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CONSTRUCTIVE GEOMETRY AND THE PARALLEL POSTULATE

MICHAEL BEESON

Abstract. Euclidean geometry, as presented by Euclid, consists of straightedge-and-
compass constructions and rigorous reasoning about the results of those constructions. We
show that Euclidean geometry can be developed using only intuitionistic logic. This involves
finding “uniform” constructions where normally a case distinction is used. For example, in
finding a perpendicular to line L through point p, one usually uses two different constructions,
“erecting” a perpendicular when p is on L, and “dropping” a perpendicular when p is not on
L. but in constructive geometry, it must be done without a case distinction. Classically, the
models of Euclidean (straightedge-and-compass) geometry are planes over Euclidean fields.
We prove a similar theorem for constructive Euclidean geometry, by showing how to define
addition and multiplication without a case distinction about the sign of the arguments. With
intuitionistic logic, there are two possible definitions of Euclidean fields, which turn out to
correspond to different versions of the parallel postulate.

We consider three versions of Euclid’s parallel postulate. The two most important are
Euclid’s own formulation in his Postulate 5, which says that under certain conditions two
lines meet, and Playfair’s axiom (dating from 1795), which says there cannot be two distinct
parallels to line L through the same point p. These differ in that Euclid 5 makes an existence
assertion, while Playfair’s axiom does not. The third variant, which we call the strong parallel
postulate. isolates the existence assertion from the geometry: it amounts to Playfair’s axiom
plus the principle that two distinct lines that are not parallel do intersect. The first main
result of this paper is that Euclid 5 suffices to define coordinates, addition, multiplication, and
square roots geometrically.

We completely settle the questions about implications between the three versions of the
parallel postulate. The strong parallel postulate easily implies Euclid 5, and Euclid 5 also
implies the strong parallel postulate, as a corollary of coordinatization and definability of
arithmetic. We show that Playfair does not imply Euclid 5, and we also give some other
independence results. Our independence proofs are given without discussing the exact choice
of the other axioms of geometry; all we need is that one can interpret the geometric axioms
in Euclidean field theory. The independence proofs use Kripke models of Euclidean field
theories based on carefully constructed rings of real-valued functions. “Field elements” in
these models are real-valued functions.

§1. Introduction.

1.1. The purposes of this paper. Euclid’s geometry, written down about
300 BCE, has been extraordinarily influential in the development of math-
ematics, and prior to the twentieth century was regarded as a paradig-
matic example of pure reasoning.! In this paper, we re-examine Euclidean
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"Readers interested in the historical context of Euclid are recommended to read [10],
where Max Dehn puts forward the hypothesis that Euclid’s rigor was a reaction to the first
“foundational crisis”, the Pythagorean discovery of the irrationality of v/2.
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2 MICHAEL BEESON

geometry from the viewpoint of constructive mathematics. The phrase “con-
structive geometry” suggests, on the one hand, that “constructive” refers to
geometrical constructions with straightedge and compass. On the other
hand, the word “constructive” suggests the use of intuitionistic logic.> We
investigate the connections between these two meanings of the word. Our
method is to focus on the body of mathematics in Euclid’s Elements, and to
examine what in Euclid is constructive, in the sense of “constructive mathe-
matics”. Our first aim was to formulate a suitable formal theory that would
be faithful to both the ideas of Euclid and the constructive approach of
Errett Bishop. We presented a first version of such a theory in [3], based
on Hilbert’s axioms, and a second version in [6], based on Tarski’s axioms.
These axiomatizations helped us to see that there is a coherent body of infor-
mal mathematics deserving the name “elementary constructive geometry,”
or ECG. The first purpose of this paper is to reveal constructive geometry
and show both what it has in common with traditional geometry, and what
separates it from that subject.?

The second purpose of this paper is to demonstrate that constructive
geometry is sufficient to develop the propositions of Euclid’s Elements, and
more than that, it is possible to connect it, just as in classical geometry,
to the theory of Euclidean fields. A Euclidean field is an ordered field F
in which non-negative elements have square roots. Classically, the models
of elementary Euclidean geometry are planes F2 over a Euclidean field F.
We show that something similar is true for ECG. This requires an axioma-
tization of ECG, and also a constructive axiomatization of Euclidean field
theory; but just as in classical geometry, the result is true for any reasonable
axiomatization.

The third purpose of this paper, represented in its title, is to investigate
the famous Postulate 5 of Euclid. There are several ways of formulating
the parallel postulate, which are classically equivalent, but not all construc-
tively equivalent. These versions are called “Euclid 5, the “strong parallel
postulate”, and “Playfair’s axiom.” The first two each assert that two lines
actually meet, under slightly different hypotheses about the interior angles
made by a transversal. Playfair’s axiom simply says there cannot be two
distinct parallels to line L through point p not on L; so Playfair’s axiom
seems to be constructively weaker, as it makes no existential assertion.

The obvious question is: are these different versions of the parallel pos-
tulate constructively equivalent, or not? It turns out that Euclid 5 and the
strong parallel postulate are equivalent in constructive geometry (contrary

’In intuitionistic logic. one is not allowed to prove that something exists by assuming it
does not exist and reasoning to a contradiction; instead, one has to show how to construct
it. That in turn leads to rejecting some proofs by cases, unless we have a way to decide
which case holds. These are considerations that apply to all mathematical reasoning; in this
paper, we apply them to geometrical reasoning in particular. In this paper, “constructive”
and “intuitionistic” are synonymous; any differences between those terms are not relevant
here.

3The phrase “classical geometry” is synonymous with “traditional geometry”; it means
geometry with ordinary, nonconstructive logic allowed. Incidentally, that geometry is also
classical in the sense of being old.
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to [4], where it is mistakenly stated that Euclid 5 does not imply the strong
parallel postulate). The proof depends on showing that coordinatization
and multiplication can be defined geometrically using only Euclid 5, so it is
somewhat lengthy, but conceptually straightforward.

On the other hand, we show that Playfair’s axiom does not imply Euclid 5
(or the strong parallel axiom). This is done in two steps: First, we define a
Playfair ring, which is something like a Euclidean field, but with a weaker
requirement about the existence of reciprocals. We show that if F is a Playfair
ring, then F? is a model of geometry with Playfair’s axiom. If Playfair implies
Euclid 5, then the axioms of Playfair rings would imply the Euclidean field
axioms. The second step is to show that the axioms for Playfair rings are
constructively weaker than those for Euclidean fields. This is proved using
Kripke models, where the field elements are interpreted as certain real-valued
functions.

Because these formal independence results are proved in the context of
Euclidean field theory, they apply to any axiomatizations of geometry that
have planes over Euclidean fields as models. For example, they apply to the
Hilbert-style axiomatization in [3], and to the Tarski-style axiomatization
in [6]. It is therefore not necessary in this paper to settle upon a particular
axiomatization of geometry. All that we require is that certain basic theorems
of Euclid be provable.

I would like to thank Jeremy Avigad for encouraging me to investigate the
logical relations between the different parallel postulates.

1.2. What is constructive geometry? In constructive mathematics, if one
proves something exists, one has to show how to construct it. In Euclid’s
geometry, the means of construction are not arbitrary computer programs,
but ruler and compass. Therefore it is natural to look for quantifier-free
axioms, with function symbols for the basic ruler-and-compass construc-
tions. The terms of such a theory correspond to ruler-and-compass con-
structions. These constructions should depend continuously on parameters.
We can see that dramatically in computer animations of Euclidean con-
structions, in which one can select some of the original points and drag
them, and the entire construction “follows along.” We expect that if one
constructively proves that points forming a certain configuration exist, that
the construction can be done “uniformly”, i.e., by a single construction
depending continuously on parameters.

To illustrate what we mean by a uniform construction, we consider an
important example. There are two well-known classical constructions for
constructing a perpendicular to line L through point p: one of them is called
“dropping a perpendicular”, and works when p is not on L. The other is
called “erecting a perpendicular”, and works when p is on L. Classically
we may argue by cases and conclude that for every p and L, there exists
a perpendicular to L through p. But constructively, we are not allowed to
argue by cases. If we want to prove that for every p and L, there exists a
perpendicular to L through p, then we must give a single, “uniform” ruler-
and-compass construction that works for any p, whether or not p is on L.
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Readers new to constructive mathematics may not understand why an
argument by cases is not allowed. Let me explain. The statement, “for every
p and L there exists a perpendicular to L through p” means that, when
given p and L, we can construct the perpendicular. The crux of the matter
is what it might mean to be “given” a point and a line. In order to be able
to decide algorithmically (let alone with ruler and compass) whether p lies
on L or not, we would have to make very drastic assumptions about what
it means to be “given” a point or a line. For example, if we were to assume
that every point has rational coordinates relative to some lines chosen as the
x and y axes, then we could compute whether p lies on L or not; but that
would require bringing number theory into geometry. Anyway, we wouldn’t
be able to construct an equilateral triangle. We want to allow an open-ended
concept of “point”, permitting at least the interpretation in which points are
pairs of real numbers; and then there is no algorithm for deciding if p lies
on L or not. That is why an argument by cases is not allowed in constructive
geometry.

The other type of argument that is famously not allowed in constructive
mathematics is proof by contradiction. There are some common points of
confusion about this restriction. The main thing one is not allowed to do
is to prove an existential statement by contradiction. For example, we are
not allowed to prove that there exists a perpendicular to L through x by
assuming there is none, and reaching a contradiction. From the constructive
point of view, that proof of course proves something, but that something is
weaker than existence. We write it ——d, and constructively, you cannot
cancel the two negation signs.

However, you are allowed to prove inequality or order relations between
points by contradiction. Consider for the moment two points x and y on a
line. If we derive a contradiction from the assumption x # y then x = y.
This is taken as an axiom of constructive geometry: - x # y — x = y.
In the style of Euclid: Things that are not unequal are equal. It has its
intuitive grounding in the idea that x = y does not make any existential
statement. Similarly, we are allowed to prove x < y by contradiction; that
is, we take -——x < y — x < y as an axiom of constructive geometry.
(That can also be written -y < x — x < y.) Without this principle,
Euclidean geometry would be complicated and nuanced, since arguments
using it occur in Euclid and are not always avoidable. Since order on a line
is not a primitive relation, we take instead the corresponding axiom for the
betweenness relation, namely == B(a. b, ¢) — B(a, b, ¢). These two axioms
are called the “stability” of equality and betweenness.*

*In adopting the stability of betweenness as an axiom, we should perhaps offer another
justification than the pragmatic necessity for Euclid. The principle reduces to a question,
given two points s and ¢, can we find two circles with centers s and ¢ that separate the two
points? The obvious candidate for the radius is half the distance between s and ¢, so the
question boils down to Markov’s principle for numbers: if that radius is not not positive,
must it be positive? The stability of betweenness thus has the same philosophical status as
Markov’s principle: it is self-justifying, not provable from other constructive axioms, and
leads to no trouble in constructive mathematics, while simplifying many proofs.
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The theorems of Euclidean geometry all have a fairly simple logical form:
Given some points, lines, and circles bearing certain relations, then there
exist some further points bearing certain relations to each other and the
original points. This logical simplicity implies that (although this may not
be obvious at first consideration) if we allow the stability axioms, then
essentially the only differences between classical and constructive geometry
are the two requirements:

e You may not prove existence statements by contradiction; you must
provide a construction.

e The construction you provide must be uniform; that is, it must be proved
to work without an argument by cases.

Sometimes, when doing constructive mathematics, one may use a mental
picture in which one imagines a point p as having a not-quite-yet-determined
location. For example, think of a point p which is very close to line L. We
may turn up our microscope and we still can’t see whether p is or is not on
L. We think “we don’t know whether p is on L or not.” Our construction of
a perpendicular must be visualized to work on such points p. Of course, this
is just a mental picture and is not used in actual proofs. It can be thought
of as a way of conceptualizing “we don’t have an algorithm for determining
whether p is on L or not.”

We illustrate these principles with a second example. Consider the problem
of finding the reflection of point p in line L. Once we know how to construct
a perpendicular to L through p, it is still not trivial to find the reflection
of p in L. Of course, if p is on L, then it is its own reflection, and if p
is not on L, then we can just drop a perpendicular to L, meeting L at
the foot f, and extend the segment pf an equal length on the other side
of f to get the reflection. But what about the case when we don’t know
whether p is or is not on L? Of course, that sentence technically makes no
sense; but it illustrates the point that we are not allowed to argue by cases.
The solution to this problem may not be immediately obvious; but in the
body of this paper, we will exhibit a uniform construction of the reflection
of pin L.

1.3. Is Euclid constructive? Our interest in constructive geometry was first
awakened by computer animations of Euclid’s constructions; we noticed that
the proposition in Euclid 1.2 does not depend continuously on parameters,
but instead depends on an argument by cases.’ Proposition 1.2 says that for
every points a, b, and ¢, there is a point d such that ad = bc (in the sense
of segment congruence). The computer animation of Euclid’s construction
of d shows that as b spirals inwards to a, d makes big circles around «,
and so does not depend continuously on b as b goes to a. Classically, we

>Should any reader not possess a copy of Euclid, we recommend [14] and [13]; or for
those wishing a scholarly commentary as well, [12]. There are also several versions of Euclid
available on the Internet for free.
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can argue by cases, taking d = a if b = a, but Euclid’s proof of 1.2 is
nonconstructive.®

After discovering the nonconstructivity of the proof of 1.2, we then read
Euclid with an eye to the constructivity of the proofs. There is no other
essentially nonconstructive proof in Euclid’s Elements 1-1V.

1.4. Criteria for a constructive axiomatization of geometry. In order to
meet the second and third purposes of this paper (namely, to relate its
models to planes over Euclidean fields, and to show that Playfair does not
imply Euclid 5, we need to make use of some formal theory of constructive
geometry. There are, of course, as many ways to formalize constructive
geometry as there are to formalize classical geometry; see page 4 of [5],
where we enumerate eleven possible choices, more or less independent, so
there are several thousand different ways to formalize geometry. We want
an axiomatization that is

e is faithful to Euclid’s Elements, i.e., it can express Euclid’s propositions
and proofs in a natural way;

e has terms for geometrical constructions, and those terms describe
constructions continuous in parameters;

e uses intuitionistic logic

In addition we want the axioms of our theory to be
e quantifier-free.

e disjunction free.

The last two criteria make the proof theory of such an axiomatization
easy: they permit the applications of cut-elimination that we want to make,
in order to connect existence proofs to ruler-and-compass constructions.
They are also very reasonable criteria. First, disjunction does not occur
in Euclid. Euclid did not use first-order logic; the logical structure of his
theorems is discussed in §2.2, but for now we just note that he never states
or uses a disjunctive proposition, i.e., one with “or” in the conclusion.®

SProp. 1.2 can be views as showing that a “collapsible compass” can simulate a “rigid
compass.”. A “rigid compass” can be used to transfer a given distance, say bc, from one
location in the plane to another, so it enables construction of a circle “by center and radius.”
A “collapsible compass” can only be used to construct a circle “by center and point”, i.e.,
to draw a circle with a given center a passing through another given point . The compass
“collapses™ as soon as you pick it up. There is a word in Dutch, passer, for a rigid compass,
which was used in navigation in the seventeenth century. But there seems to be no single word
in English that distinguishes either of the two types of compass from the other.

"In fact, it is only Euclid’s proof that is nonconstructive, not the proposition itself.
A constructive proof of Euclid 1.2 is given in Lemma 3.1; see also §5.1 of [6].

81n Prop. 1.26, he mentions “or”, but in the hypothesis, not the conclusion, so the propo-
sition can be expressed as two propositions without “or”. Prop. II1.4 is an example in which
Euclid chooses a negative formulation, when a modern mathematician might choose a dis-
junction: if two chords of a circle bisect each each other, then one or the other passes through
the center.
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We have developed two rather different axiomatizations of ECG, each of
which has all these properties. The first one, presented in [3], was based on
Hilbert’s axioms for geometry. In [4] we mentioned a version more closely
related to Tarski’s concise and elegant axiomatization of classical Euclidean
geometry, but space did not permit a full description there. That theory has
now been fully described and studied in [6]. The results in this paper apply
to either axiomatization, and we believe, to all reasonable variations of these
axiomatizations. Therefore, in this paper we do not commit to any particular
axiomatization of geometry; all we require is that certain basic theorems of
Euclid should be provable and the logical rules should be intuitionistic.

1.5. Basic metamathematical results. The results of our metamathemati-
cal analysis of constructive geometry are:

e Things proved to exist in (a formal version of) ECG can be constructed
with ruler and compass.

e The models of (a formal version of) ECG are exactly planes F? over
Euclidean fields F, with two different choices of the axiom about mul-
tiplicative inverses in [ corresponding to two different versions of the
parallel axiom.

e These different versions of the parallel axiom are formally inequivalent.

We now describe these results in more detail. Once a particular axioma-
tization of ECG is chosen (meeting the criteria listed above), then one can
apply cut-elimination to obtain several fundamental properties of such a
theory, as discussed in [3] and [6]. For example, we have the result alluded
to above, that existential theorems are “realized” by ruler-and-compass
constructions. For a second example, propositions involving a negative
hypothesis and a disjunctive conclusion cannot be proved. Examples include
a<b - a<xVx<bandx #0 — 0 < xVx <0, which are discussed
more fully in §2.1 and Theorem 10.3.

Next there is Tarski’s “representation problem”. We want to character-
ize the models of ECG. Classically, the models of Euclidean geometry are
well-known to be planes over Euclidean fields (ordered fields in which non-
negative elements have square roots). But constructively, what is a Euclidean
field? It turns out that there are two natural ways of defining that, and that
planes over such fields correspond to two different versions of the paral-
lel postulate. The proof of such a representation theorem (classically or
constructively) involves both the “arithmetization of geometry” and the
“geometrization of arithmetic.” The geometrization of arithmetic (origi-
nally due to Descartes) shows how to add, subtract, multiply, divide, and
take square roots of segments, and how to introduce coordinates in an arbi-
trary plane. The arithmetization of geometry (also due to Descartes) is the
verification (using coordinates and algebraic calculations) that the axioms
of geometry hold in F2, where F is a Euclidean field. Both of these offer
some constructive difficulties; for example, Descartes’s constructions apply
only to positive segments, but we need to define arithmetic on signed num-
bers, without making case distinctions whether the numbers are zero or not.
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These difficulties are overcome and the representation theorem proved in
Theorem 9.4.

Finally, we settle the relations between three versions of the parallel postu-
late (which are explained below). Two of these assert the existence of a point
of intersection, while the third (Playfair’s axiom) does not. The two that
assert existence are equivalent, and they are not implied by Playfair’s axiom.
This independence proof (and others) are obtained using Kripke models of
Euclidean field theory, so they do not depend on the details of the axiom-
atization of constructive geometry, but only on the fact that constructive
geometry can be interpreted in Euclidean field theory.

1.6. Postulates vs. axioms in Euclid. Euclid presents his readers with both
“postulates” and “axioms”. Modern mathematicians often treat these words
as synonyms. For Euclid and his contemporaries, however, they had quite
different meanings. Here is the difference, as explained by Pambuccian [25],
p. 130:

For Proclus, who relates a view held by Geminus, a postulate pre-
scribes that we construct or provide some simple or easily grasped
object for the exhibition of a character, while an axiom asserts some
inherent attribute that is known at once to one’s auditors. And just
as a problem differs from a theorem, so a postulate differs from an
axiom, even though both of them are undemonstrated; the one is
assumed because it is easy to construct, the other accepted because it
is easy to know. That is, postulates ask for the production, the poesis
of something not yet given. .., whereas axioms refer to the gnosis of
a given, to insight into the validity of certain relationships that hold
between given notions.

1.7. The parallel postulate. Euclid’s famous “parallel postulate” (Postu-
late 5, henceforth referred to as Euclid 5) states that if two lines L and M
are traversed by another line 7', forming interior angles on one side of T
adding up to less than two right angles, then L and M will intersect on that
side of T'. The version of Euclid 5 given in Fig. 1 shows how to state this
without referring to “addition of angles.”

Euclid 5 makes an assertion about the existence of the point of intersection of
K and L. and hence it can be viewed as a construction method for producing
certain triangles. In view of the remarks of Geminus and Proclus, it seems

M

FIGURE 1. Euclid 5: M and L must meet on the right side,
provided B(q, a,r) and pg makes alternate interior angles
equal with K and L.
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FIGURE 2. Euclid 5: M and L must meet on the right side,
provided B(q, a, ) and pt = gt and rt = st.

likely that Euclid viewed his postulate in this way, or he would have called it
an axiom.

Fig. 2 shows how to eliminate all mention of angles in the formulation of
Euclid 5.

In 1795, Playfair introduced the version that is usually used today, which
is an axiom rather than a postulate: Given a line L, and a point p not on
L, there cannot be two distinct lines through p parallel to L. (Parallel lines
are by definition lines in the same plane that do not meet.) Unlike Euclid 5,
Playfair’s axiom does not assert the existence of any specific point. See Fig. 3.

To compare different versions of the parallel postulate, we begin with a
fundamental observation. Given point p not on line L, and a line 7 through
p that meets L. there is (without using any parallel postulate at all) exactly
one line M through p that makes the sum of the interior angles on one side
of the transversal T equal to two right angles (or makes alternate interior
angles equal). This line M is parallel to L, since if M meets L in ¢ then there
is a triangle with two right angles, contradicting Euclid I.17 (and Euclid
does not use the parallel postulate until 1.29).

With classical logic, Playfair’s axiom implies Euclid 5, as follows. Suppose
given point p not on line L, and line 7" through p meeting L, and line K
through p such that the angles formed on one side of 7 by K and L are
together less than two right angles. Let M be the line through p that does
make angles together equal to two right angles with 7'. As remarked above,
M is parallel to L; hence, by Playfair, K cannot be parallel to L. Classically,
then, it must meet L, which is the conclusion of Euclid 5. But this proof by
contradiction does not provide an explicit point of intersection.

That raises the question whether Playfair’s axiom implies Euclid 5 using
only intuitionistic (constructive) logic. This question is resolved in this paper.
The answer is in the negative: Playfair does not imply Euclid 5.

M

K\P
\

L

FIGURE 3. Playfair: if K and L are parallel, M and L can’t
fail to meet.
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The following is the strong parallel postulate.

If pisnoton L, g is on L, line K passes through p, and pg makes
alternate interior angles equal with K and L, then any line M through
p that is distinct from K meets L. See Fig. 4.

This is like Euclid 5, except that the hypothesis is weaker (in that it does not
require us to specify on which side of 7 the interior angles are less than two
right angles), and the conclusion is also weaker (not saying on which side
of ¢ the two lines meet). Technically, the hypothesis B(q. a.r) in Fig. 1 is
replaced by simply requiring a to not lie on K.

Both the strong parallel postulate and Euclid 5 make existence assertions.
It is not hard to show that the strong parallel postulate implies Euclid 5
(hence the name). Much less obviously, the strong parallel postulate turns
out to be equivalent to Euclid 5. This is proved by developing coordinates,
and the geometric definitions of addition and multiplication using only
Euclid 5. instead of the strong parallel postulate. Once coordinates and
arithmetic can be defined, then the strong parallel postulate boils down to
the property that nonzero points on the x-axis have multiplicative inverses,
and Euclid 5 says that positive elements have multiplicative inverses; but
1/x = x/|x|*. so they are equivalent. The delicate question is then whether
Euclid 5 suffices for constructive (case-free) definitions of coordinates and
arithmetic. We will show that it does.

In the presence of Playfair’s axiom, the strong parallel postulate is
equivalent to

If M and L are distinct, nonparallel lines, then M meets L.

This equivalence (proved in Lemma 6.12) separates the parallel postulate
into two parts: a negative statement about parallelism (Playfair) and an
existential assertion about the result of a construction (the two lines meet in
a point that can be found with a ruler, albeit perhaps a very long ruler).

1.8. Triangle circumscription as a parallel postulate. In classical geom-
etry, there are many propositions equivalent to the parallel postulate; for
example, the triangle circumscription principle, which says that given three
noncollinear points a, b, and ¢, there is a fourth point equidistant from «, b,
and c¢ (the center of a circle passing through those three points). Szmielew

FIGURE 4. Strong Parallel Postulate: M and L must meet
(somewhere) provided a is not on K and and p is not on L
and pt = gt and rt = st sand r # p.
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used the triangle circumscription principle as an axiom in her lectures,
although in [28], a different formulation of the parallel axiom due to Tarski
is used. In Theorem 6.18 below, we show that the triangle circumscription
principle is constructively equivalent to the strong parallel postulate, and in
[6] we follow Szmielew in adopting this as an axiom. There is a natural ruler
and compass construction of the center point of the circle through a, b, and
¢, as the intersection point of the perpendicular bisectors of ab and bc.

1.9. Past work on constructive geometry. L. E. J. Brouwer, the founder of
intuitionism, apparently held the axiomatic approach to mathematics in low
esteem; at least, he never took that approach in his papers. It is therefore
a bit surprising that his most famous student, Arend Heyting, wrote his
dissertation on an axiomatic (and intuitionistic) treatment of projective
geometry (published two years later as [17] and again 34 years later as
[18]. which is probably the same as the easier-to-locate [19]). Heyting took a
relation of “apartness” as primitive. This is a “positive notion of inequality”.
The essence of the notion can be captured without a new symbol in the
following axiom about order on the line:

a<b - x<bVa<x.

Heyting’s work was so influential that every subsequent paper about intu-
itionistic or constructive geometry has taken an apartness relation as primi-
tive; it was still being discussed in 1990 and 1996 (see [32,33]). A somewhat
different tack was taken by von Plato [34, 35], who worked on axioms for
affine geometry (no congruence).

Lombard and Vesley [23] gave a constructive theory of geometry, perhaps
the first to apply to Euclidean geometry. They followed Heyting in taking
apartness as primitive, and they wished to avoid having equality as a prim-
itive, which led them to the six-place relation “the sum of the lengths of ab
and c¢d is more than the length pg.” They were able to recover betweenness
and congruence from this relation and give a realizability interpretation.

The unpublished dissertation [21] is about constructive geometry in the
sense of geometric constructions, but explicitly nonconstructive in that it
makes use of “decision operations”, or “branching operations”. As [23]
points out, geometers sometimes use the word “constructive” to mean that
the axioms are quantifier-free, i.e., function symbols are used instead of
existential quantifiers. That is neither necessary nor sufficient for a con-
structive theory in the sense of “constructive mathematics”. Nevertheless
our constructive geometry does have quantifier-free axiomatizations. The
first quantifier-free axiomatization of geometry may have been [24]; but that
was a theory with classical logic.

The use of apartness stemmed from a reluctance to apply classical logic
to the equality of points. In our constructive geometry, we assume the sta-
bility of equality, and we assume Markov’s principle - x <y — y < x
(but expressed using betweenness). This allows one to prove the equality or
inequality of two points by contradiction. The strong parallel postulate, as
we show, allows one to prove that two lines intersect by contradiction. What
is not allowed is an argument by cases, where the cases concern ordering
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or equality relations between points. Also, of course, existential assertions
are supposed to be proved by explicit construction, which, coupled with the
prohibition on arguments by cases, requires a uniform construction, contin-
uous in parameters. That contrasts with geometry based on apartness, which
is designed to allow certain arguments by “overlapping” cases. No theory
with apartness can have the property that points it proves to exist depend
continuously on parameters, which is an important feature of constructive
geometry as developed here.

82. Euclid’s reasoning considered constructively. In the late twentieth
century, contemporaneously with the flowering of computer science, there
was a new surge of vigor in algorithmic, or constructive, mathematics, begin-
ning with Bishop’s book [7]. In algorithmic mathematics, one tries to reduce
every “existence theorem” to an assertion that a certain algorithm has a
certain result. It was discovered by Brouwer that if one restricts the laws of
logic suitably (to “intuitionistic” logic), then one only obtains algorithmic
existence theorems, so there is a fundamental connection between methods
of proof, and the existence of algorithms to construct the things that have
been proved to exist. Brouwer thought it necessary to do more than just
restrict logic; he also wanted to state some additional principles. Bishop
renounced additional principles and worked by choosing his definitions
very carefully, but using only a restricted form of logic. Results obtained by
Bishop’s methods are classically valid as well as constructively.

What happens if we examine Euclid’s Elements from this point of view?
It turns out that the required changes are few and minor. Euclid’s proof
of Prop. 1.2 is nonconstructive (but the theorem itself has a different and
constructive proof, given in Lemma 3.1), and and the parallel axiom needs
a more explicit formulation. Euclid is essentially constructive as it stands.
In §5, we justify this conclusion in more detail.

2.1. Order on a line from the constructive viewpoint. In this section we
explain how a constructivist views the relations x < y and x < y on the
real line. This section can be skipped by readers familiar with constructive
order, but it will be very helpful in understanding constructive geometry.
Order on a line can be thought of as one-dimensional geometry, so it makes
sense for the reader new to constructivity to start with the one-dimensional
case. The theory of order translates directly into the betweenness relation
in geometry, since for positive x and y we have that x < y is the same as
“x 1s between 0 and y”. In constructive mathematics, the real numbers are
given by constructive sequences of rational approximations. For example,
we could take Bishop’s definition of a real number as a (constructively given)
sequence x, of rationals such that for every n > 1,

1 1
|Xp — Xm| < — + —.
n m

This guarantees that the limit x of such a sequence satisfies |x — x,| < 1/n.
Two such sequences are considered equal if x, — y, < 2/n; it is important
that different sequences can represent equal (or “the same”, if you prefer)
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real numbers. Now observe that if x < y, we will eventually become aware
of that fact by computing fine enough approximations to x and y, so that
X + % < Yy — % Then we will have an explicit positive lower bound on
y — x, which is what is required to assert x < y.

The “recursive reals” are defined this way, but specifying that the sequences
X, are to be computed by a Turing machine (or other formal definition of
“computer program”). In more detail: We write {e}(n) for the result, if
any, of the e-th Turing machine at input z. Rational numbers are coded as
certain integers, and modulo this coding we can speak of recursive functions
from N to Q. A “recursive real number” x is given by an index of a Turing
machine e, whose output {e} () atinput n codes a rational number, such that
[{e}(n) — x| < 1/n for each n € N. We can, if we wish, avoid assuming that
the real numbers are given in advance, by considering the Turing machine
index e to be the real number x.

