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In this work, we study active particles with prescribed surface velocities in
non-Newtonian fluids. We employ the reciprocal theorem to obtain the velocity of an
active spherical particle with an arbitrary axisymmetric slip velocity in an otherwise
quiescent second-order fluid. We then determine how the motion of a diffusiophoretic
Janus particle is affected by complex fluid rheology, namely viscoelasticity and
shear-thinning viscosity, compared to a Newtonian fluid, assuming a fixed slip velocity.
We find that a Janus particle may go faster or slower in a viscoelastic fluid, but is
always slower in a shear-thinning fluid as compared to a Newtonian fluid.
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1. Introduction
Active particles are self-driven units which are capable of converting stored or

ambient free energy into systematic motion (Schweitzer & Farmer 2007). These
particles are found on length scales from subcellular to oceanic, and range from
aquatic, terrestrial and aerial flocks to colloidal particles propelled through fluid
by catalytic activity at their surfaces. The interactions of active particles with
the medium they are found in, and amongst themselves, give rise to fascinating
collective behaviour and beautiful pattern formation (Marchetti et al. 2013). Active
particles in fluid media can be either living, like swimming micro-organisms (Lauga
& Powers 2009), or synthetic, like crystals of light-activated colloidal surfers (Palacci
et al. 2013), swimming droplets (Thutupalli, Seemann & Herminghaus 2011) and
chemically self-propelled nano-motors (Kapral 2013). For sufficiently small sizes
of active particles, inertial forces are negligible compared to viscous forces, and
one may assume the fluid to be under an instantaneous equilibrium of forces
(Purcell 1977).

Several microorganisms propel themselves using small surface distortions as in
the coordinated beating of cilia on Opalina and Paramecium (Sleigh 1962). As
such, these swimmers are often modelled as spheres with a prescribed surface slip
velocity (Pedley 2016); the slip velocity serves as a coarse-grained description of any
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deformation or dynamics on the particle body that leads to its motion (Lighthill 1952;
Blake 1971). Likewise, a chemically active colloidal particle with asymmetric catalytic
properties generates a non-uniform distribution of reaction products and hence also
a flow within a thin ‘inner’ region near the particle’s surface (Anderson 1989).
The surface flow and the resultant diffusiophoretic motion may also be modelled
by prescribing an apparent slip velocity on the particle surface (Jülicher & Prost
2009). The motion of these particles arising due to a surface slip velocity is, by now,
well understood for particles that move in Newtonian fluids at low Reynolds numbers
(Brennen & Winet 1977; Elgeti, Winkler & Gompper 2015). In general, the propulsive
force generated by the surface slip velocity balances the hydrodynamic drag force due
to the rigid-body motion of the particle. For simple bodies, the swimming velocity
is given directly by the surface average of the prescribed slip velocity (Elfring 2015)
and because of this simplification, detailed models of the surface slip velocity for
living and synthetic active particles are often unnecessary.

In contrast, an understanding of dynamics of active particles in non-Newtonian
fluids is still developing (Patteson, Gopinath & Arratia 2016). Unlike in Newtonian
fluids, the constitutive equation for stress is nonlinear in non-Newtonian fluids and
as a result a straightforward linear decomposition of the flow field into drag and
thrust components fails (Datt et al. 2015). Consequently, a surface average of the slip
velocity does not yield the velocity of the particle, and so a detailed description
of the surface slip velocity may be significant in complex fluids. Despite this,
many recent studies consider, as a point of comparison with Newtonian fluids, the
‘two-mode’ swimmer model (Zhu, Lauga & Brandt 2012; Montenegro-Johnson, Smith
& Loghin 2013; Li, Karimi & Ardekani 2014; De Corato, Greco & Maffettone 2015),
although recently it was shown that neglected details of the surface slip velocity
can have a qualitative effect on the motion of the particle in a shear-thinning fluid
(Datt et al. 2015).

