravity waves are spontaneously radiated for smaller Ro and the spatial scale of
gravity waves radiated from a jet is much smaller than that of the local jet itself
(e.g. O’Sullivan & Dunkerton 1995; Zhang 2004; Plougonven & Snyder 2007).
Here, advection by vortical flows plays crucial roles. Radiated gravity waves are
captured in the vortical flows (Snyder et al. 2007; Viúdez 2007) and significant
back-reaction of gravity waves occurs (Wang et al. 2009). Taking into account the
Doppler shift by vortical flows is also necessary for time-scale matching, which
is called ‘quasi-resonance’, in order to explain spontaneous gravity wave radiation
theoretically (Yasuda et al. 2015a). Therefore, it is difficult to apply results obtained
in the present study and those of ‘Lighthill radiation’ directly to phenomena in
the real atmosphere. While cyclone–anticyclone asymmetry in spontaneous gravity
waves from dipoles has also been reported in several numerical simulations of the
continuously stratified system (e.g. Snyder et al. 2007; Viúdez 2007; Wang et al.
2009; Yasuda et al. 2015b) in which gravity waves are more strongly wrapped in
the anticyclone, the mechanism has not yet been revealed. Our results would give
a first step towards a fundamental understanding of cyclone–anticyclone asymmetry
in spontaneous gravity wave radiation in the real atmosphere, though Ro used in
the present study is larger than that of typical synoptic-scale flows on the Earth. In
the context of the present study at intermediate Ro (∼ 10), there is a possibility of
cyclone–anticyclone asymmetry in gravity waves from the Florida Current, which is
a very strong flow close to shore. Further, on slowly rotating planets, such as Venus,
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Ro is supposed to be large for barotropic or baroclinic vortices in super-rotating flow
(e.g. Sugimoto, Takagi & Matsuda 2014). It is inferred that intense gravity waves
may be radiated from anticyclones and have a significant impact on the atmosphere
of Venus. It would also be interesting to verify cyclone–anticyclone asymmetry
in gravity waves in laboratory experiments as an extension of previous work (e.g.
Williams et al. 2003). Since structures similar to wave capture have been observed
recently in a two-layer rotating shallow water system (Lahaye & Zeitlin 2012b), it
might be important to extend the present study to the two-layer system.

Another point worth noting is the applicability of the numerical model used in
the present study. We have applied the method proposed by Ishioka (2008) to an
f -plane shallow water system. The method can be extended to several equations in
principle. For a one-dimensional domain, the method has already been applied to a
two-layer shallow water system (Harada & Ishioka 2011). It is possible to apply two-
or three-dimensional Navier–Stokes equations and more realistic three-dimensional
primitive equations. The method will be powerful for investigating wave radiation
from vortex motions localized in the centre region. For future work, it is of interest
to simulate gravity wave radiation from three-dimensional vortical flows as an
extension of the proposed method. Sound wave radiation from vortex motion is
also an important subject for both theoretical and engineering purposes, especially in
the field of noise reduction. It is expected that various applications could be realized
using this method.

It is well known that a strict slow manifold (purely balanced model), which is
free from gravity wave radiation, for atmospheric motion does not exist (e.g. Ford
et al. 2000). However, the parameter dependence of the amplitude of gravity waves
is not yet understood clearly (cf. Saujani & Shepherd 2002; Vanneste 2008, 2013).
The numerical model used in the present study offers the possibility of revealing the
dependence of the amplitude of gravity waves on small Ro by numerical simulation
with ultra-high resolution. Further studies will be needed to comprehensively describe
spontaneous gravity wave radiation.
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Appendix A. Special functions

In this appendix, we show the special functions used in the present study. First, the
integral form of Hankel’s function is written

∫ ∞
−∞

dξ eiα(a cosh ξ+b sinh ξ) =


iπH(1)

0 (α
√

b2 − a2) (b> |a|),
iπH(1)

0 (iα
√

a2 − b2) (|a|> |b|),
−iπH(2)

0 (α
√

b2 − a2) (−b> |a|).
(A 1a−c)

For ax� 1,
H(1)

2 (ax)≈−H(1)
0 (ax), (A 2)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

20
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.209


104 N. Sugimoto, K. Ishioka, H. Kobayashi and Y. Shimomura

where x and a are a real variable and a constant, respectively. Then we obtain

d2H(1)
0 (ax)
dx2

= a2

2
(H(1)

2 (ax)−H(1)
0 (ax))≈−a2H(1)

0 (ax). (A 3)

We also note that

H(1)
0 (ax)= J0(ax)+ iY0(ax), (A 4)

H(2)
0 (ax)= J0(ax)− iY0(ax), (A 5)

where J0 and Y0 are the zeroth-order Bessel functions of the first and second kind,
respectively. For ax� 1,

J0(ax)≈
√

2
πax

cos
(

ax− π

4

)
, Y0(ax)≈

√
2

πax
sin
(

ax− π

4

)
. (A 6a,b)

In addition, for H(1)
0 (iax),

K0(ax)= π

2
iH(1)

0 (iax) (A 7)

is real, where K0(x) is the zeroth-order modified Bessel function of the second kind.
Then we obtain the following approximation for ax� 1,

d2K0(ax)
dx2

= 1
2
[K0(ax)+K2(ax)] ≈ a2K2(ax). (A 8)
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