It may be helpful to keep the “model” of recursive reals in mind, but in the
spirit of “tables, chairs, and beer mugs”, modern constructivists often prefer
not to make this commitment, but refer in the abstract to “constructive
sequences.” Thus the “classical model” is always a possible interpretation.

Given two (definitions of) numbers x and y, we may compute approxi-
mations to x and y for many years and still be uncertain whether x = y
or not. Hence, we are not allowed to constructively assert the trichotomy
law x < y VX = y V y < Xx, since we have no way to make the decision
in a finite number of steps. One can prove that the recursive reals definitely
cannot constructively be proved to satisfy the trichotomy law, as that would
imply a computable solution to the halting problem. But without a commit-
ment to a definite definition of “constructive sequence”, the most we can
say is that “we cannot assert” trichotomy. This phrase “we cannot assert” in
constructive mathematics is usually code for, “it fails in the recursive model.”

Note, however, that we may be able to assert the trichotomy law for var-
ious subfields of the real numbers. For example, it is valid for the rational
numbers, and it is also valid (though less obviously) for the real algebraic
numbers. In each of these cases, the elements of the field are given by finite
objects, that can be presented to us “all at once”, unlike real numbers;
but that property is not sufficient for trichotomy to hold, since the recur-
sive reals fail to satisy trichotomy, but a recursive real can be given “all at
once” by handing over a Turing machine to compute the sequence x, of
approximations.

The relation x < y is equivalent to —(y < x), either by definition, or by a
simple theorem if one defines x < y in terms of approximating sequences.
It is definitely not equivalent to x < y V x = y (see the refutation of
the trichotomy law in the recursive model given below). But now consider
negating x < y. Could we assert —x < y implies y < x? Subtracting y we
arrive at an equivalent version of the question with only one variable: can
we assert =x < 0 implies 0 < x? Since x < 0 is equivalent to =0 < x, the
question is whether we can assert

-—x>0 — x>0. (Markov’s principle)
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In other words, is it legal to prove that a number is positive by contradic-
tion? One could argue for this principle as follows: Suppose ——x > 0. Now
compute the approximations x, one by one for n = 1,2, .... Note that tri-
chotomy does hold for x,, and 1/n, both of which are rational. You must find
an n such that x,, > 1/n, since otherwise for all n, we have x,, < 1/n, which
means x < 0, contradicting ——x > 0. Well, this is a circular argument: we
have used Markov’s principle in the justification of Markov’s principle.

Shall we settle it by looking at the recursive model? There it can easily be
shown to boil down to this: if a Turing machine cannot fail to halt, then it
halts. Again one sees no way to prove this, and some may feel is intuitively
true, while others may not agree.

Historically, the Russian constructivist school adopted Markov’s princi-
ple, and the Western constructivists did not. It reminds one of the split
between the branches of the Catholic Church, which also took place along
geographical lines. In any case, as discussed in §1.2 and §2.3, it seems
appropriate to adopt this principle for a constructive treatment of Euclid.

From the constructive viewpoint, the main difference between x < y and
x < y, as applied to real numbers, is that x < y involves an existential
quantifier; it contains the assertion that we can find a rational lower bound
on |y — x|, while x < y is defined with a universal quantifier, and contains
no hidden assertions. If we take any formula involving inequalities, and
replace x < y with =y < x, we obtain a classically equivalent assertion
no longer containing an existential quantifier. If in addition we replace
AV B by = (=4 A —B), we will have eliminated all hidden claims, and the
result will be classically valid if and only if it is constructively valid. To
understand constructive mathematics, one has to learn to see the “hidden
claims” that are made by disjunctions and existential quantifiers, which
can make a formula “stronger” than its classical interpretation. Of course,
if existential quantifiers or disjunctions occur in the hypotheses, then a
stronger hypothesis can make a weaker theorem.

A given classical theorem might have more than one (even many) clas-
sically equivalent versions with different constructive meanings. Therefore,
finding a constructive version of a given theory is often a matter of choosing
the right definitions and axioms.

Consider the following proposition, which is weaker than trichotomy:

x<0Vvx>0.

This is also not constructively valid. Intuitively, no matter how long we keep
computing approximations x,, if they keep coming out zero we will never
know which disjunct is correct. As soon as we stop computing, the very next
term might have told us.

We now show that both trichotomy and x < 0V x > 0 fail in the recusive
reals, if disjunction is interpreted as computable decidability. First con-
sider trichotomy. We will show that there is no computable test-for-equality
function, that is, no computable function D that operates on two Turing
machine indices x and y, and produces 0 when x and y are equal recur-
sive real numbers (i.e., have the same limiting value), and 1 when they are
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recursive real numbers with different values. Proof, if we had such a D, we
could solve the halting problem by applying D to the point (E(x),0), where
{E(x)}(n) = 1/n if Turing machine x does not halt at input x in fewer than
n steps, and {E(x)}(n) = 1/k otherwise, where x halts in exactly k steps.
Namely, {x}(x) halts if and only if the value of E(x) is not zero, if and
only if D(Z, E(x)) # 0, where Z is an index of the constant function whose
value is the (number coding the) rational number zero.

Now consider the proposition x > 0V x < 0. We can imitate the above
construction, but replacing the halting problem by two recursively insepara-
ble r.e. sets 4 and B, and making the number E(x) be equal to 1/n if at the
n-th stage of computation we see that x € 4, and —1/n if we see x € B; so
if x is in neither 4 nor B, E(x) will be equal to zero. Hence x > 0V x <0
fails to hold in the recursive reals.

Finally we consider this proposition:

x#0 - x<0Vx>0. (two-sides)

We call this principle “two-sides” since it is closely related to “a point not
on a line is on one side or the other of the line”. (Here the “line” could be
the y-axis.) Two-sides does hold in the recursive model, since, assuming that
x # 0, if we compute x, for large enough n, eventually we will find that
xp+1/n < 0orx,—1/n> 0, as that is what it means in the recursive model
for x to be nonzero. But since x, and 1/n are rational numbers, we can
decide computably which of the disjuncts holds, and that tells us whether
x<0orx>0.

On the other hand, this verification of two-sides in the recursive model is
not a proof that it is constructively valid; the following lemma shows that it
is at least as “questionable” as Markov’s principle:

LEMMA 2.1. two-sides implies Markov’s principle (with intuitionistic logic).
PrOOF. Suppose ——x > 0, the hypothesis of Markov’s principle. Then
x # 0, so by two-sides x < 0 or x > 0; if x < 0 then —x > 0, contradicting

——x > 0: hence the disjunct x < 0 is impossible. Hence x > 0, which is the
conclusion of Markov’s principle. That completes the proof of the lemma. -

If we assume that points on a line correspond to Cauchy sequences of
rational numbers, then we can also prove the converse:

LemMa 2.2. If real numbers are determined by Cauchy sequences, then
Markov’s principle implies two-sides.

ProoF. We may suppose that real numbers are given by “Bishop
sequences” as described above, as it is well-known to be equivalent to
the Cauchy sequence definition. A Bishop sequence for |x| is given by
|x|, = max (x,, —x,). Suppose x # 0 (the hypothesis of two-sides). Then
|x| # 0. We claim |x| > 0. By Markov’s principle, it suffices to derive a
contradiction from |x| < 0. Suppose |x| < 0. Then x = 0, contradicting
|x| # 0. Hence by Markov’s principle, |x| > 0. Then by definition of >,
for some n we have max (x,. —x,) > 1/n. But x,, is a rational number, so
xp, > 1/n or —x, > 1/n. In the former case we have x > 0; in the latter case
x < 0. But this is the conclusion of two-sides. That completes the proof.
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Since Markov’s principle is known to be unprovable in the standard intu-
itionistic formal theories of arithmetic and arithmetic of finite types (see
[30]. pp. 213 ff-). two-sides is also not provable in these theories. However, in
the context of geometry we do not assume that points are always given to us
as Cauchy sequences of rationals; we do not even assume that we can always
construct a Cauchy sequence of rationals corresponding to a given point.
(There are non-Archimedean models of elementary geometry, for example.)
The lemma therefore does not imply that two-sides and Markov’s principle
are equivalent in geometry; and indeed that is not the case. Two-sides is not
provable in our geometric theory, even though we adopt Markov’s principle
as an axiom.

It is an open (philosophical) question whether our geometrical intuitions
compel us to accept Markov’s principle, or whether they compel us, having
done that, to also accept two-sides.” In this paper we take a pragmatic
approach: geometry without Markov’s principle will be more complicated,
but it is possible without undue complexity to consider two-sides as an added
principle, which can be accepted or not. We choose not to accept it, since
(as we show here) it is not required if our goal is to prove the theorems in
Euclid or of the type found in Euclid.!°

2.2. Logical form of Euclid’s propositions and proofs. One should remem-
ber that Euclid did not work in first-order logic. This is not because, like
Hilbert, he used set-theoretical concepts that go beyond first order. It is
instead because he does not use any nested quantifiers or even arbitrary
Boolean combinations of formulas. All Euclid’s propositions have the form,
given some points bearing certain relations to each other, we can construct
one or more additional points bearing certain relations to the original points
and each other. A modern logician would describe this by saying that Euclid’s
theorems have the form, a conjunction of literals implies another conjunc-
tion of literals, where a literal is an atomic formula or the negation of an
atomic formula. One does not even find negation explicitly in Euclid; it is
hidden in the hypothesis that two points are distinct. Often even this wording
is not present, but is left implicit.

In particular there is no disjunction to be found in the conclusion of any
proposition in Euclid. Note that a disjunction in the Aypothesis of theorem
is inessential: (PV Q) — R isequivalent to the conjunction of P — R and
O — R. This kind of eliminable disjunction occurs implicitly in Euclid,
because in some of his propositions, a complete proof would include an

Brouwer did not accept two-sides (or Markov’s principle, for that matter), as a discussion
about the creative subject on p. 492 of [9] makes clear, although the principle is not explicitly
stated there.

10A philosophical argument can be made that Markov’s principle in geometry is related to
Hilbert’s “density axiom”, according to which there exists a point ¢ strictly between any two
distinct points ¢ and b. For, if =—a < b, then b # a, so by the density axiom there is a point
¢ between a and b, and the circle with center b passing through ¢ shows that a < b. But
this argument may also be circular, for how are we to justify the density axiom? The obvious
justification is to take ¢ to be the midpoint of segment ab, but constructing the midpoint
uniformly without assuming a # b is problematic, as we discuss below.
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argument by cases, and Euclid handles only one case. For example, we have
already discussed Prop. 1.2, where Euclid shows that given b # ¢, and given
a, it is possible to construct d with ad = bc. Euclid does not mention
the case when a = b, presumably because it was obvious that in that case
one can take d = ¢, and similarly for the case ¢ = ¢. Euclid was already
criticized for this sloppiness about case distinctions thousands of years ago.
Our point here is that the failure to write out a separate proof of every case
is not relevant to our claim that Euclid is disjunction-free.

Euclid’s proofs have been analyzed in detail by Avigad et. al in [1], and
they conclude:

Euclidean proofs do little more than introduce objects satisfying lists
of atomic (or negation atomic) assertions, and then draw further
atomic (or negation atomic) conclusions from these, in a simple linear
fashion. There are two minor departures from this pattern. Sometimes
a Euclidean proof involves a case split; for example, if ab and cd
are unequal segments, then one is longer than the other, and one
can argue that a desired conclusion follows in either case. The other
exception is that Euclid sometimes uses a reductio; for example, if the
supposition that ab and cd are unequal yields a contradiction then
one can conclude that ab and cd are equal.

“Reductio” refers to reductio ad absurdum, which means proof by contradic-
tion.

2.3. Case splits and reductio inessential in Euclid. It is our purpose in this
section to argue that Euclid’s reasoning can be supported in ECG, including
the two types of apparently nonconstructive reasoning just mentioned. The
reason for this is that the case splits and reductio arguments in Euclid can
be made constructive using the “stability” of equality and betweenness. By
the stability of equality, we mean

This formula simply codifies the principle that it is legal to prove equality of
two points by contradiction, and we take it as a fundamental principle. In
words: Things that are not unequal are equal. Similarly, if B(a. b, ¢) means
that b is between a¢ and ¢ on a line, we take as an axiom the stability of
betweenness:

——B(a.b,c) — B(a,b.c).

While Euclid never explicitly mentions betweenness (which is, as is well-
known, the main flaw in Euclid), the stability of betweenness and equality
together account for all apparent instances of nonconstructive arguments in
Euclid.

A typical example of such an argument in Euclid is Prop. 1.6, whose proof
begins

Let ABC be a triangle having the angle ABC equal to the angle
ACB. 1 say that the side AB is also equal to the side AC. For, if AB
is unequal to AC, one of them is greater. Let AB be greater, ...
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To render this argument in first-order logic, we have to make sense of Euclid’s
“common notion” of quantities being greater or less than other quantities.
This is usually done formally using the betweenness relation. In the case at
hand, we would lay off segment AB along ray AC, finding point D on ray
AC with AD = AC. Then since AB is unequal to AC, D # C. Then “one
of them is greater” becomes the disjunction B(4, D, C) vV B(A4, C, D). This
disjunction is not constructively valid. But its double negation is valid, since
if the disjunction were false, we would have =B(A4, D, C) and —B(4, C, D),
which would contradict D # C. The rest of Euclid’s argument shows that
each of the disjuncts implies the desired conclusion. We therefore conclude
that the double negation of the desired conclusion is valid.!! The conclusion
of 1.6, however, is negative (has no 3 or V). Hence the double negation can
be pushed inwards, and then the stability of the atomic sentences can be
applied to make the double negations disappear.

In Euclid, disjunctions never appear, even implicitly, in the conclusions of
propositions.'? The conclusions are simply conjunctions of literals. Some-
times there is an implicit existential quantifier, but if (as will always be the
case in our formalizations of constructive geometry) we can explicitly exhibit
terms for the constructed points, the resulting explicit form of the proposi-
tion will be quantifier-free. Then the double negation can be pushed inwards
as just illustrated. In this way, all arguments of the form beginning “For, if
AB is unequal to AC, one of them is greater”, can be constructivized.

Prop. 1.26 gives an example of the use of the stability of equality: “... DE is
not unequal to 4 B, and is therefore equal to it.” It that example, and all other
examples in Euclid, the following general reasoning applies: Since the con-
clusion concerns the equality of certain points, we can simply double-negate
each step of the argument, and then add one application of the stability of
equality at the end. In fact, this sad to happen: the Godel double-negation
interpretation implies that classical logic can in principle be eliminated from
proofs of theorems of the form found in Euclid. (See [3] and [6] for the
details using a Hilbert-style axiomatization and Tarski-style axiomatization,
respectively.)

2.4. Betweenness. The betweenness relation B(a, b, ¢) means that points
a, b, and ¢ lie on a common line L, and b is the middle one of the three.
This is taken as a primitive (undefined) notion. Euclid never mentioned it,
which was later viewed as a flaw. Betweenness was used in early (nineteenth-
century) axiomatic studies in geometry, for example [26, 27]. It was used
by Hilbert in his famous book [20]. When Tarski developed his theory of

"Those new to intuitionistic logic may need more detail: if P — Rand Q — R, then
PV Q — R.Now wecan double-negate both sides of an implication, using the constructively
valid law = (S — R) — (=—=S — —-—R), obtaining =— (P V Q) — —— R. Hence, if
we know —— (P V Q), we can conclude —— R.

12 An apparent exception to this rule is Prop. 1.13, “If a straight line set up on a straight
line make angles, it will make either two right angles or angles equal to two right angles.”
Here the disjunction is superfluous: we can just say, “it will make angles equal to two right
angles.”
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geometry, he used nonstrict betweenness, but used the same letter B. To
avoid confusion, we use T(a, b, ¢) for nonstrict betweenness. Either of these
two relations can be defined in terms of the other, even constructively; it
really does not matter which is taken as primitive. We take B as primitive.
Then T can be defined by

T(a.b.c):=—=(a#bAb#cAN-Blab.c)).
In the other direction, B(a, b, ¢) can be defined as
T(a,b.c)Na #bANa#c.

We use the equality sign for segment congruence: ab = cd. Hilbert viewed
segments as sets of points, and congruence as a relation between segments.
Tarski viewed segment congruence as a relation between four points. In this
paper, we do not work with formal theories of geometry in detail, and what
we present will work with either Hilbert’s or Tarski’s theories. Occasionally
we may mention “null segment”: that refers to a segment aa. Corresponding
to the confusion about T versus B is a confusion about “closed segments”
versus “open segments”. Is a null segment a singleton or an empty set? These
technicalities do not arise if we follow Tarski in thinking of statements about
segments as abbreviations for statements mentioning points only. Even in
informal geometry, we do not think about sets of points.

The fundamental properties of betweenness include symmetry (B(a. b, ¢)
is equivalent to B(c.b.a)) and identity (B(a.b.a) is impossible.) In terms
of T this becomes T(a,b,a) — a = b.

Betweenness is closely related to order.

DEFINITION 2.3 (Segment ordering). ab < cd if there exists a point e with
B(c,e.d) and ab = ce. Similarly, ab < cd if there exists a point e with
T(c,e,d) and ab = ce.

Both Hilbert and Tarski gave axioms for betweenness, and both (but
especially Tarski) tried to be parsimonious about the axioms, i.e., they tried
to make the axioms few and simple, at the cost of making the proofs of
relatively simple-sounding theorems fairly difficult. For example, the “outer
transitivity of betweenness” is

T(a.b.c) NT(b.c.d) ANb#c¢ — T(a.c.d) NT(a.b.d)
and the “inner transitivity of betweenness” is
T(a.b.d) NT(b,c.d) — T(a.b,c) NT(a.c.d).
We also have the “transitivity of betweenness” (with no adjective):
T(a.b.c) ANT(a.c.d) — T(b.c.d) NT(a.b.d).

One can use B instead of T, of course. These axiomatic exercises do not
concern us here; see [28]. chapters 1.3 and Satz 5.1 for details. After having
established the fundamental properties of betweenness, it is easy to show
that segment ordering satisfies the usual properties for a linear ordering.
See, for example, p. 42 of [28].
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The trichotomy law classically takes the form
B(a,b.c) AB(a.b,d) — T(b,c,d)VT(b.d,c).

Constructively this is not valid: we need to double-negate the right hand
side. One constructive formulation that does not involve double negation is

B(a,b.c) AB(a.b.d) N—T(a.c.d) — T(a.d.c).

We refer to this principle as “comparability.” For a proof from Tarski’s
axioms, see [28], Satz 5.2. In this paper, we view geometry informally, and
take the view that any reasonable axiomatic theory of constructive geometry
must either assume or prove these principles.

To say “x is the midpoint of ab” means ax = xb and T(a, x.b). (So the
concept applies even if @ = b, because T is used instead of B.) We will give
an example of a lemma about betweenness. The example will help illustrate
the relations between informal and formal geometry, which is of interest at
this point, but we also need to refer to this particular lemma in the proof
of Lemma 6.15. The point about informal and formal geometry is that,
informally, we feel free to use any of the transitivity and order principles
discussed above, whereas in formal geometry, some of these principles are
difficult to prove from a minimal set of axioms. The following proof is thus
an informal one, although it is a rigorous proof from the above principles.

LemMA 2.4. Suppose a, b, and t all lie on a line L. If x is the midpoint of
ab. and f is the midpoint of at, and B(a, f. x), then B(a.1.b).

ProofF. From the definition of midpoint we have ax = xb and af = ft.
We have af < ax, since B(a. f.x) and af = af. Since B(a. f,x) and
B(a, x.b). by transitivity we have B(a. f.b), so a # b and ab is not a null
segment. Similarly f # a and at is not a null segment. We have

T(a, x.b) from the definition of midpoint (1)
T(a, 1, x) by hypothesis (2)
T(f.x.b) by 2, 1, and transitivity (3)
T(a. f.b) by 2. 1, and transitivity (4)
T(a. f.1) from the definition of midpoint (5)

Hence bx < bf = fb. by the definition of <. Now, if T(f.b.t). then
fb < ft, sowe have

af <ax =bx< fb< ft =af,

which is impossible. Hence —=T(f. b, t).

By (4). (5), and comparability, we have T(f.7.5). By (5) and outer tran-
sitivity, if /* # ¢ we have T(a. . b). Since at is not a null segment, @ # ¢, and
since =T(f.b.t). t # b. Hence B(a. t. b). That completes the proof. 4

2.5. Incidence and betweenness. We use on(x, L) to express the relation
that point x lies on line L. This paper does not focus on the details of formal-
ization of geometry, but rather on constructivity in geometrical proofs and
constructions; nevertheless some confusion will be avoided by the follow-
ing discussion. Some formal theories of geometry treat lines as first-order
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objects (that was the case for Hilbert, although he then treated line seg-
ments and circles as sets of points). Tarski’s geometry, by contrast, officially
does not even mention lines. The “official” development of geometry from
Tarski’s axioms, [28], does treat lines as sets of points, in what amounts to
a conservative extension of the original theory, but the authors insist that
these mentions of lines are just abbreviations. The point we wish to call
attention to now is the connection between the incidence relation on(x, L)
and the betweenness relation B(a, b, ¢). Namely, if L = Line (a.b) is given
by two distinct points ¢ and b, then on(x, L) is classically equivalent to

B(a.b,x)VB(b.x,a) VB(x,a.b)Vx =aV x =b.
Constructively, on(x, L) is equivalent to the double negation:
on(x,L) < -—(B(a.b,x) VB(b,x.a) VB(x,a.b) Vx =aV x =b)

and we have the following lemma:
LeEmMA 2.5 (Stability of incidence). ——on(x, L) implies on(x, L).

Discussion. Since we are not committing in this paper to a fixed axiomatiza-
tion of constructive geometry, we enumerate some possibilities. In Tarski’s
theory, on(x, L) is defined by the formula above, so the stability is immediate.
In a Hilbert-style axiomatization, we would have a choice to define incidence
or take it as a primitive relation. If we define it in terms of betweenness, we
need to use double negations as above, so stability is immediate. If we take
it as primitive, we will want to include stability of incidence as an axiom.

§3. Constructions in geometry.

3.1. The elementary constructions. The Euclidean constructions are car-
ried out by constructing lines and circles and marking certain intersection
points as newly constructed points. Our aim is to give an account of this
process with modern precision. We use a system of terms to denote the geo-
metrical constructions. These terms can sometimes be “undefined”, e.g. if
two lines are parallel, their intersection point is undefined. A model of such
a theory can be regarded as a many-sorted algebra with partial functions
representing the basic geometric constructions. Specifically, the sorts are
Point, Line, and Circle. We have constants and variables of each sort.

It is possible to define extensions of this theory with definitions of Arc
and Segment. These are “conservative extensions”, which means that no
additional theorems about lines and points are proved by reasoning about
arcs and segments. Angles are treated as triples of points. While this con-
servative extension result applies to logical theories, a similar result applies
to constructions considered algebraically. If we replace rays and segments
by lines, and angles by pairs of lines, then some terms may become defined
that were not defined before, as lines may intersect where rays or segments
did not, etc. But any point that was constructible with rays and angles will
still be constructible when rays and angles are replaced by lines. Therefore it
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suffices to restrict attention to points, lines, and circles, which we do from
now on.!3

Lines are constructed by drawing a line through two distinct points;
the resulting line is Line (a.b). Circles are constructed “by center and
radius”; Circle3 (a, b, ¢) is the circle with center a and radius bc. This term
corresponds to a “rigid compass”.

We have already discussed the discontinuity of Euclid’s proof of (the uni-
form version of ) Euclid 1.2. More generally, any construction ext(a, b, ¢, d)
that extends segment ab by cd will exhibit a discontinuity as « tends to b
with cd fixed, since a can spiral in towards b, causing ext(a, b, ¢, d ) to make
(approximately) circles of a fixed size around b. That shows that we cannot
hope to define the extension of a segment ab by cd without a case distinction
on whether ¢ = b or not. In constructive geometry, we can extend nonnull
segments, not any segment.

We can, however, always construct a point e(x) different from x, and that
fact can be used to give a constructive proof of Euclid 1.2.

Lemma 3.1 (Euclid 1.2). Given points a, ¢, and d, there exists a point d
such that ad = bc.

REMARKS. There is no restriction that @ # b here; so Euclid 1.2 is con-
structively provable after all: it is only Euclid’s proof that is nonconstructive,
not the theorem.

Proor. First we show how, given x, to construct a point e(x) not equal to
x. Fix two unequal points « and f. Then define e(x) to be the extension of
the nonnull segment a8 by ax. It is easy to show that if e(x) = x then the
segment a.x is congruent to its proper subsegment fx, which is not the case.
Now if we extend the segment with endpoints e(a) and a by bc, we obtain
a point d such that ad = bc. That completes the proof. .

It follows that Circle3 can in principle be eliminated in favor of Circle , by
the definition

Circle3 (a, b, c¢) = Circle (a,ext(e(a).a,b,c)).

We allow circles of radius zero, which we call “degenerate circles”. That is,
we consider Circle3 (a. b, ¢) to be defined when b = c. It is not that we need
such circles, but allowing them permits the avoidance of case distinctions.

Starting with at least three noncollinear points, we can construct more
points using the following six “elementary constructions”, each of which
has return type Point (that is, constructs a point):

IntersectLines (Line K, Line L),
IntersectLineCirclel (Line L, Circle C),
IntersectLineCircle2 (Line L, Circle C),
IntersectCirclesI (Circle C, Circle K ),
IntersectCircles2 (Circle C, Circle K).

BOf course, when drawing diagrams to be viewed by people, we use rays and segments.
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IntersectCircles] and IntersectCircles2 construct the intersection points
of two circles; how the two points are distinguished will be explained
below (in this same section). Euclid does not use function symbols for
the intersection points of two circles, and in particular did not worry
about how to distinguish one from the other, although sometimes (as in
Euclid 1.9, the angle bisector theorem'*) his proofs need to be repaired
by selecting “the intersection point on the opposite side of the line
joining the centers as the given point x”, or “on the same side.” To
directly support this kind of argument we might consider adding function
symbols

IntersectCirclesSame (Circle C, Circle K, Point p),
IntersectCirclesOpp (Circle C, Circle K. Point p).

These two constructions give the intersection point of C and K that is on
the same side (or the opposite side) of the line joining their centers as p,
when p is not on that line. It turns out that constructions meeting this
specification can be defined in terms of those already mentioned, and hence
it is not necessary to include them as primitive symbols. Space does not
permit the inclusion of these constructions here; but even without seeing
them explicitly, we know they must exist by the metamathematical results
of [3] and [6], according to which, since we can prove the existence of
an intersection point on a given side of a line, there must be a way to
construct it.

Another way in which Euclid avoids the need for function symbols to
identify the intersection points is the phrase “the other intersection point.”
Of course “the other intersection point” is just the reflection of the given
intersection point in the line connecting the two centers; but constructively,
we need uniform reflection, because we cannot assume that the given inter-
section point does not lie on that center line (it will in case the circles are
tangent). See Theorem 7.6 for details.

Constructively, every line comes equipped with the two points that were
used to construct it. Informally we simply say, let L = Line (a, b) to recover
the two points ¢ and b that were used to construct L. In a formal the-
ory with variables for points and lines, such as was used in [3], we need
“accessor functions™ to recover points on those lines. Thus, pointOnl (L)
and pointOn2 (L) would construct two points on a line; those will be ¢ and
b where L = Line(a.b). In this paper, we work informally, so there is no
need to mention accessor functions. In [6], we use a formal theory with
only one sort of variables, for points. That keeps the formal apparatus to a
minimum.

Similarly, since circles can only be constructed from a given center, every
circle comes equipped with its center, so in a formal many-sorted theory, we
would need an “accessor function” center(C) for the center of C.

4See Heath’s commentary on 1.9 in [12]. In order to fix 1.9, Euclid should have proved a

stronger version of 1.1, constructing on a given segment 4 B two equilateral triangles, one on
each side of AB.
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There are three issues to decide:

e when there are two intersection points, which one is denoted by which
term?

e When the indicated lines and/or circles do not intersect, what do we do
about the term(s) for their intersection point(s)?

e In degenerate situations, such as Line (p. p). or the intersection points
of two coincident circles, what do we do?

We summarize the answers to these questions, with details to follow:

e The two intersection points IntersectLineCirclel (L, C) and
IntersectLineCircle2 (L, C) occur on L in the same order as the two
points p and ¢ such that L = Line (p.q).

e The two intersection points p = IntersectCirclesl (C, K) and
g = IntersectCircles2 (C, K) are distinguished by requiring that abp is
a right turn and abgq is a left turn, where a and b are the centers of C
and K respectively.

e When the indicated lines and/or circles do not intersect, or when
two circles coincide, the term for their intersection points will be
“undefined”.

e In degenerate situations such as Line(p. p). we will be guided by
continuity. Thus Line (p, p) is undefined, but Circle (a, a) is defined.

That summary leaves several details to spell out. First, there is the
matter of points occurring “in the same order” on a line. We define
SameOrder (p.q.s.t) to say that p # ¢ and s and ¢ both lie on Line (p. q).
and then to be a double-negated disjunction giving the many possible com-
binations of betweenness relations between p, ¢, s, and ¢ that are allowed.
The case s = 1 is allowed and SameOrder (p. q.s. s) is considered true. That
is, SameOrder (p.q. s, t) says that the nonstrict order of s, 7 is the same as
the order of p, ¢. (This allows for the case when a line is tangent to a circle
and the two intersection points coincide.)

We note that lines are treated intensionally. That is, Line (a, b) is not equal
to Line (b, a). even though the two lines are extensionally equal, i.e.. the
same points lie on them. The reason for this is that if the line is rotated
about the midpoint of segment ab by 180°, the two intersection points of
the line with a circle must change places. That is, a line “comes equipped”
with two points that were used to construct it; to “be given” a line involves
being given two points on that line, and order matters. It thus makes sense
to define the two intersection points of Line (A, B) and a circle to be such
that their ordering on the line is the same as that of 4 and B. If one does not
want to think about “lines with direction”, then just work with a points-only
theory in the style of Tarski, as developed in [6].

Second, there is the question of “undefined terms”. The operations of
these “algebras of constructions” do not have to be defined on all values of
their arguments. The same issue, of course, arises in many other algebraic
contexts, for example, division is not defined when the denominator is zero,
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and /x is not defined (when doing real arithmetic) when x is negative.
The symbol for “defined” is |. In dealing with undefined terms, we adopt
the convention of “strictness”. For example, if we write B(a. ¢, b) for some
term ¢, then that implies ¢ |. One cannot make assertions about undefined
objects. There are precise rules for a “logic of partial terms”, which can be
found in [2], and geometric theories incorporating these rules are discussed
in [3] and the last part of [6]. For this paper it does not matter—any one of
several ways of handling “undefined terms” will work.