In this work, we analyse the motion of an active particle in a weakly nonlinear
complex fluid with a general axisymmetric slip velocity by means of the reciprocal
theorem (Stone & Samuel 1996; Lauga 2014). This allows us to consider a complete
range of prescribed motions on the particle surface and to determine what details
matter and why. We note that the swimming gait (apparent surface slip velocity) of the
swimmer may itself be affected in complex fluids as compared to Newtonian fluids,
due to, for example, constraints on power for biological swimmers or changes in
solute diffusivity for diffusiophoretic particles. Here, however, we consider swimmers
with the same swimming gait as in Newtonian fluids. As an example, we consider
the slip velocity of self-diffusiophoretic ‘Janus’ particles and discuss the effects of
viscoelasticity and shear-thinning rheology on the particles’ propulsion velocity. These
active colloidal particles, at times, may swim through polymer suspensions (Buttinoni
et al. 2012), and an understanding of their dynamics in complex fluids may lead to
interesting applications in biological and chemical engineering (Popescu, Uspal &
Dietrich 2016). Recent studies on the effects of rheology on the motion of Janus
particles (Gomez-Solano, Blokhuis & Bechinger 2016; Oppenheimer, Navardi & Stone
2016) have shown that the particle translational and rotational dynamics are coupled
in media with viscoelasticity or local viscosity variations. Further, motivated by recent
works on the dynamics of active particles in background flow of non-Newtonian fluids
(Ardekani & Gore 2012; Mathijssen et al. 2016; De Corato & D’Avino 2017), we
generalise the reciprocal theorem formulation (Lauga 2014; Elfring & Lauga 2015;
Lauga & Michelin 2016) to include a background flow in the spirit of previous
classical work on passive particles in weakly nonlinear flows (Leal 1980).
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2. Modelling active particles
Biological microswimmers possess a variety of different geometries and swimming

modes; many, such as ciliates (Opalina) and multicellular colonies of flagellates
(Volvox), are approximately spherical in shape and propel due to the beating of
closely packed cilia on their surface (Sleigh 1962). These swimmers, in an idealised
model, are mathematically represented as spheres with small-amplitude radial and
tangential motions of elements of the surface. The original model (now known as the
squirmer model), by Lighthill (1952) and Blake (1971), considered only axisymmetric
surface distortions so the swimmers could swim only along their axis of symmetry.
Recently, Pak & Lauga (2014) extended the model to arbitrary surface deformations
allowing three-dimensional translational and rotational swimming kinematics of the
swimmer.

Synthetic active particles too can be conceived in many shapes with a variety
of propulsion mechanisms (Walther & Müller 2013). Self-phoretic particles, in
particular, are colloids which are able to generate local gradients through the catalytic
physiochemical properties on their surface (Golestanian, Liverpool & Ajdari 2005,
2007; Michelin & Lauga 2014). The short-range interaction between the surface
of the swimmer and the self-generated outer field gradient (solute concentration,
temperature or electric field) locally creates fluid motion in the vicinity of the
particle boundary that leads to particle propulsion due to phoresis (Anderson 1989).
When the interaction layer is thin compared to the particle size, phoretic effects can
be represented by the generation of slip velocities on the particle surface (Jülicher &
Prost 2009; Michelin & Lauga 2014).

In this work, we focus on spherical phoretic particles (Golestanian et al. 2007;
Michelin & Lauga 2014), with an axisymmetric slip velocity expressed here as

uS (θ, t)=
∞∑

p=1

αp (t)Kp (cos θ) êθ , (2.1)

with
Kp (cos θ)=

(2p+ 1)
p (p+ 1)

