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1. Introduction

In this paper we study the existence of positive weak solutions to the problem

−∆pu = λf(u) in Ω,

u = 0 on ∂Ω,

}
(1.1)

where ∆p(u) = div(|∇u|p−2∇u) denotes the p-Laplacian operator, p > 2. Ω is
an open smooth bounded domain in R

N , N > 2. The function f : R → R is a
differentiable function with f(0) < 0 (semipositone). We assume that there exist
q ∈ (p − 1, Np/(N − p) − 1), A > 0, B > 0 such that

A(uq − 1) � f(u) � B(uq + 1) for u > 0,

f(u) = 0 for u � −1.

}
(1.2)
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We also assume an Ambrosetti–Rabinowitz type of condition, namely that there
exist θ > p and M ∈ R such that

uf(u) � θF (u) + M, (1.3)

where

F (u) =
∫ u

0
f(s) ds.

The assumption f(0) < 0 implies that u = 0 is not a subsolution to (1.1), making
the finding of positive solutions rather challenging; this was pointed out in [6].

The aim of this paper is to prove the following result.

Theorem 1.1. There exists λ∗ > 0 such that if λ ∈ (0, λ∗), then the problem (1.1)
has a positive weak solution uλ ∈ C1,β(Ω̄) for some β ∈ (0, 1).

Our results extend [1, theorem 1.1], where the case p = 2 was studied. Extending
such a theorem to p > 2 is not straightforward due to the lack of regularity and
linearity of ∆p. Associated to (1.1) we have a functional, which will be defined in
the next section. We show that this functional has a critical point of mountain pass
type and, consequently, a weak solution of (1.1) for appropriate values of λ > 0.
Finally, using order properties of −∆p, we prove that by further restricting λ such a
solution is actually positive. For recent results on semipositone problems the reader
is referred to [2, 3].

2. Preliminary results

Let W 1,p
0 (Ω) denote the Banach space of functions in Lp(Ω) with first-order partial

derivatives in Lp(Ω) and vanishing on ∂Ω. By a weak solution to (1.1) we mean an
element u ∈ W 1,p

0 (Ω) such that∫
Ω

|∇u|p−2〈∇u, ∇φ〉 dx = λ

∫
Ω

f(u)φ dx (2.1)

for all φ ∈ W 1,p
0 (Ω). We denote by ‖ ·‖s the norm in the space Ls(Ω) and by ‖ ·‖1.p

the norm in the Sobolev space W 1,p
0 (Ω).

Associated to (1.1) we have the functional Jλ : W 1,p
0 (Ω)→R defined by

Jλ(u) :=
∫

Ω

|∇u(x)|p
p

dx −
∫

Ω

λF (u(x)) dx, (2.2)

where

F (s) :=
∫ s

0
f(r) dr.

It is well known that Jλ is a functional of class C1 (see [7]) and that the critical
points of the functional Jλ are the weak solutions of (1.1). The proof of theorem 1.1
consists of two main steps:

(i) the proof of existence of one solution via the mountain pass theorem,

(ii) the proof that for proper values of λ the solution is indeed positive.
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It follows from (1.2) that there exist positive real numbers A1, B1 such that

F (u) � B1(|u|q+1 + 1) for all u ∈ R (2.3)

and

F (u) � A1(|u|q+1 − 1) for all u � 0. (2.4)

For simplicity of the notation, we define r = 1/(q + 1 − p) > 0. Let ϕ ∈ W 1,p
0 (Ω)

denote a positive differentiable function with ‖ϕ‖1,p = 1. Let us define the constant

c = (2p−1A−1
1 ‖ϕ‖−q−1

q+1 )r, (2.5)

which will be used in the next lemma.
The next two lemmas prove that Jλ satisfies the geometric hypotheses of the

mountain pass theorem.

Lemma 2.1. There exists λ1 > 0 such that if λ ∈ (0, λ1), then Jλ(cλ−rϕ) � 0.