Third, we mentioned the concepts “right turn” and “left turn” to distin-
guish the intersection points of two circles. There is a definition of Right and
Left in field theory, well known to all computer graphics programmers: abc
is a right or left turn, provided a # b, according to the (nonstrict) sign of the
cross product of the vectors bc and ba. (The two-dimensional cross product
is a scalar, defined by (a, b) x (¢, d) = ad — bc.) This definition of Right and
Left can be used within a geometrical theory, as soon as coordinates can
be introduced based on the geometrical axioms.!> We refer the interested
reader to [6] for a full discussion. We emphasize that the reason to define
Right and Left is to be able to give axioms guaranteeing the continuity
of the terms for intersections of circles, and for intersections of circles and
lines. Without such axioms, those function symbols might be interpreted by
wildly discontinuous functions. Regarding the borderline cases: we use the
nonstrict sign of the cross product, so abb is both a left and a right turn if
a # b. We do not even need to ask the question whether aab is a right or
left turn, since we do not ask for the intersection points of concentric circles,
but officially aab is neither a left turn nor a right turn.

For the metamathematical results in this paper, the introduction of coor-
dinates and the definitions of Right and Left are minor issues. We wish to
clarify this point. What we need for the results of this paper is that every
Euclidean field F provides a model F? for our geometrical theories. Which
version of the parallel axiom is satisfied in F> depends on which axioms about
multiplicative inverses (or division) we take in the axioms of Euclidean fields.
Thus our independence results do not become harder if we change the (non-
parallel) axioms, as long as Euclidean planes satisfy the axioms, and the
axioms hold in planes over Playfair fields; in other words the coordinates
of any points asserted to exist should be explicitly bounded in terms of the
given points. We give two different proofs of the independence of Euclid 5
from Playfair, and both have this property.

The ability to define coordinates and arithmetic, on the other hand, says
that a geometrical theory is “strong enough”. This in turn implies that every
model is a plane over a Euclidean field (at least, if we have line-circle and

5The relation of continuity to ruler and compass constructions, and the problem of dis-
tinguishing the intersection points of circles, have been considered before by Kortenkamp
[22]. His interest, like mine, originally arose out of programming dynamic geometry software.
The cited dissertation contains many interesting examples, on some of which, for example
his Fig. 6.9, I do not agree about the most desirable behavior. Kortenkamp’s approach
is algebraic and computational rather than axiomatic, so is not directly related to this
paper.
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circle-circle continuity as well as coordinates). It is for this “representation
theorem” that coordinates and arithmetic are required.

3.2. Circles and lines eliminable when constructing points. It is intuitively
plausible that one does not really need to draw the lines and circles in a
geometric diagram; one just uses the circles and lines to get their points
of intersection with other circles and lines. Indeed, one can formulate an
axiomatic theory that has only variables for points. One first gives a construc-
tive proof of Euclid 1.2, providing a term E(a. b, ¢) for a point d such that
ad = bc. Then one can define Circle3 (a. b, c¢) = Circle (a, E(a,b.c)). One
has, informally, “overloaded” variants of the function symbols mentioned
above:

IntersectLines (Point a, Point c, Point ¢, Point d)

= IntersectLines (Line (a.b), Line (¢, d)),
IntersectLineCirclel (Point a, Point b, Point ¢, Point d)

= IntersectLineCirclel (Line (a.b), Circle (¢, d)),
IntersectLineCirclel (Point a, Point b, Circle c)

= IntersectLineCirclel (Line (a.b), c).

As these three examples illustrate, one can regard circles and lines as mere
intermediaries; points are ultimately constructed from other points. Such a
points-only axiomatization, in the spirit of Tarski, is elegant, and convenient
for metamathematical studies. Below we give points-only formulations of all
three versions of the parallel postulate. In [6] we give a precise axiomatization
of constructive geometry using a points-only language.

3.3. Describing constructions by terms. It is customary to describe con-
structions by a sequence of elementary construction steps. In this section,
for the benefit of readers not expert in logic, we show how terms in a log-
ical system correspond to traditional descriptions. For example, we might
describe bisecting a segment this way:

Midpoint(a,b)

{ C = Circle(a,b); // center at A, passing through B
K = Circle(b,a);
P = IntersectCircles1(C,K);
Q = IntersectCircles2(C,K);
L = Line(P,Q); // the perpendicular bisector of AB
J = Line(a,b);
m = IntersectLines(L,J); // the desired midpoint
return m;

}

This description (which actually is in a precisely-defined language used
for computer animation of constructions) looks quite similar to textbook
descriptions of constructions (see for example, [16]). We call such a descrip-
tion a “construction script” or just a “script.” For theoretical purposes, as in
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this paper, it is easier to describe constructions officially by terms as above.
When the midpoint construction is described as a term, it looks like this:

IntersectLines (Line (IntersectCirclesl (Circle (a, b), Circle (b, a)),
IntersectCircles2 (Circle (a, b), Circle (b, a))). Line (a, b)).

Conversely, given a term, one can “unpack” it, introducing new variable
names for subterms, and even, if desired, collapsing duplicate subterms
(e.g.. Circle (A, B) need not be drawn twice). Since we have chosen readable
names for our function symbols, such as IntersectLines instead of f or even
i¢, our terms sometimes grow typographically cumbersome, and for human
readability we will often use scripts to describe constructions; but we do not
define scripts formally; they always just stand for terms.

84. Models of the elementary constructions. We will explain four partic-
ularly interesting models of the elementary constructions. We assume there
are three constants «, f, and y of type Point, intended to stand for three
noncollinear points.

4.1. Thestandard plane. The standard plane is R2. Points, lines, and circles
(as well as segments, arcs, triangles, squares, etc., in extended algebras in
which such objects are considered) are interpreted as the objects that usually
bear those names in the Euclidean plane. More formally, the interpretation
of the type symbol “Point” is the set of points, the interpretation of “Line ” is
the set of lines, etc. In particular we must choose three specific noncollinear
points to serve as the interpretations of «. 8, and y. Let us choose a = (0, 1),
B = (1.0), and y = (0,0). The constructor and accessor functions listed
above also have standard and obvious interpretations. It is when we come
to the five operations for intersecting lines and circles that we must be more
specific. As discussed above, the interpretations of the five function symbols
for the elementary constructions, such as IntersectLineCirclel , are partial
functions, so that if the required intersection points do not exist, the term
simply has no interpretation. In degenerate situations, terms are defined
if and only if they can be defined so as to make the interpreting function
continuous; thus Line (p, p) is undefined and Circle (p. p) is the zero-radius
circle, and the only point on it is p.

To distinguish the intersection points of two circles: IntersectCirclesl
(C, K) is the intersection point p such that the angle from center (C) to
center (K) to p makes a “left turn”. This is defined as in computer graphics,
using the sign of the cross product. Specifically, let a be the center of circle C
and b the center of K. Then the sign of (a —b) x (p —b) determines whether
angle abp is a “left turn” or a “right turn”. These definitions can be given
in geometry, as soon as one can introduce coordinates and define addition
and multiplication. This notion is constructively appealing, because of con-
tinuity: there exists a unique continuous function of C and K that satisfies
the stated handedness condition for IntersectCircles] when C and K have
two distinct intersection points, and is defined whenever C and K intersect
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(at all). But it is also interesting, even with classical logic, to introduce func-
tion symbols for the intersection points and then distinguish the intersection
points in a continuous way.

The principle of continuity leads us to make IntersectCirclesl (C, K) and
IntersectCircles? (C, K ) undefined in the “degenerate situation” when circles
C and K coincide, i.e., have the same center and radius. Otherwise, as the
center of C passes through the center of K, there is a discontinuity. It makes
sense, anyway, to have them undefined when C and K coincide, as the usual
formulas for computing them get zero denominators, and there is no natural
way to select two of the infinitely many intersection points.

4.2. The recursive model. The recursive plane R,..> consists of points in
the plane whose coordinates are given by “recursive reals”, which were
defined above. It is a routine exercise to show that the recursive points in
the plane are closed under the Euclidean constructions. In particular, given
approximations to two circles (or to a circle and a line), we can compute
approximations to their “intersection points”, even though it may turn out
that when we compute still better approximations to the circles, we see that
they do not intersect at all.

We showed above that in the recursive plane, there is no computable test-
for-equality function. Recall that the proof made use of a recursive real
number E(x) such that E(x) > 0if {x}(x) halts and E(x) = 0 if {x}(x)
does not halt. The same example shows that we cannot test computably for
incidence of a point on a line; the number E (x) lies on the y-axis if and only
if Turing machine x does not halt at x.

In the recursive model, we cannot decide in a finite number of steps
whether a circle and a line intersect or whether two circles intersect; if
they intersect transversally we will find that out after computing them to a
sufficient accuracy, but if they are tangential, we won’t know that at any finite
approximation. Technically, the circle of center (0, 1) and radius 1 — E(x)
will meet the x-axis if and only if the x-th Turing machine does not halt
at x.

Readers familiar with recursion theory may realize that there are several
ways to define computable functions of real numbers. The model we have
just described is essentially the plane version of the “effective operations”.
It 1s a well-known theorem of Tseitin, Kreisel, LaCombe, and Shoenfield,
known traditionally as KLS (and easily adapted to the plane) that effective
operations are continuous. Of course, in the case at hand we can check the
continuity of the elementary constructions directly.

4.3. The algebraic model. The algebraic plane consists of points in the
plane whose coordinates are algebraic. Since intersection points of circles
and lines are given by solutions of algebraic equations, the algebraic plane is
also closed under these constructions. Note that the elements of this plane
are “given” all at once. We assume algebraic numbers are given by means of
a rational interval (a.b) and a square-free polynomial f € Q[x] such that
f has only one root in (a.b).
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In the algebraic plane, there is a computable test-for-equality function D.
To determine if (a.b) and f determine the same or a different real number
than (p.q) and g, first check if the two rational intervals overlap. If not,
the two reals are different. If so, let (r, s) be the intersection. Now we have
to determine if / and g have a common zero on (r, s). There is a simple
recursive algorithm to do that: Say g has degree greater than or equal to
that of f. Then write f = gh + r with r of lower degree than g. Then f and
g have a common zero on (7, s) if and only if / and r have a common zero.
Recurse until both polynomials are linear, when the decision is very easy to
make. Similarly, we can compute whether two circles or a circle and a line
intersect.

Since algebraic numbers can be computed, the algebraic model is
isomorphic to a submodel of the recursive plane.

4.4. The Tarskimodel. The Tarksi modelis K x K , where K = Q(v")is the
least subfield of the reals containing the rationals and closed under taking the
square root of positive elements. This is a submodel of the algebraic plane.
Its points are the points constructible with ruler and compass. Here «, 8, and
y are interpreted as three fixed rational points. That the intersection points
of circles can be computed using only the solution of quadratic equations is
checked in detail in Section 9.2.

85. Development of constructive geometry. In this section we sketch some
important ideas of constructive geometry, with emphasis on where it differs
from classical geometry. These developments lay the foundations for the geo-
metric definitions of addition and multiplication, which are the culmination
of the theory, as they show that Euclidean field theory can be interpreted in
geometry.

5.1. Pasch. In 1882, Moritz Pasch axiomatized geometry using between-
ness, and pointed out the necessity for a new axiom that would guarantee
the existence of the intersection points of certain lines. This new axiom has
several common versions, so sometimes, if one version is taken as an axiom,
other versions are theorems. The most traditional version is this:

THEOREM 5.1 (Pasch 1882). Let line L meet side ab of triangle abc, and
let L not meet side bc or any vertex. If L lies in the plane of triangle abc, then
L meets side ac.

Without the codicil that L lie in the plane of the triangle, this theorem
fails in more than two dimensions. In that form it says something about the
dimensionality of space as well as something about betweenness. But the
form we have given requires the concept of “plane.” Therefore two other
versions, which hold without considerations of dimension, are also often
considered:

Either one of inner Pasch or outer Pasch implies the other, but not easily:;
and either implies Pasch’s theorem; and these implications are also valid in
constructive geometry. See [28], [6]. [29] for further discussion. We will freely
use any of these principles in this paper.
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FIGURE 5. Left: inner Pasch. Right: Outer Pasch. Open
circles indicate the point asserted to exist.

5.2. Some Euclidean lemmas. In this section we collect some lemmas,
whose constructive proofs are in Euclid or follow easily from Euclid with a
bit of attention to constructivity. They will be cited in this paper and hence
are summarized here without proofs, except for a few remarks about the
constructive issues. They are provable in neutral constructive geometry. By
“neutral constructive geometry” we mean geometry with no parallel pos-
tulate, but with line-circle continuity and circle-circle continuity.'® Formal
proofs of these theorems can be given from the axioms listed in [6]. The exis-
tence of constructive proofs of many, but not all, of these lemmas follows
from the double-negation interpretation, as shown in [6], so it is not really
necessary to write out constructive proofs of those lemmas directly. In this
paper, we are not interested in the minimal axiom set required to deduce
such theorems; any correct axiomatization of constructive geometry should
be able to prove these lemmas. The only reason to cite [6] here is to indicate
that the details have been checked for at least one formal axiomatization.
The fact that all these theorems can be proved even without line-circle or
circle-circle continuity (due to Gupta, presented in [28], and constructive
according to [6]) is amazing, but irrelevant here, since for our purpose of
studying constructive geometry versus classical geometry, we are perfectly
willing to use circles.

LEMMA 5.2. Every segment ab with a # b has a midpoint (a point m
between a and b with ma = mb) and a perpendicular bisector (a line per-
pendicular to Line (a,b) at m). Both m and a perpendicular bisector can be
constructed (defined ) by terms of ECG.

Note the hypothesis ¢ # b; if a and b approach each other, the per-
pendicular bisector of ab is not continuous as @ becomes equal to b. See
Lemma 5.44 for a proof that if « and b are restricted to a fixed line L, then one
can construct a point x on L such that ax = xb, without assuming a # b.

LemMa 5.3. IfB(a. b. ¢) then ab is not congruent to ac.
!6The terminology is by no means consistent in the literature; geometers do not even agree

over whether “absolute geometry” means the same thing as “neutral geometry”, or whether
line-circle continuity is included or not. Our usage is consistent, for example, with [15].
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LeEMMA 5.4. If line L contains a point strictly inside circle C, then L meets
C in exactly two points.

It will be shown in Lemma 7.4 that a point can be reflected in a line,
without a case distinction whether the point lies on the line or not. The
following much simpler lemma assumes the existence of the reflected point.

LemMA 5.5 (Reflection in a diameter). Let line L pass through the center
of circle C and let p lie on C. Suppose q is the reflection of p in L. Then q lies
onC.

DEFINITION 5.6. Line K is perpendicular to line L at m if m is on both L
and K, and there is a point @ on K and points b and ¢ on L with B(b, m. ¢)
such that ab = ac and bm = mc. K is perpendicular to L if there is a point
m such that K is perpendicular to L at m.

One can show that if the condition in the definition is true for one point
a, then it is true for any point ¢ on K not equal to m. It is worth noting that
perpendicularity, and hence “right angle”, can be defined without discussing
angles in general.

LeEmMMA 5.7 (Stability of perpendicularity). If two lines are distinct and
have a point m in common, and are not not perpendicular at m, then they are
perpendicular at m.

Proor. Let L and K be two lines that are not not perpendicular at mz,
meeting at point m. Let ¢ be a point on K different from m and let b
be a point on L different from m, and construct ¢ such that B(b, m, c)
and bm = mc. Then since L and K are not not perpendicular, we have
——(ab = ac). By the stability of equality we have ab = ac. Hence K is
perpendicular to L. -

LemMa 5.8. If L and K are perpendicular, then K and L are perpendicular.

LEMMA 5.9. If pisnoton L and a andb are on L and pa 1. L and pb | L,
then a = b.

LemMma 5.10. All right angles are congruent. In other words, if abc and
ABC are right angles with ab = AB and bc = BC then ac = AC.

This is a particularly interesting lemma, since Euclid took it as a postulate;
but in Hilbert’s treatment, and in Tarski’s, it is a theorem, namely Satz 10.12
in [28]. A constructive proof from Tarski’s axioms is given in [6].

The following lemma requires some axiom that implies all the points lie
in the same plane, since it fails in three-dimensional space. This lemma
might even be assumed as the upper dimension axiom; Tarki’s geometry
has an upper dimension axiom for each #, stating that space is at most n-
dimensional. (Only one of these axioms is used at a time.) This lemma is
equivalent to Tarski’s dimension axiom (A9) for the case n = 2. We use the
phrase “in plane geometry” to mean that some such axiom is assumed.

LemMA 5.11 (Uniqueness of erected perpendicular). Suppose K and M
are lines perpendicular to another line L at m. Then, in plane geometry, K and
M coincide (have the same points).
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DEFINITION 5.12. Line L is tangent to circle C at x if L meets C at x and
only at x.

REMARK. Some books take the property in the following lemma as the
definition of tangent instead.

LemMA 5.13. (i) If circle C with center e is tangent to L at x then
ex L L.

(ii) Given line L, point x on L, and two points a and e not on L, with
ex L L and e lying on a perpendicular bisector of xa. then Circle (e, a)
is tangent to L at x.

LEMMA 5.14. Lines perpendicular to the same line are parallel.

DEFINITION 5.15 (Reflection in a point). The reflection of p in a is the
(unique) point 7 such that T(p, a,t) and pa = at.

We shall only use reflection in a point when the two points are distinct.
In that case it is completely unproblematic. (However, see Corollary 9.6 for
a construction that works without a case distinction.) The following lemma
says that reflection is an isometry:

LEMMA 5.16. Reflection in a point preserves betweenness and congruence.

COROLLARY 5.17. Let ab be a chord of circle C. Then the center of C lies
on the perpendicular bisector of ab.

REMARK. This is essentially Euclid III.1.

PrOOF. Let m be the midpoint of ab and p the center of C. Then pa = pb
and ma = mb and pm = pm, so triangle pam is congruent to triangle pbm.
Hence mp is perpendicular to ab at m. But also the perpendicular bisector of
ab is perpendicular to ab at m; so by Lemma 5.11, p is on the perpendicular
bisector. That completes the proof. —

Lemma 5.18 (Additivity of congruence). Suppose B(a,b.c) and
B(A4,B.C) and ab = AB and bc = BC. Then ac = AC.

LemMA 5.19 (Transitivity of parallel). Suppose line L is parallel to both
line K and line M, and suppose M and K do not coincide. Then, assuming
Playfair’s axiom, M and K are parallel.

DEFINITION 5.20. A rectangle is a quadrilateral lying in a plane with four
right angles.

There are related notions, equivalent in Euclidean geometry, but not in
neutral geometry.

DEFINITION 5.21. A Saccheri quadrilateral is a quadrilateral (lying in a
plane) with two adjacent right angles and the opposite sides adjacent to those
angles equal. For example, quadrilateral abcd is a Saccheri quadrilateral if
the angles at b and ¢ are right angles and ab = cd.

DErRINITION 5.22. A rhomboid is a quadrilateral in which opposite sides
are congruent. (Traditionally also not all sides are equal, but we do not
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require that.) A parallelogram is a quadrilateral with each pair of opposite
sides parallel.

LEMMA 5.23. In neutral geometry, a Saccheri quadrilateral is a par-
allelogram. Playfair’s axiom implies that a Saccheri quadrilateral is a
rectangle.

ProoOF. Suppose abed is a Saccheri quadrilateral. Let m be the midpoint
of the summit ad. It is well known (see e.g. [15].pp. 177-178, and the proof
there is constructive) that the line K joining the midpoint of bc to m is
perpendicular to both the base bc and the summit ad. Hence ad is parallel
to bc. That completes the proof of the first assertion.

To prove the second claim, we drop a perpendicular J from m to ab. Then
J is parallel to bc, since both are perpendicular to K. By Playfair, J coincides
with ad, since both are parallel to bc through m. But by construction, J is
perpendicular to ab; since it meets ab at a, the angle bad is a right angle.
Similarly, angle abd is a right angle. That completes the proof. —

LemMA 5.24. Playfair’s axiom implies that if a quadrilateral in a plane has
three right angles, then it is a rectangle.

LemMa 5.25. Playfair’s axiom implies that orthogonal projection preserves
midpoints. Here the “orthogonal projection” of p onto a line L is the foot of
the perpendicular from p to L.

Assuming the parallel postulate and that space is two-dimensional (for
example that an upper dimension axiom such as Lemma 5.11 holds), a
rhomboid is a parallelogram and vice versa. Without an upper dimension
axiom, a rhomboid need not lie in a plane, but because “parallel” is defined
to require that the lines lie in a plane, a parallelogram must lie in a plane.
Without the parallel postulate, and indeed without an upper dimension
axiom, we can prove the following lemma.

LEMMA 5.26. If the diagonals of a rhomboid meet, then the point of
intersection bisects both diagonals. The diagonals of a parallelogram always
meet.

The hypothesis that a rectangle exists implies Playfair’s postulate, so the
following lemma is still provable in neutral geometry.

LEmMMA 5.27. The diagonals of a rectangle meet and bisect each other.

5.3. Sidesofaline. The plane separation theorem says that a line separates
a plane into two “sides” and every point not on the line is in one side or
the other. This is too strong constructively; it is essentially the principle
x#0 — x <0V x> 0.But we can prove some versions of the theorem
constructively.

Two points @ and b not on line L are on opposite sides of L if a # b and
there is a point of L between « and b, i.e., the segment ab meets L.

DEFINITION 5.28.

OppositeSide (a, b, L) := B(a, IntersectLines (Line (a,b), L), b).
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The definition of being on the same side is less straightforward. One
obvious definition of SameSide (a, b, L) would be that segment ab does not
meet L. That was Hilbert’s definition. Formally that would be

Vx—(B(a, x,b) ANon(x,L)).

This proposed definition has two problems. First, Hilbert’s definition works
only in the presence of some “dimension axiom” that assures that all points
lie in a plane. The second problem with this definition is the universal
quantifier. In classical geometry we could eliminate it by writing

a = bV —B(a, IntersectLines (Line (a.b). L).b)).

But constructively, that implies a case distinction whether ¢ = b or not,
which is not possible. When a = b, the term Line (a. b) is undefined, so we
would not be able to prove a is on the same side of L as itself. The problem
arises only when we try to eliminate the quantifier; the quantified version is
constructively okay.

Tarski gave a definition that avoids these difficulties: ¢ and b are on the
same side of L if there is some ¢ such that both « and b are on the opposite
side of L from c. This version has existential instead of universal quantifiers.
Two of those quantifiers can be replaced by terms, but the third remains.

DEFINITION 5.29.

SameSide (a,b, L) := 3c(B(a, IntersectLines (Line (a,c), L,c) A
B(b, IntersectLines (Line (b, c), L), c)).

The point ¢ serves as a “witness” that ¢ and b are on the same side of
L. We would need ¢ anyway to use Hilbert’s definition in 3-space, where ¢
and the two intersection points in Tarski’s definition would be needed as a
witness that ¢ and b are in the same plane with L. The definitions are not
so different, after all, and of course they turn out to be equivalent, as the
following theorems show.

LeEMMA 5.30 (Plane separation theorem). If a and b are not on L and no
point of L is between a and b then SameSide (a. b, L). Indeed a specific point
c. namely the reflection of a in L., is constructible (i.e., given by a term t(a. L))
such that ¢ is on the opposite side of L from both a and b.

RemARK. This lemma obviously fails in three-space, since if ¢ and b are
on the same side of L then they are coplanar with L, but it may be that
segment ab does not meet L even though they are not coplanar.

Proor. Fig. 6 illustrates the proof; the point illustrated by an open circle
must be proved to exist. Drop a perpendicular from b to ac; its foot is w.
Let m be the midpoint of wx. Reflect b in point m to obtain r. We do not
know yet that r lies on L, but we can show triangles bwm and rxm are
congruent, so rx L ac. Then, by Lemma 5.11, » must lie on L. Line L enters
triangle bmc at x: hence by Pasch (Theorem 5.1) it must exit the triangle. By
hypothesis it does not meet side ab. Hence point z, indicated by the diagram
in the open circle, exists. Technically, the version of Pasch required here is
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FIGURE 6. If ab does not meet L then ¢ and b are on the
same side of L because bc meets L. (Lemma 5.30).

“outer Pasch”, as discussed in §5.1. Hence, the theorem can be proved in
any axiomatization of constructive geometry, as soon as Lemma 5.11 and
outer Pasch are proved. =

LeEmMMA 5.31 (Plane separation theorem, part 2).
If SameSide (a. b, L) and OppositeSide (a, ¢, L) then OppositeSide (b, c, L).

ProoF. This is just a restatement of Pasch’s theorem. (We say “theorem”
instead of “axiom” because Pasch’s theorem can be derived from special
cases, such as “inner Pasch” or “outer Pasch”, as explained in [6] or [28].)

Hilbert took planes as a primitive concept. He did not attempt geometry
in n dimensions. Tarski instead defined planes; the plane determined by a
line L and a point p not on L is the set of points that are either on L, or on
the same side of L as p, or on the opposite side. Constructively, that case
distinction is unacceptable, and the quantifier involved in “same side” is also
annoying. Instead we make the following definition:

DEFINITION 5.32. Given line L and point p not on L, let p be the reflection
of p in L. Then a point x lies in the plane determined by p and L if not not
Xxp meets L or x p meets L.

Tarski had an “upper dimension axiom™ (A9), which can be used to specify
that space is at most n-dimensional. The case n = 2 says that if three points
are each equidistant from two fixed points @ and b then the three points are
collinear. In view of the definition of “perpendicular” and theorems about
the existence of perpendiculars and midpoints, this is equivalent to saying
that any two lines perpendicular to a given line L coincide. -

Here is an application of the plane separation theorem that we need later
on:

LemMA 5.33 (Middle Parallel). Let J. K, and N be three weakly parallel
lines, all perpendicular to the same line L, and meeting L in points j, k., andn,
in that order (that is. T(j. k. n)): and suppose that j # n. Let M be another
line, meeting J and N in e and f respectively. Then M also meets the middle
parallel K . in a point (nonstrictly) between e and f .

ProOOF. Let M meet J and N at points e and f, respectively. Extend
segment fe (by any amount) to a point ¢’. By the uniform perpendicular
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FIGURE 7. The middle parallel meets M if the outer two do.

construction, there exists a line J’ through ¢’ perpendicular to L. Replacing
J by J’. we can assume without loss of generality that J and K do not
coincide (or in other words, j # k). Similarly we may assume k # n, i.e..
all three parallels are distinct.

Now fn does not meet K, so by Lemma 5.30, f and » are on the same
side of K. Similarly. e and j are on the same side of K. Since B(, k. n). j and
n are on opposite sides of K. Then by Lemma 5.31, e and f are on opposite
sides of K. Hence ef meets K, in a point r strictly between e and f. We get
strict betweenness because we have have assumed B( ., k. n); when we allow
non-strict betweenness as in the first paragraph, we get only T(e.r, /). as
stated in the conclusion. That completes the proof of the lemma. —

5.4. Angles. Euclid took angles as a primitive concept, and assumed that
angles can be compared. That is, he assumes an angle ordering relation
abe < wvw. (There is no need to use the notation Zabc < Zuvw since
abc < wvw could not have any other meaning.) Often Euclid proves two
angles are equal by an argument beginning, “if not, then one of them is
greater” and proceeding to a contradiction. If angles could be compared by
comparing segments, this would be justifiable in the same way that we justify
proving equality of betweenness of points by contradiction, i.e., by stability
of equality, congruence, and betweeness.

Hilbert, following Euclid, treated angles as a primitive concept. Tarski
treated angles as triples of points. In [6], we follow Tarski in treating angles
as triples of points. In this paper, in order not to commit to a specific formal
treatment, and especially to avoid a long development of the properties of
angle ordering, we just avoid angles entirely in the formal statements of
the various versions of the parallel axioms. However, we indicate how the
theory of angles can be developed if angles are taken as a defined concept,
following [28]. In order to verify the constructivity of Euclid, we need to
justify

DEFINITION 5.34 (Ordering of angles). Point p is in angle abc if p # b
and there exists a point x on Line (b, p) such that T(a, x, ¢). If instead of
T(a, x, c) we use B(a, x, ¢), then p is said to be in the interior of angle abc.
Angle abc < ABD if there is a point C in the interior of angle 4 BD such
that angle abc is congruent to angle A BC. Similarly, abc < ABD if there is
a point C in angle ABD such that angle abc is congruent to angle ABC.
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The theory of angle congruence and angle ordering is developed in [28],
Chapter 11. To get an idea of what is involved, you can try the following
exercise: prove that if p is in the interior of abc, and B(b. a. A) then p is also
in the interior of Abc. In making the cited development constructive, there
are some technical problems, turning on the exact version of Pasch’s axiom
that is needed. These problems are discussed and solved in [6]. The following
theorem justifies the constructivity of Euclid’s use of angle ordering:

THEOREM 5.35 (Stability of angle ordering).
——abc < def — abc < def

and similarly with < in place of <.
Remark. The proof is given in [6].
It is often instructive to see what a theorem about angles “really states”

when angles are eliminated. The following famous proposition I.16 of Euclid
is a good example.

LemMA 5.36 (Exterior angle theorem, Euclid 1.16). Suppose B(b. c. d) and
a does not lie on Line (b, ¢). Then acd > bac.

b ¢ d

FIGURE 8. Construct L parallel to ab. Then e and x exist by Pasch.

Proor. Euclid’s diagram is given by the solid lines in Fig. 8. We show
how to complete Euclid’s proof. To prove acd > bac, we must construct
a point f in the interior of acd such that acf = bac. Euclid knew what
angle ordering means: he constructs f. But he does not prove that f lies
in the interior of acd. We supply the proof: By inner Pasch, applied to the
five-point configuration becdc, there is a point x such that both B(c. x, f)
and B(e. x.d). Hence f is in the interior of angle ecd. But ecd is the same
angle as acd, so f is in the interior of angle acd as well, according to the
exercise mentioned above. That completes the proof. .

The immediate corollary (Euclid 1.17) is that any two angles of a triangle,
taken together, are less than two right angles. In particular, no triangle
contains two right angles, although in neutral geometry, nothing prevents
the angle sum of (all three angles of) a triangle from being more than two
right angles.