P
′

p (cos θ) sin θ, (2.2)

where êθ is a unit vector in the direction of increasing polar angle θ in spherical
coordinates and Pp is the pth Legendre polynomial (Michelin & Lauga 2011). The
flow field due to the swimmer in Newtonian fluids is completely characterised
and determined by the intensities of the ‘squirming’ modes, αp (Blake 1971). Of
particular significance are the first two modes: α1, which fixes the swimming velocity
(Lighthill 1952), and α2, which defines the strength of the force dipole generated by
the swimmer Σ = 10πα2 (Michelin & Lauga 2014). Consequently, for analyses of
collective behaviour (Zöttl & Stark 2014; Delfau, Molina & Sano 2016), or transport
of nutrients (Michelin & Lauga 2011; Ishikawa et al. 2016), in Newtonian fluids,
active particles are very often modelled with a truncated slip velocity expansion
which retains only the first two terms. We consider here only steady slip velocities
on the particle surface, which is often appropriate for phoretic particles; however,
in general, especially for models of biological organisms where the surface motion
arises from a cyclical deformation, the slip velocities may depend on time t (Pedley,
Brumley & Goldstein 2016). This time dependence of the surface actuation is then
particularly important for fluids which possess history dependence, such as polymer
solutions, especially when the time scale of surface actuation is of the same order as
the fluid relaxation time (Elfring & Goyal 2016).
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FIGURE 1. (Colour online) Self-phoretic particle with two compartments of different
activity, Af and Ab. We consider particles with a constant uniform mobility over the
surface. When θd = π/2, the particle has compartments of equal cover, which we call
a symmetric Janus particle.

Self-diffusiophoretic particles propel due to asymmetric surface chemical reactions
(Anderson 1989; Golestanian et al. 2005; Brady 2011) which cause an induced
imbalance of osmotic effects in a thin interaction layer on the particle surface. The
resulting flow in this thin layer, the apparent slip velocity, is proportional to the
local solute concentration gradient and the specifics of solute–surface interactions
(phoretic mobility). Under the assumption that diffusion is fast enough so that the
chemical reaction at the surface is controlled by the far-field solute concentration
(fixed-flux formulation, Dämkohler number = 0) and on neglecting the distortion of
solute distribution due to flow resulting from phoretic effects (Péclet number = 0),
one obtains the squirming modes in (2.1),

αp =
pAp

2p+ 1
M
D
, (2.3)

where the surface activity A(θ) =
∑

ApPp(cos θ) (with positive values denoting
absorption of solute), the phoretic mobility M is assumed to be constant over the
surface and D is the solute diffusivity (see Michelin & Lauga (2014) for details).

We consider Janus-type particles with a discontinuous change in activity between
two distinct compartments of the surface activity, A(θ)=Af for θ <θd while A(θ)=Ab
for θ > θd as illustrated in figure 1. Here, we take the rear compartment to be inert,
Ab = 0, in which case the coefficients are given by (Michelin & Lauga 2014)

A0 =
Af

2
(1− cos θd) , An =

Af

2

[
Pn−1(cos θd)− Pn+1(cos θd)

]
(n > 1), (2.4a,b)

which then set the squirming modes and the entire flow field for Janus particles in
Newtonian fluids.

3. Swimming in a background flow of a weakly non-Newtonian fluid
Consider a general active particle (or swimmer) B with surface ∂B immersed in a

background flow u∞ of an incompressible and weakly nonlinear complex fluid. The
velocity on the swimmer surface ∂B is

u(x ∈ ∂B)=U+Ω × x+ uS, (3.1)
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An active particle in a complex fluid 679

where U is the translational velocity of the particle, Ω is the rotational velocity and
uS is the prescribed deformation velocity on its surface (the swimming gait).

The rheology of the non-Newtonian fluid is assumed to be only weakly nonlinear
(Lauga 2014; Elfring & Lauga 2015), and thus we have a constitutive equation of the
form

τ = ηγ̇ + εA[u], (3.2)

where τ is the deviatoric stress, η is the viscosity and γ̇ the strain-rate tensor such
that ηγ̇ gives the Newtonian contribution. Here A[u] is a symmetric tensor and a
nonlinear functional of u, and ε is a small dimensionless parameter characterising the
deviation from Newtonian behaviour, for example, small Deborah number in the case
of viscoelastic fluids or small Carreau number for shear-thinning fluids.

