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The breakup of water droplets when exposed to high-speed gas flows is investigated using
both high-magnification shadowgraphy experiments as well as fully three-dimensional
numerical simulations, which account for viscous as well as capillary effects. After
thorough validation of the simulations with respect to the experiments, we elucidate the
ligament formation process and the effect of surface tension. By Fourier decomposition of
the flow field, we observe the development of specific azimuthal modes, which destabilize
the liquid sheet surrounding the droplet. Eventually, the liquid sheet is ruptured, which
leads to the formation of ligaments. We further observe the ligament formation and
shedding to be a recurrent process. While the first ligament shedding weakly depends on
the Weber number, subsequent shedding processes seem to be driven primarily by inertia
and the vortex shedding in the wake of the deformed droplet.
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1. Introduction

The interaction of a droplet with a gas stream involves a complex synergy of
aerodynamic forces and hydrodynamic instabilities that results in deformation and
fragmentation. This phenomenon occurs naturally during the fall of rain drops, as well as
in a variety of technical applications including fuel injection (Allison, McManus & Sutton
2016), pharmaceutical sprays (Bolleddula, Berchielli & Aliseda 2010) and explosion
hazards (Eckhoff 2016). Over the last decades, the aerobreakup phenomenology has been
studied using experimental and numerical diagnostics, providing mostly two-dimensional
(2-D) data. As a result, a comprehensive understanding of the three-dimensional (3-D)
droplet fragmentation mechanisms remains elusive (Chen & Liang 2008; Meng &
Colonius 2018). In particular, the ligament formation process and its subsequent breakup
is still poorly understood (Jalaal & Mehravaran 2014).

Early studies of droplet aerobreakup have identified various droplet morphologies by
varying the flow conditions and droplet fluid properties and the underlying deformation
mechanisms have been classified. For high density ratios and Reynolds numbers, Hinze
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904 A20-2 B. Dorschner and others

(1955) first defined breakup modes and their transition based on the Weber number and
the Ohnesorge number. Subsequently, Krzeczkowski (1980) proposed mapping transitions
of the various breakup regimes on a We–Oh diagram, and by now a large number
of studies have contributed to this map (see reviews of Hinze 1955; Pilch & Erdman
1987; Faeth, Hsiang & Wu 1995; Guildenbecher, López-Rivera & Sojka 2009, 2011;
Lefebvre & McDonell 2017). Although there is a good agreement on the description of
the various morphologies of the deformed droplet, regime transitions (in terms of We
and Oh) and the mechanisms involved in the breakup process have been subjects of
debate.

Before the past two decades, the prevailing view was that the mode of droplet
breakup can be classified in five regimes for low Ohnesorge numbers (Oh < 0.1), namely
vibrational, bag, multimode, stripping and catastrophic breakup. The vibrational regime
occurs for We < 11 due to the unstable development of oscillations at the natural frequency
(Pilch & Erdman 1987; Wierzba 1990; Shraiber, Podvysotsky & Dubrovsky 1996) of the
droplet causing its breakup into large fragments. Increasing the Weber number up to 80,
the aerobreakup is driven by the Rayleigh–Taylor instability (RTI) and breakup modes are
distinguished by their wavenumber. The one-wave configuration corresponds to the bag
breakup regime (Lane 1951; Magarvey & Taylor 1956; Fishburn 1974; Gel’fand, Gubin
& Kogarko 1974; Jalaal & Mehravaran 2012; Kulkarni & Sojka 2014; Wang et al. 2014)
where the droplet is first deformed into a disc shape and then a thin hollow bag attached
to a toroidal rim, which is blown downstream and finally bursts. Later, the toroidal rim
breaks up due to Rayleigh–Plateau instability (Jain et al. 2015). When the wavenumber
increases, more complex bag structures (including stamen Hanson, Domich & Adams
1963; Hirahara & Kawahashi 1992; Gelfand 1996; Zhao et al. 2010, 2013 and multiple bags
Krzeczkowski 1980; Hsiang & Faeth 1992, 1993, 1995; Cao et al. 2007) are formed and
fragmented, following a similar process. These structures are referred to as the multimode
breakup regime. For We < 350, capillary forces are overcome by shear effects and thus the
breakup occurs due to the stretching of ligaments at the droplet periphery. Literature relates
two competing modes for this Weber range known as shear-stripping regime (Ranger &
Nicholls 1969; Simpkins & Bales 1972; Hsiang & Faeth 1992; Chou, Hsiang & Faeth 1997)
and shear-thinning regime (Liu & Reitz 1997; Han & Tryggvason 1999; Lee & Reitz 1999,
2000, 2001; Han & Tryggvason 2001). Finally, for We > 350, the literature reports a highly
contested regime called catastrophic breakup (Harper, Grube & Chang 1972; Reinecke &
Waldman 1975; Hwang, Liu & Reitz 1996; Joseph, Belanger & Beavers 1999; Theofanous
& Li 2008), related to the unstable growth of waves on the droplet upstream side (owing
to RTI). It is suggested that the droplet breaks up when the amplitude of the waves reaches
the size of the drop.

Recently, the experimental work of Theofanous, Li & Dinh (2004) and Theofanous
& Li (2008) on aerobreakup in rarefied supersonic flows, which was addressed
by means of shadowgraphs and laser-induced fluorescence, showed that corrugations
attributed to Kelvin–Helmholtz instability (KHI) persist to higher Weber numbers. These
authors showed that the catastrophic breakup regime is an artefact associated with the
line-integrated nature of shadowgraph visualizations of the 3-D complex flow field at the
upstream area of the droplet. As a result, they suggested a reclassification of breakup
modes based on the hydrodynamic instabilities driving the aerobreakup. Two regimes
are then proposed: Rayleigh–Taylor piercing (RTP), driven by RTI, combined with
aerodynamic drag forces and shear-induced entrainment (SIE), governed by the combined
action of the Kelvin–Helmholtz instabilities, shearing and local capillary mechanisms
(Theofanous 2011). Compared to the previous classification, the RTP includes bag and
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Ligament formation in aerobreakup 904 A20-3

multi-modes regimes while the SIE refers to the sheet-stripping (or sheet-thinning) mode.
The SIE is proposed as the terminal regime for We > 103.