LemmMma 5.37. In a right triangle, the hypotenuse is greater than either leg.

Proor. First prove Euclid 1.18 and 1.19. Then apply them as indicated in
Exercise 22, p. 198 of [15]. -
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Euclid’s Prop. 1.18 says that “In any triangle the greater side subtends the
greater angle.” Euclid’s proof from 1.16 is perfectly constructive. The fol-
lowing lemma then follows quickly from his Postulate 4 (all right angles are
equal);

LEMMA 5.38. An angle contained in a right angle is not a right angle. That
is, if abc is a right angle, and p and q both lie between a and c, then pbq is not
a right angle.

Proor. By Euclid 1.18, abc is greater than abg, which in turn is greater
than pbg. We need the transitivity of angle ordering to conclude abc > pbq,
and by Lemma 5.10 (which is Euclid 4), if pbq is a right angle, then abc =
pbg, contradiction. That completes the proof of the lemma, modulo the
basic properties of angle ordering, which are developed in [28], Chapter 11,
with attention to constructivity in [6]. —

5.5. Uniform perpendicular. In this section we show that some fundamen-
tal constructions needed to define (signed) arithmetic can be defined from
the elementary constructions.

A very fundamental fact in constructive geometry is the existence of a
uniform perpendicular Perp(x, L), which is a line perpendicular to line L
passing through x, constructed without a case distinction as to whether x
lies on L or not. In classical treatments of geometry, this case distinction is
made and a different construction is used for each case.

There are several ways to construct a uniform perpendicular. In this paper
we give a construction that does not require the parallel postulate, but
it does use circles (and line-circle continuity). In [6], we give a different
construction that avoids the use of circles entirely, but it does require the
parallel axiom. At present it is an open problem whether a uniform per-
pendicular can be constructed without using either circles or the parallel
axiom.

Here is the construction that uses circles:

DEFINITION 5.39. The term Perp(x, L), or expressed in terms of points
only, Perp(x, a,b), is given by the following construction script, where L =
Line (a,b). (See Fig. 9.)

Line Perp(Point x, Point a, Point b)
{Q Circle3(b,x,a)

= IntersectLineCircle2(L,Q)
= Circle3(x,a,c)

= IntersectLineCirclel1(L,C)
= IntersectLineCircle2(L,C)
= Circle(p,q)

= Circle(q,p)

= IntersectCirclesl(K,R)

= IntersectCircles2(K,R)
return Line(d,e)

O

O QA X XL T QO
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K R

FIGURE9. M = Perp(x. L)) is constructed perpendicular to
L without a case distinction whether x is on L or not. Note
bc = xa so the radius ac of C is long enough to meet L
twice.

LeEMMA 5.40 (Uniform construction of perpendiculars). Let Perp(x, L)
be defined as in Definition 5.39. For every point x and line L, Perp(x, L) is
defined, and Perp(x, L) is perpendicular to L, and x lies on Perp(x, L).

REMARK. The important point here is that no case distinction is required
as to whether x is or is not on L; that is, there is no distinction in this
construction between dropped perpendiculars and erected perpendiculars.
That is good, since constructively we cannot decide if a given point x is
or is not on a given line, yet we still need to be able to project x onto
the line.

ProoF. We plan to construct two points p and ¢ on line L such that the
perpendicular bisector of pg will be the desired line; thus we must have
p # g evenif x ison L, and whether or not x = a or x = b. We can get such
points p and ¢ if we can draw a circle with center x, whose radius r is “large
enough.” It will suffice if we take r to be the length of ax plus the length
of ab. Since a # b, that will be a nonzero radius, and since it is more than
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ax, the circle with that radius will meet L twice, in points p and ¢. Then we
just bisect segment pg by an ordinary method, drawing circles with centers
p and ¢ that pass through each other’s centers.

Formally, we go through the script defining Perp(x, L) and show that
the term on the right of each line is defined. In line 1, Circle3 (b, x.a) is
defined because Circle3 is everywhere defined. Since the center of that circle
is b and b lies on L, b is inside that circle, so by the line-circle continuity
axiom, ¢ in line 4 is defined. Circle C in line 5 is defined since Circle3 is
everywhere defined. To show that p and ¢ in lines 5 and 6 are defined and
distinct, we must show that L has a point strictly inside C. That point is «,
as we shall prove. According to the definition of IntersectLineCircle2 , the
intersection points of L and Q occur in the same order on L = Line (a, b)
as a and b. That implies that ¢ occurs on the opposite side of b from «,
or in other words, B(a, b, ¢). By the definition of < we then have bc < ac.
Since ¢ lies on Q by construction, we have bc = ax. Hence ax < ac.
Then since the radius of C is ac, and its center is x, a is strictly inside C,
as claimed.

Hence points p and ¢ in lines 4 and 5 of the script are defined. By
Lemma 5.4, p # q. Then K and R in the next lines of the script are distinct
circles, so d and e are defined. Line (d, e) is the perpendicular bisector of
segment pg, which exists by Lemma 5.2; the proof of that lemma provides
the explicit term mentioned in the script for constructing Line (d, e¢). That
completes the proof of the lemma. —

5.6. Uniform projection and parallel. The construction Project(p. L) takes
a point p and line L and produces a point ¢ on L such that p lies on the
perpendicular to L at g. The well-known Euclidean construction for the
projection applies only if p is known not to be on L. To define Project using
that construction, we would require a test-for-incidence that allows us to
test whether point p is on line L or not. However, we can define uniform
projection using the uniform perpendicular. Namely, the projection of p on
L is given by a ruler-and-compass construction term Project(p, L), giving
the foot of the uniform perpendicular.

LEMMA 5.41. We can define a construction Para such that, for any line L
and any point p (which may or may not be on L), Para(p. L) passes through
p. and if p is not on L then Para(p. L) is parallel to L, while if p is on L, then
Para(p, L) has the same points as L.

Proor. The definition of Para is
Para(p, L) = Perp(p. Perp(p. L)).

In words: First find the perpendicular to L passing through P. Then erect the
perpendicular to that line at P. It is a theorem of neutral geometry that two
lines with a common perpendicular are parallel. Since Perp is everywhere
defined, regardless of whether p is or is not on L, the same is true of Para.
That completes the proof of the lemma. —
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The following gives an explicit construction for extending a nonnull
segment on a given end by a (possibly null) segment:

DEFINITION 5.42.
Extend (a,b, c,d) = IntersectLineCircle2 (Line (a,b), Circle3 (b, c,d)).
LEMMA 5.43 (Segment extension). Let x = Extend (a.b.c.d). Then
B(a,b,x) and bx = cd.
ProOF. Let y be the other intersection point, namely
y = IntersectLineCirclel (Line (a,b), Circle3 (b, d, c).

Then b is between the two intersection points x and y. Since the two inter-
section points occur on Line (a.b) in the same order as @ and b, y is on
the same side of b as a. Then x is on the other side of » from a, that is,
B(a. b. x), which was to be shown. The congruence bx = cd is part of the
line-circle continuity axiom. That completes the proof. -

REMARK. In Tarski’s axiom system, there is an axiom guaranteeing seg-
ment extension. Line-circle continuity is regarded as a more complex axiom,
only to be added when absolutely needed.

5.7. Midpoints. By definition, m is the midpoint of ab if T(a, m.b)
and am = mb. The case ¢ = b is allowed in the definition. The ques-
tion arises whether for every a.b there exists a midpoint m of a,b.
When a # b, we can use the Euclidean construction (repairing Euclid’s
proof using Pasch’s axiom); and when a = b we can take m = a: but
constructively, we are not allowed to conclude that for every a,b there
exists a midpoint of ab. Indeed, the theorem is not constructively valid,
as we will now show. Let p and ¢ be two fixed distinct points. Sup-
pose m(a.b) gives the midpoint of a.b for a #b. Then, for a # b,
we can erect the perpendicular L(a.b) to ab at m(a.b), and define
v(a.b) = IntersectLineCirclel (L(a.b), Circle3 (m(a.b). p.q). Then when
a approaches b by spiraling in to b, the point v(a, b) does not converge to a
limit. Hence m cannot be extended to a continuous function defined when
a = b. But any ruler-and-compass construction is continuous. Hence there
is no uniform construction of the midpoint of ab, defined whether or not
a=>h.

We can avoid the problem of the spiraling approach by restricting ¢ and
b to lie on a fixed line L. Given a and b on L, we wish to construct the
midpoint of ab. Our plan is to enlarge the (possibly null) “segment” ab by
extending it the same amount in both directions on L, and then use the usual
midpoint construction to bisect the resulting nonnull segment. The problem
is that we do not know the order of @ and b on line L. The solution to this
problem is, intuitively, to move b to the right by ab plus one, and move a to
the left the same amount; after that, ab is a nonnull segment with the same
midpoint as the original ab.

LEMMA 5.44 (Uniform midpoint). There is a construction m(a, b, L) such
that for all a and b on line L, m(a. b, L) is a point x on L such that ax = xb.
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REMARK. Then Perp(x, L) is the perpendicular bisector of ab when a # b,
and is perpendicular to L in any case.

ProOOF. Since every line is given by two points, we have L = Line (p. q)
for some points p and ¢ with p # ¢. Think of p as left of ¢, and think of
the length of pg as “one”.

Here is a construction script for the midpoint of ab, given that ¢ and b
are on Line (p. q):

Point m(Point a,Point b, Point p, Point q){
L = Line(p,q)

= IntersectLineCircle2(L,Circle3(b,p,q))
= IntersectlLineCircle2(L,Circle3(u,a,b))
= IntersectLineCirclel(L,Circle3(a,p,q))
IntersectlLineCirclel (L,Circle3(v,a,b))
= Midpoint (A,B)

eturn x

Y H X P9 e
I

Recall the predicate SameOrder (p.q.s.t) from Section 3.1, which says
that p, ¢ occur on line L in the same order as s, ¢ do. Let us say “s is left of ¢
to mean SameOrder (p.q.s.t). Let us say “s is to the left of 7 by more than
ef” to mean that s is to the left of # and there is a proper subsegment of sz
congruent to e f'. Because of the rules for distinguishing the two intersection
points of a line and circle, u is to the right of » and ub = pg and B is to the
right of and Bu = ab, so B is to the right of » by more than ab. Similarly, v
is to the left of @ and av = pg and A4 is to the left of v and Av = ab, so 4 is
to the left of @ by more than ab. We claim 4 # B. Suppose A = B. Then a
is to the right of B by more than ab, and since B is to the right of » by more
than ab, it follows that a is to the right of » by more than twice ab, which is
impossible. Hence, as claimed, 4 # B. Then the Euclidean construction of
the midpoint x of AB in the last line is defined.

We must show ax = bx. By the stability of betweenness and equality, we
may argue by cases according as ¢ = b, or a is to the left of b or to the right.
We omit the details. That completes the proof. -

§6. The parallel postulate. We will introduce three versions of the parallel
postulate: Euclid’s own version (Euclid 5), which says that under certain
conditions, two lines will meet in a point; a version we call the strong par-
allel postulate, which weakens Euclid’s conditions for the two lines to meet;
and Playfair’s version, which says two parallels to the same line through the
same point must coincide (and makes no assertion at all about the existence
of an intersection point). We then start to consider the relations of impli-
cation between these versions (relative to neutral constructive geometry)
and finally draw some consequences of the strong parallel postulate. Since
our independence results will be obtained using the theory of Euclidean
fields, the exact axiomatization of neutral constructive geometry will not be
important in this paper; but a specific axiomatization is given in [6].
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6.1. Alternate interior angles. In connection with parallel lines, the fol-
lowing terminology is traditional: If L and K are two lines, and p lies on
L and ¢ lies on K but not on L, then pgq is a transversal of L and K. Then
Line (p. q) makes four angles with L and four angles with K; certain pairs
of them are called alternate interior angles or interior angles on the same side
of the transversal. In the formal theories of constructive geometry given in
[3.6]. there is no primitive concept of “angle”; angles are treated as triples of
points, and angle congruence is a defined concept; that is also true of Tarski’s
classical theories of geometry. In this paper, we use angles informally, but
we avoid them in the statements of theorems. In the next section we will
discuss Euclid’s parallel postulate, and we will need to express it without
mentioning angles directly. We therefore discuss how to do that now. Angle
congruence is defined in terms of triangle congruence, which is in turned
defined by the SSS criterion: the three sides are pairwise congruent.

We will now unwind these definitions to express the concept of alter-
nate interior angles being equal, without mentioning angles. The following
definition is illustrated in Fig. 10.

DEFINITION 6.1. “pgq makes alternate interior angles equal with K and L”,
written AIE(p. q. L. K), means

on(p.K)Non(q. L) N—on(q.K)\ p #q
A 3r.s.t(on(r.K)Non(s, L) ANB(r.t,s) AB(p.t.q) N\r # pANq #s
A pt=qt Nrt = st).

This can also be expressed as “K and L make alternate interior angles equal
with pq”.

The reason for requiring B(r. 7, s) is that r and s need to be on opposite
sides of Line (p. ¢) in order that the angles rpt and sqt are alternate interior
angles. At the cost of introducing two more points into the definition, we
could have made it easier to verify; any two congruent triangles with those
angles as a vertex could replace rpt and sqgt, as illustrated in Fig. 11. As the
theory of angle congruence in [28] (Chapter 11) shows (and one can easily
check informally), if we can produce x and y so that Fig. 11 is correct, then
AIE(p.q. L., K) will hold.

A careful reader might have noticed that we omitted the congruence rp =
gs in the definition, which would be required to express the congruence
of the shaded triangles according to the definition of triangle congruence.

r
K ? .

L - >
s q

FIGURE 10. Transversal pg makes alternate interior angles
equal with L and K, if pt = tq and rt = st.

https://doi.org/10.1017/bsl.2015.41 Published online by Cambridge University Press


https://doi.org/10.1017/bsl.2015.41

44 MICHAEL BEESON

s q
FIGURE 11. Another way to say that transversal pg makes

alternate interior angles equal with L and K. The shaded
triangles are congruent.

This was not an accident. In case the lines K and L do not coincide (as
shown in the diagram), the triangles are congruent anyway by SAS, since
the angles at ¢ are vertical angles. The condition is meant to be used only
when lines K and L do not coincide, and the condition —on(q, L) guarantees
that it fails when they do coincide.

On the other hand, instead of introducing more points using 3, we can get
rid of d entirely by constructing specific points r, s, and ¢, at least when the
two lines do not coincide.

r = IntersectLineCircle2 (K, Circle (p. o, ).
t = Midpoint (p. q),
s = IntersectLineCircle2 (Line (r, 1), Circle (t,r)).

These points will do for r, ¢, and s in AIE(p, q. L. K) if any points will do.
Midpoint (p. q) is defined in the script because L and K do not coincide. In
this way AIE(p. q. L. K) can be expressed by a quantifier-free formula.

That alternate interior angles have something to do with Euclid’s parallel
postulate is hinted at by the following lemma:

LEMMA 6.2. Let K and L be two lines, with point p on K but not on L, and
let traversal pq make equal alternate interior angles with K and L. Then K
and L are parallel.

Proor. Refer to Fig. 10 for an illustration; let points p, r, s, ¢, and ¢ be
as shown in the figure with triangle pr¢ congruent to triangle ¢gsz. Suppose,
for proof by contradiction, that K and L meet in point x. (Since Parallel
is defined as not meeting, a constructive proof of it consists in deriving a
contradiction.) Consider triangle pgx. If x is on Ray (p. r), then the angles
of triangle pgx are pxq. gpx,and pgx. The two interior angles on the same
side of pg make two right angles together, but in neutral geometry one can
prove that two angles of a triangle are less than two right angles. (This is
Euclid I.17, proved in two lines from Euclid 1.16, which is Lemma 5.36.) This
contradiction shows that K and L cannot meet in a point x on Ray (p.r).
Similarly, they cannot meet in a point x on Ray (r, p). But, if they meet in a
point x at all, then

—Bx,p.r)Vx=pVB(p.x.r)Vx =rVB(p.rx)).
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In each of those cases, x lies on Ray (r, p) or on Ray (p.r): so we have a
contradiction, and K cannot meet L at all. Hence K is parallel to L as
claimed. That completes the proof of the lemma. —

6.2. Euclid’s parallel postulate. Euclid’s postulate 5 is

If a straight line falling on two straight lines make the interior angles
on the same side less than two right angles, the two straight lines, if
produced indefinitely, meet on that side on which are the angles less than
the two right angles.

We consider the formal expression of Euclid’s parallel axiom. Let L and
M be two straight lines, and let pg be the “straight line falling on” L and M,
with p on M and ¢ on L. We think that what Euclid meant by “makes the
interior angles on the same side less than two right angles” was that, if K is
another line K through p, making the interior angles with pg equal to two
right angles, then M would lie in the interior of one of those interior angles
(see Fig. 12). For K to make the interior angles on the same side of pg equal
to two right angles, is the same as for K to make the alternate interior angles
equal. In the previous section we discussed the formal expression of that
concept. Once we use this criterion to express that L and K make interior
angles on the same side equal to two right angles, we can then use three
more points to “witness” that one ray of line M emanating from p lies in
the interior of one of the interior angles made by M. Fig. 12 illustrates the
situation.

Here is a formal version of Euclid’s parallel axiom, using the formula 4/F
from the previous section to express that pg makes alternate interior angles
equal with K and L:

on(p.K)Non(p, M) Non(a, M) Non(r.K) Non(q, L) NB(q.,a.r)
N—on(p.L) N AIE(p.q.K.,L) — B(p. a, IntersectLines (L, M)).

The logical axioms of LPT make it superfluous to state in the conclusion
that IntersectLines (L, M) is defined. That follows automatically.

We now write out Euclid 5 in a more primitive syntax, eliminating the
defined concept AIE. The result, illustrated in Fig. 13, is the official version
of Euclid 5; that is, when we refer to Euclid 5 in subsequent sections, this is
what we mean.

M

FIGURE 12. Euclid 5: M and L must meet on the right side,
provided B(q, a,r) and pg makes alternate interior angles
equal with K and L.
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FIGURE 13. Euclid 5: M and L must meet on the right side,
provided B(q. a.r) and pt = qt and rt = st.

B(q.a.r) AB(p.t.q) AB(s.t.r) Apt =qt N\p #r (Euclid 5)
Art = st NL = Line(s.q) NM = Line (p.a) N —on(p. L)
— B(p. a, IntersectLines (L, M)) A B(s, q. IntersectLines (Line (L, M ))).

6.3. The rigorous use of Euclid 5. Each of Hilbert and Tarski replaced
Euclid’s parallel postulate with some different parallel postulate. Why did
they do that? We can only guess at the motivations of Hilbert and Tarski,
but one reason may have been the imprecision of Euclid’s version. Euclid
mentions angles “on the same side” of the transversal, without ever defining
“side”.

We choose to adhere to Euclid’s formulation (after improving its preci-
sion), in order to investigate the constructive relations between the various
forms of the parallel postulate. Our version of Euclid 5 is valid in 3-space,
since the “witnessing points” it requires will ensure that the three lines lie
in the same plane. Euclid’s own formulation either fails or is ambiguous in
3-space. Two skew lines can make interior angles equal, so unless “same
side” implies “in the same plane”, Euclid 5 will fail. In addition to this prob-
lem, it can be surprisingly tricky to use Euclid 5 rigorously. In this section
we illustrate how that is done.

The following lemma furnishes an example of the use of our version of
Euclid 5. The statement of the lemma is simple and fundamental; its proof
is surprisingly intricate and technical. Part of the point of exhibiting this
proof is to show how much Euclid left unsaid; these difficulties will arise
with any attempt to formalize Euclid using modern logical languages. It is
worth noting that neither Hilbert nor Tarski in published work discussed
the propositions of Euclid (as opposed to the fundamental notions and
postulates): congruence of angles comes only in chapter 11 (out of 16) of
[28], Part I, and circles are never mentioned. In particular the difficulties in
this section have nothing to do with constructivity; they arise from making
precise the many things Euclid left out.

LEmMA 6.3. Let M and L be lines in the same plane, and let point p be
on M but not on L. Suppose ap 1. M and pf | L, with a and f on L and
a # f. Then there exists a point e on M withBl(e. f.a).

REMARKS. The rest of the hypotheses do not guarantee that A and L
lie in the same plane, and if they are not, then the lemma is false. So the
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M

L

e f a
FiGure 14. Given p, f, a, M, and L, with M 1 pa, to
construct e by Euclid 5.

hypothesis that mentions “plane” is really necessary. We first give a proof
in Euclid’s style, and then give a more rigorous proof. We would like to
emphasize that the difficulties in making this proof rigorous have absolutely
nothing to do with constructivity. It is simpler: Euclid is not rigorous, and
neither Hilbert nor Tarski has explicitly shown how to work rigorously with
Euclid 5. Each of them replaced Euclid’s parallel postulate with a different
parallel postulate instead.

“ProoF” IN EuCLID’s STYLE. The interior angles made by traversal pa of
M and L are together less than two right angles, because the angle at p is a
right angle, and the angle at a is less than a right angle, since pfa is a triangle
with a right angle at p. Therefore M meets L at a point e “on the side of
pq on which angle fap lies”. Presumably that means B(e, f, a), although
since Euclid did not define “side”, so we have to say “presumably.” That
completes the “proof.” We never used the hypothesis that M and L lie in the
same plane, but the theorem fails without it, so probably it is an unstated
hypothesis of Euclid 5. =

Proor. Now, we give a rigorous proof from our version of Euclid 5. Let
m be the midpoint of p f, and let ¢ be the reflection of a in m, so B(c, m. a)
and ¢cm = am, as shown in Fig. 15. To apply Euclid 5. we need a point z
in that figure:; indeed as soon as we have a point z on M between ¢ and «,
Euclid 5 gives us the existence of the desired intersection point ¢ of M and
L. Clearly the existence of point z relies on the hypothesis that M and L lie
in the same plane. All that remains to fix the Euclidean proof is to prove the
existence of z.

To construct z turns out to be not quite trivial; please refer to Fig. 16. Let
g be the reflection of ¢ in p. Then gpfa has right angles at p and f, and
pq = fa since both are equal to ¢p. We claim it is a Saccheri quadrilateral;
it only remains to prove that it lies in a plane. L and p lie in the plane pfa,
and the points ¢ and ¢ constructed by reflection then lie in that same plane.
Then gpfa is a Saccheri quadrilateral, as claimed. By Lemma 5.23, gpfa is
a parallelogram. Hence, by Lemma 5.26, the diagonals intersect. Let the
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M
c P
Z
m
e f a L

FiGure 15. Given p, f, a, M, and L, to construct e¢ by
Euclid 3, first construct m and ¢. Then we need to construct
point z using the hypotheses that M lies in a plane with L
and pand M 1 pa.

intersection point be x. Then B(f, x.¢) and B(p. x, a). Apply inner Pasch
to the five-point configuration axpfm; we obtain point b such that B( f. b, x)
and B(m, b, a).

Now we claim that M does not meet bg. Suppose that M does meet bg in
a point r. Then angle xpr is a right angle, since x lies on pa and r lies on M,
and pa 1 M. But this right angle is properly contained in the right angle
fpq. since both x and r lie between f and ¢. That contradicts Lemma 5.38.
Hence (as claimed) M does not meet bgq.

M meets side cq of triangle cgb at p, and does not meet side bg. Moreover
¢ does not lie on M, since if it did, pa and pf'would both be perpendicular
to M at p, contradicting Lemma 5.11. Also a does not lie on M, since
ap L M. Now we finally use the hypothesis that A and L lie in the same
plane: we want to apply Pasch’s theorem to line M and triangle cgb. We
can do that because M lies in the plane of that triangle. By Pasch’s theorem
(Theorem 5.1), M meets cb in a point z. That is the point we were trying to

construct.
M
(_3 P q
z
m \/x
b
e I a L

FIGURE 16. Construct m, ¢, and ¢g. Then pgaf'is a rectangle,
whose diagonals intersect in x. Then b exists by inner Pasch,
and z by Pasch’s theorem applied to triangle cbq.
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Now the hypotheses of Euclid 5 are fulfilled, with z and a substituted for
a and ¢ in Euclid 5. Hence the intersection point e of M and L exists, and
satisfies B(e, f, a) as claimed. That completes the proof of the lemma.

The following lemma furnishes another example of the rigorous use of
Euclid 5. This lemma will be used in the proof that Euclid 5 implies a form
of triangle circumscription, which is crucial for verifying the definability
of multiplication. The proof of the lemma is more difficult than it at first
appears, and illustrates once again the necessity of constructing auxiliary
points to justify statements about angles that Euclid would have taken for
granted. These difficulties have nothing to do with constructivity but simply
arise from treating Euclid with modern rigor.

LEMMA 6.4. Let points a and x lie on line L, and let point p not lie on line
L. Let K be perpendicular to L at x and M perpendicular to ap at p. Let J
be perpendicular to L through p, meeting L at f. Suppose [ and x lie on the
same ray of L emanating from [ that is, =B(a, f. x) and for some point £ on
L.wehavet # f andT(£, f.a) and T(L, f.x). Then (assuming Euclid 5) M
and K meet.

REMARK. Thus a can possibly lie on J (in which case M is parallel to L).
Nothing is said about the order of @ and x on L, except that they do not lic on
opposite sides of J. The point £ specifies on which side of f the points ¢ and
x lie; it is necessary since we might have « = x = f. Fig. 17 illustrates the
case when « is to the left of x. Point £ is not shown; it would be to the left of f'.

Proor. Refer to Fig. 17. The figure shows a to the left of x, but that is
not guaranteed by the hypotheses. We claim that we can assume without
loss of generality that T( £, a. x). To do so. we replace line K by another line
K’ perpendicular to L and meeting L at a point x’ to the right of both «
and x. Now, if we prove the lemma under the extra assumption that x lies
to the right of a, we can apply it to show that M meets L’ in some point ¢’.
Then J. K. and K’ are three parallel lines, all perpendicular to L. and M

J K J K
M
e
b
q
» 7
m
> L
ARG \x
L

FIGURE 17. Euclid 5 implies M meets K, whether or not
x = a. Left, attempted traditional proof. Right, rigorous
proof requires point r to exist. It is found by inner Pasch
after constructing ¢ by the plane separation theorem.
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meets the outer two, so according to Lemma 5.33, M and K meet, as desired.
That shows that we may assume T( f, @, x), as illustrated.

We wish to apply Euclid 5 to show that M meets K, using the transversal
pXx. as shown in the left part of the figure. Intuitively, angle Kxp is less than
right angle Kxa, and angle Mpx is less than or equal to right angle M pa, so
the corresponding interior angles made by transversal px are less than two
right angles.

That “proof” is insufficiently rigorous. We must use the official, points-
only version of Euclid 5, which makes no mention of angles. That requires
the construction of a point to witness the fact that traversal px makes corre-
sponding angles with M and K less than two right angles. The construction
of that point is not accomplished in one step; we need to appeal to several
theorems, including the plane separation theorem and the exterior angle
theorem. The details follow.

First, we claim M does not meet segment fx. Suppose that M meets fx
in a point y. Then y # p, since p does not lie on L. Moreover y # a,
since pa | M. Therefore pay is a triangle. Triangle pay has a right angle
at p, since y lies on M, and ap | M. By Lemma 5.36, the remaining
angles of pay are each less than a right angle. Since we are trying to reach
a contradiction, we can argue by cases. If ¢ = f then triangle pay has two
right angles, contradiction. Hence a # f. If B(a. y. x) then angle pay is
an exterior angle of triangle pfa, and hence angle pay is greater than the
right angle pfa. contradiction. If B(f, y. a) then angle pya is an exterior
angle of triangle pfy, which has a right angle at f, so angle pya is more
than a right angle, contradiction. But if M meets fx then, classically, one of
these cases must hold. Since all of them are contradictory, we have reached a
contradiction, even constructively, by the stability of betweenness. We have
therefore proved that M does not meet fXx.

By Lemma 5.30, /" and x are on the same side of M. Let b be the reflection
of f in p. Then b is on the opposite side of M from f. By Lemma 5.31, b
is on the opposite side of M from x. Hence bx meets M in a point g. Let m
be the midpoint of px, and let ¢ be the reflection of b in m. We claim that
¢ lies on K. We have b = mc and pm = mx, by construction of ¢ and m
respectively. Angles bmp and xmc are vertical angles, so by SAS, triangles
bpm and cxm are congruent. Hence cx and J make alternate interior angles
equal with traversal px. Hence cx is parallel to J. Now ¢x and K are both
parallel to J through x. By Playfair (and hence by Euclid 5), Line (¢, x) and
K coincide. Hence c lies on K.

Now we apply inner Pasch to the five-point configuration bgxpm. The
result is a point r such that B(b,r,m) and B(p.r,q). This point r is the
required witness that lines M and K make corresponding angles less than
two right angles with traversal px. That is, we can now apply Euclid 5 with
the variables (L, a, p.r.q.s) in Euclid 5 replaced by (K. r, p.b, x, c¢) here.
The conclusion is that M meets K in a point ¢. That completes the proof. -

6.4. Playfair’s axiom. Euclid did not give his Postulate 5 the name
“parallel postulate” (or any other name). A case can be made that it is
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more of a “triangle construction postulate.” Be that as it may, we now define
Parallel (L, K) for lines L and K to mean that the lines do not meet:

DEFINITION 6.5. In plane geometry:
Parallel (LK) <+ Vx—(on(x,L) Aon(x,K)).

This definition assumes we are working in plane geometry; in an axiomatic
setting there should be some “dimension axiom” present, or else the defi-
nition needs to require as well that L and K lie in the same plane. That is,
skew lines in space are not considered parallel.

To express that two lines do not meet requires a universal quantifier over
points. Compare the given definition to the formula

— IntersectLines (K, L) | .

If L and K are parallel, then IntersectLines (K, L) is undefined; but it
will also be undefined if L and K coincide. The relation defined by
~IntersectLines (L. K) | can be referred to informally as “weakly parallel”;
classically it means “parallel or coincident”, but constructively, we generally
cannot make the decision of two weakly parallel lines whether they are coin-
cident or parallel. Instead, weakly parallel means “not not (parallel or coin-
cident).” (Consider, for example, the x-axis and the line y = a: these lines
are parallel if @ # 0 and coincident if y = 0, so if we could decide whether
two weakly parallel lines are coincident or parallel, we could decide y =
0V y # 0.) The concept “weakly parallel” also requires a universal quantifier
if expressed in a language that does not use the logic of partial terms.