We consider the flow field to be inertialess and in mechanical equilibrium with
∇ ·σ = 0, where σ is the stress tensor corresponding to the velocity field u. We define
disturbance fields u′= u− u∞ and σ ′= σ − σ∞ where u∞ and σ∞ correspond to the
velocity and stress fields of the background flow in the absence of the particle. Due
to the nonlinearity of constitutive equation (3.2), u′ and σ ′ in general do not represent
velocity and stress fields of the same problem (except when ε= 0).

Stone & Samuel (1996) demonstrated a shortcut to obtain the swimming velocity of
an arbitrary swimmer in a Newtonian fluid with a given prescribed surface actuation
uS without calculation of its unknown flow field using the Lorenz reciprocal theorem
in low-Reynolds-number hydrodynamics (Happel & Brenner 1983), provided one can
solve the rigid-body resistance/mobility problem for a body of the same shape. Using
this approach Lauga (2009, 2014) then developed integral theorems to determine the
swimming velocity in complex fluids. We use these methods below, following the
formulation in Elfring & Lauga (2015) and Elfring & Goyal (2016), to obtain the
swimming velocity of a swimmer in a weakly non-Newtonian fluid but include the
possibility of a non-zero background flow for generality.

For the resistance problem (denoted with a hat), we consider rigid-body motion
with translational velocity Û and rotational velocity Ω̂ through a Newtonian fluid with
corresponding velocity field û and associated stress tensor σ̂ = η̂ ˆ̇γ . As the two flows
(due to the swimmer and due to rigid-body motion) are in mechanical equilibrium, we
have

û ·
(
∇ · σ ′

)
= u′ ·

(
∇ · σ̂

)
= 0. (3.3)

Integrating over the volume of fluid, V , exterior to B and applying the divergence
theorem while enforcing the incompressibility of the flows, we get∫

∂V
n · σ ′ · û dS+

∫
V

τ ′ :∇û dV =
∫
∂V

n · σ̂ · u′ dS+
∫
V

τ̂ :∇u′ dV = 0, (3.4)

where we have defined τ ′ = ηγ̇ ′ + εA′ and A′ = A [u]− A [u∞]. The surface ∂V that
bounds the fluid volume V is composed of the body surface, ∂B, and an outer surface
(fluid or solid, possibly at infinity). Here, n is the normal to the surface, ∂V , pointing
into V .

Provided the fields, u′ and σ ′, decay appropriately in the far field, we may neglect
the outer surface of ∂V (we shall show this is the case for weakly viscoelastic linear
background flows in a subsequent work). For flows bounded by no-slip walls these
terms will be identically zero. Upon substitution of the boundary conditions on ∂B for
each field into (3.4) and enforcing that the net hydrodynamic force, F=

∫
∂B n · σ dS,
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and torque, L=
∫
∂B x× (n · σ ) dS, are both zero on a free swimmer in the absence of

inertia, the left-hand side of (3.4) simplifies to

η

∫
V

γ̇ ′ :∇û dV + ε
∫
V

A′ :∇û dV = 0, (3.5)

while the right-hand side of (3.4) simplifies to

F̂ ·U+ L̂ ·Ω +
∫
∂B

n · σ̂ ·
(
uS
− u∞

)
dS+ η̂

∫
V

γ̇ ′ :∇û dV = 0, (3.6)

where we have utilised the fact that ˆ̇γ :∇u′= γ̇ ′ :∇û. We will here use six-dimensional
vectors for compactness, U=[U Ω]T and F̂ =[F̂ L̂]T, and from the linearity of the
Stokes equation write û = L̂ · Û, σ̂ = T̂ · Û and F̂ = −R̂ · Û, where R̂ is symmetric.
Finally, upon combining (3.5) with (3.6) we obtain

U = R̂
−1
·

[∫
∂B

(
uS
− u∞

)
·
(
n · T̂

)
dS− ε

η̂

η

∫
V

A′ :∇L̂ dV
]
, (3.7)

which gives us a relation for the propulsion velocity of a swimmer in the background
flow of a weakly non-Newtonian fluid. The correction to the Newtonian swimming
speed, due to the tensor A′, typically depends on the unknown field u but, upon
expanding perturbatively in ε, the correction depends only on the Newtonian solution
to leading order.