Proof. Let s = cλ−r, with c and r as defined above. Hence, due to (2.4),

Jλ(sϕ) =
∫

Ω

{
|∇(sϕ)|p

p
− λF (sϕ)

}
dx

� sp

p
− λA1

∫
Ω

(sq+1ϕq+1 − 1) dx

=
sp

p
− A1s

q+1‖ϕ‖q+1
q+1λ + λA1|Ω|

= cp

{
λ−rp

p
− λA1c

q+1−pλ−r(q+1)‖ϕ‖q+1
q+1

}
+ λA1|Ω|. (2.6)

Substituting (2.5) into (2.6) yields

Jλ(sϕ) � cp

(
λ−rp

p
− 2

p
λ1−r(q+1)

)
+ λA1|Ω|

= cpλ−rp

(
1
p

− 2
p
λ1+rp−r(q+1)

)
+ λA1|Ω|

= −cpλ−rp 1
p

+ λA1|Ω|. (2.7)

Taking λ1 < min{1, (pA1c
−p|Ω|)−1/(1+pr)}, the lemma is proven.

Lemma 2.2. There exist τ > 0, c1 > 0, and λ2 ∈ (0, 1) such that if ‖u‖1,p = τλ−r,
then Jλ(u) � c1(τλ−r)p for all λ ∈ (0, λ2).

Proof. By the Sobolev embedding theorem there exists K1 > 0 such that if u ∈
W 1,p

0 (Ω), then ‖u‖q+1 � K1‖u‖1,p. Let

τ = min{(2pKq+1
1 B1)−r, c‖ϕ‖1,p}. (2.8)
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If ‖u‖W 1,p
0

= τλ−r, then

Jλ(u) =
(τλ−r)p

p
−

∫
Ω

λF (u)

� (τλ−r)p

p
− λ

∫
Ω

B1|u|q+1 − λ|Ω|B1

� (τλ−r)p

p
− λB1K

q+1
1 ‖∇u‖q+1

p − λ|Ω|B1

=
(τλ−r)p

p
− λB1K

q+1
1 (τλ−r)q+1 − λ|Ω|B1

= λ−rp

[
τp

2p
− λ1+rp|Ω|B1

]

� λ−rp τp

4p
, (2.9)

where we have used that τ � (2pKq+1
1 B1)−r (see (2.8)). Taking c1 = τp/(4p) and

λ2 = τp/(1+rp)(4pB1|Ω|)−1/(1+rp), the lemma is proven.

Next, using the mountain pass theorem we prove that (1.1) has a solution uλ ∈
W 1,p

0 (Ω).

Lemma 2.3. Let λ3 = min{λ1, λ2}. There exists c2 > 0 such that, for each λ ∈
(0, λ3), the functional Jλ has a critical point uλ of mountain pass type that satisfies
Jλ(uλ) � c2λ

−pr.

Proof. First we show that Jλ satisfies the Palais–Smale condition.
Assume that {un}n is a sequence in W 1,p

0 (Ω) such that {Jλ(un)}n is bounded
and J ′

λ(un) → 0. Hence, there exists ν > 0 such that 〈J ′
λ(un), un〉 � ‖∇un‖p for

n � ν. Thus,

−‖∇un‖p
p − ‖∇un‖p � −λ

∫
Ω

f(un)un dx for n � ν.

Let K be a constant such that |Jλ(un)| � K for all n = 1, 2, . . . . From (1.3), we
obtain

1
p
‖∇un‖p

p − λ

θ

∫
Ω

f(un)un dx +
λ

θ
M |Ω| � 1

p
‖∇un‖p

p − λ

∫
Ω

F (un) dx � K.

From the last two inequalities we have(
1
p

− 1
θ

)
‖∇un‖p

p − 1
θ
‖∇un‖p � K − λ

θ
M |Ω|.

This proves that {un} is a bounded sequence. Thus, without loss of generality, we
may assume that {un} converges weakly. Let u ∈ W 1,p

0 (Ω) be its weak limit. Since
q < Np/(N − p), by the Sobolev embedding theorem we may assume that {un}
converges to u in Lq(Ω). These assumptions and Hölder’s inequality imply∫

Ω

λf(un)(un − u) → 0. (2.10)
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From (2.10) and limn→+∞ J ′
λ(un) = 0 we have

lim
n→+∞

∫
Ω

|∇un|p−2∇un(∇un − ∇u) dx = 0. (2.11)

Using again that u is the weak limit of {un} in W 1,p
0 (Ω) we also have

lim
n→+∞

∫
Ω

|∇u|p−2∇u(∇un − ∇u) dx = 0. (2.12)

