Existence of positive solutions for a semipositone *p*-Laplacian problem

Alfonso Castro

Department of Mathematics, Harvey Mudd College, Claremont, CA 91711, USA (castro@g.hmc.edu)

Djairo G. de Figueredo

Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas, Caixa Postal 6065, Campinas, SP 13083-859, Brazil (djairo@ime.unicamp.br)

Emer Lopera

Escuela de Matemáticas, Universidad Nacional de Colombia, Sede Medellín, Apartado Aéreo 3840, Medellín, Colombia (edlopera@unal.edu.co)

(MS received 4 November 2014; accepted 25 March 2015)

We prove the existence of positive solutions to a semipositone p-Laplacian problem combining mountain pass arguments, comparison principles, regularity principles and $a \ priori$ estimates.

Keywords: mountain pass theorem; semipositone problem; positive solutions; p-Laplacian; maximum principles; $a \ priori$ estimates

2010 Mathematics subject classification: Primary 35J92; 35J20; 35J60

1. Introduction

In this paper we study the existence of *positive* weak solutions to the problem

$$\begin{aligned} -\Delta_p u &= \lambda f(u) \quad \text{in } \Omega, \\ u &= 0 \qquad \text{on } \partial\Omega, \end{aligned}$$
 (1.1)

where $\Delta_p(u) = \operatorname{div}(|\nabla u|^{p-2}\nabla u)$ denotes the *p*-Laplacian operator, p > 2. Ω is an open smooth bounded domain in \mathbb{R}^N , N > 2. The function $f: \mathbb{R} \to \mathbb{R}$ is a differentiable function with f(0) < 0 (*semipositone*). We assume that there exist $q \in (p-1, Np/(N-p)-1), A > 0, B > 0$ such that

$$\begin{array}{l}
A(u^{q}-1) \leqslant f(u) \leqslant B(u^{q}+1) & \text{for } u > 0, \\
f(u) = 0 & \text{for } u \leqslant -1.
\end{array}$$
(1.2)

O 2016 The Royal Society of Edinburgh

We also assume an Ambrosetti–Rabinowitz type of condition, namely that there exist $\theta > p$ and $M \in \mathbb{R}$ such that

$$uf(u) \ge \theta F(u) + M, \tag{1.3}$$

where

476

$$F(u) = \int_0^u f(s) \, \mathrm{d}s.$$

The assumption f(0) < 0 implies that u = 0 is not a subsolution to (1.1), making the finding of positive solutions rather challenging; this was pointed out in [6].

The aim of this paper is to prove the following result.

THEOREM 1.1. There exists $\lambda^* > 0$ such that if $\lambda \in (0, \lambda^*)$, then the problem (1.1) has a positive weak solution $u_{\lambda} \in C^{1,\beta}(\overline{\Omega})$ for some $\beta \in (0, 1)$.

Our results extend [1, theorem 1.1], where the case p = 2 was studied. Extending such a theorem to p > 2 is not straightforward due to the lack of regularity and linearity of Δ_p . Associated to (1.1) we have a functional, which will be defined in the next section. We show that this functional has a critical point of mountain pass type and, consequently, a weak solution of (1.1) for appropriate values of $\lambda > 0$. Finally, using order properties of $-\Delta_p$, we prove that by further restricting λ such a solution is actually positive. For recent results on semipositone problems the reader is referred to [2,3].

2. Preliminary results

Let $W_0^{1,p}(\Omega)$ denote the Banach space of functions in $L^p(\Omega)$ with first-order partial derivatives in $L^p(\Omega)$ and vanishing on $\partial\Omega$. By a weak solution to (1.1) we mean an element $u \in W_0^{1,p}(\Omega)$ such that

$$\int_{\Omega} |\nabla u|^{p-2} \langle \nabla u, \nabla \phi \rangle \, \mathrm{d}x = \lambda \int_{\Omega} f(u) \phi \, \mathrm{d}x \tag{2.1}$$

for all $\phi \in W_0^{1,p}(\Omega)$. We denote by $\|\cdot\|_s$ the norm in the space $L^s(\Omega)$ and by $\|\cdot\|_{1,p}$ the norm in the Sobolev space $W_0^{1,p}(\Omega)$.

