Proceedings of the Royal Society of Edinburgh, 146A., 475-482, 2016
DOI:10.1017/50308210515000657

Existence of positive solutions for
a semipositone p-Laplacian problem

Alfonso Castro
Department of Mathematics, Harvey Mudd College, Claremont,
CA 91711, USA (castro®g.hmc.edu)

Djairo G. de Figueredo

Instituto de Matematica, Estatistica e Computacao Cientifica,
Universidade Estadual de Campinas, Caixa Postal 6065, Campinas,
SP 13083-859, Brazil (djairo@ime.unicamp.br)

Emer Lopera

Escuela de Matematicas, Universidad Nacional de Colombia,
Sede Medellin, Apartado Aéreo 3840, Medellin, Colombia
(edlopera@unal.edu.co)

(MS received 4 November 2014; accepted 25 March 2015)

We prove the existence of positive solutions to a semipositone p-Laplacian problem
combining mountain pass arguments, comparison principles, regularity principles and
a priori estimates.

Keywords: mountain pass theorem; semipositone problem; positive solutions;
p-Laplacian; maximum principles; a priori estimates

2010 Mathematics subject classification: Primary 35J92; 35J20; 35J60

1. Introduction

In this paper we study the existence of positive weak solutions to the problem

~Agu=Af(w) in @, } (L.1)

u=20 on 012,

where Ap,(u) = div(|Vu[P72Vu) denotes the p-Laplacian operator, p > 2. 2 is
an open smooth bounded domain in RY, N > 2. The function f: R — R is a
differentiable function with f(0) < 0 (semipositone). We assume that there exist
g€ (p—1,Np/(N —p)—1), A>0, B> 0 such that

A(u? = 1) < f(u) < Bu? +1) for u >0, } (12)

flu)y=0 for u < —1.
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We also assume an Ambrosetti-Rabinowitz type of condition, namely that there
exist # > p and M € R such that

uf(u) = 0F (u) + M, (1.3)

where

F(u) = f(s)ds.
0
The assumption f(0) < 0 implies that u = 0 is not a subsolution to (1.1), making
the finding of positive solutions rather challenging; this was pointed out in [6].
The aim of this paper is to prove the following result.

THEOREM 1.1. There exists \* > 0 such that if A € (0,\), then the problem (1.1)
has a positive weak solution uy € CYP(2) for some 3 € (0,1).

Our results extend [1, theorem 1.1], where the case p = 2 was studied. Extending
such a theorem to p > 2 is not straightforward due to the lack of regularity and
linearity of A,. Associated to (1.1) we have a functional, which will be defined in
the next section. We show that this functional has a critical point of mountain pass
type and, consequently, a weak solution of (1.1) for appropriate values of A > 0.
Finally, using order properties of —A,, we prove that by further restricting A such a
solution is actually positive. For recent results on semipositone problems the reader
is referred to [2,3].

2. Preliminary results

Let W, *(£2) denote the Banach space of functions in LP(£2) with first-order partial
derivatives in LP({2) and vanishing on 92. By a weak solution to (1.1) we mean an
element u € W, *(£2) such that

/ |Vu|P~2(Vu, Vo) da::/\/ fw)pdz (2.1)
2 2

for all ¢ € Wy (£2). We denote by || -||s the norm in the space L*(£2) and by ||- |1,
the norm in the Sobolev space Wy (£2).
Associated to (1.1) we have the functional Jy: Wy (£2)—R defined by

I (u) ::/Qvul(f)pdx—/g)\F(u(x))dx, (2.2)

where

F(s):= /OS flr)dr.

It is well known that Jy is a functional of class C! (see [7]) and that the critical
points of the functional Jy are the weak solutions of (1.1). The proof of theorem 1.1
consists of two main steps:

(i) the proof of existence of one solution via the mountain pass theorem,

(ii) the proof that for proper values of A the solution is indeed positive.
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It follows from (1.2) that there exist positive real numbers Ay, By such that
F(u) < Bi(Ju|"™ +1) forallueR (2.3)
and
F(u) > Ay (Jul7™ — 1) for all u > 0. (2.4)

For simplicity of the notation, we define r = 1/(q+1—p) > 0. Let ¢ € W, *(£2)
denote a positive differentiable function with ||¢||1,, = 1. Let us define the constant

c= (2 A el ) (2.5)

which will be used in the next lemma.
The next two lemmas prove that J) satisfies the geometric hypotheses of the
mountain pass theorem.

LEMMA 2.1. There exists Ay > 0 such that if X € (0, A1), then Jx(cA7"¢) < 0.