The ligament formation process in the vicinity of the RTP–SIE transition and beyond
(i.e. We > 102) is, in particular, a subject of current investigation (Jalaal & Mehravaran
2014; Jain et al. 2015; Meng & Colonius 2018; Dorschner et al. 2019). This is mostly due
to the large range of spatial and temporal scales combined with the 3-D nature of the
breakup, which surpass the traditional 2-D experimental and numerical diagnostics used
and thus require sophisticated techniques to elucidate the intricate breakup mechanisms
(i.e. 3-D simulations or high-magnification and frequency optical diagnostics). For We >

102, a liquid sheet is stretched from the droplet periphery forming a cylindrical liquid
curtain around the droplet body. The axial symmetry of the liquid sheet is perturbed by
the development of instabilities arising at the liquid sheet surface. Due to these growing
instabilities, the liquid sheet is then disintegrated into ligaments, which are stretched and
broken up into smaller droplets.

In an attempt to describe the instabilities arising on the liquid sheet, Liu & Reitz
(1997) invoked a sheet-thinning mechanism, initially proposed by Stapper & Samuelsen
(1990). Stapper & Samuelsen (1990) showed that a liquid sheet subject to coflowing
gases results in cellular breakup patterns (Stapper & Samuelsen 1990) and subsequently
in the formation of ligaments due to growing streamwise and spanwise vortical waves
on the liquid sheet surface. Considering high-speed gas flows, the streamwise waves
dominate and thus streamwise ligaments are formed. Ultimately, ligaments break up into
droplets. This mechanism is qualitatively supported by experimental observations (Lee
& Reitz 1999, 2000, 2001), 2-D numerical simulations (Han & Tryggvason 1999, 2001;
Wadhwa, Magi & Abraham 2007) and 3-D volume-of-fluid simulations (Khosla, Smith &
Throckmorton 2006; Jain et al. 2015).

Recently, Jalaal & Mehravaran (2014) proposed the transverse azimuthal modulation
concept (Marmottant & Villermaux 2004; Kim et al. 2006) as an alternative mechanism
to describe the instabilities growing on the liquid sheet. The authors argued that primary
Kelvin–Helmholtz waves may be subjected to a transverse destabilization owing to RTI.
Growing transverse crests on the Kelvin–Helmholtz waves are dragged with the flow
to form ligaments in the streamwise direction. The authors provided good qualitative
agreement supporting the transverse azimuthal modulation concept by running 3-D
numerical simulations of droplet aerobreakup for Weber numbers up to 200. Due to the
lack of experimental observations of such a destabilization, they attempt to compare
their numerical simulations with theoretical predictions but failed to find conclusive
quantitative evidence. The authors suspect the ‘simplifications in the current theories’ to
be responsible for their mismatch.

Most recent studies on the ligament formation are reported by Meng & Colonius (2018)
through 3-D numerical simulations. Comparing the magnitudes of the streamwise and
spanwise vorticities captured, the authors found poor agreement with the sheet-thinning
mechanism proposed by Liu & Reitz (1997). They pointed out a loss of symmetry of the
liquid sheet drawn from the periphery, which could support the azimuthal modulation
mechanism proposed by Jalaal & Mehravaran (2014). In an attempt to provide quantitative
evidence, they performed an azimuthal Fourier decomposition of the velocity flow field,
which showed only broadband instability growth for all modes and hence did not provide
further evidence of transverse RTI. Noteworthy in this respect is a recent numerical study
of spatially developing liquid jets (Zandian, Sirignano & Hussain 2019) that investigates
the correlation between vortex dynamics and interfacial instabilities and stresses the role
of upstream KHI in the atomization process occurring downstream.
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904 A20-4 B. Dorschner and others

In this paper, we perform fully three-dimensional numerical simulations of aerobreakup
events for a moderate Weber number and one without accounting for surface tension
to elucidate the mechanisms responsible for the ligament formation and the role of
surface tension. We also perform matched aerobreakup experiments using a shock-tube
facility. The breakup events are recorded by means of high-magnification, high-speed
shadowgraphy. Quantitative evidence of the azimuthal modulation is found and discussed.
Secondly, we report what we believe to be the first observation of recurrent shedding of
ligaments. The paper is structured as follows. The numerical model and the experimental
set-up are described in §§ 2 and 3, respectively. The validation of the numerical simulation
with respect to the experiments is presented in § 4. The mechanisms responsible for the
formation of ligaments and their recurrent shedding behaviour are discussed in § 5. Finally,
concluding remarks are made in § 6.

2. Numerical modelling

2.1. Governing equations and numerical method
The numerical simulation of aerobreakup is a computationally demanding task due
to the broad physics occurring at a large range of spatio-temporal scales. In general,
aerobreakup is governed by the compressible Navier–Stokes for the liquid and surround
gas flow, and coupled by continuity and an equality of stresses at the deforming surface.
This can be modelled by coupling two solvers or, more commonly, by adopting a
volume-of-fluid approach and either explicitly tracking the interface or by capturing a
slightly diffused interface on the grid (Fuster 2019; Saurel & Pantano 2018). Examples
of interface-tracking approaches include free-Lagrange methods (Ball et al. 2000),
level-set/ghost-fluid approaches (Abgrall & Karni 2001; Liu, Khoo & Yeo 2003; Liu, Yuan
& Shu 2011; Pan et al. 2018) or front-tracking schemes (Cocchi & Saurel 1997). While
such interface-tracking approaches have the advantage of a well-defined, sharp interface
between components and thus (potentially) accurate interface dynamics, various issues
ranging from spurious pressure oscillations near the interface to lack of conservation make
these schemes less suitable for shock-dominated flows or aerobreakup (see, e.g. Fuster
(2019) and Saurel & Pantano (2018) for recent reviews on the topic).

Hence, to accurately simulate aerobreakup of a water droplet, we resort to
an interface-capturing scheme, combining a multicomponent flow model with a
shock-capturing finite-volume method. These schemes are also known as diffuse interface
methods as the interface is not sharp and tracked explicitly but the scheme permits
some numerical diffusion of the interface. This allows for discrete conservation,
consistent thermodynamics in mixture cells and dynamically appearing or vanishing
interfaces. In addition, diffuse interface methods are generally more efficient compared
to their interface-tracking counterpart, which is crucial for multi-scale problems such as
aerobreakup.

While there exist a variety of multicomponent models, we consider immiscible fluids
in mechanical equilibrium and use the model of Kapila et al. (2001). However, to ensure
robustness and stability of the scheme, a pressure-relaxation method is used to converge
from a pressure-disequilibrium formulation to mechanical equilibrium (Saurel, Petitpas
& Berry 2009). While valuable insight has been obtained with numerical studies of
aerobreakup in the past (see, e.g. Jalaal & Mehravaran 2014; Garrick 2016; Liu et al. 2018;
Meng & Colonius 2018; Liu et al. 2019; Marcotte & Zaleski 2019), the computational
costs quickly become prohibitive for the large range of scales in aerobreakup. Hence,
most commonly, artificial symmetries are imposed, which prohibit the formation of truly
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Ligament formation in aerobreakup 904 A20-5

three-dimensional instabilities or do not account for any viscous or capillary effects, which
become important at later stages of the breakup. In order to capture these effects, we model
surface tension as proposed in Schmidmayer et al. (2017) and viscous effects are accounted
for by extending the models for mechanical equilibrium (Thévand, Daniel & Loraud 1999;
Périgaud & Saurel 2005; Coralic & Colonius 2014) to the non-equilibrium-pressure model.
For a notable study on the relevance of both viscous and inviscid instability mechanisms
in the context of two-phase mixing layer, we refer to Matas (2015).