Most modern treatments of geometry formulate the parallel axiom in a
different way:

If two lines K and M are parallel to L through point p, then K = M.

We call this the “Playfair’s axiom”, or for short just “Playfair”, after John
Playfair, who published it in 1795, although (according to Greenberg [15],
p. 19) it was referred to by Proclus. It is also known as “Hilbert’s parallel
axiom”, since Hilbert used it in his axiomatization of geometry [20]. Since
we can always construct one parallel, it would be equivalent to assert that,
given a line L and a point p not on L, there exists exactly one parallel to L
through p.

The formal expression of Playfair’s postulate is as follows:

Parallel (K. L) A Parallel (M. L) (Playfair)
Non(p.K)Non(p, M) — on(q.K)on(q, M).

M

K\P
\

L

FIGURE 18. Playfair: M and L can’t fail to meet.
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There is an ambiguity in this formulation, concerning Parallel. If we
intend to use this axiom only in the presence of an upper dimension axiom,
then we can take Parallel to mean “not meeting”. But if we wish to use
Playfair in the absence of a dimension axiom, then Parallel must mean
“not meeting, and lying in the same plane.” In that case, Parallel becomes
an existential statement, requiring the existence of five witnessing points
to the coplanarity of the lines. But since Parallel occurs only on the left of
Playfair’s axiom, Playfair’s axiom itself is universal, which for an axiom is the
same as quantifier-free. In particular, Playfair’s axiom makes no existential
assertion at all. It is an empirical fact (and formally, a consequence of the
double-negation interpretation in [6]) that Playfair’s axiom suffices to prove
all the consequences of the parallel postulate that do not themselves make
existential assertions.

LEMMA 6.6. Playfair’s axiom implies (in neutral constructive geometry)
that parallel lines make equal alternate interior angles with any transversal,
and equal corresponding angles.

Proor. Let L and K be parallel lines, and let pg be a transversal, with
pon K and ¢ on L and p # ¢. Let s be any point on L not equal to g.
Let ¢ be the midpoint of pgq, and extend segment st to point r with B(s, 7, r)
and tr = ts. Let M = Line (p.r). Then by Definition 6.1, pg makes equal
alternate interior angles with L and M.

If p does not lic on L, then by Lemma 6.2, M and L are parallel. But then
M and K are two lines parallel to L passing through p. Hence by Playfair’s
axiom, they coincide. Hence pg makes alternate interior angles with L and
K. On the other hand, if p does lie on L, then M and K coincide and we
are finished in that case too. But by the stability of the incidence relation,
we have —— (on(p. L) V —on(p. L)), so it is constructively legal to argue
by these two cases. The equality of corresponding angles follows from the
equality of vertical angles. That completes the proof. —

LEMMA 6.7. Let M and K be weakly parallel lines, and let L be perpendic-
ular to M and meet K. Assuming Playfair’s axiom, L is also perpendicular
to K.

PrOOF. By the stability of “perpendicular” (Lemma 5.7), we may argue
by cases according as M and K coincide or not. If they coincide there is
nothing to prove. If M and K do not coincide, then they are parallel. Let L
be perpendicular to M at p and meet K at g. The perpendicular to L at ¢
is parallel to M, so by Playfair’s axiom, it coincides with K. Therefore K is
perpendicular to L. That completes the proof. -

LEMMA 6.8. Assuming Playfair’s axiom, weak parallelism is transitive. That
is, if L and M are weakly parallel and M and K are weakly parallel, then L
and K are weakly parallel.

ProOOF. Suppose L and M are weakly parallel and M and K are weakly
parallel, and suppose that IntersectLines (L, K) |. We must derive a con-
tradiction to conclude that L and K are weakly parallel. Let p be the
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intersection point of L and K. By Lemma 2.5, we may argue by cases to
prove a contradiction.

CasE 1, p lieson M. Then M and L coincide, since M and L are weakly
parallel; in that case L and K are weakly parallel since by hypothesis M and
K are weakly parallel. That disposes of Case 1.

CaSE 2, p doesnotlieon M. Then M and L are two parallels to K through
p. so by Playfair, M and L coincide. Then L and K are weakly parallel, since
by hypothesis M and K are weakly parallel. That completes the proof.

LemMaA 6.9. Let lines M and K be weakly parallel, and let point p be given.
Let lines U and V' containing p be perpendicular to M and K respectively.
Then, assuming Playfair, lines U and V' coincide.

ProoF. Suppose first that U meets K. Then by Lemma 6.7, U 1 K,
and hence U and V coincide, as both are perpendiculars to K through p.
Similarly, if V" meets M, U and V' coincide.

Now we will prove that U and V' coincide. Let ¢ be a point on U:; we
must show ¢ is on V. By Lemma 2.5, we may prove that by contradiction.
Suppose, for proof by contradiction, that ¢ is not on V. Then, as shown in
the previous paragraph, U does not meet K.

That U does not meet K means that U is parallel to K; since K is weakly
parallel to M by hypothesis, Lemma 6.8 lets us conclude (using Playfair)
that U is weakly parallel to M. But U meets M and does not coincide with
M, since U 1 M. That contradiction completes the proof. -

LemMA 6.10 (Euclid 1.32). Playfair’s axiom implies that an exterior angle
of a triangle is equal to the sum of the interior and opposite angles.

REMARK. The theorem asserts that the exterior angle can be decomposed
into two angles, each congruent to one of the opposite interior angles.
Addition of angles has not been defined (either here or in Euclid).

Proor. We have already discussed the closely related Euclid 1.16 in
Lemma 5.36. Please refer to Fig. 8. Euclid’s construction provides that
ae = ec and be = ef, so triangles abe and ¢ f e are congruent, making bac
and acf alternate interior angles, and ¢ f parallel to ba.

Playfair’s axiom implies that parallel lines make equal corresponding
angles with any transversal, by Lemma 6.6. Hence angle abc is congru-
ent to angle fcd. But now, the exterior angle bcd is seen to be composed of
two angles, each congruent to one of the interior and opposite angles. That
completes the proof. =

REMARK. Euclid II1.20, that an angle inscribed in a semicircle is a right
angle, follows from 1.32 in ECG just as it does in Euclid.
6.5. Euclid 5 implies Playfair’s axiom.

THEOREM 6.11. Euclid’s Postulate 5 implies Playfair’s axiom in neutral
constructive geometry.

ProoF. Let M and K be two parallels to L passing through p; we must
show that M and K coincide. Without loss of generality we can assume that
K is perpendicular to the perpendicular H to L passing through p. Then H
makes right angles with K and with L. Since M does not meet L, then by
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Euclid 5, M does not make less than a right angle on either side of H. Thus
we have two angles, together equal to two right angles, and neither is less
than a right angle. Therefore neither is greater than a right angle; hence each
is a right angle, and M is perpendicular to H at p. By the uniqueness of the
erected perpendicular (Lemma 5.11), M coincides with K as desired. —|

REMARK. We defined lines to be parallel if they lie in the same plane
and do not meet. Without the coplanar part of the definition of “parallel”,
Playfair’s axiom would fail in 3-space, while Euclid 5 would hold. The proof
at hand all points lie in the same plane; that enters through the application of
Lemma 5.11 (uniqueness of the erected perpendicular), which is essentially
an upper dimension axiom.

6.6. The strong parallel postulate. We make two changes in Euclid 5 to
get what we call the strong parallel postulate:

e We change the hypothesis B(g. a.r) in Euclid’s axiom to —on(a. K).
In other words, we require that the two interior angles on the same
side of the transversal do not make exactly two right angles, instead of
requiring that they make less than two right angles.

e We change the conclusion to state only that M meets L, without
specifying on which side of the transversal pg the intersection lies.

Here is the strong parallel postulate.
B(p.t.q) ANB(s.1.r) (Strong Parallel Postulate, SPP)
AN=on(p. L)\ —on(a, K)\Npt=qt Nrt =St \Np #r
AL = Line(s.q) N M = Line(p.a) N K = Line(p.r)
— on(IntersectLines (L, M), L) A on(IntersectLines (L, M), M ).

The strong parallel postulate differs from Euclid’s version in that we are
not required to know in what direction M passes through P; but also the
conclusion is weaker, in that it does not specify where M must meet L. In
other words, the betweenness hypothesis of Euclid 5 is removed, and so is
the betweenness conclusion. Since both the hypothesis and conclusion have
been changed, it is not immediate whether this new postulate is stronger
the Euclid 5, or equivalent, or possibly even weaker, but it turns out to be
stronger—hence the name.

The strong parallel postulate fails in 3-space, because ¢ might not even
lie in the same plane with K and L. Hence, the axiom should be used

FIGURE 19. Strong Parallel Postulate: M and L must meet
(somewhere) provided ¢ isnoton K and pt = gt and rt = st.
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(in this form) only in the presence of other axioms guaranteeing that space
is two-dimensional. We could, of course, also require that a lie on some line
passing through both K and L, but since we are only concerned with plane
geometry in this paper, we have avoided this complication.

The following lemma separates the strong parallel postulate into two parts:
Playfair, which is a negative statement about parallelism, together with an
assertion that two lines that can’t fail to meet, must in fact meet:

LEMMA 6.12 (Stability of line intersection). The strong parallel postulate
is equivalent to Playfair’s axiom together with “if L and M are noncoincident,
nonparallel lines, then M meets L.”

REMARK. The name of the lemma arises from the fact that, expressed in
symbols, the lemma says ——¢ | — ¢ |, where ¢t = IntersectLines (L, M ).

Proor. Assume the strong parallel postulate, and assume that L and M
are noncoincident, nonparallel lines. Our first goal is to prove the existence
of a point p on M but not on L. Since each line is given by two points, we can
find two points s and ¢ on M. By the uniform perpendicular construction,
we can construct line J through s perpendicular to L. Let u be the point
of intersection of J with L. Let ab be a segment long than any of su for
example obtained by extending the nonnull segment stz by su. Construct a
point ¢ on J such that gs = ab, and a line L’ through ¢ parallel to L. Then
s lies on M but not on L', and M is not perpendicular to J. Applying the
strong parallel postulate, we can find a point p where M meets L’. That
point lies on M, but not on L, since L’ is parallel to L.

Let J be the perpendicular from p to L, and let K be the perpendicular
to J at p. Let M be a line through p that does not coincide with K. Let a
be a point on M different from p. Then a does not lie on K, since if it did,
M would coincide with K and hence be parallel to L. By the strong parallel
postulate, M meets L as claimed. That proves both Playfair and the quoted
assertion in the theorem.

Conversely, assume Playfair and the quoted assertion, and assume the
hypotheses of the strong parallel axiom. Then by Playfair, M is not parallel
to L, and by the quoted assertion, M meets L, which is the conclusion of
the strong parallel axiom. That completes the proof. —

6.7. The strong parallel postulate proves Euclid 5. The strong parallel pos-
tulate has a weaker conclusion than Euclid 5, because it does not specify on
which side of P the intersection point will lie. On the other hand, it also has
a weaker hypothesis than Euclid 5, so its exact relationship to Euclid 5 is
not immediately clear. One direction is settled by the following theorem:

THEOREM 6.13. The strong parallel postulate implies Euclid’s Postulate 5
in neutral constructive geometry.

ProoF. Suppose the hypotheses of Euclid 5 hold, as shown in Fig. 12.
Specifically, let L be a line, p a point not on L, K parallel to L through
p. M another line through P, ¢ a point on L, a a point on M not on pq,
and r the intersection of ga with K. Suppose that the interior angles made
by L, M, and pg make less than two right angles, which formally means
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that a is between ¢ and r. By the strong parallel postulate, M does meet
L at some point e (indicated by the open circle in Fig. 12). It remains to
show that « is between p and e. By Markov’s principle for betweenness, it
suffices to prove that p is not between e and «, and e is not between p and
a. Suppose first that p is between e and a. Then ¢ is on the opposite side
of line K from a. Segment eq lies on line L, and line L does not meet K,
so segment eq does not meet K. Hence by Lemma 5.30, ¢ and ¢ are on the
same side of line K. Since ¢ is on the opposite side of K from «, it follows
that ¢ and ¢ are on opposite sides of line K. Hence point r, the intersection
of ag with K, must be between ¢ and ¢. But that contradicts the fact that
a is between ¢ and r. Hence the assumption that p is between ¢ and a has
led to a contradiction. Now suppose instead that e is between p and a. Then
a and p are on opposite sides of L.

But rp does not meet L, since rp lies on K, and K does not meet L. Hence
by Lemma 5.30, » and p are on the same side of line L. Hence ¢ and r are on
opposite sides of L. But then the intersection point of ar and L, which is ¢,
lies between « and e, contradicting the fact that « lies between ¢ and . Hence
the assumption that e is between p and a has also led to a contradiction.
Hence, as noted already, by Markov’s principle for betweenness, a is between
p and e. That completes the proof of Euclid’s Postulate 5 from the strong
parallel postulate. -

6.8. Triangle circumscription. The triangle circumscription principle says,
classically, that any three noncollinear points lie on a circle. It is classi-
cally equivalent to the parallel postulate. In this section we show that it is
constructively equivalent to the strong parallel postulate, so we could have
taken it as an axiom in place of the strong parallel postulate. The name is
appropriate, since one can prove (even constructively) that a line intersects
a circle in at most two points, and from that it is not difficult to prove Euclid
II1.1, that a chord of a circle lies inside the circle. Hence, once a circle passes
through the vertices of a triangle, the whole triangle lies inside the circle.

The triangle circumscription principle is a convenient form of the parallel
postulate for use in a theory with only point variables, since it can be naturally
stated without mentioning circles or lines: given three noncollinear points,
there is a fourth point equidistant from all three. According to [29], p. 190,
Szmielew took it for her parallel axiom in her influential manuscript that
formed the basis for Part I of [28], but Schwabhduser adopted another form
of the parallel axiom for publication.

The triangle circumscription principle makes sense constructively, but
constructively there are several versions of it to consider. One of them is
nonconstructive, but the others turn out to be equivalent, though that is
not a priori clear. These principles are not just a curiosity: we must study
them because of their intimate connection to the geometric definition of
multiplication.

First, the nonconstructive version is this: Given three points a, b, and ¢,
there is a circle passing through all three, unless they are distinct and
collinear. The problem with this is that if » and ¢ are close together, and
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about unit distance from «a, the circle through the three points does not
depend continuously on b and ¢ as ¢ approaches b. Hence this version is
not constructively valid.

That problem can be fixed drastically by requiring a, b, and ¢ to be
three distinct points. That we call the triangle circumscription principle; but
that version is insufficient to define multiplication. To formulate a stronger
version, we drop the requirement that a # b, but we require instead that «
and b lie on a fixed line L.

The strong triangle circumscription principle says that if ¢ and b lie on L,
and ¢ does not lie on L, then there is a point e equidistant from «, b, and ¢,
and if @ = b then no other point of L is on the circle with center e through «,
i.e., that circle is tangent to L at a. To prove this principle constructively, the
point e should be constructed uniformly, that is, without a case distinction
as to whether a = b or a # b.

The one-sided triangle circumscription principle is similar to the strong
triangle circumscription principle, but with an additional hypothesis about
the positions of the three points: ¢« and b do not lic on opposite sides of
the perpendicular W from ¢ to L. (This corresponds to multiplication of
nonnegative numbers.)

FIGURE 20. The strong parallel postulate implies strong tri-
angle circumscription. The center e is where nonparallel lines
M and K meet.

LEMMA 6.14. In neutral constructive geometry, the strong parallel postulate
implies the strong triangle circumscription principle.

ProOOF. Assume the strong parallel axiom; we will derive the strong trian-
gle circumscription principle. Suppose ¢ is not on line L, but ¢ and b are
on line L, as shown in Fig. 20. By Lemma 5.44, we find (by a uniform con-
struction) a perpendicular K to L, that bisects ab when a # b. and passes
through ¢ when ¢ = b. Let M be the perpendicular bisector of segment
ac. Then M and K are not coincident, since if they were, then ac and L
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would both be perpendicular to K through «, so by Lemma 5.11, ¢ would
lie on L, contradiction. Similarly, M and K are not parallel, since if they
were parallel, then ac and L would be perpendicular to parallel lines, and
both contain a, so by Lemma 6.9, lines L and ac would coincide, contradic-
tion. (Lemma 6.9 requires Playfair’s axiom, but the strong parallel postulate
implies Playfair, so the lemma is applicable.) Therefore M and K are not
parallel. By the strong parallel postulate and Lemma 6.12, lines M and K
meet in a point e. That completes the proof of the lemma. Note that the
proof does not assume anything about the order of ¢ and » on L. =

LEmMMA 6.15. In neutral constructive geometry, Euclid 5 implies the one-
sided triangle circumscription principle.

Asin Fig. 20, we have a line L containing points ¢ and b, and a third point
¢ that does not lie on L. The hypothesis of one-sided triangle circumscription
tells us that the perpendicular from ¢ to L does not meet the closed segment
ab, and hence does not meet ax, where as shown x is the midpoint of ab,
and K is perpendicular to L at x. K and x are constructed by Lemma 5.44,
so they are defined even if ¢ = b. As in the previous proof, let M be
the perpendicular bisector of ac. Now let J be the perpendicular to L
passing through p. Let f be the foot of J on L. We claim J does not meet
the open segment ax (even though we do not know anything about the
order of @ and x on L). Under the hypothesis of the one-sided triangle
circumscription principle, the relative positions of K and M are as shown
in Fig. 20, even though we do not know whether B(f.a.b) or B(f.b.a)
ora =b.

Intuitively, what is going on here is this: the x-coordinate of J is /2, and
the x-coordinate of K is (¢ + b)/2. and a/2 < (a + b)/2. But we cannot
argue that way, since we need this lemma in order to define multiplication,
which comes before introducing coordinates. We must argue geometrically.

Let ¢ be the foot of the perpendicular from ¢ to L. By Lemma 5.25,
f is the midpoint of ra. (That lemma applies since we are allowed here
to use Euclid 5, which implies Playfair.) Hence T(z. f, a). We have to prove
—B(a, f.x).Suppose B(a, f,x).If T(¢,a.b).i.e., a isleft of b in the diagram,
then by the transitivity of betweenness we have T(f.a.b). so f does not
lie between a and b, and hence not between a and x. Hence = T(¢,a,b).
Hence T(¢,b, a). That is, b is to the nonstrict left of @ on L, rather than as
shown in the diagram. Now we can apply Lemma 2.4: if x is the midpoint
of ab. and f is the midpoint of at, and T(z,b.a). then = B(a. f.x). We
conclude ~B(a. f. x)., contradicting our assumption that B(a. f, x): that
contradiction proves without assumptions that = B(a. f. x).

That verifies the hypothesis that J does not meet ax. By Lemma 6.4,
Euclid 5 implies that M and K meet. That completes the proof.

LEMMA 6.16. The triangle circumscription principle implies Playfair’s
axiom.

REMARK. In the next lemma, we will prove that triangle circumscription
proves the strong parallel postulate, which is stronger than this lemma;
but we need this lemma to prove that one. The figure and argument used
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for this proof will not work constructively to prove the stronger theorem,
because this proof requires a case distinction. The construction (see Fig. 21)
assumes M is not perpendicular to K, so the construction given does not
extend continuously to that case.

[

FiGURe 21. Triangle circumscription classically implies
Playfair. Given lines L and M, to construct their intersection
point as the center e of an appropriate circle.

Proor. Since Playfair’s axiom contains no existential quantifiers or dis-
junctions, we can argue classically. Assume the triangle circumscription
principle; we will prove Playfair. See Fig. 21 for an illustration. Suppose L is
aline and p is a point not on L. Drop a perpendicular J from p to L; let w
be the foot of this perpendicular, so pw 1 L at w. Let K be perpendicular
to pw at p. Then K is parallel to L. Let M be a line through p parallel to
L that does not coincide with K, as witnessed by a point r on M but not
on K. We intend to show that M meets L. (Playfair’s axiom mentions two
lines through p parallel to L, and says they must coincide; without loss of
generality we can assume one of the lines is K.) Our proof is not construc-
tive, because it requires a case distinction as to whether r is collinear with
pw or not. If r is collinear with pw then w lies on M and hence M meets L,
so we are finished. Therefore (classically) we can assume r is not collinear
with pw. Let m be the midpoint of pw. Since p does not lic on L, but w
does lie on L, we have p # w and hence m # p. Then m does not lie on M,
since if it did, M would contain two distinct points m and p of pw. Let ¢
be the reflection of m in M ; since m does not lie on M, ¢t # m. Let z be the
reflection of p in L; since pw L L, z lies on the the line J containing pw.
Since m # w, we have m # z.

We claim that ¢, m, and z are not collinear. Suppose that they are collinear.
Then ¢ lies on J. Since ¢ is the reflection of m in M, tm L M . Since ¢ lies on
J,wehave J 1 M. Then K and M are both perpendicular to J at point p.
Hence (by Lemma 5.11) K and M coincide. Then point » (which lies on M)
lies on K, contradicting the hypothesis that r is not on K. This contradiction
proves that ¢, m, and z are not collinear.
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Since ¢, m, and z are not collinear, we can apply the triangle circumscrip-
tion axiom to obtain a circle containing all three; let e be the center of that
circle. Technically the axiom tells us ey = ex = ez. Let x be the midpoint of
tm (so x lies on M ). Then by the definition of perpendicular, since et = em
we have pe 1 tm at x. But by construction of ¢, we have tm 1 rp at x.
By the uniqueness of the perpendicular to tm at x, the lines pe and rp
coincide. But Line (r, p) is M. Hence e lies on M. Similarly, we L J at w
because me = ze, but also L 1 J at w by construction of J. therefore L
coincides with Line (w, e), so e lies on L. Now we have proved that e lies
on both L and M, which was to be shown. That completes the proof of the

lemma. -
LEMMA 6.17. The triangle circumscription principle implies the strong
parallel postulate.
. .
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FIGURE 22. Triangle circumscription implies the strong par-
allel postulate. Given lines L and M, to construct their
intersection point as the center ¢ of an appropriate circle.
y and z are reflections of x in M and L.

PrOOF. Assume the triangle circumscription principle; we will prove the
strong parallel postulate. See Fig. 22. Suppose L is a line and p is a point
not on L. Let pw be perpendicular to L at point w on L and let K | pw at
p. Then K is parallel to L. Let M be a line through p that does not coincide
with K. We intend to show that M meets L.

Let J be perpendicular to M at p. We need to construct a point x on J
but not on M or L. One way to do this is as follows: Let m be the midpoint
of pw, and choose x on J such that px = pm. Since p does not lic on
L, m # p. Then x # p. Since x lieson J and J 1. M, x does not lie on
M. We claim x does not lie on L either: if x lies on L, then pwx is a right
triangle, whose hypotenuse px is equal to half the leg pw. Now we have a
right triangle with hypotenuse less than a leg, contradicting Lemma 5.37.
That completes the proof that x does not lic on L.
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Let y be the reflection of x in M. Then x # y since x # p. The dotted
circlein Fig. 22 illustrates the fact that px = pm = py. Let z be the reflection
of x in L; since x is not on L, z # x. We claim that x, y, and z are not
collinear. Once we prove that claim, we can finish the proof as follows: By
the triangle circumscription principle, there is a circle C through x, y,and z.
Let its center be e. Then since xy is a chord of C, its perpendicular bisector
M passes through e. Since xz is a chord of C, its perpendicular bisector
L passes through C. Hence L and M meet in point e. This contradicts the
assumption that M is parallel to L. Hence we (will have) have proved that
every line M parallel to p through L coincides with K. In particular any
two such lines coincide with each other.

It remains to prove that x, y, and z are not collinear. Suppose that they
are collinear. Then x and z lie on J, which is then perpendicular to both
L and M. Since J is perpendicular to L and K is parallel to L, J is
perpendicular to K, by Lemma 6.7; that lemma assumes Playfair, but by
Lemma 6.16, Playfair holds here. Hence M and K are both perpendicu-
lar to J at p. By the uniqueness of the perpendicular (Lemma 5.11), M
and K coincide, contradicting our assumption that A and K do not coin-
cide. That proves that x, y, and z are not all collinear. That completes the
proof. =

THEOREM 6.18. The strong triangle circumscription principle, the triangle
circumscription principle, and the strong parallel postulate are all equivalent
in neutral constructive geometry.

Proor. The strong triangle circumscription principle implies the trian-
gle circumscription principle, so the previous lemmas establish a circle of
implications between the three propositions. Specifically, the triangle cir-
cumscription principle implies the strong parallel postulate by Lemma 6.17,
and the strong parallel postulate implies the strong triangle circumscription
principle by Lemma 6.14. That completes the proof. —|

87. Rotation and reflection. In the introduction, we remarked on the
meaning of a “uniform reflection” construction, which must construct the
reflection of a point p in line L, without making a case distinction according
to whether p is on L or not. In this section, we take up this construction in
detail. We begin with the definition.

DEerFINITION 7.1. Point z is the reflection of « in line L provided (i) there
is a line K perpendicular to L passing through both z and «, and (ii) if f is
the intersection point of K and L then af = zf, and (iii) T(a. f. z).

Thus, if a lies on L, it is its own reflection in L, and if it does not lie on
L, we can drop a perpendicular from « to L, meeting L at f, and extend
the nonnull segment a f by af to construct z. But to construct z without
making a case distinction is more difficult.

Once we have a uniform perpendicular construction, the problem of reflec-
tion in a line reduces to the problem of reflection in a point. That is, to reflect
a in line L, construct a perpendicular K to L passing through «a; let f be
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the point where K meets L, and reflect a in the point /. The result will be
the reflection of a in L.

But reflection in a point, instead of in a line, is also problematic construc-
tively, even if the two points are known to lie on a fixed line. Of course if
a # p, we can reflect ¢ in p just by extending ap by ap. And if a = p,
then the reflection of a in p is just . But this construction cannot be made
uniform (that is, free of a case distinction), since only nonnull segments can
be extended constructively. Another failed attempt would be to find a point
b a fixed distance from a with B(b, a, p) and then extend the segment bp by
ap. But, if we do not know on which side of p lies, we cannot construct such
a point b, even if we assume both ¢ and p lie on a known line L.

Since attempts to construct the uniform reflection directly appear blocked,
we turn to another approach. We use the fact that reflection of p in point
a can be obtained by two successive rotations of p about a, each rotation
through a right angle. It will therefore suffice to define rotation of point p
through a given angle about point a in such a way that no case distinction
is required as to whether p = a or not. We call that “uniform rotation.”
Of course, one way to define rotation is to use reflection; so if we had
uniform reflection, we could get uniform rotation, and vice-versa. We get off
the ground by proving the existence of uniform rotation another way, then
deriving the existence of uniform reflection.

7.1. Uniform rotation. In classical geometry, reflection and rotation can
be defined without using the parallel postulate. However, we were unable to
define uniform reflection or uniform rotation without using Euclid 5. In this
section, we employ Euclid 5 freely.

LemMA 7.2 (Assuming Euclid 5.). Let lines L = Line(£.b) and J =
Line (d, b) meet at b, and suppose that L and J do not coincide, and angle £bd
is less than a right angle. Suppose point p lies on J. Then there exists a point
e on L such that ep lies on a line perpendicular to J .

REMARK. See Fig. 23. p could be on either side of » or equal to b. Imagine
p moving back and forth along J, passing through 4. ¢ has to be constructed
without a case distinction as to whether p = b or not, or on which side of b
the point p lies. It would be technically incorrect to say ep | J, at least if
e = p, since perpendicularity does not apply to null segments.

Proor. Extend segment bd by bp to point m. Let n be the reflection of
m in b. Then B(n, b, m) and hence B(n, p, m). Erect line M perpendicular
to J at m. Since angle £bm is, by hypothesis, less than a right angle, the
interior angles made by traversal J of L and M are together less than two
right angles. By Euclid 5, M and L intersect; call the intersection point r.

Before proceeding, we discuss this application of Euclid 5. We have pre-
sented it with Euclidean (im)precision, but technically we have to use our
formulation of Euclid 5, which requires an auxiliary point to witness that
angle ¢bm is less than a right angle. The definition of “less than” for angles
implies the existence of that point, which would lie on L somewhere to the
right of b, and witness that £bm is less than a right angle by being between
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e
n b
2
R
q g f
K M

FIGURE 23. The perpendicular to J at p meets L in some
point e. Euclid 5 is needed to get r.

m and a point on the perpendicular to J at b. For simplicity this point is not
shown in Fig. 23.

Let ¢ be the reflection of r in b. Then ¢ # b since £ # b. Construct R
parallel to J through ¢. Since we are assuming Euclid 5, and J is perpen-
dicular to M, also M 1 R. Let f be the point of intersection of M and R.
There exists a line K through p perpendicular to R (since p is not on R,
we do not even need the uniform perpendicular construction). Let g be the
intersection point of K and R.

Now triangle bng is the reflection of triangle bmr in point b. By
Lemma 5.16, reflection preserves congruence. Hence triangle bng is congru-
ent to triangle bmr. Therefore ng L J. Therefore each of the quadrilaterals
npgq, nmfq, and pmfg is a rectangle. Therefore np = gg and nm = ¢ f and
pm = gf. We already proved B(n. p, m); therefore B(q, g, /). That is, K
meets side ¢ f of triangle rq f at g. K does not meet rf since K is parallel
to M. which contains r /. Then by Pasch’s theorem (Theorem 5.1) K meets
gr: the point of intersection is the desired point e, since ep lies on K, which
is perpendicular to J. Hence ep | J as desired. That completes the proof
of the lemma. -

THEOREM 7.3 (Uniform rotation). (Assuming Euclid 5.) There is a con-
struction Rotate that rotates a point p through a given angle poq. without a
case distinction. That is. if a lies on Line (0. p). then z = Rotate (p.o.q.a) is
a point on Line (0. q) that is the reflection of a in the line that bisects angle poq.

ProoF. Let L be the angle bisector of angle pog. (The method of Euclid
1.9 for bisecting an angle is constructive as it stands; though Euclid paid
insufficient attention to which of two possible triangles to select, that defect
is easily remedied.) See Fig. 24, but note that « might also be on the other
side of 0, or coincide with o. Please imagine an animation in which ¢ moves
back and forth on the horizontal line through o.

The point is that z should be defined even when a = o (in which case it is
just o, of course), and if @ moves along Line (0, p) through o, then z moves
along Line (0, q), passing through a as a passes through o.
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FIGURE 24. z = Rotate(p,o.q.a). a is allowed to move
along Line (o0, p), even through o.