Proof. Let s = ¢A™", with ¢ and r as defined above. Hence, due to (2.4),

JA(SW):A{W_AF(S@)}dx

p

< — — )\Al/ (sq+1<pq+1 —1)dx
p n

sP
=5 ATl T2 + A4 |2

—rp
- c”{ Ap _ /\Alcq+1—p>\—r(q+1)||<p||gi}} + AA]92]. (2.6)

Substituting (2.5) into (2.6) yields

AP 9
In(sp) < cp( - )\1""((1“)) + A 92|

p p
= CP)\—TP<1 _ 2)\1+rp—7”(q+1)) + A2
p p
1
=—PATP= + AA02]. (2.7)
p
Taking A\; < min{1, (pA;c~P|2|)~Y/ P} the lemma is proven. O

LEMMA 2.2. There exist 7 >0, ¢1 > 0, and A2 € (0,1) such that if ||u|l1,p =727,
then Jx(u) = c1(TA™7)P for all A € (0, A2).

Proof. By the Sobolev embedding theorem there exists K7 > 0 such that if u €
WoP(£2), then [|ullg+1 < Killull1,p- Let

7 = min{(2pK{ " B1) 7" cllpll1p}- (2.8)
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If [[ullyy2» = 7A7", then

Ia(w) = T /Q AF(u)

p

> Wp —/\/ Bilu|9tt = \|2| By

(TA™")P

> — ABLK | V|27 — A 02| By

B (T)FT)”

— AB KT (rATT)a+ — )\|02|B,

> \7P

=\~ rp[ )\1+TP|Q|BI}
TP
_ 2.9
m (2.9)

where we have used that 7 < (2pK"' B;)™" (see (2.8)). Taking ¢; = 7°/(4p) and
Ao = 7P/(HP) (4p By |02|)~ 1/(1‘””) the lemma is proven. O

Next, using the mountain pass theorem we prove that (1.1) has a solution uy €
WyP(92).

LEMMA 2.3. Let A3 = min{A1, \o}. There exists ca > 0 such that, for each \ €
(0, A3), the functional Jy has a critical point uy of mountain pass type that satisfies
In(uy) < AP,

Proof. First we show that J satisfies the Palais—Smale condition.

Assume that {u,}, is a sequence in W, ?(£2) such that {Jy(un)}n, is bounded
and J}(u,) — 0. Hence, there exists v > 0 such that (J(un),un) < |[[Vuy,ll, for
n > v. Thus,

—[IVun|l) = |V, < —)\/ flup)upydz forn >wv
I7)

Let K be a constant such that |Jy(u,)| < K for all n = 1,2,.... From (1.3), we
obtain

1 A A 1
—[IVun|} - */ flun)un dz + - M[02] < = Vun|) —A/ F(up,)dz < K.
p 0 Jo 0 p 7]

From the last two inequalities we have
1 1 1 A
(5= 5)17unll = 319unll < K - GMI2L

This proves that {u,} is a bounded sequence. Thus, without loss of generality, we
may assume that {u,} converges weakly. Let u € W, *(£2) be its weak limit. Since
g < Np/(N — p), by the Sobolev embedding theorem we may assume that {u,}
converges to u in L(£2). These assumptions and Holder’s inequality imply

/ Af (un) (U, —u) — 0. (2.10)
9]
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From (2.10) and lim,, 4o J4(u,) = 0 we have

lim / |Vt P2V, (Vu, — Vu)dz = 0. (2.11)
o)

n—-+oo

Using again that u is the weak limit of {u,} in W, (£2) we also have

lim / |Vu|P~2Vu(Vu, — Vu)de = 0. (2.12)
2

n—-+oo

By Hoélder’s inequality,

/ (|Vun [P 2Vu, — |VulP~2Vu)(Vu, — Vu) dz
(]

> [Vun [l = I Vullp[Vun 57" = [[Vua | Vall5 ™ + ([ Vall;

= (IVuallp™" = Va3~ (I Vunlly = [ Vull,)

> 0. (2.13)
From (2.11)-(2.13),

Tim ([ Va5 = [Vulz ) ([ Vunll, ~ [Vull,) =0,

which implies that lim,, o ||V, ||, = ||Vaull,. Since u, — u, u, — u in W, . This
proves that Jy satisfies the Palais—Smale condition.

From (2.6) we see that

CHrr((q+1)ra=P) —p)
Drrp(q + 1)T(q+1)

= COANTPT - NAL Q2] < AP+ A 2INTPT

= AP (2.14)

max{Jx(sp);s = 0} < ATPT 4+ XA |12

11
where C' = [[Vp|[h and D = A;|[p||17;.

With this estimate and lemma 2.2, the existence of uy € Wy (£2) such that
VJ)\(”LL)\) =0 and

(TATT)P < Ja(uy) < ceA™P" (2.15)
follows by the mountain pass theorem. O
REMARK 2.4. The solution uy € Wy*(£2) is indeed in C**(£2) (cf. [5]).