The viscous, non-equilibrium-pressure multicomponent model with surface-tension
effects for two components reads as

∂α1

∂t
+ u · ∇α1 = μ(p1 − p2),

∂α1ρ1

∂t
+ ∇ · (α1ρ1u) = 0,

∂α2ρ2

∂t
+ ∇ · (α2ρ2u) = 0,

∂ρu
∂t

+ ∇ · (ρu ⊗ u + pI + Ω − τ ) = 0,

∂α1ρ1e1

∂t
+ ∇ · (α1ρ1e1u) + α1p1∇ · u = −μpI(p1 − p2) + α1τ 1 : ∇u,

∂α2ρ2e2

∂t
+ ∇ · (α2ρ2e2u) + α2p2∇ · u = μpI(p1 − p2) + α2τ 2 : ∇u,

∂c
∂t

+ u · ∇c = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)

where αk, ρk, ek and pk indicate the volume fraction, the density, the internal energy and
the pressure of component k. Identity is denoted by I . The mixture variables for density,
pressure and velocity are denoted by ρ, p and u, respectively and are given by

ρ =
2∑

k=1

αkρk and p =
2∑

k=1

αkpk. (2.2a,b)

The capillary tensor reads

Ω = −σ

(
‖∇c‖I − ∇c ⊗ ∇c

‖∇c‖
)

, (2.3)

where σ is the surface-tension coefficient and c is a colour function. The viscous stress
tensor for the mixture is given by

τ = 2η( 1
2(∇u + (∇u)T) − 1

3(∇ · u)I), (2.4)

where η is the mixture shear viscosity and the viscous stress tensor for component k
is denoted by τ k. The pressure-relaxation coefficient is given by μ and the interfacial
pressure is

pI = z2p1 + z1p2

z1 + z2
, (2.5)

where zk = ρkak is the acoustic impedance of component k. Note that the
pressure-relaxation terms can be obtained from the asymptotic limit of the Baer &
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904 A20-6 B. Dorschner and others

Nunziato (1986) model in the limit of stiff velocity relaxation (see also Saurel et al. (2009)
for further details).

Due to p1 /= p2 in this model, the total-energy equation of the mixture is replaced by
the internal-energy equation for each component. Nevertheless, the mixture-total-energy
equation of the system can be written in the usual form

∂ρE + εσ

∂t
+ ∇ · ((ρE + εσ + p)u + Ω · u − τ · u) = 0, (2.6)

where the total energy is
E = e + 1

2‖u‖2, (2.7)

and the internal energy is given by

e =
2∑

k=1

Ykek(ρk, pk). (2.8)

The capillary energy reads
εσ = σ‖∇c‖. (2.9)

Note that (2.6) is redundant when solving internal-energy equations for both components.
However, it is included to ensure total-energy conservation also numerically (see Saurel
et al. (2009) for further details).

In (2.8), ek is defined via an equation of state and Yk are the mass fractions

Yk = αkρk

ρ
. (2.10)

Here, we consider a two-phase mixture of gas (g) and liquid (l). The gas is modelled by
the ideal-gas equation of state

pg = (γg − 1)ρgeg, (2.11)

with γg = 1.4. The liquid on the other hand is modelled by the stiffened-gas equation of
state

pl = (γl − 1)ρlel − γlπ∞, (2.12)

where γl = 6.12 and π∞ = 3.43 × 108 Pa (Coralic & Colonius 2014; Meng & Colonius
2014, 2018).

Numerically, this model is solved in three steps, which are outlined below. First, the
hyperbolic non-equilibrium-pressure model is solved by neglecting surface-tension and
viscous effects and relaxation terms. Second, the viscous, surface-tension model is solved
and, finally, in the last step, the pressure is relaxed until an equilibrium is reached. In
summary, the model is solved with the following steps:

(i) Solve hyperbolic pressure-disequilibrium model using a Godunov-type method. At
the volume–volume interfaces, the associated Riemann problem is computed using
the HLLC (Harten–Lax–van Leer–Contact) approximate solver.

(ii) Solve the viscous, surface-tension model.
(iii) Infinite pressure relaxation (μ → +∞), converging to the thermodynamically

consistent, mechanical-equilibrium model, coupled with a re-initialization
procedure ensuring conservation.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

69
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.699


Ligament formation in aerobreakup 904 A20-7

A second-order-accurate MUSCL (monotonic upstream-centred scheme for conservation
laws) scheme with two-step time integration is used, where the first step is a predictor
step for the second and the usual piecewise linear MUSCL reconstruction (Toro 1997)
is used for the primitive variables. In addition, the monotonized central (Van Leer 1977)
slope limiter is combined with the THINC (tangent of hyperbola for interface capturing)
interface-sharpening technique to minimize interface diffusion (Shyue & Xiao 2014).

In order to resolve the wide range of spatial and temporal scales of shock fronts and
interfaces, an adaptive mesh refinement technique is employed (Schmidmayer, Petitpas &
Daniel 2019). The refinement criteria are based on variations of volume fraction, density,
pressure and velocity.

This methodology is implemented in the open-source code ECOGEN (Schmidmayer
et al. 2020b), which has been validated, verified and tested in various set-ups ranging
from gas bubble dynamics problems, including free-space and wall-attached bubble
collapses, liquid–gas shock tubes, surface-tension problems and water-column breakup
due to high-speed flow (see, e.g. Schmidmayer et al. 2017, 2019; Pishchalnikov et al. 2019;
Schmidmayer, Bryngelson & Colonius 2020a).