Associated to (1.1) we have the functional $J_{\lambda} \colon W_0^{1,p}(\Omega) \to \mathbb{R}$ defined by

$$J_{\lambda}(u) := \int_{\Omega} \frac{|\nabla u(x)|^p}{p} \,\mathrm{d}x - \int_{\Omega} \lambda F(u(x)) \,\mathrm{d}x, \qquad (2.2)$$

where

$$F(s) := \int_0^s f(r) \,\mathrm{d}r.$$

It is well known that J_{λ} is a functional of class C^1 (see [7]) and that the critical points of the functional J_{λ} are the weak solutions of (1.1). The proof of theorem 1.1 consists of two main steps:

- (i) the proof of existence of one solution via the mountain pass theorem,
- (ii) the proof that for proper values of λ the solution is indeed positive.

477

It follows from (1.2) that there exist positive real numbers A_1 , B_1 such that

$$F(u) \leqslant B_1(|u|^{q+1} + 1) \quad \text{for all } u \in \mathbb{R}$$

$$(2.3)$$

and

$$F(u) \ge A_1(|u|^{q+1} - 1)$$
 for all $u \ge 0.$ (2.4)

For simplicity of the notation, we define r = 1/(q+1-p) > 0. Let $\varphi \in W_0^{1,p}(\Omega)$ denote a positive differentiable function with $\|\varphi\|_{1,p} = 1$. Let us define the constant

$$c = (2p^{-1}A_1^{-1} \|\varphi\|_{q+1}^{-q-1})^r,$$
(2.5)

which will be used in the next lemma.

The next two lemmas prove that J_λ satisfies the geometric hypotheses of the mountain pass theorem.

LEMMA 2.1. There exists $\lambda_1 > 0$ such that if $\lambda \in (0, \lambda_1)$, then $J_{\lambda}(c\lambda^{-r}\varphi) \leq 0$.

Proof. Let $s = c\lambda^{-r}$, with c and r as defined above. Hence, due to (2.4),

$$J_{\lambda}(s\varphi) = \int_{\Omega} \left\{ \frac{|\nabla(s\varphi)|^p}{p} - \lambda F(s\varphi) \right\} dx$$

$$\leqslant \frac{s^p}{p} - \lambda A_1 \int_{\Omega} (s^{q+1}\varphi^{q+1} - 1) dx$$

$$= \frac{s^p}{p} - A_1 s^{q+1} \|\varphi\|_{q+1}^{q+1} \lambda + \lambda A_1 |\Omega|$$

$$= c^p \left\{ \frac{\lambda^{-rp}}{p} - \lambda A_1 c^{q+1-p} \lambda^{-r(q+1)} \|\varphi\|_{q+1}^{q+1} \right\} + \lambda A_1 |\Omega|.$$
(2.6)

Substituting (2.5) into (2.6) yields

$$J_{\lambda}(s\varphi) \leqslant c^{p} \left(\frac{\lambda^{-rp}}{p} - \frac{2}{p}\lambda^{1-r(q+1)}\right) + \lambda A_{1}|\Omega|$$

$$= c^{p}\lambda^{-rp} \left(\frac{1}{p} - \frac{2}{p}\lambda^{1+rp-r(q+1)}\right) + \lambda A_{1}|\Omega|$$

$$= -c^{p}\lambda^{-rp}\frac{1}{p} + \lambda A_{1}|\Omega|.$$
(2.7)

Taking $\lambda_1 < \min\{1, (pA_1c^{-p}|\Omega|)^{-1/(1+pr)}\}$, the lemma is proven.

LEMMA 2.2. There exist $\tau > 0$, $c_1 > 0$, and $\lambda_2 \in (0,1)$ such that if $||u||_{1,p} = \tau \lambda^{-r}$, then $J_{\lambda}(u) \ge c_1(\tau \lambda^{-r})^p$ for all $\lambda \in (0, \lambda_2)$.

Proof. By the Sobolev embedding theorem there exists $K_1 > 0$ such that if $u \in W_0^{1,p}(\Omega)$, then $||u||_{q+1} \leq K_1 ||u||_{1,p}$. Let

$$\tau = \min\{(2pK_1^{q+1}B_1)^{-r}, c \|\varphi\|_{1,p}\}.$$
(2.8)