For a spherical particle of radius a, the translational velocity is given simply by

U=−
1

4πa2

∫
S

(
uS
− u∞

)
dS− ε

1
8πη

∫
V

A′ :

(
1+

a2

6
∇

2

)
∇G dV, (3.8)

where G =
(
I + rr/r2

)
/r is the Oseen tensor (or Stokeslet). As expected, when ε =

0, one obtains the result for a swimmer in a background flow of Newtonian fluid
(Elfring 2015).

4. Janus particle in non-Newtonian fluids

As examples of an active particle in a complex fluid, we study a Janus particle
in a weakly viscoelastic fluid and in a weakly shear-thinning fluid but assume the
same surface slip velocity as in the Newtonian fluid (given by (2.3)). We note
that we expect the non-Newtonian rheology will also affect the slip velocity for
phoretic particles but focus here only on kinematic differences for a fixed swimming
gait. Viscoelasticity and shear-thinning rheology are two important non-Newtonian
properties (Bird, Armstrong & Hassager 1987) and are also the characteristics of many
biological fluids (Merrill 1969; Lai et al. 2009) wherein these artificial swimmers
have potential applications (Ozin et al. 2005). As discussed in § 2, we assume the
diffusion of the solute to be fast enough so that the effects of Péclet and Damköhler
number can be neglected, and we shall consider the particle in an unbounded and
otherwise quiescent background (u∞ = 0). We first analyse the Janus particle in a
weakly viscoelastic fluid.
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4.1. Viscoelasticity: second-order fluid
Viscoelastic fluids exhibit both viscous and elastic responses to forces. Such fluids
possess a memory, and stresses in them depend on the flow history. For flows which
are both slow and slowly varying, viscoelasticity may be modelled without any
memory of the past stresses as a second-order fluid (Morozov & Spagnolie 2015),

τ = ηγ̇ −
Ψ1

2

∇

γ̇ +Ψ2γ̇ · γ̇ . (4.1)

Here, η is the total viscosity of the solution and Ψ1 and Ψ2 are the first and second
normal stress-difference coefficients, respectively. The first normal stress difference is
generally positive in viscoelastic flows, i.e. Ψ1 > 0. The triangle denotes the upper-
convected derivative

∇

γ̇=
∂ γ̇

∂t
+ u · ∇γ̇ − (∇u)T · γ̇ − γ̇ · ∇u. (4.2)

In order to study the effect of fluid rheology on the particle, we first non-
dimensionalise the equations by scaling lengths with the particle radius a, velocities
with the first swimming mode α1, which without any loss of generality is assumed
to be positive, and stresses with ηω, where ω= α1/a is the scale of strain rate. The
resulting dimensionless constitutive equation is

τ ∗ = γ̇ ∗ −De
(
∇

γ̇ ∗ + bγ̇ ∗ · γ̇ ∗
)
, (4.3)

with De = ωΨ1/2η, the Deborah number, which is the ratio of the relaxation time
scale of the fluid to the characteristic time scale of the flow, and b=−2Ψ2/Ψ1 > 0.
Henceforth, we work in dimensionless quantities and drop the stars (*) for the sake of
convenience. For small De (weakly viscoelastic limit), we expand the flow quantities
in a regular perturbation expansion in De (Lauga 2007; De Corato et al. 2015; Elfring
& Lauga 2015) to get, at the leading order,

τ0 = γ̇0, (4.4)

and at O(De),
τ1 = γ̇1 + A (4.5)

with A=− (
∇

γ̇0+bγ̇0 · γ̇0). The angular velocity of a spherical swimmer is zero due to
axisymmetry while its translational velocity, correct to O (De), is given by (3.8) where
now ε =De.