2.2. Problem definition
Aerobreakup occurs when a liquid drop is suddenly exposed to a high-speed gas flow.
These initial conditions are typically generated using a planar shock due to its simplicity,
robustness and repeatability in both experiments and simulations without significantly
interfering with the droplet or the evolution of the subsequent stages of the aerobreakup.
In the simulation, we match the experimentally measured mean shock strength Ms ∼ 1.3,
the Reynolds number Re = usD0/ν and the Weber number We = ρgu2

s D0/σ , where D0,
us, ν and σ denote the initial droplet diameter, the post-shock gas velocity, the kinematic
viscosity of the gas and the surface-tension coefficient. In the experiments we mainly
focus on the piercing regime with mean Weber numbers in the range of We = [200, 700].
Numerically, we conduct two simulations, where one matches a mean experimental Weber
number of We ∼ 470 and one does not have any surface-tension effects, which is denoted
in the following as We → ∞. Note that We → ∞ is purely nomenclature and does not
indicate the limiting process to infinite Weber number. In both cases the Reynolds number
is set to Re ∼ 7000. Hence, we numerically probe and compare both the piercing and the
stripping regimes.

The simulations are carried out in rectangular computational domain, which is given
by [−7D0, 15D0] × [−6D0, 6D0] × [−6D0, 6D0]. The domain size was chosen based on
sensitivity studies, which aim to both minimize the influence of the domain boundary
conditions and the computational effort. Our results are in line with previous studies
(Meng & Colonius 2018). To capture the non-axisymmetric, three-dimensional modulation
of the droplet and its surrounding flow field, we refrain from imposing any symmetries
or simplifications and carry out full three-dimensional simulations for which the initial
computational mesh and the set-up are shown in figure 1. The droplet is initially at rest
and placed at the origin. On all domain boundaries, non-reflective boundary conditions
(NRBC) are imposed. To ensure high spatial and temporal accuracy at reasonable
computational costs, the adaptive mesh is composed out of four grid levels, which are
adapted to follow the shocks, the interface and the turbulence. Here, we follow the
methodology established and validated in Schmidmayer et al. (2019), and refine cell i
for which the following criterion is fulfilled:

|XNb(i,j) − Xi|
min(XNb(i,j) − Xi)

> ε, (2.13)
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FIGURE 1. Initial computational mesh and set-up for the numerical simulation of aerobreakup.
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z

FIGURE 2. Snapshot of the adaptively refined mesh, coloured by mixture pressure.

where X indicates a given flow variable and the criterion is tested for all neighbouring
cells, indicated by the subscript Nb(i, j), where the jth cell is the corresponding neighbour
of cell i. The threshold is conservatively set to ε = 0.04. For this set-up, we test the above
refinement criterion for the flow variables density, velocity, pressure and volume fraction
and refine the cell if the criterion is fulfilled for any of these variables. As a result, the
initial droplet is resolved by Dp = 140 points per diameter, which was increased compared
to Meng & Colonius (2018) in order to capture capillary effects such as the formation of
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FIGURE 3. Shock-tube facility (side view).

ligaments during the course of the breakup. Note, however, that the selected resolution
is by no means able to capture all fine-scale effects and the resolution required to do
so would far exceed currently available computational resources, even on the largest of
supercomputers (see, e.g. Meng & Colonius (2018) for estimates). However, as shown in
§ 4, the good agreement of the simulation with our experiments suggest that the resolution
is indeed sufficient to capture most pertinent effects of aerobreakup and all phenomena
discussed here are observed both numerically and experimentally. The mesh adaptivity,
following both the droplet interface and the shock is exemplified by a snapshot in figure 2
during the initial phase of the simulation. In addition, a conservative grid stretching
towards the domain boundaries, as shown in figure 1, is used to further aid efficiency of
the computations. Finally, to avoid spurious symmetries originating from the artificially
symmetric initial conditions, we impose an initial velocity field with random perturbations
of maximum O(10−4us). For the adaptive time marching scheme we maintain a maximum
Courant–Friedrichs–Lewy number of 0.3.

3. Experimental set-up

The shock tube is manufactured from several stainless steel pipes with shell thickness
of 5 mm and a circular cross-section of 52 mm diameter. The facility consists of three
components (figure 3): a driver section, a double membrane section and a driven section
which includes a test section of square cross-section of 46 mm × 46 mm. Both membranes
have the same burst pressure. The test section is connected on the driven section by
means of circular-to-square transitions. Transitions are smooth and designed to preserve
the area. The upstream transition is placed 1000 mm ahead from the centre of the test
section to insure a sharp and planar front wave profile. The test section is fitted with two
oblong BK7 windows mounted opposite one another on its lateral sides to allow for optical
diagnostics (shadowgraph or laser-sheet visualization). The double-membrane section and
the driver section are pressurized with air at 75 % and 125 % of the burst pressure of the
membranes (Mylar sheets), respectively. The shock wave is initiated by abruptly purging
the double-membrane section through an extraction gas port. The driven section is filled
with ambient air at controlled temperature.
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To monitor the shock propagation, the instantaneous test section pressure is measured at
four lateral positions by dynamic high-speed pressure transducers (denoted C in figure 3)
with acceleration compensation (Kistler 603B). They allow us to measure pressure
fluctuations over a range from vacuum to 200 bar with a rise time of 1 μs. Each sensor
is coupled to a Kistler 5018A charge amplifier (denoted A in figure 3) with a bandwidth
of 200 kHz which converts the mechanical stress into an electrical signal (0–10 V). The
electrical signal is acquired using a National Instruments NI PXIe-1073 module with 16
input channels with a frequency sample of 60 MHz. The sensors have an active area of 5
mm diameter and are mounted in Pom-C � holders. The active surface of the sensors is
installed flush to the test section wall. These sensors are used to measure the shock-wave
velocity and the pressure jump, and are also exploited for the triggering of the high-speed
camera. Synchronization of the high-speed camera with the light source emission and the
breakup event is performed with a DG535 Digital Delay and Pulse Generator (Stanford
Research system).

During the experiments, the water drop is held in a stable equilibrium at the centre of the
test section by the sound radiation pressure of an ultrasonic standing wave generated by the
single-axis acoustic levitator. The levitator consists of a Langevin-type transducer coupled
to a mechanical amplifier with a radiating surface 35 mm in diameter. The transducer
operates at a resonant frequency of 20 kHz and is driven by a 1.5 kHz ultrasonic power
supply. The radiating surface is mounted flush with the inside bottom surface of the
chamber. Opposite to it, the upper surface of the chamber acts as a reflector of the acoustic
waves for standing wave generation. To avoid disturbing the aerobreakup process with the
sound radiation pressure, the levitation system is turned off following a voltage setpoint
from a pressure transducer monitoring the shock propagation.