If $||u||_{W_0^{1,p}} = \tau \lambda^{-r}$, then

$$J_{\lambda}(u) = \frac{(\tau\lambda^{-r})^{p}}{p} - \int_{\Omega} \lambda F(u)$$

$$\geqslant \frac{(\tau\lambda^{-r})^{p}}{p} - \lambda \int_{\Omega} B_{1} |u|^{q+1} - \lambda |\Omega| B_{1}$$

$$\geqslant \frac{(\tau\lambda^{-r})^{p}}{p} - \lambda B_{1} K_{1}^{q+1} ||\nabla u||_{p}^{q+1} - \lambda |\Omega| B_{1}$$

$$= \frac{(\tau\lambda^{-r})^{p}}{p} - \lambda B_{1} K_{1}^{q+1} (\tau\lambda^{-r})^{q+1} - \lambda |\Omega| B_{1}$$

$$= \lambda^{-rp} \left[\frac{\tau^{p}}{2p} - \lambda^{1+rp} |\Omega| B_{1} \right]$$

$$\geqslant \lambda^{-rp} \frac{\tau^{p}}{4p}, \qquad (2.9)$$

where we have used that $\tau \leq (2pK_1^{q+1}B_1)^{-r}$ (see (2.8)). Taking $c_1 = \tau^p/(4p)$ and $\lambda_2 = \tau^{p/(1+rp)}(4pB_1|\Omega|)^{-1/(1+rp)}$, the lemma is proven.

Next, using the mountain pass theorem we prove that (1.1) has a solution $u_{\lambda} \in W_0^{1,p}(\Omega)$.

LEMMA 2.3. Let $\lambda_3 = \min\{\lambda_1, \lambda_2\}$. There exists $c_2 > 0$ such that, for each $\lambda \in (0, \lambda_3)$, the functional J_{λ} has a critical point u_{λ} of mountain pass type that satisfies $J_{\lambda}(u_{\lambda}) \leq c_2 \lambda^{-pr}$.

Proof. First we show that J_{λ} satisfies the Palais–Smale condition.

Assume that $\{u_n\}_n$ is a sequence in $W_0^{1,p}(\Omega)$ such that $\{J_\lambda(u_n)\}_n$ is bounded and $J'_\lambda(u_n) \to 0$. Hence, there exists $\nu > 0$ such that $\langle J'_\lambda(u_n), u_n \rangle \leq \|\nabla u_n\|_p$ for $n \geq \nu$. Thus,

$$-\|\nabla u_n\|_p^p - \|\nabla u_n\|_p \leqslant -\lambda \int_{\Omega} f(u_n)u_n \,\mathrm{d}x \quad \text{for } n \ge \nu.$$

Let K be a constant such that $|J_{\lambda}(u_n)| \leq K$ for all n = 1, 2, ... From (1.3), we obtain

$$\frac{1}{p} \|\nabla u_n\|_p^p - \frac{\lambda}{\theta} \int_{\Omega} f(u_n) u_n \, \mathrm{d}x + \frac{\lambda}{\theta} M |\Omega| \leqslant \frac{1}{p} \|\nabla u_n\|_p^p - \lambda \int_{\Omega} F(u_n) \, \mathrm{d}x \leqslant K.$$

From the last two inequalities we have

$$\left(\frac{1}{p} - \frac{1}{\theta}\right) \|\nabla u_n\|_p^p - \frac{1}{\theta} \|\nabla u_n\|_p \leqslant K - \frac{\lambda}{\theta} M|\Omega|.$$

This proves that $\{u_n\}$ is a bounded sequence. Thus, without loss of generality, we may assume that $\{u_n\}$ converges weakly. Let $u \in W_0^{1,p}(\Omega)$ be its weak limit. Since q < Np/(N-p), by the Sobolev embedding theorem we may assume that $\{u_n\}$ converges to u in $L^q(\Omega)$. These assumptions and Hölder's inequality imply

$$\int_{\Omega} \lambda f(u_n)(u_n - u) \to 0.$$
(2.10)

478

479

From (2.10) and $\lim_{n\to+\infty} J'_{\lambda}(u_n) = 0$ we have

$$\lim_{n \to +\infty} \int_{\Omega} |\nabla u_n|^{p-2} \nabla u_n (\nabla u_n - \nabla u) \, \mathrm{d}x = 0.$$
(2.11)

Using again that u is the weak limit of $\{u_n\}$ in $W_0^{1,p}(\Omega)$ we also have

$$\lim_{n \to +\infty} \int_{\Omega} |\nabla u|^{p-2} \nabla u (\nabla u_n - \nabla u) \, \mathrm{d}x = 0.$$
(2.12)