The flow field for a swimmer with prescribed surface velocity (2.1) in a quiescent
Newtonian fluid is given by (see Ishikawa, Simmonds & Pedley 2006)

u0 = −
1

2r3
e+

3
2r3

e · r
r

r
r
+

∞∑
p=2

(
1

rp+2
−

1
rp

)(
p+

1
2

)
ΘpPp

(e · r
r

) r
r

+

∞∑
p=2

(
p

2rp+2
−

(p
2
− 1
) 1

rp

)(
p+

1
2

)
ΘpWp

(e · r
r

) (e · r
r

r
r
− e
)
, (4.6)

where e is the swimming direction, r is the position vector with r=|r| from the centre
of the sphere, Θp = αp/α1 and Wp (x) = 2/ (n (n+ 1)) P′p (x). Using the Newtonian
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velocity field, one can calculate the strain-rate field around the swimmer, γ̇0, and thus
obtain the expression for A. Substituting the expression for A into (3.8) and using the
orthogonal properties of Legendre polynomials, one obtains, after some lengthy but
straightforward calculations,

U/UN = 1+De (b− 1)
∞∑

p=1

CpΘpΘp+1, (4.7)

where

Cp =
6p

(p+ 1)2(p+ 2)
. (4.8)

Recall that UN = α1 is the (dimensional) swimming speed in Newtonian fluids.
Frequently, the slip-velocity description is truncated at two modes, i.e. Θp= 0 ∀ p> 2,
and depending on whether Θ2 < 0, Θ2 = 0 or Θ2 > 0 the swimmer is identified as
a pusher, neutral or puller swimmer, respectively, in Newtonian fluids (Elgeti et al.
2015). However, swimmers like starfish larvae (Gilpin, Prakash & Prakash 2016)
and Janus particles possess significant values of higher modes. When considering
such swimmers in non-Newtonian fluids, one should be careful while truncating the
series because unlike in Newtonian fluids, swimming speeds may be qualitatively
affected by higher modes (Datt et al. 2015). Indeed, as can be noted from (4.7),
setting the modes α1 = 1, α2 = 1 and α3 = 2 (with appropriate units) produces
qualitatively different swimming behaviour than α1 = 1, α2 = 1 and α3 = −2 when
just the first three modes are considered. Therefore, the expression (4.7), while giving
the contribution of all spectral modes in the slip-velocity expansion to the swimming
velocity, helps to predict when it may be reasonable to neglect higher modes and use
a simple ‘two-mode’ description to obtain the swimming speed.

We consider the case of a symmetric Janus particle, where precisely one half
is chemically active and the other half inert, θd = π/2. The spectral coefficients
for activity in this case are zero for even modes (from (2.4a,b)), and consequently
Θ2p= 0. Hence, from (4.7), one finds that a symmetric Janus particle (with a constant
uniform surface mobility) swims only at its Newtonian speed – a result also true for
a two-mode neutral swimmer (De Corato et al. 2015) but here obtained without any
restriction on the number of modes being considered. Interestingly, one could obtain
this result by observing that the non-Newtonian contribution in (3.8) is a volume
integral of the contraction of an even tensor A (under x→−x) and an odd kernel
and therefore vanishes. Similarly, looking at the power consumption of a squirmer, P,
correct to the first order (De Corato et al. 2015)

2P=
∫
V

γ̇0 : γ̇0 dV +De
∫
V

A : γ̇0 dV, (4.9)

one finds once again that for a symmetric Janus particle the non-Newtonian
contribution gives a null result. Thus, a symmetric Janus particle in a second-order
fluid swims and expends power as if in an equivalent Newtonian fluid (De = 0),
correct to the first order in De, for the same surface slip velocity as in the Newtonian
fluid. We note that the non-Newtonian rheology will affect the solution of the ‘inner’
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region for phoretic particles (Michelin & Lauga 2014). Additional non-Newtonian
stresses arise on the particle surface, and even the solute diffusivity may change due
to viscosity variations. For a thin interaction layer, neglecting effects of Péclet and
Damköhler numbers, the slip velocity will change at O(De) similarly to the case of
electrophoresis considered by Khair, Posluszny & Walker (2012). Here, however, our
emphasis is on studying the changes in the propulsion velocity from its Newtonian
value for a given (but arbitrary) slip velocity on the particle surface.