Aerobreakup experiments are captured with a high-magnification shadowgraphy system.
The backlight illumination is provided by the laser-induced fluorescence of a Rhodamine
6G dye solution (figure 4). A high-power dual oscillator/single head diode-pumped
Nd:YAG laser (Mesa PIV, Continuum) delivering short pulses in the 120–180 ns range at
repetition rate up to 80 kHz is used to induce the fluorescence. Visualization is performed
with a high-speed Fastcam Photron SA-Z equipped with a Maksutov–Cassegrain
catadioptric microscope (QM1 Questar). The maximum optical resolution is 1.6 μm with
a magnification up to 125 : 1. The depth of focus is approximately 0.6 mm. The high-speed
camera and the dual-cavity laser are synchronized by a digital delay generator. More
details on the optical diagnostic are available in Biasiori-Poulanges & El-Rabii (2019).
Sequences of the images displayed are captured with camera settings adjusted to record
frames at 512 × 904 pixel resolution with a sampling frequency of 40 kHz. The average
laser output power is 30 W and the pulse width is 174 ns. The measured spatial resolution
of the imaging system was 6.5 μm per pixel. The time of the shock-wave interaction
with the droplet (t = 0) is determined by laser beam deflection with a continuous-wave
laser beam perpendicular to the flow direction and tangent to the droplet front side. The
deflection is recorded with a photodiode with a 0.9 ns rise time.

4. Comparison of simulations and experiments

4.1. Droplet morphology
In order to compare the numerical simulation with images obtained from shadowgraphy
in the following sections, we extract isosurfaces of volume fraction αl = 0.01 from the
simulation, and colour them by velocity magnitude (see, also figures 5 and 7). Note
that diffuse interface methods, as employed here, can only provide a range in which
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FIGURE 4. High-magnification shadowgraphy system (axial view).

the interface is likely to be found and by construction cannot provide an exact or
deterministic location of the interface. While this leads to an ambiguous representation
of the droplet surface, a sensitivity study in Meng & Colonius (2018) led to the conclusion
that isosurfaces of a volume fraction αl = 0.01 are believed to be fair for comparison
with experiments, considering the obscuring mist of the experiment, generated during the
course of the breakup. Although this might seem a rather low volume fraction, it should
be pointed out that this still corresponds to a mass fraction of Yl ≈ 0.9. For comparison of
the numerical results with the experiment, we use, unless stated otherwise, the following
non-dimensionalization

x∗ = x
D0

, τ = t
us

D0

√
ρs

ρ
, (4.1a,b)

where x and t denote the dimensional location and time, respectively.

4.1.1. Finite Weber number case
At the first stages of the aerobreakup process (τ = 0.27 − 0.91), the numerical results

show the typical droplet shapes that experimental visualizations (figure 5) and the
literature report, with a good qualitative agreement with our experiment. First, the initial
droplet deforms into a muffin-like shape, described by a spherical upstream side with lips
growing in the spanwise direction. The droplet core takes the shape of a conic cylinder
and the downstream side is flattened into a planar interface (τ = 0.27). While the droplet is
continuously flattened, the stretching of lips in the streamwise direction results in a toroidal
liquid rim (τ = 0.47). Simultaneously, rear lips raise in the downstream side. Owing to
inertial forces, the rim at the droplet periphery is stretched, which deforms the droplet
into a crescent-like shape (τ = 0.72). The rim begins to disintegrate into ligaments and
subsequently into fragments. For characteristic times from 0.00 to 0.72, contours, extracted
from the isosurfaces of the volume fraction αl = 0.01 of the droplet, are overlaid on the
experimental visualizations in figure 6. The contours are initially in good agreement with
the experimental images. At later stages (τ = 0.72 − 1.16), the numerical results and the
experimental visualizations both show a periodic distribution of ligaments, although there
are discrepancies in the precise shape. However, the ligament distribution in the numerical
simulation is consistent with the distribution experimentally observed, as detailed below
in § 5. Figure 5 shows that the toroidal rim is continuously sheared away with the flow
for times τ = 0.72 − 1.16, which leads to a cylindrical curtain surrounding the droplet
core and a cavity behind. This results in a backward facing bag. The downstream end
of the bag bends in the spanwise direction, forming a second rim, hindering the flow.
Subsequently, the rim is subject to the development of multiple bags in the streamwise
direction. Finally, bags are pierced by the flow, similar to the bag and multimode breakup
regimes. The ligaments resulting from this piercing process are tied up to their ends by
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Lip

1 mm
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facing bag

Backward

facing bag

Rim

Second rim

Rear lip

(e)(b)(a) (c) (d )

FIGURE 5. Numerical simulation of a water droplet aerobreakup (top two rows) and
experimental visualizations (bottom rows). Characteristic times are (a) 0.00, (b) 0.27, (c) 0.47,
(d) 0.72 and (e) 1.16. The timing information is for both experimental and numerical results
expected for the numerical image (e) which corresponds to τ = 1.01. For the simulations, an
isosurface of volume fraction αl = 0.01 coloured by velocity magnitude is depicted from two
different perspectives. The scale bar refers to experimental results. The Weber numbers in the
simulation and the experiment are 470 and 492, respectively.

the annular ring. The periodic nature of the ligament distribution is further discussed
in § 5.1. The droplet core develops a square-like shape (see, e.g. figure 5e). We believe
this is a physical instability that results from preferred amplification of certain (even)
azimuthal wavenumbers. While amplification of these same wavenumbers is also evident
in the We → ∞ simulation, the droplet in that case does not evolve into a coherent square
shape. Therefore, as surface tension plays a role in the instability process, we speculate
that it could be related to the polygonal instability (Labousse & Bush 2015) observed
in other vortical-interfacial flows, but a definitive analysis awaits future work. In any
simulation, available physical instabilities have to be seeded by disturbances that break
the relevant symmetries, whether they are intentional (added to the initial conditions) or
unintentional (seeded by discretization artifacts). As was observed previously by Meng
(2016), an underlying Cartesian mesh appears to be capable, in the presence of a diffuse
interface, to provide sufficient perturbation to axisymmetry to excite instabilities in a
grid-aligned fashion, even though the instability itself is physical. In that study, cylindrical
coordinates were preferred to eliminate this effect, especially because those simulations
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1 mm

(b)(a) (c) (d )

FIGURE 6. Overlaying of droplet contours from numerical results (red lines) on experimental
images at the early stages of the aerobreakup. Characteristic times are (a) 0.00, (b) 0.27,
(c) 0.47 and (d) 0.72. The Weber number in the simulation and the experiment are 470 and
492, respectively.

lacked physical viscosity to otherwise regularize the singularities associated with inviscid,
interfacial flow (e.g. Kelvin–Helmholtz). With the present limits on resolution, we are
therefore unable to offer a definitive conclusion on whether the ultimate square shape is
independent of the numerics. While the present results qualitatively compare well with
experimental images when viewing the droplet from the side, we are unable to view the
droplet from upstream as would be required to directly view the square shape and directly
validate the result.