The angle at a is a right angle, and the angle at o is half of angle pog.
Every angle is less than two right angles, so half of angle pog is less than
one right angle. Let line K be the perpendicular to Line (o, p) at a. By
Lemma 7.2, K meets L at a point e. Now, by the uniform perpendicular
construction, there exists a point z on Line (0. ¢) such that ez L Line (0. q).
This point z is the point we had to produce, the value of Rotate (p.o.q.a).
We claim oz = oa; by the stability of equality, we can prove that by cases.
If @ = o then z = 0, so both oz and oa are null sequences, and hence
congruent. If ¢ # o, then triangles zeo and aeo are congruent (by SAS).
so oz = oa. That completes the proof that oz = za. The perpendicular to
L through z can be constructed without a case distinction by the uniform
perpendicular construction. Let f be its intersection with L. Similarly, let g
be the point of intersection with L of the perpendicular to L through a. We
claim f = g and zf = af. By the stability of equality, we can prove that by
cases. Case 1, @« = 0. Then f =g =a =z and af = gf because both are
null segments. Case 2, a # o. Then aog and ao f are triangles, and indeed
they are right triangles with equal hypotenuses and one pair of angles equal
(the angles at o). Hence they are congruent triangles. Hence o f = og. so
f and g coincide, and zf = zf. That completes the proof by cases (and
stability of equality) that zf = af and T(z. f.a). and a and z both lie on
a common perpendicular to L. By Lemma 5.11, we have B(z. f. a). That is.
the perpendicular from z to L also passes through a, and since zf = af,
z is the reflection of ¢ in L. By definition of reflection, that makes z the
reflection of @ in L. That completes the proof of the lemma. =

7.2. Uniform reflection. Now we will apply uniform rotation to show how
to construct the reflection of a point in a line uniformly.

THEOREM 7.4 (Uniform reflection). (Assuming Euclid 5.) There is a term
Reflect (x. L) that produces the reflection of x in line L, without a case distinc-
tion whether x is on L or not. That is, if z = Reflect (x. L) and K perpendicular
to L contains x and meets L at e, then z lies on K with ez = ex, and unless x
lieson L, B(x, e, z).
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Proor. The idea is that a reflection has the same effect on a single point x
as two ninety-degree rotations. Using the uniform perpendicular construc-
tion, let K be perpendicular to L, and let e be the intersection point of K
and L; then rotate x twice by ninety degrees about e using uniform rota-
tion, obtaining the answer z. Fig. 25 illustrates the construction. (The other
points in the picture are used in uniform rotation.) —

7.3. The other intersection point. Many Euclidean constructions involve
constructing one intersection point p of a line L = Line (a, b) and a circle
C, and then we say “Let ¢ be the other intersection point of L and C”. The
question is, whether in ECG we can give a uniform method of constructing
O from p, L. and C. Yes, we can, as illustrated in Fig. 26. The proof is not as
obvious as it may seem from the figure, since possibly L could be a diameter
of C or tangent to C, and we are not allowed to prove an existential theorem
by cases. Instead, we must give a single construction that works for all cases.
We are able to do that using uniform perpendiculars and uniform reflection.
Since uniform reflection requires Euclid 5, so does this construction.

THEOREM 7.5. There is a term Other(p. L. C) such that, if point p lies on
line L and circle C, then Other(p. L. C) is defined and lies on both L and C,
and for all z # p. if z lies on both L and C then Other(p.L,C) = z.

ProoF. Here is the construction script for Other:

Other (Point P, Line L, Circle C)
{ a = center(C)

K = Perp(a,L)

q = Reflect(p,K);

return q;

3

Since Perp is always defined, K is defined, whether or not L is a diameter of
C, and since Reflect is uniform reflection, ¢ is defined, whether or not L is
tangent to C. But now that we have given a single construction that applies
in all cases, we may argue by cases that ag = ap, since by the stability of
congruence, it suffices to prove —ag # ap. If a does not lic on L and x # p

FiGURE 25. Uniform Reflection.
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FIGURE 26. Definability of “the other intersection point”

then axp is a triangle, and is congruent to axg by SAS; hence in that case
ap = aq. If x = p then ¢ = p so in that case ap = aq. If a lies on L then
a = x so ap = aq because xp = xq. That completes the proof. =

We next show that similarly, one can construct the “other intersection
point” of two circles.

THEOREM 7.6 (The other intersection point of two circles). There is a term
Other2(p. C. K) such that, if point p lies on circle C and on circle K, and C
and K are not coincident, then Other2(p. C. K) is defined and lies on both C
and K , and forall z # p. if z lies on both C and K then Other2(p,C.K) = z.

ProOF. Here is the construction script:

Other2(Point p, Circle C, Circle K)
{ a = center(C);

b = center(K);

L = Line(a,b);

q = Reflect(p,L);
return q;

¥

Here is the correctness proof of the script. We claim a # b. To prove that,
assume @ = b. Then ap = bp, so for all z, On(z, C) if and only if za = ap
if and only if ab = bp if and only if On(z, K). That is, C and K coincide,
contradicting the hypothesis. Hence a # b. Therefore L in line 3 of the script
is defined. Since Reflect is always defined, by Lemma 7.4, ¢ is defined, and
by Lemma 5.5, ¢ lies on circles C and K. That completes the proof. =

88. Geometrization of arithmetic without case distinctions. Today we usu-

ally think of analytic geometry as coordinatizing a plane and translating
geometrical relations between points and lines into algebraic equations and
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inequalities. But the converse is also possible: translating algebra into geom-
etry, and this is important for showing that the models of the geometry of
constructions are planes over Euclidean fields.

In modern geometry books (such as [8] or [16]), arithmetic is geometrized
as operations on congruence classes of segments. To give a formal definition
within geometry we must avoid sets. We operate instead on points on some
fixed line X = Line(0,1), where 0 and 1 are two arbitrarily fixed points.
We refer to X as the x-axis. We erect a line Y perpendicular to X at 0, and
call it the y-axis. We mark off a point I on Y such that 0/ = 01. Then the
following are the key steps to be carried out:

e Coordinatization. We need to assign coordinates X (p) and Y (p) (both
on the x-axis) to each point p. We need to show that every pair of points
on the x-axis arises as (X (p). Y (p)) for some point p.

e Definition of addition. Points on the x-axis can be added, without a
case distinction as to sign.

e Definition of multiplication. Points on the x-axis can be multiplied,
without a case distinction as to sign.

e Definition of square root. The geometrical definition of the square root
of x given by Descartes can be made to work without a case distinction
whether x is zero or positive.

e Thelaws of addition, multiplication, and square root are satisfied, except
for multiplicative inverse.

e Depending on which parallel axiom is assumed, some form of the axiom
of multiplicative inverse holds.

As far as I can tell, past work on these things has always assumed some
discontinuous constructions, such as test-for-equality or at least apartness.
The closest thing to a constructive treatment is [16]; the treatment there is
discussed further in §8.4. Since coordinatization and arithmetic themselves
are patently computable and continuous, it is unaesthetic to appeal to dis-
continuous and noncomputable “constructions” to achieve coordinatization
and arithmetization. Constructively, it is not only unaesthetic, it is incorrect.

8.1. Coordinatization. With the x-axis and y-axis, and the points 0,1, and
I fixed, we use the uniform perpendicular construction to project any point
p onto the x-axis, obtaining its x-coordinate X (p). We project it also onto
the y-axis. obtaining a point y(p) on the Y-axis, and then we rotate that
point 90° clockwise, using the uniform rotation construction defined above,
to obtain Y (p) on the x-axis. That is the y-coordinate of p. Note that y(p).
with lower-case y. is on the y-axis, while Y (p), with upper-case Y, is on the
X-axis.

The first half of coordinatization (the assignment of coordinates
(X(p), Y(p)) to every point) is thus accomplished without any parallel
postulate. But to show that every pair of coordinates corresponds to a point
requires Euclid 5. not to get from (x,0) and (0. y) to (x, y). but to get from
(».0) to (0, y), which requires rotation.
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LemMA 8.1 (Coordinatization). Assuming Euclid 5, it is possible to use
uniform rotation and perpendiculars to define a construction MakePoint (x, y),
which produces a point p such that x = X (p) and y = Y (p) whenever x and
y are on the x-axis.

Proor. See Fig. 27. To construct the point p from x and y, first rotate
y by 90° counter-clockwise, obtaining a point z on the y-axis. (This is the

U
Z K
p
. L
0 X y

FIGURE 27. MakePoint constructs a point p with specified
coordinates x and y. K is constructed perpendicular to U
but by Playfair is also perpendicular to the y-axis.

only place we need Euclid 5.) Then erect a perpendicular U to the x-axis at
x. Then let K be perpendicular to U through z, and let p be the foot of that
perpendicular on U. Then K and L are both perpendicular to U. We claim
that K is perpendicular to the y-axis. By the stability of perpendicularity
(Lemma 5.7), we can argue by cases to prove that. If U is distinct from
the y-axis and K is distinct from L, then zpx0 is a quadrilateral with three
right angles, at 0, x, and p. Hence by Lemma 5.24, it is a rectangle. (Here
we need Playfair’s axiom, as Lemma 5.24 requires it, but we do not need
Euclid 5.) Hence K is perpendicular to the y-axis. If U coincides with the
y-axis, then K is perpendicular to the y-axis, since it is perpendicular to
U. If K coincides with L, then K is perpendicular to the y-axis, since L
is perpendicular to the y-axis. These cases are (classically) exhaustive, so
by the stability of perpendicularity, we conclude that K is perpendicular to
the y-axis. Then z is the projection of p on the y-axis. That completes the
proof. -

REMARK. If instead of constructing K as a perpendicular to U containing
z, we construct K as perpendicular to the y-axis at z, then we have to prove
K meets U, which can be done using the strong parallel postulate, but it is
not clear how to do it using only Euclid 5. The construction given in the
proof avoids not only the strong parallel postulate but even Euclid 5, using
only Playfair, although we still need Euclid 5 to make rotation work at the
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start of the proof. It is crucial to avoid at least the strong parallel postulate,
since we will eventually (in Corollary 9.5) use this lemma to help prove the
strong parallel postulate from Euclid 5.

8.2. Addition. To perform addition geometrically we suppose given a line
L = Line (R, S) and an “origin”, a point O on L with S between R and O.
We need to define a construction Add (A, B), which also depends, of course,
on S, R, and O, such that Add(A. B) is a point C on L representing the
(signed) sum of 4 and B, with O considered as origin.

LEMMA 8.2. Given line L = Line(R.S), and a point O on L with S between
R and O, we can construct a point Add (A, B) on L representing the signed sum
of A and B, with O considered as origin, using the elementary constructions
and Circle3.

REMARK. In order to appreciate that this lemma is not trivial, consider the
following obvious, but incorrect, attempted solution:

Add (A, B) := IntersectLineCircle2 (Line (O, B), Circle3 (A, O. B)).

This works fine for B # O, whatever the “sign” of 4 and B, and it even
works when 4 = O, but when B = O it is undefined.

C Jot
U v
W=A+B
0 1 B R

FiGure 28. Signed addition without test-for-equality. 4 is
rotated to U, then projected to V', then rotated to .

ProoF. With Rotate in hand, we can give a construction for Add (A, B)
(depending also on R, S, and O). (The construction is illustrated in Fig. 28
and Fig. 29) First, we replace R with a new point on L = Line (R, S), farther
away from O, so that O, A, and B are all on the same side of R, and the
new R and S are in the same order on line L as R and S were before. Such
points can be constructed using Extend , but we omit the details. Now erect
the perpendicular K to L at O, and the perpendicular H to L at B. In the
process of erecting these perpendiculars, we will have constructed a points
C on K such that ROC is a right turn. Then let D be the projection of C
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on H and let
U = Rotate (R, 0, C. A).
V = Project(U, H),
W = Rotate(D,B,R. V).
A o W=A+ B B

U V
FIGURE 29. Signed addition when A is negative.

We set Add (A, B) = W. Then Add (A, B) is defined for all 4, B. Suppose
A # O. Then UV is perpendicular to both K and H. Then U and V' are
on the same side of L, since if UV meets L at a point X, then XU and XO
are both perpendicular to K, which implies U = O, which implies 4 = O,
contradicting 4 # O. It then follows from the property of Rotate that B and
W occur on line L in the same order that O and A occur. Refer to Fig. 29 for
an illustration of the case when A is negative. This implies that Add (4. B)
represents the algebraic sum of 4 and B, since in magnitude BW = OA.

We indicate by pictures (Fig. 30 and Fig. 31) how the commutativity
and associativity of addition can be proved (without case distinctions). We
note that the definition of uniform rotation and the stability of betweenness
allows us to argue using case distinctions, because double negations can be
pushed through and eliminated by stability.

C
X Y
H
U V
0 4 R
A B W=A+B=B+4

FIGURE 30. Commutativity of addition with 4 and B positive.
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X Y
7 E
P
0 A B A+BC G=B+C A+B+C

FIGURE 31. Associativity of addition, positive arguments.

8.3. Unsigned multiplication. The geometrical definitions of multiplica-
tion and square root go back (at least) to Descartes.!” On the second page
of La Geometrie [11], he gives constructions for multiplication and square
roots. We reproduce the drawings found on page 2 of his book [11] in Figures
32 and 36.

Here is Descartes’ explanation of this figure:

1. Let AB be taken as unity.

2. Let it be required to multiply BD by BC. I have only to join the
points A and C, and draw DE parallel to CA; then BE is the
product of BD and BC.

3. If it be required to divide BE by BD, I join E and D, and draw
AC parallel to DE, then BC is the result of the division.

From the point of view of constructive geometry, there is a problem with
the construction. Namely, Descartes has only told us how to multiply two
segments with nonzero lengths, and at least one of whose lengths is not 1
(the length of unity—he needs this when constructing 4C parallel to DE),
while we want to be able to multiply in general, without a test-for-equality
construction.

B A D
FIGURE 32. La Multiplication according to Descartes.
17 Although Descartes is usually credited with this, compare Euclid VI.12, which is very

similar to Descartes’s treatment of multiplication and division, and Euclid VI.13, which is
very similar to Descartes’s construction of square roots.
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Using the Para construction of Lemma 5.41 where Descartes calls for
“drawing DE parallel to CA”, we no longer have a problem multiplying
numbers near 1 or 0. In [3], we gave a construction that successfully gener-
alizes Descartes’s multiplication method to signed arguments. That method
uses Rotate. However, Hilbert ([20], p. 54) gives another construction,
whose result is equivalent to that of Descartes for positive arguments, but
which directly works correctly for signed arguments as well. It is illustrated
in Fig. 33.

The construction is as follows: Start with Line (0. 1). Erect a perpendicular
to Line (0, 1) at 0, and let I be a point on it such that 0/ = 01. Given points
a and b on Line (0, 1), construct a circle passing through 7. a. and b. This
must be done uniformly, so that when a = b, the circle passes through 7 and
is tangent to Line (0, 1) at a. Assume for the moment that such a circle exists.
Then the result of the construction is “the other point of intersection” of
the circle and Line (0, I), except that this point lies not on Line (0, 1) but on
Line (0. 1), so it needs to be rotated clockwise back to Line (0, 1). This “other
point of intersection” can be defined by a term, according to Theorem 7.5.

The point at issue is, what version of the parallel postulate is required
to prove the existence of the required circle? We have already done the
work: If we restrict ¢« and b to be nonnegative, then the one-sided triangle
circumscription principle is exactly what is needed, and Lemma 6.15 shows
that Euclid 5 suffices.

THEOREM 8.3. Assuming Euclid 5, Hilbert multiplication as shown in Fig. 33
can be defined for all a and b on the nonnegative x-axis. That is, it is defined
by a term HilbertMultiply (a.b).

ProoOF. The proofs of Lemma 6.15 and Theorem 7.5 provide the required
term. -

Lemma 8.4. Playfair’s axiom implies the commutative ring laws, with
Hilbert Multiply for multiplication and Add for addition, whenever the terms

ab

~

N b

\/

FIGURE 33. Multiplication according to Hilbert.
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involved are defined; that is, assuming the required circles and points of
intersection exist.

Proor. The theorems in question have the form ¢ = s, where ¢ and
s are two terms for geometrical constructions. The formulas 7 | and
s | are existential formulas, specifying that certain “witnessing points”
exist satisfying certain quantifier-free and disjunction-free relations. Hence
t L As | — t = sisequivalent to a universally quantified negative formula.
Hence, by the double-negation interpretation from [6], it suffices to prove
this classically. But that has been done many times, for example in [28].
Alternately one can check the proofs in [28] directly to see that they are
constructive. That completes the proof. —|

8.4. An alternative approach to constructive addition. The geometrization
of arithmetic in [16] can be made constructive, providing an alternative to
the definition given above. We show how this is done. Again we fix a line L,
which we also call the x-axis, and points 0 and 1 on L, and we construct
the y-axis perpendicular to L at 0. Then x + 1 := exz(0, 1,0, x) works as
the notation indicates for all x on L, and x — y := ext(x + 1, x.0, y) works
for y > 0. Unary minus, —x, is defined by uniform reflection in the y-axis.
We define |x| = ext(—1,0,0, x). This is better than |x| = /|x2], since it
does not require square roots or multiplication (hence requires no parallel
postulate.)

Then, using the binary subtraction just defined, we define the negative
part of a by

|
a” = =(a—lal).

S(a —al)
The factor % represents a midpoint construction, not a multiplication. The
midpoint construction in question is the uniform midpoint of segment 0x
assuming that x lies on line L, as defined in Lemma 5.44. Thus there is a

term with free variable a defining ¢ ~. Then we define a* = —((—a)~).
using the unary minus defined above. Finally we define
a+b:= @ +b")—(a” +b"). (6)

Then we still have to prove the laws of addition and the distributive law. For
that, we can appeal to the double-negation interpretation in [6].'3

8.5. From unsigned to signed multiplication. Hilbert’s definition of multi-
plication, works without case distinctions about the signs of @ and b, but it
requires the strong triangle circumscription principle, while we wish to use
only Euclid 5. We were able to define Hilbert multiplication for nonnegative
arguments using Euclid 5. Now we define a new multiplication a - b, which
agrees with HilbertMultiply (a.b) for nonnegative a and b by definition.
Later we will show that it agrees for all « and b.

¥Note that both definitions of addition require the uniform reflection construction, which
in turn requires a constructive definition of rotation. Therefore the extra work involved in
making the definition constructive is essentially the same for both approaches; it is just a
matter of taste whether one likes an approach that is explained with pictures or with equations.
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We make use of the positive and negative parts a* and @~ defined in (6).
Motivated by the idea that, since x = x* — x~, we should have

a-b=(@ " —a")-(bT—b7),

we define
a-b:=(@bt*+a b )—(a bt +ath).
On the right, multiplication means Hilbert Multiply , and is only applied to
nonnegative elements. On the right, addition means the geometric Add . and
subtraction means the geometrically defined binary subtraction. Hence the
right side abbreviates a term representing a geometrical construction. That
can be taken as the definition of multiplication for arbitrary ¢ and b on the
X-axis.
Multiplication defined in this way satisfies the commutative law:

a-b= @b "+a b )—(a b +a"h")
=b-a

using the commutativity of Hilbert Multiply and the commutativity of Add
on the right. Multiplication similarly can be shown to satisfy the associative
and distributive laws. Therefore we may make algebraic calculations using
a - b in the usual way.

We need to develop a bit of analytic geometry using this multiplication. We
define the “length of segment pg”, denoted by |pg|, to be the point r on the
positive x-axis such that Or = pq. Officially, | pg| is constructed as follows:
Let u = —1 be the reflection of —1 in the y-axis. Then |pq| = ext(u,0, p. q).
Then two segments are congruent if and only if they have the same length;
that follows from the stability of equality and the fact that a segment cannot
be congruent to a proper subsegment.

We use the wusual notation for coordinates: instead of p =
MakePoint (p1, p»), we just write p = (p1., p»), and we use subscripts to
indicate the coordinates of a point. In this setting we can formulate a ver-
sion of the Pythagorean theorem: if pgr is a right triangle, with the right
angle at ¢, then

pal* + lar® = |prf?

where x“ means x - x. Note that here only points on the nonnegative x-axis
are multiplied. One can prove this version of the Pythagorean theorem, but
it is not trivial. It is Proposition 20.6, p. 178 of [16]. (Hartshorne defines
multiplication on equivalence classes of segments; the segments of the form
0p with p on the nonnegative x-axis can be taken as coset representatives,
so Prop. 20.6 does represent the theorem we need.) The proof is perfectly
constructive, so there is no need to repeat it here.

We do need a slight improvement: let L and K be two perpendicular lines
meeting at ¢, and let p and r lie on L and K respectively (but we do not
assume they are different from ¢). Then the equation of the Pythagorean
theorem still holds. Because of the stability of equality, we can prove this by
cases. (See §2.3 if needed, to review why stability of equality permits us to
argue by cases here.)

2

https://doi.org/10.1017/bsl.2015.41 Published online by Cambridge University Press


https://doi.org/10.1017/bsl.2015.41

CONSTRUCTIVE GEOMETRY AND THE PARALLEL POSTULATE 75

If p and r are different from ¢, it is the Pythagorean theorem from
Prop. 20.6. If either p = g or r = ¢, then one of the sides has length 0
and the other two sides coincide, so the equation is trivially true. Hence
the Pythagorean theorem is constructively true, even for possibly degenerate
right triangles.

THEOREM 8.5 (Euclid 5 implies multiplication). Assume Euclid 5 and line-
circle continuity. Fix a line L for the x-axis, and points 0, 1, and I for use in
coordinatization. Then Hilbert Multiply (a, b) is defined for all a.b on L.

Proor. By Theorem 8.3, Hilbert Multiply is defined for nonnegative ¢ and
b. It follows that a - b is defined for all @ and 5. We will show that, for all a
and b, Hilbert Multiply (a.b)isequaltoa-b. Letd = a-b. Then d is a point
on the x-axis; let D be the rotation of d by ninety degrees counterclockwise,
so D lies on the y-axis. Using uniform rotation, we do not need a case
distinction on the sign of d. See Fig. 34. Although the picture shows a < b,
the proof does not assume that.

We must show (i) there is a circle through a. b, and I, and (ii) that circle
passes through D. While in general we cannot construct a uniform midpoint
of an arbitrary (possibly null) segment ab, Lemma 5.44 says that we can
construct a uniform midpoint of a (possibly null) segment ab if we know
that ¢ and b are restricted to lie on a fixed line. Let L be the fixed line serving
as the x-axis. Let m be the uniform midpoint of segment ab (constructed by
Lemma 5.44 using L), and let M be the uniform midpoint of segment 1D
(constructed by Lemma 5.44 using the y-axis for the line). Let M’ be the
rotation of M by ninety degrees clockwise; using uniform rotation this can
be constructed without a case distinction about the position of M on the
y-axis. Let e = MakePoint(m, M'), which is defined, assuming Euclid 5,
by Lemma 8.1. Then eM Om is a rectangle (unless some of its sides coincide,
but by stability of equality, its opposite sides are equal, whether or not
they coincide). Then eD = el since e lies on the perpendicular bisector of

~

G'—
S

FIGURE 34. d = a - b makes el = ea, so d = HilbertMultiply (a.b).
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DI (technically, by the stability of equality we can argue by cases, whether
D = I or not). Similarly ea = eb. To complete the proof, it suffices to show
that ea = el. The point e has been constructed uniformly, with no case
distinction about the signs or relative positions of @ and b; but now, by the
stability of equality, we are allowed to argue by cases for ea = el. That is,
however, not necessary.

I do not know a direct geometrical proof that ea = el. We use analytic
geometry. The following algebraic calculations, however, are officially abbre-
viations for geometrical constructions, i.e., the multiplications refer to the
multiplication x - y defined above, and the additions to Add . Divisions by 2
refer to a uniform midpoint construction.

Let R = |el| and r = |ae|. We make use of the Pythagorean theorem
as described above. We also make use of the distributive law, and of the
properties of addition, whose proofs have been sketched above.

. a+b d+1
- 2 7 2 ’

s (d+1 2+ b—a\’
T\ 2 2

=r.

Since R> = r? and both r and R are nonnegative, we have r = R. That
completes the proof. -

8.6. Reciprocals. According to the definition of Hilbert Multiply , a recip-
rocal of a nonzero point @ on L = Line (0, 1) is a point b on L such that
there is a circle C through a, b, and I, and C is tangent to K = Line (0, 1)
at 1. The reciprocal of x can be constructed by the following script. It uses
the script Other for the other intersection point of a line and circle, which
was defined and proved correct in Theorem 7.5. The script is illustrated in
Fig. 35. The dashed line N is used in the proof, but not in the construction.

Point Reciprocal(Point a)
{ K = Perp(L,0)
H = Perp(I,K)

M = Line(a,I)

m = Midpoint(a,I)

J = Perp(m,M)

e = IntersectLines(H,J)
C = Circle(e,a)
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b = Other(a,L,C)
return b

}

The following lemma proves the correctness of this script. The hard part
is to show that Reciprocal (x) is defined for x # 0.

F1GURE 35. Construction of the reciprocal of a.

LemMA 8.6 (Reciprocals). Let Reciprocal be defined as in the construc-
tion script above. The strong parallel postulate implies that for a # 0,
Reciprocal (a) is defined, and if b = Reciprocal (a). then Hilbert Multiply
(a.b) = 1. Euclid 5 implies the same conclusion under the hypothesis a > 0
instead of a # 0.

PROOF. Assume a # 0. We will show Reciprocal (x) is defined, by going
through the script line by line. Since Perp is everywhere defined, K and H
are defined; since / does not lie on L, a # I, so M is defined. Since a # I,
m is defined; since Perp is everywhere defined, J is defined. Now we have
to prove that lines H and J meet in some point e. That is where we use
the strong parallel postulate. Let N = Perp(I, M'). Then by Lemma 5.14, N
and J are parallel, since both are perpendicular to M. Both N and J pass
through /. M is not perpendicular to H at I, since if it were, then /a and
10 would be two perpendiculars to H at I, so they would coincide, and it
follows that « = 0, contrary to hypothesis. Then let x be any point on H
other than I, for example, x = IntersectLineCirclel (H, Circle (1,0, 1). Then
x 1s not on N, since if it were then H and N would coincide. Hence we can
apply the strong parallel postulate to conclude that H meets J. Then ¢ in
the script is defined. Since Circle is always defined, C is defined. Since « lies
on both L and C, b in the penultimate line is defined. Hence Reciprocal (a)
is defined.

By Lemma 5.13, C is tangent to K at /. Then by definition of
HilbertMultiply . we have HilbertMultiply (a.b) = 1, since circle C passes
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through ¢ and b and meets K in 7, and the “fourth point of intersection” is
the point 7, since C is tangent to K at /. That completes the proof. —

I do not know of a direct verification of the distributive law for Hilbert
multiplication. Hilbert showed that his definition is equivalent to that of
Descartes and verified the distributive law for that definition. Once the
terms for Add (a.b) and Hilbert Multiply (a.b) are defined, the laws of ring
theory are quantifier-free and disjunction-free, and we wish to use a general
metamathematical tool to “import” classical proofs of such formulas, thus
avoiding the necessity of checking a long proof for constructivity line-by-line.
The tool to be used is Godel’s double-negation interpretation. We therefore
need only check that there is a classical proof, using axioms of geometry
to which the double-negation interpretation applies. The double-negation
intepretation has been worked out for Tarski’s axioms for geometry in [6];
using that result, we need only to check that the laws of ring theory are
classically provable in Tarski’s geometry. That is done in [28], for Descartes’s
multiplication; so it only remains to check in Tarski’s geometry that Hilbert’s
multiplication agrees with Descartes’s multiplication. Hilbert’s multiplica-
tion is not specifically mentioned in [28], but the equivalence is proved
directly on pp. 52-54 of [20], using the theorem of Pappus-Pascal, which is
proved in [28]; this proof can be carried out in Tarski’s geometry since all
the theorems mentioned are proved in [28]. That completes the proof. =

REMARKS. The construction of Hilbert Multiply (a, b) works in the degen-
erate cases, including ¢ = b = 0. It is instructive to trace through what
happens when ¢ = b = 0, and we recommend the reader to think about the
case a = b = 0 and the cases when « and b are small, but not zero, and
possibly of unknown signs. You will see why we need the uniform perpendic-
ular bisector of ab, and why we need uniform reflection in constructing the
“other intersection point.”

While the verifications of the ring-theory laws are not trivial, the point of
the above proof is that it suffices to check them classically, since once we have
given uniform constructions for addition and multiplication, the statements
of the ring-theory laws become quantifier-free and negative. The heart of
the constructive treatment of this subject is giving uniform constructions.

8.7. Squareroots. Now we take up the geometrical construction of square
roots. Fig. 36 shows Descartes’ construction for finding the square root of
HG. His answer is the length of segment /G. Here is a geometrical con-
struction term (encoded as a program) to carry out Descartes’ construction
uniformly, as long as G is not to the left of H in the illustration, regardless
of whether G = H or not. We assume that A in the diagram is 0 and the
horizontal line is Line (0, 1). The point 1 is not shown in the figure.

SquareRoot (Point G)
{ // H in Descartes’ diagram is O
F = Add(0,G,0,1) // so FG has unit length
Midpoint (F,0)
Circle(X,F)
Perp(G,Line(0,F))

Q=X
o
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H K G F
FIGURE 36. Square roots according to Descartes.

I = IntersectLineCirclel(L,C)
// next rotate unit length to line L

U = IntersectLineCirclel(L,Circle(G,F))

R = Rotate(U,G,F,I) // so now RG = IG
// but R is on Line(H,G), on the same side of G as F
// now we need N so that NO = RG

MinusOne = IntersectLineCircle2(1,0,Circle(0,1))

N = Extend(MinusOne,0,G,R)

return N

¥

Descartes stops when he has constructed 7. What we have to do extra is
to construct a point N such that ON = GI. In order to do that uniformly,
we must not assume that / # G. In order to get a nondegenerate angle we
cannot use /GF; instead we lay off a unit length on the perpendicular G/,
which has been correctly constructed even if 0 = H = G = I. Thus we do
not need to assume G # 0 for this construction to work; we only need that
0is not between G and 1; loosely speaking, G > 0. This works because Perp
is total.