By Hölder's inequality,

$$\int_{\Omega} (|\nabla u_n|^{p-2} \nabla u_n - |\nabla u|^{p-2} \nabla u) (\nabla u_n - \nabla u) \, \mathrm{d}x$$

$$\geq \|\nabla u_n\|_p^p - \|\nabla u\|_p \|\nabla u_n\|_p^{p-1} - \|\nabla u_n\|_p \|\nabla u\|_p^{p-1} + \|\nabla u\|_p^p$$

$$= (\|\nabla u_n\|_p^{p-1} - \|\nabla u\|_p^{p-1}) (\|\nabla u_n\|_p - \|\nabla u\|_p)$$

$$\geq 0.$$
(2.13)

From (2.11) - (2.13),

$$\lim_{n \to \infty} (\|\nabla u_n\|_p^{p-1} - \|\nabla u\|_p^{p-1})(\|\nabla u_n\|_p - \|\nabla u\|_p) = 0,$$

which implies that $\lim_{n\to\infty} \|\nabla u_n\|_p = \|\nabla u\|_p$. Since $u_n \rightharpoonup u$, $u_n \rightarrow u$ in $W_0^{1,p}$. This proves that J_λ satisfies the Palais–Smale condition.

From (2.6) we see that

$$\max\{J_{\lambda}(s\varphi); s \ge 0\} \leqslant \frac{C^{1+pr}((q+1)^{r(q-p)}-p)}{D^{pr}p(q+1)^{r(q+1)}}\lambda^{-pr} + \lambda A_1|\Omega|$$
$$:= c_2'\lambda^{-pr} + \lambda A_1|\Omega| \leqslant c_2'\lambda^{-pr} + A_1|\Omega|\lambda^{-pr}$$
$$:= c_2\lambda^{-pr}, \tag{2.14}$$

where $C = \|\nabla \varphi\|_p^p$ and $D = A_1 \|\varphi\|_{q+1}^{q+1}$. With this estimate and lemma 2.2, the existence of $u_\lambda \in W_0^{1,p}(\Omega)$ such that $\nabla J_{\lambda}(u_{\lambda}) = 0$ and

$$c_1(\tau\lambda^{-r})^p \leqslant J_\lambda(u_\lambda) \leqslant c_2\lambda^{-pr} \tag{2.15}$$

follows by the mountain pass theorem.

REMARK 2.4. The solution $u_{\lambda} \in W_0^{1,p}(\Omega)$ is indeed in $C^{1,\alpha}(\overline{\Omega})$ (cf. [5]).

LEMMA 2.5. Let u_{λ} be as in lemma 2.3. Then there is a positive constant M_0 such that

$$M_0 \lambda^{-r} \leqslant \|u_\lambda\|_{\infty}. \tag{2.16}$$

Proof. We already know that there exists $c_1 > 0$ such that $J(u_{\lambda}) \ge c_1 \lambda^{-rp}$. On the other hand, we have that $F(s) \ge \min F > -\infty$ and $f(s)s \le B_1(|s|^{q+1} + |s|)$ for all

A. Castro, D. G. de Figueredo and E. Lopera

 $s \in \mathbb{R}$. Then there is a constant $C_1 > 0$ such that

$$\begin{split} \lambda \int_{\Omega} f(u_{\lambda}) u_{\lambda} \, \mathrm{d}x &= \int_{\Omega} |\nabla u_{\lambda}|^{p} \, \mathrm{d}x \\ &= pJ(u_{\lambda}) + p\lambda \int_{\Omega} F(u_{\lambda}) \, \mathrm{d}x \\ &\geqslant pC_{1}\lambda^{-rp} + p|\Omega|\lambda \min F \\ &\geqslant C_{1}\lambda^{-rp}. \end{split}$$

Thus, $\lim_{\lambda \to 0} \|u_{\lambda}\|_{\infty} = +\infty$. On the other hand, by (2.3),

$$\begin{split} \lambda \int_{\Omega} f(u_{\lambda}) u_{\lambda} \, \mathrm{d}x &\leqslant B_{1} \lambda \int_{\Omega} (|u_{\lambda}|^{q+1} + |u_{\lambda}|) \, \mathrm{d}x \\ &\leqslant B_{1} \lambda \int_{\Omega} (\|u_{\lambda}\|_{\infty}^{q+1} + \|u_{\lambda}\|_{\infty}) \, \mathrm{d}x \\ &\leqslant 2B_{1} |\Omega| \lambda \|u_{\lambda}\|_{\infty}^{q+1}, \end{split}$$

where we have used the fact that $0 < \lambda < 1$. Finally, taking $M_0 = C_1/2B_1|\Omega|$, the lemma is proven.