4.1.2. Simulation without surface tension
Next, in order to isolate the effect of surface tension during the breakup, we conduct

an additional numerical simulation and set the surface tension to zero with Ms = 1.3 and
D0 = 0.804 mm and compare the results with experiments at a high Weber number of
We = 1100 (Ms = 1.3, d0 = 1.68 mm).

Figure 7 shows that the droplet morphology and the mechanisms observed bear
resemblance to the finite Weber number case, especially in the early stages. The droplet
is first deformed into a muffin-like shape with lips growing in the spanwise direction.
Lips are rapidly sheared away with the flow by forming a liquid rim surrounding the
droplet body. The rim stretches in the streamwise direction and forms a cylindrical
curtain, which eventually results in a backward facing bag. Finally, and in contrast to the
morphology previously observed in figure 5, much less distinct ligaments are formed and
the liquid curtain breaks up directly into fine-scale structures due to a lack of the restoring
surface-tension forces.

4.2. Centre-of-mass evolution
Further validation is provided in figure 8 where the droplet centre-of-mass drift from
the numerical simulation is compared with that measured in the experiments. From the
numerical simulation the centre-of-mass is computed as in Meng & Colonius (2018) using

xc =

∫
ΩD

αlρlxdV
∫

ΩD

αlρldV
, (4.2)
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1 mm

(e)(b)(a) (c) (d ) ( f )

FIGURE 7. Numerical simulation of a water droplet aerobreakup and experimental
visualizations. Characteristic times are (a) 0.00, (b) 0.20, (c) 0.52, (d) 0.73, (e) 0.86 and ( f ) 0.96.
The scale bar refers to experimental results. In the experiment, the Weber number is We = 1100,
whereas the simulation does not account for surface-tension effects, i.e. We → ∞.

where ΩD is the entire computational domain. On the experimental side, the evolution
of the centre-of-mass is computed from 2-D planar images, due to the line-integrated
nature of the images recorded by the shadowgraph. The centre-of-mass is determined by
calculating the first-order spatial moment which is the intensity-weighted average of the
pixel coordinates constituting the droplet. This requires a binary image. The binarization
is performed by setting an intensity threshold to the image separating the droplet from the
background. Despite a slight deviation due to the 2-D planar assumption and the threshold
sensitivity, figure 8 shows a good quantitative agreement between numerical results and
the experiments. It can be noticed that the surface tension has no discernible effect on the
drift in the simulations. This observation is consistent with the similar droplet morphology
observed in both simulations at We = 470 and We → ∞.

5. Formation of ligaments

For We > 102, the process of ligament formation is traditionally described by the
sheet-thinning mechanism proposed by Liu & Reitz (1997) on the basis of the work of
Stapper & Samuelsen (1990) for the breakup of a two-dimensional liquid sheet. Recently,
the formation of ligaments has been re-evaluated (Jalaal & Mehravaran 2014; Meng &
Colonius 2018) through 3-D numerical simulations and an alternative driving mechanism
has been proposed, namely, the transverse azimuthal modulation. To date, no consensus
has been found, and the ligament formation process has yet to be understood.
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FIGURE 8. Evolution of the centre-of-mass from numerical results and experimental
observations. Error bars display the sensitivity of the centre-of-mass detection to the intensity
threshold used in the binarization process.

5.1. Ligament formation and azimuthal modulation
Exposing the water droplet to a high-speed gas flow can induce a large difference in
the velocities between the two fluids and thus destabilize their interface. Depending
on the flow conditions, the interface may be more susceptible to Rayleigh–Taylor or
Kelvin–Helmholtz instabilities. The canonical RTI occurs when a heavy fluid is suspended
above a lighter fluid and both are subjected to acceleration. The interface begins to oscillate
with alternating acceleration directions and is unstable when the acceleration is oriented
towards the heavier fluid (Rayleigh 1882). On the other hand, KHI arises due to either shear
in a single fluid system or due to a velocity difference across the interface of two fluids,
which results in propagating waves that typically rollup into vortices along the interface
(Chandrasekhar 1961).

For low Weber numbers (We ∼ 20), it is thought that the RTI is responsible for the
bag-shape structure, which is attached to a thicker toroidal rim. Increasing the Weber
number up to 80, the standard bag morphology evolves to more complex bag structures,
namely the bag-and-stamen and multi-bag modes, still believed to be driven by RTI (Jain
et al. 2015). Ultimately, bags undergo a piercing mechanism (Guildenbecher et al. 2009).

For higher Weber numbers there is less of a consensus but the markedly different droplet
morphologies are also attributed to mechanisms other than RTI piercing. In the work
of Jain et al. (2015) on secondary atomization, the authors numerically investigate the
shear-stripping regime, i.e. sheet-thinning regime, by running simulations at We = 120.
Arguing that high inertial forces overcome the restoring effect of the surface tension,
the authors state that the development of a potential bag on the rim is hampered by
the stripping process occurring at the droplet equatorial plane. This indirectly exonerates
the Rayleigh–Taylor piercing mechanism in the ligament formation. The authors suggest
that the ligament formation is due to the high-speed gas flow over the droplet periphery,
which results in transverse RTI. The crests of the transverse instability are deformed into
ligaments by being stretched with the flow, as described by Marmottant & Villermaux
(2004). Following the work of Marmottant & Villermaux (2004) on the atomization of
a liquid jet in coaxial flow, the recent work of Jalaal & Mehravaran (2014) suggests that
axisymmetric waves propagating on the droplet surface are the result of KHI and that their
acceleration leads to a transverse azimuthal modulation, which can be viewed as RTI. As a
result of such a KHI–RTI combination, streamwise ligaments are formed and subsequently
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(b)(a)

(c) (d )

FIGURE 9. Transverse azimuthal modulation for We = 470 (front view). Characteristic times
are (a) 0.79, (b) 0.82, (c) 0.84 and (d) 0.86. Panels (a–d) are cropped views.

fragmented into droplets. In addition, their 3-D numerical simulations for Weber numbers
up to 200 show a good qualitative agreement with their conjecture of an azimuthal
modulation due to RTI. In a attempt to provide quantitative evidence, they compared the
most amplified wavenumbers, deduced from their simulations with theoretical predictions
but failed to find any conclusive quantitative agreement. In another attempt to find
quantitative evidence of azimuthal RTI, Meng & Colonius (2018) performed a 3-D
simulation for We → ∞. In line with Jalaal & Mehravaran (2014), these simulations
show a loss of axisymmetry, but a Fourier analysis of the velocity field reveals broadband
instability growth for all modes and hence does not provide further evidence of transverse
RTI.