We now check the validity of Descartes’s construction of square roots. Let
SquareRoot (x) be the term defined by the construction script in Section 8.7.
Then we have

LEMMA 8.7. Playfair’s parallel axiom implies that iff x lies on Ray (0. 1).
and z = SquareRoot (x), then Hilbert Multiply (z,z) = x.

Proor. Since what is to be proved is quantifier-free, we can appeal to the
double-negation interpretation in [6]. But there is also a beautiful “proof by
diagram”, which we now exhibit. In the case of squaring, Hilbert multiplica-
tion has the circle tangent to the horizontal axis, since a and b coincide, as
illustrated in Fig. 37. Replacing a by \/x and reflecting Fig. 37 in a diagonal
line from upper left to lower right, we obtain the first diagram in Fig. 38.
Relabeling that diagram, and omitting the bottom half of the circle, we
obtain Descartes’s method of calculating the square root of x, shown in the
second diagram in Fig. 38. —

89. The arithmetization of geometry. Our aim in this section is to lay
the groundwork for a constructive version of the classical representation
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NS}

~

FIGURE 37. Hilbert multiplication in the special case of squaring.

theorem: the models of Euclidean geometry are exactly planes F> where
F is a Euclidean field. Classically, a Euclidean field is an ordered field in
which positive elements have square roots. The groundwork in question
consists in developing the theory of Euclidean fields constructively, and
verifying constructively that the axioms of line-circle continuity and circle-
circle continuity hold in each plane over a Euclidean field.

9.1. Euclidean fields in constructive mathematics. We discuss the axioma-
tization of Euclidean fields with intuitionistic logic. We use a language with
symbols + for addition and - for multiplication, and a unary predicate P(x)

a2
A
I
|
I
14 VX
I
|
v = .
_____________ o m——
! x =da? 1_7
\ -
\ /’
\ /
\ /
N /
N Ve
N -
N 7
S o _-

FIGURE 38. If z = SquareRoot (x). then Hilbert Multiply
(z,z) = x. The left circle is Fig. 37 reflected in the diagonal
line. The right circle is a relabeling that is recognized as
Descartes’s square root.
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for “x is positive”. We take the usual axioms for fields, except the axiom for
multiplicative inverse, which says that positive elements have multiplicative
inverses. If positive elements have inverses, it is an easy exercise to show that
negative elements do too. We define a Euclidean field to be a commutative
ring satisfying the following additional axioms:

XFEYy 5> XxX=Yy stability of equality
0#1 EFO0
x#0 = Jy(x-y=1) EF1
P(x)ANP(y) = P(x+y)AP(x-y) EF2
x+y=0 = =(P(x)AP(>)) EF3

X+y=0A-P(x)A=-P(y) - x=0 EF4
x+y=0A-P(y) = Jz(z-z =x) EF5
——P(x) — P(x) EF6, or Markov’s principle

As usual, we define x < y to mean 3z(P(z) A x + z = y), or informally,
y — x is positive; and x < y means —(y < x). Then Markov’s principle is
equivalent to —(x < 0) — 0 < x.Itcanalso bewrittenas ——0 < x — 0 <
x. One can extend theories including EF2 and EF3 conservatively by adding
symbols x < y, x < y, —x. x — y and /X, and then define |x| = V/x2.
Informally we make use of these symbols, but they are eliminable if desired.
We also informally abbreviate x - x as x2.

Axiom EF5 says that nonnegative elements have square roots. This is a
stronger axiom, intuitionistically, than simply specifying that positive ele-
ments have square roots. Using the abbreviations mentioned above, EF5 can
be written - P(—x) — 3Jz(z> =x),oras0 < x — 3Jz(z> = x), or as
0<x — (Vx)?=x.

We note that “all positive elements have square roots” implies “all nonzero
elements have square roots”, in view of the fact that

1_..(1
a a? )’

That is, if y - o> = 1, then (ay) - @ = 1. Hence, contrary to [4], it is not
a different theory of Euclidean fields if we require only that all positive
elements have square roots.

In commutative ring theory an element x is called invertible if it has a
multiplicative inverse; that is, for some y we have x - y = 1. We also say
“x has a reciprocal.” The weakest version of Euclidean field theory that we
consider replaces Axiom EF1 with the following two axioms, which say that
elements without reciprocals are zero, and that “bounded quotients exist.”

Vyx-y#1) - x=0 EF7

la] < |bly — 3z(a = bz) EF8. bounded quotients exist
Fields that satisfy EF0, EF2-EF10 are called “Playfair rings”, because (as
shown in §10) they correspond to models of the Playfair parallel axiom. EF7

enables us to verify the Playfair axiom, and EF8 enables us to verify Pasch’s
axiom and circle-circle continuity.
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To recap: In a Euclidean field, all nonzero elements have multiplicative
inverses, In a Playfair ring, elements without reciprocals are zero, and a/b
exists if it is bounded:; that is, if for some y we have |a| < |b|y. With classical
logic, all these concepts coincide, since EF7 is classically equivalent to EF1.

We check that some common calculations still work without EF1:

LemMa 9.1. In a Playfair ring the following hold:

(i) If x> 0andy <0, then xy < 0.

(i) ~—x <y — x <y (stability of <).
(iii) If ab < ac,and0 < a. then b < c.
(iv) If0 < a and ab = 0 then b = 0.

ProoF. Ad (i): Suppose x > 0 and y < 0. Then P(—y) and P(x). so by
EF2, P(x-(—y). Butx-(—y) = —xy.so P(—xy). But that is, by definition,
xy < 0. That proves (i).

Ad (ii): Suppose == x < y. That is, =—(=P(x — y)). Triple negation is
the same as negation, so =P (x — y). Thatis, x < y.

Ad (iii): Suppose 0 < a and ab < ac. We must prove b < c¢. By (i), it
suffices to derive a contradiction from the assumption =6 < ¢, that is, from
——¢ < b. For that it suffices (even without EF6) to derive a contradiction
from ¢ < b. Suppose ¢ < b: then ¢ — b < 0, so by (i), a(c — b) < 0,
contradicting ab < ac.

Ad (iv): ab < ab implies ab/a exists (and is b), so we can divide both
sides of ab = 0 by a, obtaining b = 0. That completes the proof. -

REMARK. In a Playfair ring, there might be zero divisors (ab = 0 with
neither ¢ = 0 nor b = 0), but nevertheless by (iv) we can cancel positive
factors.

9.2. Line-circle continuity over Playfair rings. Let F be an ordered field.
Then “the plane over F”, denoted by 2, is a geometrical structure deter-
mined by defining relations of betweenness and equidistance in F2, using
the given order of F. Namely, b is between a and c if it lies on the interior
of the segment ac. That relation can be expressed more formally in various
ways, for example (using the cross product) by (¢ —b) x (b —a) = 0 and
(b—c)-(a—>b) > 0. Similarly, nonstrict betweenness means that b lies on the
closed segment ac, or formally, (c —b) x(b—a) = 0and (b—c)-(a—b) > 0.

The equidistance relation E(a, b, ¢, d), which means that segment ab is
congruent to segment cd, can be defined by (b — a)?> = (d — ¢)?. Note that
no square roots were used, so these definitions are valid in any ordered field.
Though we have not given specific axioms for betweenness and congruence,
it is reasonable to demand that any constructive axioms for betweenness
and congruence should hold in F2. By line-circle continuity we understand
this axiom: let point a be nonstrictly inside circle C, and point b be non-
strictly outside circle C. Then Line (a, b) meets circle C in a point nonstrictly
between a and b. By circle-circle continuity, we mean that if circle C has a
point nonstrictly inside circle K, and another point nonstrictly outside circle
K, then there is a point on both circle C and circle K.
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THEOREM 9.2 (proved constructively). Let IF be a Playfair ring: that is, an
ordered Euclidean ring in which bounded quotients exist and elements without
reciprocals are zero (EFT and EF8 above). Then

(i) F? satisfies circle-circle continuity.
(ii) F? satisfies line-circle continuity.

(iii) Nonnegative elements have square roots in F.

PROOF. A similar theorem (for classical Euclidean fields) is stated in [16],
p. 144, and a proof is sketched. Here we have additional issues: we must use
only intuitionistic logic, and we must get by with weaker assumptions about
the existence of reciprocals. In proving (i) implies (ii), no division is required.
In proving (ii) implies (iii), we just use Descartes’s square-root construction.
Consider proving that (iii) implies (i). We can assume (using translations
and rotations without any division) that one circle (call it C) is defined by
x% 4+ y? = r? and the other (call it K) is defined by (x — ¢)> + y? = R?,
with ¢ > 0. Subtracting, we have 2cx = r> — R? + ¢2, so we only need
to be able to divide the right side by 2¢. Using EFS, it suffices to bound
the quotient, that is, to bound the x-coordinate of the intersection points.
That seems quite intuitive: x must lie between —r and ¢ + R. But to prove
it, we must use the hypotheses of circle-circle continuity. One proves (by
approximately one page of algebraic computations, here omitted) that C
has a point (non-strictly) inside K and another (non-strictly) outside K if
and only if the following two inequalities hold:

r+R>c, (7)

R—c<r < R+ec. (8)
This is the algebraic expression of the hypotheses of circle-circle continuity.
(These are the very details that are “left to the reader” in [16]. p. 144.)
The conclusion is very believable without a proof, since (7) fails when the
circles bound disjoint closed disks, and (8) fails if one lies inside the other.
Inequality (8) implies that |R — r| < ¢; this is obvious if < Ror R < r,
and since =~ (r < RV R < r), we have =—|R — r| < ¢, but then by the
stability of < we can drop the double negation.

Returning to the proof, in order to solve the equation 2cx = r> — R? 4 ¢
for x in a Playfair ring using EF8, we need to justify dividing the right side
by 2¢. By EFS, it suffices to show that for some z, we have

[r? — R* + ¢?| < 2cz.
We take z = r + R + ¢. Then the required inequality is proved as follows:
1 = R* 4+ ¢? < |rP — R*| + ¢?
<|(r—=R)|(r+R)+c?
<(r+R)c+c? since |[r — R| < ¢
<(r+R+c)e = z¢c < 2z
Hence the x-coordinate of the intersection points exists. Then we also need

to prove y = v/r2 — x2 is defined, i.e.. x> < r2. By (8). we have r < R + c.
Hence r — ¢ < R. If ¢ < r we have |[r — ¢| < R. On the other hand,
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if » < ¢ then (7) implies |¢ — r| < R. Since =~ (r < ¢ V ¢ < r), we have
——|r — ¢| < R, and hence by the stability of < we have |[r — ¢| < R. Hence
(r—c¢)? < R?
r2 —2rc 4+ ¢* < R?
12— R>+ % < 2rc
2ex < 2rc since 2cx = 12 — R? + ¢?
x<r by Lemma 9.1 (iii), since ¢ > 0.
Now if 0 < x we can conclude x? < r? as desired.
Next we claim |R — ¢| < r. If ¢ < R, that follows from (8). If R < ¢, it

follows from (7). Since == (¢ < RV R < ¢), the claimed inequality follows
by the stability of <. Hence

|IR—c|<r
(R—c)<r?
R?> —2Rc + ¢? §r2
—2Rc 42 <= R>+¢* = 2¢x.
As shown above it is legitimate to divide by 2¢: we obtain
—R+c<x
R—c¢c>—x.

If x < 0 then we can square both sides, obtaining x> < (R — ¢)>. But
(R — ¢)? < r?; hence x? < r? (still under the assumption x < 0).

Now we have proved x2 < r? follows from 0 < x, and also from x < 0.
Since =0 < x V x < 0, we conclude by the stability of < that x> < r? holds
without assumptions. Hence y = v/r2 — x2 is defined. That completes the
proof. =

REMARK. We have proved that the existence of “bounded quotients” is
enough to guarantee the existence of intersection points of circles. That
corresponds intuitively to the fact that these intersection points are known
in advance to lie within the bounds of the two circles. By contrast, the point
of intersection of two lines asserted to exist by Euclid 5 is not bounded in
advance, unless we have a theory of similar triangles, but we need Euclid 5
to develop such a theory. If we consider a line in F? passing through (0, 1)
with slope ¢, it will meet the x-axis at (1/¢,0). But without an a priori bound
on 1/t, we can’t prove that point exists on the basis of the axioms of Playfair
rings.

9.3. Pasch’s axiom in planes over Playfair rings. We first consider the use
of analytic geometry to calculate the intersection point of two lines in a
plane over a Playfair ring F. In F2, if Line (u, v) and Line (s, t) intersect (and
do not coincide), the formula for the intersection point has denominator
given by the cross product D = (t — s) x (v — u). To prove this, let x be the
intersection point. Then x satisfies the equations of both lines:

(x —s)x(t—s5)=0,
(x —u)x(v—u)=0.
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Then
xx(t—s)=sx(t—s5) = sxt,
xxw—u)=uxv—-u) = uxo.

Writing out the cross product on the left, we obtain linear equations for the
components x; and x, of x. Cramer’s rule yields expressions for x; and x»
with D in the denominator, as claimed above; so if D is invertible, we can
solve for x. Even if D is not invertible, we can still use Cramer’s rule to give a
formula for x; and x, as long as we know in advance that the lines intersect
in x. That is, if Cramer’s rule gives the formula x; = R/D, then at least we
know Dx; = R, so R < Dxj, so R/D exists by EF8.

On the other hand, suppose we do not know that the lines intersect.
Then we can still calculate the formula that Cramer’s rule would give, say
x1 = R/D and x, = S/D. If we can show that these quotients are bounded,
i.e., R < Dy for some y and S < Dz for some z, then R/D and S/D are
defined in F, and we can verify that the formulas given by Cramer’s rule
do provide a solution. In essence, then, to prove two lines intersect we can
proceed as follows: solve the equations for the intersection point as if F
were a Euclidean field; having arrived at expressions for the solutions, show
they are bounded by something that we know exists in [F; then the formal
quotients defining the solution actually exist.

We now turn to the verification of Pasch’s axiom in planes F? over a
Playfair ring F. Specifically, we consider Pasch’s axiom in the form “inner
Pasch.” See Fig. 39.

b

a=1(00) p c
F1GURE 39. Verification of Inner Pasch.

THEOREM 9.3. Let F be a Playfair ring. Then the plane F? satisfies inner
Pasch.

Proor. The hypothesis of inner Pasch is
B(a.p.c) N B(b.q.c)Np#bAq+#a.

We must verify the existence in F? of a point z such that B(a,z,¢q) and
B(b, z, p). That is, we must show how to calculate the coordinates of z,
without assuming that all nonzero or positive elements have reciprocals. We
want to simplify the algebra by first applying an affine transformation to
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bring the points to some standard position. Although affine transforma-
tions preserve betweenness (even though they may not preserve distance),
the nature of the argument requires that we use invertible transformations,
because we are arguing that if we can verify Pasch in the transformed situa-
tion, then we can apply the inverse transform to construct the point required
by Pasch in the original situation.

We suppose p = (p1, p») with p; and p» inF, and we use a similar notation
for the coordinates of the other points. By a translation, we can bring « to
(0,0). All translations are invertible. Now we want to bring p to a point on
the positive x-axis. Let d = p + p3; thend > 0so Vd exists. Since p # a
and a = (0,0), we have p > 0 by Markov’s principle EF6. We claim that
p1/d and p,/d exist; that follows from the bounds p;/d < 1and p,/d < I;
that is, p; < d and p; < d, which in turn follow from p? < p? + p3 and
p3 < p} + p3. Then by the transformation with the matrix

(i v2la )

we can bring p to the point (d, 0) on the positive x-axis. This transformation
is invertible, since its determinant is 1. Because of the reduction by this
transformation, we can assume without loss of generality that p, = 0. Then
because B(a. p. ¢), ¢ lies on the x-axis.

Fig. 39 illustrates the situation. If IF were a field, we could arrange for b to
have the same first coordinate as p using another linear transformation, but
we cannot show that the required transformation is invertible, so we proceed
without knowing anything about the position of 5. We proceed as described
above, to solve for z as if F were a field. We have

zxq=0,
(z—=p)x(b-p)=0.
The first equation becomes z>¢; = z1¢», and the second becomes

zx(b—p)=pxb,
Zlb2 — Zg(b] — pl) =pX b since P = 0.

In order to eliminate z, we multiply first by ¢, and the replace z,q; by z1¢5:

z1(qiby — q2(b1 — p1)) = q1(p x b).
z1(g x (b = p)) = qi(p x b).

Now, if the divisions could be carried out, we could solve for z; and z;:

pXxb
21 =N 77 o
qx (b—p)
q pxb since z,¢ q
I =(r——F——— 2241 = Z142.
qx(b—p)

In order to justify these divisions, showing that z; and z, exist, we must
bound the expressions on the right in the last two equations. We claim they
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are bounded by |¢;| and |¢a|, respectively. It suffices to show that the fraction
on the right is bounded by [; that is,

lp x b <|gx(b—p)|

We have p x b = p1b, > 0. Wehave g x (b — p) = g x b+ p x q and
p xq=pig» >0, and ¢ x b > 0 because B(b, ¢, ¢). Hence it suffices to
show

pxb<gxb+pxgq. 9)

That is “evident” from the diagram, if we knew that cross products measured
area in the usual way. But technically we have to compute it. Let a =
(¢ — p)x (g — p). Then 0 < a. since o = (¢; — p1)q2. and both factors are
positive.

It will suffice to prove the following assertions:

cxb=pxq+qgxb+a. (10)
cxb=pxb+a+(qg—p)x({b-p)). (11)
0<(g—p)x(-p) (12)

for then, subtracting (10) from (11), we get

pxb<pxqg+qgxb—(q—p)x(b-p)

and then, using (12), we obtain the desired equation (9). Again, each of
these assertions is “obvious” if we interpret the cross products as areas of
triangles, but we must give an algebraic proof.

To prove (12): We have

(g —p) x(b—p)=(q1— p1)br — q2(by — p1)

and the right side is positive because ¢; — p1 > by — py and b, > ¢;, both of
which follow from B(b. ¢g. ¢).
Since B(b. ¢. ¢). we have
0=(c—5b)x(q—0>)
= (c1 = b1)(q2 — ba) + ba(q1 — b1),
c1by = c1g2 — biga + baqi.
¢ X b=ciqy—bigx + b
=c1q2+q x b,

That is the left side of (10). Now we calculate the right side:
pxqtgxbta=pxqg+qxb+(c—p)x(qg—p)
=12+ @10y — @b+ c1qo — p1go

= q1by — b1 + 192
=c1q2+q x b,

which is equal to what we found for the left side. That proves (10).

https://doi.org/10.1017/bsl.2015.41 Published online by Cambridge University Press


https://doi.org/10.1017/bsl.2015.41

88 MICHAEL BEESON
It remains to prove (11). The right side of (11) is

pxb+a+(g—p)x((b-p)

=pxb+(c—p)x(g—p)+(qg—p)x(b-p)

= piba+ (c1 = p1)g2 + (g1 — p1)ba — q2(by — p1)

= p1ba + c192 — p1g2 + q1b2 — p1by — g2b1 + @2y
=cq2+qxb

=cxb as shown above.

That proves (11), and completes the proof that z is defined.
It remains to verify the conclusion of the axiom, namely B(p.z, b) A

B(q. z. a). By construction z lies on Line (p,b) and Line (a.q). Since a, =
p2 = 0, it suffices to show 0 < z; < by and 0 < z; < ¢;. Recall

pxb
g x(b—p)
and just before (9) we proved that the numerator and denominator are both
positive; hence 0 < z,: and we proved that the fraction is less than one, so

25 < q». Because B(b, g, c¢) we have ¢» < b,. Hence z, < b, as well. That
completes the proof of the theorem. =

2 =42

9.4. The representation theorem. In this section we will prove that every
model of neutral constructive geometry plus Euclid 5 and line-circle
continuity is a plane over a Euclidean field.

THEOREM 9.4 (Representation Theorem). Euclid 5 implies that the field
operations defined by Add and Hilbert Multiply turn the x-axis into a
Euclidean field: and every point arises as MakePoint (a.b) for some a and
b. Hence (constructively) every model of neutral constructive geometry plus
Euclid 5 is isomorphic to a (constructive) Euclidean field. In particular, the
points on a given line are exactly the points MakePoint (x. y) where x and y
satisfy a linear equation.

ProoOF. By Lemma 8.1, every point arises as MakePoint (a,b). By Theo-
rem 8.5, Hilbert Multiply is defined. By Lemma 8.4, the laws of commutative
rings are satisfied. By Lemma 8.7, nonnegative elements have square roots.
By Lemma 8.6, positive elements have reciprocals. But this implies that all
elements have reciprocals, since 1/t = t/t>. More explicitly, if y is the recip-
rocal of the positive element ¢2 then ¢y is the reciprocal of ¢. Hence all the
laws of Euclidean field theory are satisfied. Now suppose L = Line (a,b)
is a line. Then a = MakePoint (ay.a>) and b = MakePoint (b, b,), and
the points on the line are just the points x such that the cross product
(x —a) x (b —a)iszero, thatis, (x; —a1)(by —as) — (x2 — a2)(by —ay) = 0.
By the stability of equality, we are allowed to prove that by cases. If L is
not vertical, then each vertical line x; = p cuts L exactly once, and since
there is a point with x; = p satisfying the equation, we are done. If L is
vertical, then b; —a; = 0 and b, — a, # 0, so the equation becomes x| = ay,
and indeed the points of L are exactly the solutions of that equation. That
completes the proof. =
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COROLLARY 9.5. Euclid 5 implies the strong parallel postulate in neutral
constructive geometry.

Proor. Let line L and point p not on L be given. We may choose L
as the x-axis and p as the point 7 in setting up coordinates. Thus 0 is
the foot of the perpendicular from 7 to L, and 1 is a point on L such
that 0/ = 01. Let line K be perpendicular to the y-axis at I, and let M
be any other line through 7. We must prove that M meets L. According
to the Representation Theorem, the points on M are exactly the points
(x. y) satisfying some linear equation dx + by = c. Here (x, y) abbreviates
MakePoint(x, y). Specifically, the proof of the representation theorem yields
d = (ay —1)and ¢ = a;. where a = (aj.a;)isnoton K.so a; # 1 and d #
0. or more officially, Add (HilbertMultiply (d, x). Hilbert Multiply (b, y)) =
c. Setting y = 0 and solving for x we find x = ¢/d, or officially x =
Hilbert Multiply (c, Reciprocal (d)). Then x is the desired intersection point
of L and M . That completes the proof. -

REMARK. The proof works even if M is perpendicular to L, so it provides
a continuous construction for the intersection point as M rotates through
all angles (except of course when M is parallel to L). The proof provides
a geometrical construction proceeding from the two points determining M
to the coefficients of the linear equation for M and from there to x. The
construction is explicit in the proof, and it is not difficult to see exactly what
is involved, and the key role that is played by uniform rotation. Namely,
x = ¢/d = ay/(ay — 1), which is constructed by drawing a circle through
I.(0,ay), and (a, — 1,0), and finding the other intersection point with the
x-axis. The points (0, a;) and (a> — 1,0) have to be constructed by uniform
rotation, since we are not certain whether ¢y = 0O or ap = 1.

COROLLARY 9.6. Euclid 5 implies the existence of a uniform construction of
the reflection of point x in point p.

REMARKS. The proof uses Euclid 5. Is there a uniform reflection
construction provable in neutral geometry?

Proor. To construct the reflection of point x in point p, set up coordinates
on any line L containing p, with p at (0, 0). Then the reflection of x in p has
coordinates (—xi, —x»). The construction in question is to use the uniform
perpendicular construction to project x on each of the two axes; then use
uniform reflection in the axes to get a = (0, —x») and b = (—x;,0). Then
there is a point whose projections on the axes are a and b; that is the desired
point. It is not exactly MakePoint(a,b) since MakePoint wants arguments
on the x-axis. Technically, we first rotate a to ¢ = (—x,, 0). Then the desired
point is MakePoint(c, b) is the desired point. That completes the proof. -

COROLLARY 9.7 (Stability of definedness). In elementary constructive
geometry (that is. with circles and Euclid 5), every term t for a ruler and
compass construction satisfies ——t | — t |.

Proor. By induction on the complexity of the term 7. The problematic
case is when ¢ has the form IntersectLines (L, M ). By Lemma 6.12, this case
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follows from the strong parallel axiom, and hence by Corollary 9.5, from
Euclid 5. That completes the proof. —

9.5. Models and interpretations. When studying independence results rel-
ative to theories based on classical logic, we have the completeness theorem.
That enables us to replace proof theory by model theory in some situa-
tions. For example, to transfer results about real-closed fields to results
about Tarski’s geometry (with first-order completeness) we use the fact that
the models of this geometry are all of the form F? for F a real-closed field.
Constructively, we can often convert a model-theoretic argument to a proof-
theoretic interpretation. An interpretation is a map that associates to each
formula ¢ in one theory, another formula ¢ in another theory, preserving
provability. Sometimes one has an inverse interpretation, going “the other
way”. When the two theories have different languages, the technical details
are often intimidating, or at least lengthy, and are seldom written out.

In the case at hand, the fact is that there is an interpretation from almost
any reasonable theory of Euclidean geometry to a corresponding theory in
the language of Euclidean fields. Each “point” variable becomes a pair of
variables (x, y), and one uses the algebraic definitions of collinearity and
betweenness to interpret the predicates of incidence of a point on a line, and
betweenness. Equidistance (or segment congruence) is interpreted using the
“distance formula.” We write the resulting interpretation of the formula ¢
as ¢. Essentially ¢ is nothing but ordinary analytic geometry.

There is one technical detail that should be mentioned. In an interpre-
tation, it is convenient if there are “enough terms” in the target theory to
interpret the terms of the source theory. For example, if we have function
symbols for the intersection points of circles and lines, since the coordi-
nates of those points involve square roots, it will be convenient to formulate
Euclidean field theory with a symbol for the square root. We can of course
add symbols for the square root and multiplicative inverse, conservatively
over the theories as formulated above; no matter that the square root of
negative elements is not defined. Since this paper is quite long as it is, we
omit these details and just assume that the interpretation ¢ — ¢ can be
defined and is sound.

The reader will notice that we have not specified a precise formal theory
for Euclidean geometry. Indeed one of our points is that we have a lot of
latitude to make choices about the details of the theory. We now suppose,
however, that “neutral ECG” is a theory of Euclidean constructive geometry
(with no parallel axiom) such that the interpretation ¢ — ¢ is sound into
the theory of Playfair rings. This is true of the version of ECG presented in
[3] and the version mentioned in [4] and presented in detail in [6], and of
many variations on these theories.

The following theorem states the soundness of this interpretation for two
versions of the parallel postulate:

THEOREM 9.8. (i) If ¢ is provable in EC G with Playfair’s axiom instead
of the strong parallel postulate, then ¢ is provable in the theory of
Playfair rings.
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(ii) if ¢ is the strong parallel postulate, then ¢ is equivalent to the state-
ment that nonzero elements have multiplicative inverses (using the other
axioms of Euclidean field theory).

REMARK. The theorem states more than just the faithfulness of the inter-
pretation. Faithfulness would only require that ¢ be provable from, rather
than equivalent to, the corresponding field theory axiom in (ii) and (iii).

PrOOF. We are assuming that ¢ is provable in the theory of Playfair rings
for all the axioms of neutral ECG. It remains to check the interpretations of
the parallel axioms.

Ad (1). Recall that Playfair’s axiom hypothesizes a line L (which we may
interpret as the x-axis), a point p not on L (which we may interpret as (0, 5)),
and two lines K and M through p, that are both parallel to L. The conclusion
is that K and M coincide. We may assume without loss of generality that
one of the lines, say K, makes a right angle with the perpendicular from p
to L. so all points on K have the same y-coordinate b. Let (u, v) be another
point on M. We must show v = b. If v — b has a multiplicative inverse,
then ordinary analytic geometry allows us to compute the coordinates of
a point that lies on M and L, contradiction. Hence v — b has no inverse.
Hence, by Playfair’s axiom in field theory, v — b = 0. That completes the
proof of (i).

Ad (ii). We coordinatize the diagram in Fig. 19. We may assume s = (0, 0)
and L is the x-axis. Let the equation of M be Ax + By = C. Setting y =0
we find x = C/A4, so M and L will meet if and only if 4 has a multiplicative
inverse. Since the point ¢ on M is assumed not to lie on K, 4 # 0. Hence,
the axiom in field theory that nonzero elements have inverses is sufficient to
prove ¢. Conversely, given a nonzero field element 4, we take s = (0,0),
g =(2,0).t=(1,1),p=1(02),r =1(22),and a = (2,2 — 44). The
equation of M isthen2A4x + y = 2. Since 1 < 2, 1/2is a bounded quotient,
s0 2 has a multiplicative inverse in every Playfair ring. Assume ¢. Then K and
L meet; hence there is an x such that 24x = 2. Since 2 has a multiplicative
inverse, we have Ax = 1, so x is the inverse of . That completes the proof
of the lemma. -

We can also define an “inverse” interpretation ¢° from Euclidean field
theory to geometry. The details of this interpretation and its soundness
are lengthy and technical, and the result is not needed anyway for our
independence proofs, so we omit those details (although we have in fact
written them out).

§10. Independence in Euclidean field theory. One might also ask what the
field-theoretic version of Playfair’s axiom is. Recall that Playfair says, if p
is not on L and K is parallel to L through p, that if line M through P
does not meet L then M = K. Since -—-M = K — M = K, Playfair
is just the contrapositive of the strong parallel postulate, which says that
if M # K then M meets L. Hence it corresponds to the contrapositive of
x #0 — 1/x |; that contrapositive says that if x has no multiplicative
inverse, then x = 0. Thus Playfair geometries correspond to ordered fields
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in which elements without multiplicative inverses are zero. Of course, we
need bounded quotients to exist, to make Pasch’s axiom be satisfied in F2, but
the Playfair axiom is satisfied in F? when elements without multiplicative
inverses are zero.

Constructively, the strong parallel postulate implies Playfair; we wish to
show that the implication is not reversible. Since classically, the implication
is reversible, we cannot hope to give a counterexample. In terms of field
theory, we won’t be able to construct a Euclidean ring in which all elements
without reciprocals are zero, but not all nonzero elements have reciprocals.
We must use some tools of logic.

Among the possible techniques for proving that a constructive implication
is not reversible is the method of Kripke models. We shall not explain this
technique in its full generality, but only in the case of theories based on
(ordered) ring theory. A full explanation can be found in [31], but the
presentation here is self-contained.