By Hölder’s inequality,∫
Ω

(|∇un|p−2∇un − |∇u|p−2∇u)(∇un − ∇u) dx

� ‖∇un‖p
p − ‖∇u‖p‖∇un‖p−1

p − ‖∇un‖p‖∇u‖p−1
p + ‖∇u‖p

p

= (‖∇un‖p−1
p − ‖∇u‖p−1

p )(‖∇un‖p − ‖∇u‖p)

� 0. (2.13)

From (2.11)–(2.13),

lim
n→∞

(‖∇un‖p−1
p − ‖∇u‖p−1

p )(‖∇un‖p − ‖∇u‖p) = 0,

which implies that limn→∞ ‖∇un‖p = ‖∇u‖p. Since un ⇀ u, un → u in W 1,p
0 . This

proves that Jλ satisfies the Palais–Smale condition.

From (2.6) we see that

max{Jλ(sϕ); s � 0} � C1+pr((q + 1)r(q−p) − p)
Dprp(q + 1)r(q+1) λ−pr + λA1|Ω|

:= c′
2λ

−pr + λA1|Ω| � c′
2λ

−pr + A1|Ω|λ−pr

:= c2λ
−pr, (2.14)

where C = ‖∇ϕ‖p
p and D = A1‖ϕ‖q+1

q+1.
With this estimate and lemma 2.2, the existence of uλ ∈ W 1,p

0 (Ω) such that
∇Jλ(uλ) = 0 and

c1(τλ−r)p � Jλ(uλ) � c2λ
−pr (2.15)

follows by the mountain pass theorem.

Remark 2.4. The solution uλ ∈ W 1,p
0 (Ω) is indeed in C1,α(Ω̄) (cf. [5]).

Lemma 2.5. Let uλ be as in lemma 2.3. Then there is a positive constant M0 such
that

M0λ
−r � ‖uλ‖∞. (2.16)

Proof. We already know that there exists c1 > 0 such that J(uλ) � c1λ
−rp. On the

other hand, we have that F (s) � min F > −∞ and f(s)s � B1(|s|q+1 + |s|) for all
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s ∈ R. Then there is a constant C1 > 0 such that

λ

∫
Ω

f(uλ)uλ dx =
∫

Ω

|∇uλ|p dx

= pJ(uλ) + pλ

∫
Ω

F (uλ) dx

� pC1λ
−rp + p|Ω|λ min F

� C1λ
−rp.

Thus, limλ→0 ‖uλ‖∞ = +∞. On the other hand, by (2.3),

λ

∫
Ω

f(uλ)uλ dx � B1λ

∫
Ω

(|uλ|q+1 + |uλ|) dx

� B1λ

∫
Ω

(‖uλ‖q+1
∞ + ‖uλ‖∞) dx

� 2B1|Ω|λ‖uλ‖q+1
∞ ,

where we have used the fact that 0 < λ < 1. Finally, taking M0 = C1/2B1|Ω|, the
lemma is proven.

Lemma 2.6. Let uλ be as in lemma 2.3. Then there exists c3 > 0 such that

‖uλ‖p
1,p � c3λ

−pr (2.17)

for all λ ∈ (0, λ3).

Proof. By (1.3) and the definition of uλ,

λ

∫
Ω

θ − p

θ
uλf(uλ) dx � λ

∫
Ω

(uλf(uλ) − pF (uλ)) dx − λpM |Ω|
θ

=
∫

Ω

(|∇uλ|p − pλF (uλ)) dx − λpM |Ω|
θ

� c2λ
−rp +

λpM |Ω|
θ

� 2c2λ
−rp, (2.18)

where we have used 0 < λ < 1. Now the result follows from (2.18) and the fact that
uλ is a weak solution of (1.1).

3. Proof of theorem 1.1

We prove theorem 1.1 by contradiction. Suppose there exists a sequence {λj}j , 1 >
λj > 0 for all j, converging to 0 such that the measure m({x ∈ Ω; uλj (x) � 0}) > 0.

Letting wj = uλj /‖uλj ‖∞, we see that

−∆p(wj) = λjf(uλj )‖uλj ‖1−p
∞ . (3.1)

From lemmas 2.5 and 2.6 there is a constant C3 such that

‖wj‖1,p � C3. (3.2)
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By [4, proposition 3.7] the sequence wj is uniformly bounded in C1,α for some
α ∈ (0, 1). Hence, for any β ∈ (0, α), the sequence wj has a subsequence that
converges in C1,β

0 . Let us denote its limit by w.
Next, using comparison principles, we prove that w(x) � 0.
Let v0 ∈ W 1,p

0 (Ω) be the solution of

−∆pv0 = 1 in Ω,

v0 = 0 on ∂Ω.