In the present numerical simulations for We = 470, we also observe a loss of
axisymmetry of the liquid sheet propagating on the droplet rim before transverse
corrugations arise at the interface. In particular, as apparent from figure 9, we can
see a non-uniform growth rate of the transverse corrugations, which results in variable
crest amplitudes, indicating a transverse azimuthal modulation of the droplet. However,
concerning the relation of the transverse instability with the ligament formation, a
mismatch between the wavelength and the number of crests and ligaments does not seem
to confirm the mechanism proposed by Jalaal & Mehravaran (2014). According to their
conjecture, ligaments arise from the stretching of the interface corrugation crests due to
aerodynamic forces. This implies that the number of ligaments is equal to the number of
crests. As shown in figure 9, the number of crests observed in our simulation does not
directly correspond to the eight ligaments, which are ultimately forming in the course of
the breakup.

For further investigation of the observed azimuthal modulation and to identify the
modes which lead to the formation of the ligaments as well as to determine the effect
of surface tension on these modes, we decompose the flow field around the droplet into
azimuthal Fourier modes. To that end, the Cartesian mesh is interpolated onto a cylindrical
mesh, where the resolutions in azimuthal direction θ , radial direction r and streamwise
direction x are kept similar to the Cartesian mesh. Subsequently, the azimuthal Fourier
coefficients for each mode û(x, r, t) are obtained by Fourier transforms in the θ direction.
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(a) (b) (c)

(d ) (e) ( f )

(g) (h) (i)

FIGURE 10. Isosurfaces of the mth azimuthal mode κm (red) and isosurfaces of the volume
fraction αl = 0.01 (grey) for We = 470. (a) m = 4, τ ≈ 0.85, (b) m = 4, τ ≈ 0.97, (c) m = 4,
τ ≈ 1.05, (d) m = 6, τ ≈ 0.85, (e) m = 6, τ ≈ 0.97, ( f ) m = 6, τ ≈ 1.05, (g) m = 8, τ ≈ 0.85,
(h) m = 8, τ ≈ 0.97 and (i) m = 8, τ ≈ 1.05.

We use an energy metric of the velocity for each mode, which is given by

κ̂m = |ûx,m|2 + |ûr,m|2 + |ûθ,m|2. (5.1)

Transforming κ̂m back into physical space yields the azimuthal Fourier mode κm.
Isosurfaces of selected azimuthal modes are superimposed with the isosurfaces of the
volume fraction in figure 10, which shows that the azimuthal wavenumber m = 4 and its
harmonic m = 8 are most pronounced on the droplet surface. Modes corresponding to
wavenumbers other than m = 4 or m = 8, develop in the wake on the back of the droplet
and do not appear to be responsible for the azimuthal modulation and deformation of the
droplet itself. This is exemplarily shown for m = 6 in figure 10(d–f ) but similarly observed
for all other wavenumbers but m = 4 and m = 8. Strikingly, the wavenumbers m = 4 and
its harmonic m = 8 do correspond to the wavenumber of the ligaments and thus directly
relate the azimuthal modulation of the flow field to the formation of the ligaments.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

69
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.699


904 A20-18 B. Dorschner and others

λRT

FIGURE 11. Measurement of ligament wavenumber.

Experimentally, we measure the mean wavenumber of the ligaments by manual
post-processing of the shadowgraphs and measuring the distance between ligaments,
where a ligament is defined as a coherent column of liquid as exemplified in figure 11. This
procedure eventually yields a mean wavenumber of the ligaments of mexp ∼ 8.5, which is
in excellent agreement with what is observed in our simulations. This further establishes
validity of both our experiments and the numerical simulations.

When studying the evolution of the azimuthal structures of m = 4 and m = 8 in our
numerical simulations, one can observe that these structures are formed at relatively early
stages of the breakup and develop on the droplet surface. Subsequently, the azimuthal
modes appear to deform the droplet surface, which leads to azimuthally distributed
bag-like structures with wavenumber m = 8. At later stages, these bag-like structures
develop further and grow as they are subjected to the high-speed gas flow surrounding
the droplet. Eventually, the aerodynamic forces are able to overcome the restoring effect
of surface tension and pierce or rupture the bag-like structures, yielding ligaments, which,
in the first instance, remain attached to the circular rim before they detach at later stages.
This piercing mechanism is illustrated by the detailed snapshots in figure 12, which show
the evolution and rupture of the bag-like structures. It is also evident that eventually these
ruptured pockets form the ligaments.

It is interesting to compare this picture to the Weσ=0 case, which is shown in figure 13.
We can again observe that, as in the case of a finite Weber number, the only modes that
are acting on the droplet surface correspond to the wavenumbers m = 4 and m = 8. This
suggests that the cause and origin of these structures are independent of capillary effects.
However, there are obvious differences in the subsequent evolution. In particular, it is
apparent that the azimuthal disturbances are less amplified, and less able to modulate
the cylindrical liquid curtain that is formed around the droplet core during the course
of the breakup. Hence, in contrast to the finite Weber number case, there are no
prominent bag-like structures, and the liquid curtain remains unruptured and intact, before
it eventually disintegrates into fine-scale structures. This observation is also in good
qualitative agreement with what was observed by others (Marmottant & Villermaux
2004; Jalaal & Mehravaran 2014) who conjecture that the transverse destabilization of
the liquid rim is due to the Rayleigh–Taylor instability, which leads to an infinitesimally
small wavelength for negligible surface-tension values (σ → 0) as the RTI wavelength is
proportional to the square root of the surface tension.
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(a) (b)

(c) (d)

(a) (b)

(c) (d)

(e) ( f ) (e) ( f )

Back viewFront view

FIGURE 12. Piercing mechanisms for We = 470 (front and back views). Characteristic times
are (a) 0.88, (b) 0.90, (c) 0.92, (d) 0.94, (e) 0.96 and ( f ) 0.98.

While we have not been able to infer a direct relation to RTI from our simulations, our
observations do suggest that transverse azimuthal modulation plays a crucial role in the
formation and subsequent shedding of ligaments.

5.2. Recurrent breakup and vortex shedding
While the stages of the breakup and the formation of the ligaments are well described
by the above mechanisms, our simulations and experiments suggest that the pattern of
events occurs repeatably at different scales throughout the course of the breakup. In
particular, when considering the breakup for a Weber number of We = 470, as shown
in figure 14(a,b), we can qualitatively observe a very similar droplet morphology and
breakup behaviour for times τ = 0.94 and τ = 1.33. Hence, the process repeats after the
initial breakup or ligament formation process. An analogous process can also be observed
in our simulations for We → ∞ as demonstrated in figure 14(c,d), where the breakups are
observed at τ = 0.91 and τ = 1.25. This suggests a negligible effect of capillary forces on
such recurrent shedding behaviour.