10.1. What is a Kripke model of ring theory? It will be essential to under-
stand the notions “term” and “formula” (of ordered ring theory) as logicians
use them. A term is, intuitively, an expression meant to denote an element
of a ring. A variable (such as x, y, etc.) is a term, and so are the constants 0
and 1. If 7 and s are terms then so are (¢ - s) and (¢ + s), as well as (—¢) and
(1/t). In informal usage, many parentheses are left unwritten, according to
the usual conventions. For example, (1/((x + 1) - (y + 1))) is a term. Note
that 1/0 is technically a term; not every term necessarily denotes something
(“is defined”).

Next we explain the notion “formula”. This notion is defined recursively:
formulas are built up by combining smaller formulas using the logical con-
nectives A (and), V (or), = (not), and — (implies), as well as the quantifiers
V x and 3 x, according to some rules which we will not spell out in detail.
The base case of this definition is the “atomic formula”, which is either of
the form P(¢) for some term ¢, or of the form ¢ = s for some terms ¢ and s,
or of the form ¢ | for some term ¢. The formula 7 | is read “z is defined.”

An (ordered) ring is a model of (ordered) ring theory; a Kripke model of
(ordered) ring theory is a more complicated thing. It is a collection of rings,
R, where the subscripts o come from some partial ordering (K, <). Each
R, must have a notion of “positive”; that is, a subset of so-called positive
elements to interpret the predicate symbol P(x), but it is not required that
R, be an ordered ring. The ordering on the index set K has nothing to do
with the ordering on the ring, which is given by a predicate P(x) defining the
positive elements. It is often required that if @ < f, then R,, is a subring of
Rg. It will be convenient to generalize this requirement by allowing R,, to be
embedded in Ry by means of a one-to-one function j,z (which would be the
identity if R, C Rp). These functions must compose according to the law
Japjpy = Jay- Using some abstract nonsense, we could replace each R, by a
suitable copy to ensure that the j,4 are all the identity and R, C Ry, butitis
convenient not to require that. There is also a requirement of “persistence”:
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if x is positive in R, then j,p(x) has to be positive in Rg. But note, there
can also be positive elements in Ry that do not arise in that way.

The Kripke model R is technically the function & — R, with domain K,
though one often thinks of it as the collection of the R,. Usually the index
set K has a least element, the “root”. The elements of K are called “nodes”.
Usually (and in all the models we will use) the set K is a tree, i.e., the set of
nodes less than any given « is linearly ordered. What we have defined so far
is a “Kripke structure”; to be a Kripke model of (ordered) ring theory, or of
ordered field theory, the structure must “satisfy the axioms” of the theory.
We next define that concept.

We consider valuations o; these are functions that assign an element xo
of R, to each variable x. (Logicians write valuations on the right, as xo,
rather than o(x).) If ¢ is a valuation, it starts out as a function defined on
variables, but is easily extended to a function defined on terms. For example,
(t +s)o = to + so, where the + on the right is addition in R,, and the + on
the left is just a symbol. This extended function is a partial function, because
(1/t)o is undefined if 7o is 0. If 7 belongs to the domain of the extended
valuation ¢ then we say ¢ is defined in R,. If @ < ff and o is a valuation
into R, and 7 is a valuation into Ry then we say t agrees with ¢ at x if
x0 = (Jopx)T.

We next define the notion “R, satisfies formula 4 under valuation ¢”,
which is written R, =, A. The rules for this definition are as follows:

R, Es P(x) if and only if xo is positive in R,
RyEst=s if and only if terms to and so are equal
(equivalent) elements of R,

Ry l=st if and only if zo is defined in R,

R, E; (ANB) ifandonlyif R, F, Aand R, =, B

R, |, (AV B) ifandonlyifR, =, Aor R, =, B

R, Eo, (m4) if and only if for all § > « and valuations 7 on Ry,

if 7 agrees with ¢ then not Ry |=, 4

R, E, (A — B) if and only if for all # > «

Rp |=; Aimplies 3y > R, =, B
R, s (3x 4) if and only if for some t that agrees with ¢
except perhaps on x, R, =, 4

R, o (Vx A) if and only if for all # > «, if x € Ry and
7 is a valuation on Ry that agrees with ¢
except perhaps on x. then Ry =; 4.

A Kripke model of a theory T is one such that all the axioms of T are
satisfied at every node of the model, i.e.. R, =, A4 for every axiom A4 and
every valuation. The Kripke completeness theorem says that the formulas
A that are provable from 7" with intuitionistic logic are exactly the formulas

satisfied in all Kripke models of T'. In particular, if one can construct a
Kripke model of T in which some formula B is not satisfied, then B is not a
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consequence of 7" with intuitionistic logic.'” Such a model is called a Kripke
countermodel to B. We will apply this technique to settle the question of the
reversibility of the implications between the different forms of the parallel
postulate.

10.2. A Kripke model whose points are functions. The following concepts
will be used to develop Kripke models in which the “points” are functions.

DerINITION 10.1. A function f from R to R is called positive definite if
f(x) > 0 for every x.

f is called positive semidefinite if f(x) > 0 for all x.

£ is called strongly positive semidefinite if it is positive semidefinite and is
not zero on any open interval.

DErRINITION 10.2. A Pusieux seriesin t is a power series in a rational power
of ¢, convergent in a neighborhood of 0.

A Pusieux series at a in t is a power series in a rational power of (1 — a),
convergent in a neighborhood of «.

A generalized Pusieux series in t 1s a Pusieux series in ¢ or a power series
in a rational power of 7, times |¢|, convergent in a neighborhood of 0.

A generalized Pusieux series in t at a is a Pusieux series in (t — a) or a
power series in a rational power of (¢ — a), times |t — a|, convergent in a
neighborhood of a.

A Pusieux series at oo is a Pusieux series convergent in a neighborhood
of oo; similarly for a generalized Pusieux series at co.

For example, V13 = |t|\/1 has a generalized Pusieux series at 0, but not a
Pusieux series.

THEOREM 10.3. In constructive Euclidean field theory, the following are not
provable:

(i) “two-sides”, namely x #0 — x>0V x < 0:
(i) x <0VO0<x;

(iii) “apartness”. namely 0 < x V x < 1.

Proor. Let K be the field of “constructible numbers”, which is the least
subfield of R closed under taking square roots. Let Ay be the ring of
polynomial functions from R to R with coefficients in K. A is not a field,
since for example 1/7 does not belong to .Ay. For each nonnegative integer 7,
we define the ring 4,,, | to be the least set of real-valued functions containing
A, together with all sums, differences, and products of members of A,,
together with all square roots of positive semidefinite members of A,,, and
reciprocals of all strongly positive semidefinite members of A,,. These square

roots and reciprocals are defined on dense subsets of R, as shown below. For
example, the functions v/1 + #2 and 1/(1 + ¢?) are in A;. and

¢¢L+ﬂ+vﬁ+ﬂ+

1+ 12

9See [31] for a proof of the Kripke completeness theorem, and Exercise 4. p. 99 of [2] for
the extension to the logic of partial terms.
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is in A,. Also Vx2 = |x|isin A,. and |x| — x is in A;; that function is zero
on the positive real axis. Now define A to be the union of the A4,. Then A
is a ring of functions from R to R. Another way of describing A is to say
that it is the least ring of functions containing K[x] and closed under taking
square roots of positive semidefinite functions and reciprocals of strongly
positive semidefinite functions. (If a function in A is positive semidefinite,
but vanishes on some interval, its square root is in A, but not its reciprocal.)

We claim that each f in A, (i) is defined at all but a finite number of
points in R, and has a Pusicux series at all but a finite number of points
a, and also has a Pusieux series at oo, and a generalized Pusieux series at
the remaining points of its domain, and (ii) f is zero on a finite number of
closed intervals and a finite number of isolated points.

For example |x| = v/x2 does not have a Pusieux series at 0; but such points
(of functions in A,) occur only at the zeroes of functions belong to A, _;.
as we will show in detail below.

We prove (i) and (ii) simultaneously by induction on n. First we show that
(i) at n follows from (ii) at » — 1. Case 1, f is a square root, f = ,/g and
g(x) > 0 for all x. Then at points where g(x) > 0. f has a Pusieux series,
and at the finitely many points (by (ii) for n — 1) where g(x) = 0, f has a
generalized Pusieux series; and f is everywhere defined and has a Pusieux
series at oco. Case 2, f is a reciprocal of a strongly positive semidefinite
function g in A,_;. Then by (ii) for n — 1. g has only finitely many zeroes
(since there are no intervals of zeroes because g is strongly positive definite),
so the domain of f omits only finitely many points, and at each of those
points where g is positive, f is defined and has a Pusieux series, and at the
finitely many points where g is zero, it is undefined; so (i) for n follows from
(ii) for n — 1 also when f is a reciprocal. When f is a sum or difference, (i)
for n follows from (i) for n — 1. Now we show that (ii) at n follows from (i)
at n. By (i) at n. f in A, has a Pusieux series at a for all but finitely many
points a; and at the points where / has a Pusieux series, if f(a) = 0 then the
zero is isolated, or the function is identically zero in an interval about a. The
endpoints of these intervals of zeroes will be among the finitely many points
where f does not have a Pusieux series, so there are finitely many of these
intervals. Hence the zeroes of f consist of (at most) finitely many points
where f does not have a Pusieux series, plus finitely many intervals, plus
finitely many points where f* does have a Pusieux series—altogether finitely
many. So (ii) for n does follows from (i) for n, as claimed. That completes
the inductive proof of (i) and (ii).

We call a zero of f* “half-isolated” if it is the endpoint of one of the intervals
on which f is zero. By (i) and (ii). there is a countable set of reals that
includes all the isolated or half-isolated zeroes and all the singularities of all
the functions in A. Define Q to be the complement of that set; thus for each f
in A, if £ (x) is zero for any x in Q, then f is identically zero on some interval
about x. Note that, since the complement of € is countable, Q is dense in R.

We will exhibit a Kripke model K of Euclidean field theory. The partially
ordered set K (of nodes of K) is {0} U Q, ordered so that 0 is the root node,
and 0 < a foreach a € Q, and the different elements of Q are incomparable.
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The root node of this model is the ring A, with P(x) interpreted to mean
“x 1is strongly positive semidefinite.” We interpret equality as “equal almost
everywhere”; that is, x = y holds in the root node if and only if x (o) = y ()
except for a finite set of numbers «.. For example, x - y = 1, where x is the
function x(z) = |z|, and y(¢) = 1/|¢], and 1 is the constant function with
value 1, because except for a = 0, we have x(a)y(a) = 1.

A is not even an ordered ring, because there are polynomials x such that
neither x nor —x is strongly positive semidefinite. But we can still use A as
the root of our Kripke model.

For a € Q, the structure A, at the node « is the quotient field of A,
with P(x) interpreted to mean that x(a) > 0. and x = y interpreted to
mean that x and y are equal on some neighborhood of «. In other words,
the elements of A(«a) are equivalence classes of quotients of members of A,
where f/g is equivalent to u/v if vf and ug agree in some neighborhood
of a. Since Q does not include any singularities or zeros of members of A,
x () is defined for each x in A,.

We note that A, is isomorphic to the least Euclidean subfield of R con-
taining .. The isomorphism is given by x — x(a). It is an isomorphism
because its kernel is trivial, since x(a) = 0 only if x is identically zero on
some neighborhood of a. Moreover, if P(x) holds in A, then x is strongly
positive semidefinite and not identically zero; hence for « in Q, we have
x(a) > 0, since x(a) # 0 for o in Q. Hence P(x) holds in A,.

The ring axioms are satisfied in this Kripke structure, since all these struc-
tures are rings. The ordered field axioms are satisfied at the leaf nodes A,,,
since these structures are classical ordered fields. We therefore only need to
verify the reciprocal and order and square root axioms at the root node .A.

Consider Axiom EF2, which says that sums and products of positive
elements are positive. This holds at A since the sum and product of strongly
positive semidefinite functions are also strongly positive semidefinite.

Consider Axiom EF3,which says that not both x and —x are positive.
Suppose both x and —x are strongly positive semidefinite members of
A. Then for each o € Q we have x(a) > 0 and —x(a) > 0, since x(«)
is not zero for « in Q. But that is a contradiction; hence Axiom EF3 holds
at A.

Consider Axiom EF4, which says that if both x and —x are not positive,
then x is zero. Suppose both x and —x are satisfied at A to be not positive.
That means that for every node A,, x and —x are not positive at 4,. That
is, x(a) < 0 and —x(a) < 0. Hence, x(a) = 0. But by construction, Q
excludes the zeroes of x, contradiction. Hence A satisfies Axiom EF4.

Consider Axiom EF5, which says that if —x is not positive, then x has
a square root. If x is identically zero there is nothing to prove, so we may
assume that x is not identically zero. If A satisfies that —x is not positive,
i.e., A satisfies - P(—x), that means that —x is not positive in any A, that
is, —x(a) < 0 for all @ € Q. Then x(a) > 0. Since this is true for every
a € Q. and since Q is dense in R, and x is continuous, it follows that x is
positive semidefinite. Hence /x belongs to A, by construction of .A. Hence
A satisfies Axiom EFS5.
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We now consider Markov’s principle EF6. Suppose that =—P(x) is sat-
isfied at the root node A. Then for every o in Q, P(x) is satisfied at the
leaf node A,: that means that x(«) > 0 for each o in Q. As shown in the
verification of ES5, this implies that x is positive semidefinite; and it is not
identically zero on a neighborhood of «, since x(a) > 0. Hence P(x) is
satisfied at the root node \A.

Axioms EF2 to EF7 imply that if x # 0, then P(x?). We prove this as
follows: if P(x) then P(x?) by EF2. If —P(x) and x # 0 then =— P(—x) by
EF4, so P(—x) by EF6, so P((—x)?) by EF2, so P(x?) since (—x)? = x?
by the commutative ring laws. Assume x # 0. We have =—(P(x) V P(—x)).
and either disjunct implies P(x?). Hence —— P(x?). Hence by EF6, P(x?).

Now we consider Axiom EF1, which says nonzero elements have recip-
rocals. It suffices to show that positive elements have reciprocals, since if
x # 0, then P(x?), and 1/x = x/x%. More explicitly, if y is a multiplicative
inverse of x? then xy is a multiplicative inverse of x.

Suppose P(x) is satisfied at the root node; then x is strongly positive
semidefinite and not identically zero, and x belongs to some A,:; so 1/x
belongs to A, 1. Then x - (1/x) = 1 is satisfied, since x(a) - (1/x(a)) = 1
except when x(a) = 0, and the set of zeroes of x is a finite set, because x is
strongly positive semidefinite. Hence EF1 is satisfied.

The commutative ring axioms are satisfied, since the structure at every
node of K is a commutative ring. Thus K is a Kripke model of Euclidean
field theory.

Therefore any statements that are not satisfied in K are not provable in
Euclidean field theory. For example, P(x) V = P(x) is not satisfied, since
when x is the identity polynomial i(1) = ¢, P(i) fails at the root node
because i is not positive semidefinite, and — P(i) also fails at the root node,
since i is positive at every leaf node o with o > 0.

Ad (i), namely that “two-sides” is not satisfied: Again let i be the identity
function. Then K satisfies i # 0, since i = 0 is never satisfied at a leaf node
o in Q, since 0 does not belong to Q. By definition x < 0 means P(—x).
At the root node, neither i nor —i is positive definite, so 0 < i Vi < 118
not satisfied. Hence x # 0 — x > 0V x < 0 (which is “two-sides”) is not
satisfied.

Ad (ii), namely that x < 0V0 < x is not satisfied: y < x means —P(y —x).
so the principle under consideration is =P(x) V =P (—x). Again we take x
to be the identity function i. Since at some nodes o we have P(i) (when
a > 0) and at other nodes we have P(—i) (when a < 0), neither disjunct is
satisfied at the root node.

Ad(iii), namely that 0 < x V x < 1 is not satisfied: in primitive syntax this
principle is P(x) V P(1 — x). Again taking x to be the identity function,
neither disjunct is satisfied at the root node, since neither i nor 1 — i is
positive semidefinite.

That completes the proof. =

REMARK. In [6], we use cut-elimination to give a completely different proof
of this theorem. In some respects that proof is better, as it shows a more
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general conclusion, and it exposes the “reason for” these results: namely, the
axioms are quantifier-free and disjunction-free.

The proof presented here is also interesting, because the “points” of this
model give us a better intuition into the possible interpretations of construc-
tive geometry. A point (i, 0) (where i is the identity function) represents a
point about which all we know is that it is on the x-axis, but we don’t know
where. It is not “located”. A point (x,0), where |x| is a piecewise linear
function, equal to —1 for r < —1 and to 1 for ¢ > 1, represents a point of
which we know that it is between —1 and 1. The model shows that there is a
consistent interpretation of this vague idea.

10.3. A Kripke model with fewer reciprocals. Recall that “Playfair ring
theory” is the theory of ordered fields satisfying Axioms EF0, EF2-EF6,
and EF7-EF8. That is, without the axiom of reciprocals (EF7), but with
the axiom (EF7) that elements without reciprocals are zero, and the axiom
(EF8) that says that bounded quotients exist.

THEOREM 10.4. Playfair ring theory does not imply that reciprocals of
positive elements exist.

ProoF. To say that =3y (y - x = 1) holds at a node A of a Kripke model
is to say that no node above A contains an inverse of x. If one of the leaf
nodes above A is a (classical) field, then x must be zero in that field, and
hence in A also. Hence the axiom that elements without reciprocals are zero
will hold in any Kripke model, all of whose leaf nodes are fields. What we
need, then, is a Kripke model in which all the leaf nodes are ordered fields,
and the root node has a positive element without a reciprocal.

Recall that x is “strongly positive semidefinite” if it is positive semidefinite,
and it is not zero on any open interval. We construct a model similar to the
one in the preceding proof, but differing as follows: When constructing A,
we throw in square roots of positive semidefinite functions as before, but
instead of throwing in reciprocals of all positive semidefinite functions, we
throw in (only) bounded quotients.

More precisely, if u and v have Pusieux series at a point a where v is
zero, and u/v is bounded in a neighborhood of . then u/v can be extended
(using the Pusieux series) to be defined at « as well. When we write u/v in this
context, we mean the extended function. Let .4 be the ring of polynomial
functions from R to R with coefficients in K. For each nonnegative integer n,
we define the ring A, 1 to be the least set of real-valued functions containing
A, together with all sums and differences of members of .4,,, together with
all square roots of positive semidefinite members of A4, together with u/v
for each three functions u, v, y in A, such that v has at most finitely many
zeroes, and

|u| < Joly
wherever both sides are defined.

The domains of these functions are dense subsets of R, as we will show
below. Now define A to be the union of the A,. Then A is a ring of functions
from R to R. Another way of describing A4 is to say that it is the least ring of
functions containing K[x] and closed under taking square roots of positive
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semidefinite functions, and closed under the rule that if |u/v| < y and u, v,
and y are in A and v has only finitely many zeroes, then u/v (extended to
the zeroes of v) is in A.

As in the previous model, all the members of .4 have Pusieux series except
at finitely many points, and their zero sets have the same structure as before,
so we can again find a countable set containing all the singularities and
all the isolated and half-isolated zeroes. Let Q be the complement of this
countable set, and define a Kripke model as before, with index set {0, Q}
and Ry = A and for ¢ € Q, R, = A,. that is, A ordered by evaluation at
0. We claim that all members of .4 are continuous on the real line. To prove
this, we proceed by induction on n to prove that the members of A, are
continuous on the whole real line. That is true for n = 0, since the elements
of Ay are polynomials. The square root of a positive semidefinite function
continuous on R is also continuous on R, as are sums and differences of such
functions. Suppose |u/v| < y and u, v, and y are in A,,. Then u/v will be
in A, . By induction hypothesis, u, v, and y are defined everywhere. Then
as explained above, u/v is extended by its Pusieux series to be defined at the
zeroes of v, so it too is defined everywhere. That completes the proof that
all members of A are continuous on R.

We define P(x) to hold at the root node if and only if x is strongly positive
semidefinite. The verification of axioms E2 through EG6 is the same as in the
previous proof.

EF7 holds, because if Vy— (xy = 1) holds at the root node, then at every
leaf node « and for every y in A, we have x(a)y(a) # 1. Hence x(a) = 0
for every a in Q. But x is continuous and € is dense; hence x is identically
zero; hence the root node satisfies x = 0.

Now we verify Axiom EF8. It is automatic at the leaf nodes since there the
structures are Euclidean fields. We check the root node. Suppose |u| < |v|y.
Then (the Pusieux extension of) z of u/v belongs to A, and satisfies u = zv.
Hence EFS8 holds at the root node.

It only remains to show that EF1 is not satisfied at the root node. If EF1
were satisfied at .4, then every nonzero element of .4 would have its reciprocal
in A. To refute this, take i to be the identity function. Suppose iy = 1 holds
at the root node. Then it holds at every leaf node «, so y(a) = 1/« for each
a in Q. But y is continuous and Q is dense, so y is everywhere defined and
y(t) = 1/t for every ¢, which is impossible when ¢ = 0. That completes the
proof. =

10.4. Independence of Markov’s principle.

THEOREM 10.5. Markov’s principle is independent of the other axioms of
Euclidean field theory.

Proor. We construct a model similar to the ones used above, in which
Markov’s principle EF6 fails, but the other axioms hold. Let A be the same
class of functions used in the first model K above, but this time interpret
P(x) at the root A as “x is positive definite”, instead of as “x is positive
semidefinite and not identically zero.” Then the function x(¢) = #? is not
satisfied to be positive at the root node, but since 0 is not in Q, we have
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x(a) > 0forallain Q, so P(x) is satisfied at every leaf node. Hence =——P(x)
is satisfied at the root node. Hence -=—P(x) — P(x) is not satisfied at the
root. Hence Markov’s principle EF6 is not satisfied in this model.

The other axioms of Euclidean field theory are verified as in the proof of
Theorem 10.3. That completes the proof. —

§11. Independence of Euclid 5. In this section we give two different proofs
that Playfair’s axiom does not imply Euclid 5. Our first proof can be given
without committing to a specific axiomatization of constructive geometry!
All we need to assume is that the axioms of the theory (other than the parallel
axioms) are soundly interpreted by ordinary analytic geometry in the theory
of Playfair rings. The second proof, on the other hand, does not depend on
the theory of Playfair rings at all, but does depend on the existence of a
quantifier-free axiomatization of constructive neutral geometry. We present
such an axiomatization in [6]. Given that axiomatization, the second proof
is perhaps simpler, but the first proof has the advantage of not depending
on the details of the axiomatization. It is worth giving two proofs, as each of
the models we give illustrates different aspects of constructive geometry. The
second proof, for example, shows that Playfair does not imply Euclid 5, even
with the aid of decidable equality and order, while the first shows Playfair
does not imply Euclid 5, even with the aid of the negations of decidable
equality and order.

11.1. Playfair does not imply Euclid 5. In this section, ¢ denotes the
interpretation of the geometric formula ¢ in (the language of) Euclidean field
theory, as discussed above. “Neutral geometry” means geometry without any
parallel postulate.

THEOREM 11.1 (Playfair does not imply Euclid 5). Suppose given a theory
T of neutral constructive geometry such that the analytic-geometry interpre-
tation ¢ — ¢ is sound from T to the theory of Playfair rings. Then in T, the
strong parallel postulate implies Playfair’s postulate, but not conversely.

CoOROLLARY 11.2. Playfair’s postulate does not imply Euclid 5, or any of
the triangle circumscription principles.

ProOF. The corollary follows from the theorem, since we have proved in
Corollary 9.5 that Euclid 5 is equivalent to the strong parallel postulate,
and in Theorem 6.18 that the strong parallel postulate is equivalent to the
triangle circumscription principles.

In Theorem 6.11, we proved that Euclid 5 implies Playfair’s axiom. It
therefore suffices to show that Playfair’s axiom does not imply the strong
parallel postulate. Let ¢ be Playfair’s axiom, and y be the strong parallel
postulate. Suppose T prove ¢ — . According to Theorem 9.8, part
(i), the theory of Playfair fields proves ¢ — 7, and also ¢. Hence v is
provable in Playfair ring theory. But, according to Theorem 9.8. part (i),  is
equivalent to EF1, the axiom that nonzero elements have reciprocals. Hence
the theory of Playfair rings proves EF1. But that contradicts Theorem 10.4.
That completes the proof of the theorem. -
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11.2. Another proof that Playfair does not imply Euclid 5. In this section,
we give a different Kripke model, providing a second proof of this inde-
pendence result. Although technically we have defined Kripke models in
this paper only for ordered ring theory, the definition of Kripke models for
geometry is similar; only the atomic sentences are different. The model in
question we call D, after Max Dehn. It has only two nodes. Let F be a
non-Archimedean Euclidean field. A member x of F is infinitesimal if 1/x is
greater than every integer. A member x of IF is finitely bounded, or just finite,
if |x| < n for some integer n. Let D be the set of finitely bounded elements
of F. Let the root node of D be D?, and the leaf node be F2.

THEOREM 11.3. The Kripke model D satisfies Playfair’s axiom and neutral
constructive geometry, including line-circle and circle-circle continuity, but does
not satisfy Euclid 5. Moreover, it also satisfies the trichotomy law

X<yVx=yVx=y,
when expressed in geometric language.

Proor. We start by pointing out that F? is a model of classical Euclidean
geometry. Next we observe that D? is a model of classical neutral geome-
try. (See Example 18.4.3 and Exercise 18.6 of [16].) Specifically, the points
asserted to exist by Pasch’s axiom and by line-circle and circle-circle con-
tinuity have finite coordinates, if the points given in the axioms have finite
coordinates. Euclid 5, however, fails in D2, since if ¢ is infinitesimal, there is
a line passing through (0. 1) with slope 7, whose intersection point with the
x-axis is at (1/¢,0), which does not belong to D.

Next we observe that it is possible to axiomatize neutral constructive
geometry so that all the axioms are quantifier-free. For an example of such an
axiomatization, see [6]. Then all the formulas in the axioms (with parameters
from D?) hold at node I if and only if they hold at node F?, since that
is true of equality, betweenness, and equidistance statements. Hence the
Kripke model D satisfies constructive neutral geometry. Since Euclid 5 fails
classically in D2, it also fails in the Kripke model D.

Lines in this model are specified by two points. If ¢ # b then the points
on Line (a.b) are the points satisfying (x — a) x (b —a) = 0. Thus if ¢ and
b are finite, there are points in F? that are satisfied to be on Line (a,b) that
are not in D?. The interpretation of Line (a,b) is the extension of that line
in 2.

We next show that Playfair’s axiom holds in D. Let line L be given in D?,
and let point p in D? not lie on L. Suppose D? satisfies that line M is parallel
to L. That is, =3x (on(x, L) A on(x, M ). Then F2, as a node above D? in D,
does not satisfy 3x (on(x, L) A on(x, M). That is, M and L do not meet,
even in F2. Since F? satisfies Euclid 5, there is only one such line in F?.
Hence there is only one parallel to L through p in D, though there are many
parallels to L through p in D?. Hence Playfair’s axiom holds in D.

We now show that equality, equidistance, and betweenness are stable in D.
Let 4 be an atomic statement (equality, betweenness, or equidistance) with
parameters from ID and suppose that D satisfies ~— 4. Then F? satisfies 4.
But then D? satisfies A, since D? is a submodel of F2.
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Finally, we observe that trichotomy holds in D since betweenness relations
hold in D? if and only if they hold in F?. That completes the proof of the
theorem. 4

REMARKS. Similarly, the Kripke model with nodes I and D satisfies the
axioms of Playfair rings, but not the Euclidean field axioms. So we could
have used that model, together with the interpretation of geometry in Playfair
rings, to prove the theorem, instead of relying on rings of functions. The two
models cast different lights on constructive geometry: in the Dehn model,
Euclid 5 is unprovable because there are different lines whose intersection
point cannot be bounded in advance, because it’s “too far away”. On the
other hand, in the model whose “points” are functions, the “point” given by
the identity function represents a point of which we do not know anything
at all about its position: in the future, it might turn out to be anywhere on
the line L, so if we use it as the slope of a line through (0, 1), of course we
can’t compute the intersection point of that line with the x-axis. In the Dehn
model, there is no such “uncertainty” about the location of a point; points
are located just as they are classically. What is uncertain is the extent of
lines—just how far away is “infinity”? The two models illustrate two different
reasons why Euclid 5 is not constructively valid.

§12. Conclusion. We have made the following main points in this paper:

e It is possible, indeed elegant, to do Euclidean geometry with intuition-
istic logic, i.e., without arguments by cases. One is permitted to prove
statements about betweenness and congruence by contradiction, using
the stability axioms, as long as only atomic statements are proved that
way. It is not necessary to introduce new, purely intuitionistic concepts,
such as apartness.

e In constructive geometry with Euclid 5, all of Euclid’s results are still
provable. Moreover, the geometric definitions of addition, multiplica-
tion, and square root can be given constructively, i.e., without case
distinctions, so the models of constructive geometry are all planes over
Euclidean fields. This is the “representation theorem”.

e Euclid 5 turns out to imply the strong parallel postulate. This is proved
by verifying that Euclid 5 suffices for coordinatization and for geometric
definitions of addition and multiplication.

e There is a representation theorem for models of Playfair’s axiom: they
are all planes F? over Playfair rings. which are like Euclidean fields
except instead of reciprocals of nonzero elements, we only have the
existence of bounded quotients.

e Playfair’s axiom, which Hilbert and most modern authors use in
place of Euclid’s parallel postulate, is constructively weaker: It does
not imply Euclid 5 using the other axioms of constructive geometry.
This result is not sensitive to the exact choice of language or of the
axioms of neutral geometry; all one needs is that the axiomatization
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should be quantifier-free and disjunction-free, or alternatively, that the
representation theorem holds.

These results complement our other work on constructive geometry: In
[3] and [6] we have given formal theories in the styles of Hilbert and Tarski,
respectively. Since these axiomatizations are quantifier-free and disjunction-
free theory, we obtain from cut-elimination and Godel’s double-negation
interpretation that

e Points, lines, and circles that one can prove to exist constructively
are constructible with ruler and compass, uniformly (and hence
continuously) in parameters.

e For quantifier-free theorems (with Skolem functions corresponding to
existential axioms), nonconstructive proofs can be converted to con-
structive proofs. Hence we can import may of the theorems from [28]
into constructive geometry.
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