}
(3.3)

Let Kj := λj min{f(t); t ∈ R}‖uλj ‖1−p
∞ . Then the solution vj of the equation

−∆pvj = Kj in Ω,

v = 0 on ∂Ω

}
(3.4)

is given by vj = (−Kj)1/(p−1)v0.
Since λjf(uλj )‖uλj ‖1−p

∞ � Kj , it follows by the comparison principle in [9] that
wj � vj . Then the fact that vj(x) → 0 as j → 0 implies that w(x) � 0 for all x ∈ Ω.

Since, by hypothesis, q > p − 1, we have s = Npr/(N − p) > 1. This result,
together with the Sobolev embedding theorem, (1.2) and lemma 2.6, gives∫

Ω

|f(uλj )|s‖uλj ‖s(1−p)
∞ dx � Bs2s−1

∫
Ω

(|uλj |(q+1−p)s + 1) dx

� C(‖uλj ‖
Np/(N−p)
1,p + 1)

� C(c3λ
−rNp/(N−p)
j + 1), (3.5)

where C > 0 is a constant independent of j and, without loss of generality, we
have assumed ‖uλj ‖∞ � 1. From (3.5) and the fact that rNp/(sN − sp) = 1 we see
that {λjf(uλj )‖uλj ‖1−p

∞ } is bounded in Ls(Ω), so we may assume that it converges
weakly. Let z ∈ Ls(Ω) be the weak limit of such a sequence. Since ‖uλj ‖1−p

∞ λj → 0
as j → +∞ and f is bounded from below, z � 0. Now if φ ∈ C∞

0 (Ω), then∫
Ω

‖∇w‖p−2〈∇w,∇φ〉 dx = lim
j→∞

∫
Ω

‖∇wj‖p−2〈∇wj ,∇φ〉 dx

= lim
j→∞

∫
Ω

‖uλj ‖1−p
∞ ‖∇uλj ‖p−2〈∇uλj

,∇φ〉 dx

= lim
j→∞

∫
Ω

‖uλj ‖1−p
∞ λjf(uλj )φ dx

=
∫

Ω

zφ dx. (3.6)

Therefore, −∆pw = z. Since ‖wj‖∞ = 1, w �= 0. By Hopf’s maximum principle for
the p-Laplacian operator (see [8, theorem 5.1]), w > 0 in Ω and

∂w

∂ν
(x) < 0 for all x ∈ ∂Ω.

Here ∂/∂n denotes the outward unit normal derivative. Therefore, since {wj}j

converges in C1,a to w, for sufficiently large j, wj(x) > 0 for all x ∈ Ω. Hence,
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uλj (x) > 0 for all x ∈ Ω, which contradicts the assumption that

m({x; uλj (x) < 0}) > 0.

This contradiction proves theorem 1.1.

Acknowledgements

A.C. was partly supported by Grant no. 245966 from the Simons Foundation.

References

1 S. Caldwell, A. Castro, R. Shivaji and S. Unsurangsie. Positive solutions for classes of mul-
tiparameter elliptic semipositone problems. Electron. J. Diff. Eqns 2007 (2007), paper 96.

2 M. Chhetri and R. Shivaji. Existence of a positive solution for a p-Laplacian semipositone
problem. Bound. Value Probl. 2005 (2005), 323–327.

3 M. Chhetri, and P. Girg. Existence of positive solutions for a class of superlinear semiposi-
tone systems. J. Math. Analysis Applic. 408 (2013), 781–788.

4 D. G. de Figueiredo, J. P. Gossez and P. Ubilla. Local superlinearity and sublinearity for
the p-Laplacian. J. Funct. Analysis 257 (2009), 721–752.

5 M. Guedda and L. Veron. Quasilinear elliptic equations involving critical Sobolev exponents.
Nonlin. Analysis 13 (1989), 879–902.

6 P. L. Lions. On the existence of positive solutions of semilinear elliptic equations. SIAM
Rev. 24 (1982), 441–467.

7 P. H. Rabinowitz. Minimax methods in critical point theory with applications to differential
equations. Regional Conference Series in Mathematics, vol. 65 (Providence, RI: American
Mathematical Society, 1986).
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