LEMMA 2.6. Let u_{λ} be as in lemma 2.3. Then there exists $c_3 > 0$ such that

$$\|u_{\lambda}\|_{1,p}^{p} \leqslant c_{3}\lambda^{-pr} \tag{2.17}$$

for all $\lambda \in (0, \lambda_3)$.

480

Proof. By (1.3) and the definition of u_{λ} ,

$$\begin{split} \lambda \int_{\Omega} \frac{\theta - p}{\theta} u_{\lambda} f(u_{\lambda}) \, \mathrm{d}x &\leq \lambda \int_{\Omega} (u_{\lambda} f(u_{\lambda}) - pF(u_{\lambda})) \, \mathrm{d}x - \frac{\lambda p M |\Omega|}{\theta} \\ &= \int_{\Omega} (|\nabla u_{\lambda}|^{p} - p\lambda F(u_{\lambda})) \, \mathrm{d}x - \frac{\lambda p M |\Omega|}{\theta} \\ &\leq c_{2} \lambda^{-rp} + \frac{\lambda p M |\Omega|}{\theta} \\ &\leq 2c_{2} \lambda^{-rp}, \end{split}$$
(2.18)

where we have used $0 < \lambda < 1$. Now the result follows from (2.18) and the fact that u_{λ} is a weak solution of (1.1).

3. Proof of theorem 1.1

We prove theorem 1.1 by contradiction. Suppose there exists a sequence $\{\lambda_j\}_j$, $1 > \lambda_j > 0$ for all j, converging to 0 such that the measure $m(\{x \in \Omega; u_{\lambda_j}(x) \leq 0\}) > 0$. Letting $w_j = u_{\lambda_j} / ||u_{\lambda_j}||_{\infty}$, we see that

$$-\Delta_p(w_j) = \lambda_j f(u_{\lambda_j}) \|u_{\lambda_j}\|_{\infty}^{1-p}.$$
(3.1)

From lemmas 2.5 and 2.6 there is a constant C_3 such that

$$\|w_j\|_{1,p} \leqslant C_3. \tag{3.2}$$

By [4, proposition 3.7] the sequence w_j is uniformly bounded in $C^{1,\alpha}$ for some $\alpha \in (0,1)$. Hence, for any $\beta \in (0,\alpha)$, the sequence w_j has a subsequence that converges in $C_0^{1,\beta}$. Let us denote its limit by w.

Next, using comparison principles, we prove that $w(x) \ge 0$.

Let $v_0 \in W_0^{1,p}(\Omega)$ be the solution of

$$\begin{array}{c} -\Delta_p v_0 = 1 & \text{in } \Omega, \\ v_0 = 0 & \text{on } \partial \Omega. \end{array}$$

$$(3.3)$$

Let $K_j := \lambda_j \min\{f(t); t \in \mathbb{R}\} \|u_{\lambda_j}\|_{\infty}^{1-p}$. Then the solution v_j of the equation

$$\begin{array}{ccc} -\Delta_p v_j = K_j & \text{in } \Omega, \\ v = 0 & \text{on } \partial\Omega \end{array}$$
 (3.4)

is given by $v_j = (-K_j)^{1/(p-1)} v_0$.

Since $\lambda_j f(u_{\lambda_j}) ||u_{\lambda_j}||_{\infty}^{1-p} \ge K_j$, it follows by the comparison principle in [9] that $w_j \ge v_j$. Then the fact that $v_j(x) \to 0$ as $j \to 0$ implies that $w(x) \ge 0$ for all $x \in \Omega$. Since, by hypothesis, q > p - 1, we have s = Npr/(N - p) > 1. This result,

Since, by hypothesis, q > p - 1, we have s = Npr/(N - p) > 1. This result together with the Sobolev embedding theorem, (1.2) and lemma 2.6, gives

$$\int_{\Omega} |f(u_{\lambda_j})|^s ||u_{\lambda_j}||_{\infty}^{s(1-p)} dx \leq B^s 2^{s-1} \int_{\Omega} (|u_{\lambda_j}|^{(q+1-p)s} + 1) dx$$
$$\leq C(||u_{\lambda_j}||_{1,p}^{Np/(N-p)} + 1)$$
$$\leq C(c_3 \lambda_j^{-rNp/(N-p)} + 1), \tag{3.5}$$