LEMMA 2.5. Let uy be as in lemma 2.3. Then there is a positive constant My such
that

MoA™" < [urloe- (2.16)

Proof. We already know that there exists ¢; > 0 such that J(uy) = ¢;A™". On the
other hand, we have that F(s) > min F > —oo and f(s)s < By (|s|?™! + |s|) for all
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s € R. Then there is a constant C7 > 0 such that

)\/ f(uA)uAdx:/ [Vuy|P dx
17} o

= pJ(uy) —&—p)\/QF(uA) dx

> pCiA"P + p|2|Amin F
> Ci AP,

Thus, limy_,¢ [|ua|lec = +00. On the other hand, by (2.3),
)\/ flux)uyde < Bl)\/ (Jux|7Tt + Juy|) do
Q Q

<BM/YMW£“wawa
N
< 2B 2\ lun]| L,

where we have used the fact that 0 < A < 1. Finally, taking My = C/2B;|{2|, the
lemma is proven. O

LEMMA 2.6. Let uy be as in lemma 2.3. Then there exists c3 > 0 such that
luslf, < esx~P" (217)

for all X € (0, A3).

Proof. By (1.3) and the definition of uy,

6 — ApM |02
>\/ pU,\f(UA)dDC < A/ (uxf(ux) — pF(uy)) de — PTH
2 2
ApM |2
= / (IVual? — pAF(uy)) dz — pT”
(9
M|
< epr-r 4 22214 9| |
< 2022777, (2.18)

where we have used 0 < A < 1. Now the result follows from (2.18) and the fact that
uy is a weak solution of (1.1). O

3. Proof of theorem 1.1

We prove theorem 1.1 by contradiction. Suppose there exists a sequence {A;};, 1 >
Aj > 0 for all j, converging to 0 such that the measure m({x € §2; uy;(z) < 0}) > 0.
Letting w; = uy, /||ux, ||oo, We see that

—Ap(wy) = A f (ux;)[lux, 1557 (3.1)
From lemmas 2.5 and 2.6 there is a constant C3 such that

wjll1p < Cs. (3.2)
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By [4, proposition 3.7] the sequence w; is uniformly bounded in C'* for some
a € (0,1). Hence, for any 5 € (0,«), the sequence w; has a subsequence that
. 1 . . .
converges in C;,". Let us denote its limit by w.
Next, using comparison principles, we prove that w(z) > 0.
Let vy € W3 (£2) be the solution of

—Apvg =1 1in £, }

3.3
v9=0 on 0f2. (3:3)

Let K; := A\;min{f(t); ¢t € R}|lux, |57 Then the solution v; of the equation

—Apv; = K; inf, } 5.0

v=0 on 91
is given by v; = (=K )Y/ (P~ Dy,
Since \; f(un,)|lu, |57 = Kj, it follows by the comparison principle in [9] that
w; > v;. Then the fact that v;(z) — 0 as j — 0 implies that w(z) > 0 for all x € 2.
Since, by hypothesis, ¢ > p — 1, we have s = Npr/(N — p) > 1. This result,
together with the Sobolev embedding theorem, (1.2) and lemma 2.6, gives

/ |f(U)\j)‘sH’LL)\j||igl_p)d$<3828_1/(|U/\j|(q+1_p)s+1)d$
2 (]

Np/(N-
< Cfun, 17N +1)
< Ofesh; "M/, (3.5)
where C' > 0 is a constant independent of j and, without loss of generality, we
have assumed |[uy,[|oc > 1. From (3.5) and the fact that rNp/(sN —sp) = 1 we see
that {A; f(ux,)|lux,[|357} is bounded in L*(£2), so we may assume that it converges

weakly. Let z € L*(£2) be the weak limit of such a sequence. Since [uy, [|357A; — 0
as j — 400 and f is bounded from below, z > 0. Now if ¢ € C5°(£2), then

/ IV|P~2(Vew, Vo) dz = lim / IV, P2 (Vaw;, V) de
n I=0 )0
~ lim / lus, 1157 [ Vus, [P~2(Vus,, Vo) de
J]—00 Q

~ lim / s, 157, (s, ) da
> Jn

= ]/Q 2¢da. (3.6)

Therefore, —A,w = z. Since || wj| = 1, w # 0. By Hopf’s maximum principle for
the p-Laplacian operator (see [8, theorem 5.1]), w > 0 in {2 and

%(m) <0 forall x € 912.

Here 9/0n denotes the outward unit normal derivative. Therefore, since {w,};
converges in CH* to w, for sufficiently large j, w;(z) > 0 for all z € 2. Hence,
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uy, (x) > 0 for all z € £2, which contradicts the assumption that
m({x;uy, (r) <0}) > 0.

This contradiction proves theorem 1.1.
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