A similar result was obtained by Leal (1975) for axisymmetric passive particles with
fore–aft symmetry in a second-order fluid, where such particles translate, to the first
approximation, at the same rate as in an equivalent Newtonian fluid. On comparison
with present results, one may expect even non-spherical active particles with fore–aft
symmetry in second-order fluids to behave as if in equivalent Newtonian fluids.

When the two halves of the Janus particle are not exactly equal, i.e. θd 6= π/2,
then the even spectral modes of the activity, A2p, are no longer equal to zero and
hence Θ2p 6= 0. Consequently, the non-Newtonian contribution to the swimming
velocity may now be non-zero, and can be easily calculated for any level of active
surface coverage, θd. We find that when θd > π/2 the particle swims faster than in
a Newtonian fluid, while for θd < π/2 it swims slower, provided b< 1 (see Christov
& Jordan (2016) and De Corato, Greco & Maffettone (2016) for a recent discussion
on permissible values of b). Interestingly, one can qualitatively predict this result by
considering the two-mode description, by observing that Θ2 = 2 cos θd. The former
particle behaves as a pusher, Θ2 < 0, and thus swims faster, whereas the latter is a
puller, Θ2 > 0, and therefore swims slower than in a Newtonian fluid (from (4.7)),
as also reported for two-mode swimmers by De Corato et al. (2015). Quantitatively,
the viscoelastic contribution decays for higher modes as Cp ∼ 1/p2 and a two-mode
description gives the viscoelastic contribution with a relative error of less than 0.1
for |cos θd| 6 0.35; however, the approximation becomes worse upon increasing
the fore–aft asymmetry of the particle and a three-mode description is better for
|cos θd| > 1/

√
5. This is shown in figure 2, where we plot the scaled first-order

velocity, U(M)
1 /UN = (b− 1)

∑M
p=1 CpΘpΘp+1 from (4.7), for different coverage areas

of activity with varying number of modes. Note that as θd approaches 0 or π, the
Newtonian velocity UN→ 0 and U(M)

1 /UN diverges.
The asymptotic results for a small-De expansion are seen to be valid for only very

small values of De (≈0.02 for two-mode swimmers with O(1) modes (De Corato
et al. 2015)). This may be understood by noting that squirming modes of magnitude
O(1) result in strain rates of magnitude O(10) on the surface of the particle in a
Newtonian fluid and, therefore, O(102) values of the non-Newtonian contribution A,
which thereby renders the Deborah number expansion accurate for only very small
values of De. Numerical results using the Giesekus model, at higher values of De,
find all swimmers – pusher, puller and neutral – swimming slower and expending less
power than in an equivalent Newtonian fluid (Zhu et al. 2012); one may also expect
results obtained using the second-order fluid model to deviate from those obtained
with the Giesekus model, at moderate Deborah numbers, due to the saturation of
polymer elongation in the latter and the associated differences in extensional rheology.
In the experimental study of Janus particles in viscoelastic fluids by Gomez-Solano
et al. (2016), the Deborah (Weissenberg) numbers were quite small and hence in a
regime where one may then expect the second-order model to, at least qualitatively,
predict the viscoelastic fluid behaviour (Leal 1979).
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FIGURE 2. (Colour online) Variation of the scaled first-order swimming velocity U(M)
1 /UN

with θd obtained for the first M+1 modes (dashed lines) and for b=0.2; U(∞)
1 corresponds

to the convergence value (M= 99) and is depicted by the solid line. Inset plot shows the
relative error.