where C > 0 is a constant independent of j and, without loss of generality, we have assumed $\|u_{\lambda_j}\|_{\infty} \ge 1$. From (3.5) and the fact that rNp/(sN-sp) = 1 we see that $\{\lambda_j f(u_{\lambda_j}) \|u_{\lambda_j}\|_{\infty}^{1-p}\}$ is bounded in $L^s(\Omega)$, so we may assume that it converges weakly. Let $z \in L^s(\Omega)$ be the weak limit of such a sequence. Since $\|u_{\lambda_j}\|_{\infty}^{1-p}\lambda_j \to 0$ as $j \to +\infty$ and f is bounded from below, $z \ge 0$. Now if $\phi \in C_0^{\infty}(\Omega)$, then

$$\int_{\Omega} \|\nabla w\|^{p-2} \langle \nabla w, \nabla \phi \rangle \, \mathrm{d}x = \lim_{j \to \infty} \int_{\Omega} \|\nabla w_j\|^{p-2} \langle \nabla w_j, \nabla \phi \rangle \, \mathrm{d}x$$
$$= \lim_{j \to \infty} \int_{\Omega} \|u_{\lambda_j}\|_{\infty}^{1-p} \|\nabla u_{\lambda_j}\|^{p-2} \langle \nabla u_{\lambda_j}, \nabla \phi \rangle \, \mathrm{d}x$$
$$= \lim_{j \to \infty} \int_{\Omega} \|u_{\lambda_j}\|_{\infty}^{1-p} \lambda_j f(u_{\lambda_j}) \phi \, \mathrm{d}x$$
$$= \int_{\Omega} z \phi \, \mathrm{d}x. \tag{3.6}$$

Therefore, $-\Delta_p w = z$. Since $||w_j||_{\infty} = 1$, $w \neq 0$. By Hopf's maximum principle for the *p*-Laplacian operator (see [8, theorem 5.1]), w > 0 in Ω and

$$\frac{\partial w}{\partial \nu}(x) < 0 \quad \text{for all } x \in \partial \Omega.$$

Here $\partial/\partial n$ denotes the outward unit normal derivative. Therefore, since $\{w_j\}_j$ converges in $C^{1,a}$ to w, for sufficiently large j, $w_j(x) > 0$ for all $x \in \Omega$. Hence,

A. Castro, D. G. de Figueredo and E. Lopera

 $u_{\lambda_i}(x) > 0$ for all $x \in \Omega$, which contradicts the assumption that

$$m(\{x; u_{\lambda_j}(x) < 0\}) > 0$$

This contradiction proves theorem 1.1.

Acknowledgements

A.C. was partly supported by Grant no. 245966 from the Simons Foundation.

References

482

- 1 S. Caldwell, A. Castro, R. Shivaji and S. Unsurangsie. Positive solutions for classes of multiparameter elliptic semipositone problems. *Electron. J. Diff. Eqns* **2007** (2007), paper 96.
- 2 M. Chhetri and R. Shivaji. Existence of a positive solution for a *p*-Laplacian semipositone problem. *Bound. Value Probl.* **2005** (2005), 323–327.
- 3 M. Chhetri, and P. Girg. Existence of positive solutions for a class of superlinear semipositone systems. J. Math. Analysis Applic. 408 (2013), 781–788.
- 4 D. G. de Figueiredo, J. P. Gossez and P. Ubilla. Local superlinearity and sublinearity for the *p*-Laplacian. J. Funct. Analysis **257** (2009), 721–752.
- 5 M. Guedda and L. Veron. Quasilinear elliptic equations involving critical Sobolev exponents. Nonlin. Analysis 13 (1989), 879–902.
- 6 P. L. Lions. On the existence of positive solutions of semilinear elliptic equations. SIAM Rev. 24 (1982), 441–467.
- 7 P. H. Rabinowitz. *Minimax methods in critical point theory with applications to differential equations.* Regional Conference Series in Mathematics, vol. 65 (Providence, RI: American Mathematical Society, 1986).
- 8 P. Takáç. Degenerate elliptic equations in ordered Banach spaces and applications. In Nonlinear differential equations, Chapman and Hall/CRC Research Notes in Mathematics, vol. 404, pp. 111–196 (Boca Raton, FL: CRC Press, 1999).
- 9 P. Tolksdorf. On the Dirichlet problem for quasilinear equations in domains with conical boundary points. *Commun. PDEs* 8 (1983), 773–817.