4.2. Shear-thinning rheology: Carreau model

Shear-thinning fluids experience a loss of apparent viscosity with applied strain rate.
The Carreau model (Bird et al. 1987) and its perturbation to the form in (3.2) has
recently been covered by Datt et al. (2015). We consider the perturbation of the flow
quantities in the viscosity ratio, ε = 1 − β where β ∈ [0, 1] is the ratio of infinite
shear-rate viscosity to zero shear-rate viscosity, as this expansion is uniformly valid
for all strain rates, and obtain A={−1+

(
1+Cu2

|γ̇0|
2
)(n−1)/2

}γ̇0. Here Cu, the Carreau
number, is the ratio of the characteristic strain rate in the flow to the cross-over strain
rate in the fluid, and n characterises the degree of shear thinning (n < 1). With this
form of A, it is difficult to obtain an analytical expression for the propulsion velocity
similar to that obtained for the viscoelastic case (4.7). However, one can numerically
calculate the propulsion velocity with higher modes and then compare the results with
just the first two modes. This is done in figure 3 for n= 0.25, where we plot U(M)

1 /UN

for two values of µ≡ cos θd.
We find that, irrespective of the position of θd, the Janus particle swims slower

in a shear-thinning fluid than in a Newtonian fluid. The non-monotonic variation
of the first-order swimming speed with Cu in figure 3 is similar to that found by
Datt et al. (2015) for any two-mode squirmer. Though the two-mode description
qualitatively predicts the results, i.e. that all – neutral, pusher and puller – swimmers
swim slower, with pusher and pullers swimming at the same velocity (Datt et al.
2015), it is apparent from figure 3 that higher modes may significantly alter the
results. Additionally, we note that the values of Θ2 and Θ3 for any Janus particle lie
in the range where Datt et al. (2015) predict a smaller swimming velocity than in
Newtonian fluids.
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FIGURE 3. (Colour online) Variation of the scaled first-order swimming velocity U(M)
1 /UN

(obtained for M+ 1 modes) with Cu for two values of µ≡ cos θd. Solid lines correspond
to M= 30 and M= 28 for µ= 0 (symmetric) and µ=±0.9 respectively (additional modes
lead to negligible differences). Dashed lines correspond to the swimming velocity with just
the first two modes.

5. Conclusion and future work

In this work, we studied active particles with prescribed surface velocities in
non-Newtonian fluids. Using the reciprocal theorem, we derived a general form
of the propulsion velocity of an active particle in a weakly nonlinear background
flow. Using this formalism, we calculated the swimming speed for an active particle
with a general, axisymmetric slip velocity in an otherwise quiescent second-order
fluid, extending results previously obtained for a two-mode description. We then
considered the motion of diffusiophoretic Janus particles in weakly viscoelastic and
shear-thinning fluids. We showed that a Janus particle with two equal halves, in a
weakly viscoelastic fluid, will swim at the same speed as in a Newtonian fluid due to
its fore–aft symmetry (provided the surface slip velocity remains unchanged). When
this symmetry is broken the particle may swim faster or slower than in a Newtonian
fluid, and this may be predicted by considering the Janus particle as a pusher or puller
based on the two-mode squirmer description. Conversely, in a weakly shear-thinning
fluid, a Janus particle always swims slower than in a Newtonian fluid.

While analysing Janus particles, we neglected any changes to the slip velocity
due to fluid rheology as well as any dynamics due to the distortion of the solute
concentration field of phoretic particles because of the velocity field. The latter
may not be true for large proteins or molecules, when the diffusion constant is
small and the Péclet number becomes significant. This coupling of the velocity and
concentration field leads to interesting dynamics in Newtonian fluids (Michelin, Lauga
& Bartolo 2013; Michelin & Lauga 2014) and is an avenue for further inquiry in
non-Newtonian fluids. We also expect the fluid rheology to affect the slip velocity
of an active particle: the gait of a biological microswimmer may be modified by
non-Newtonian stresses, likewise the slip velocity of a diffusiophoretic Janus particle.
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For a complete understanding of the dynamics of active particles in complex fluids,
one should also consider such changes to the gait itself.
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