Consulting our experiments, we can investigate this effect for a longer time span than
possible with the numerical simulations. To that end, the snapshots are post-processed
manually and the breakup times are defined as the time between subsequent snapshots in
which the ligaments are still attached to the main droplet core and when they have been
shed from the droplet. This has been done for 29 independent experiments with varying
Weber numbers. Starting from the formation of the first ligaments, we can observe a total
of four breakups until the droplet is entirely disintegrated. A typical sequence of four
breakups as captured by the experiments is shown in figure 15. Clearly visible are the
ligaments and their subsequent fragmentation. Recording the breakup times as a function
of the Weber number (figure 16) reveals that, while 4 breakups are recorded for all Weber
numbers, capillary effects have an impact on the breakup times, reaching nearly constant
values beyond We > 400. The error bars indicate the time difference between subsequent
snapshots before and after the breakup of the ligaments.

A comparison with our simulations in figure 16 shows that the first and second breakup
times in the simulation agree well with the experimental observations for the second and
third breakup for both the We = 470 and We → ∞ simulations. Hence, it appears that our
simulation cannot capture the first breakup in the experiment. This is due to the fine-scale
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(a) (b) (c)

(d ) (e) ( f )

(g) (h) (i)

FIGURE 13. Isosurfaces of the mth azimuthal mode κm (red) and isosurfaces of the volume
fraction αl = 0.01 (grey) for We → ∞. (a) m = 4, τ ≈ 0.85, (b) m = 4, τ ≈ 0.97, (c) m = 4,
τ ≈ 1.05, (d) m = 6, τ ≈ 0.85, (e) m = 6, τ ≈ 0.97, ( f ) m = 6, τ ≈ 1.05, (g) m = 8, τ ≈ 0.85,
(h) m = 8, τ ≈ 0.97 and (i) m = 8, τ ≈ 1.05.

nature of the first breakup, which our simulations are not able to resolve. In fact, from our
experiments we measure ligament thicknesses during the first breakup ranging from 10 to
40 μm, which corresponds to a resolution between ∼2–7 grid cells for these ligaments in
our simulations. Nonetheless, the agreement of subsequent breakup times further validates
both the simulations as well as the post-processing methodology for the experiments.

The functional dependence of the breakup onset on the Weber number is estimated
using a nonlinear least-square fit of the experimental data of the form τ ≈ aWeb + c and
plotted alongside the measurements in figure 16. The fitting coefficients are reported in
table 1, which reveal a similar functional dependence for all breakup times. In particular,
the similar exponents a and constant difference between the offsets c for all breakups
reveal an approximately constant frequency between the breakups. This suggests that only
the initial onset of the breakup is a function of the Weber number, whereas the breakup and
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(a) (b)

(c) (d )

FIGURE 14. Recurrent breakups for both simulations at We = 470 and We → ∞. (a) Second
breakup at τ = 0.94 for We = 470. (b) Third breakup at τ = 1.33 for We = 470. (c) Second
breakup at τ = 0.91 for We → ∞. (d) Third breakup at τ = 1.25 for We → ∞.

its frequency are independent of capillary effects. Put differently, surface tension seems
to delay the onset of the initial ligament shedding but does not affect the frequency of
the recurrent shedding. Hence, these curves can be collapsed when shifted by c, which is
reported in figure 17. The fit suggests that the breakup onset scales with τ ∼ We−4.

We conjecture that the breakup frequency is dominated by aerodynamic effects only.
Such effects are dominant in the initial stages of the droplet deformation and previous
studies of aerobreakup have shown a similar drag coefficient to that of a flow past a sphere
(see, e.g. Meng & Colonius 2018). In our case, it is instructive to evaluate the Strouhal
number St = fD/U for the observed breakups. However, the characteristic length scale,
associated with the deforming and disintegrating droplet and its wake, is a priori not
clear.To that end, in figure 18, we plot the evolution of the droplet core diameter throughout
the breakup process for all experimental runs with Weber numbers in the range of We =
[200, 700]. The diameter is measured directly from the shadowgraphs and defined as the
maximum extent of the coherent liquid body of the droplet. Remarkably, the diameter
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FIGURE 15. Experimental snapshots of the recurrent breakup mechanism for a typical case at
We = 295.

evolution is independent of the Weber number and the droplet expands up to twice the
size of its initial diameter for all experiments. Note that, at later stages for τ > 1, the core
diameter decreases due to shedding and D < 2D0 but the small-scale structures and mist
shed form the droplet, yielding an effective diameter which is larger than the diameter of
the droplet core as plotted on figure 18. Hence, the maximum droplet diameter Dm = 2D0
as a characteristic length scale seems to be the natural choice for reduction of the breakup
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τ

Exp. fit
Simulation
Simulation, We→ ∞
Exp.

Exp. fit

Exp.

2.0(a) (b)

(c) (d )
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FIGURE 16. Breakup time dependence on the Weber number. The error bars indicate the time
difference between subsequent snapshots before and after the breakup of the ligaments. (a) First
breakup. (b) Second breakup. (c) Third breakup. (d) Fourth breakup.

Breakup no. a b c

1 4.07 × 105 −2.47 0.51
2 5.22 × 1012 −5.36 0.99
3 8.58 × 1011 −4.93 1.41
4 1.34 × 1012 −4.92 2.00
All 5.41 × 109 −4.08 0

TABLE 1. Fitting coefficients for a nonlinear least-square fit of the form τ ≈ aWeb + c. The
confidence interval for all fitting coefficients is 0.95.

frequency. This yields a mean Strouhal number of St ≈ 0.217 when using all experimental
data. Using the fitted data, one similarly obtains St ≈ 0.18. Both frequencies agree well
with what is observed for the flow past a rigid sphere (see, e.g. Achenbach 1974; Kim &
Durbin 1988; Sakamoto & Haniu 1990). This suggests that the recurrent breakup is indeed
induced by classical vortex shedding.
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Exp. fit τ ∼ We−4
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FIGURE 17. Collapse of all breakup times when shifted by their asymptotic breakup time. The
least-square fit suggests τ ∼ We−4.
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FIGURE 18. Diameter evolution for Weber numbers in the range We = [200, 700].

6. Conclusion

Three-dimensional simulations and high-magnification shadowgraphy visualizations
of the aerobreakup of a water droplet have been performed to capture the underlying
mechanisms leading the ligament formation and disintegration. The numerical simulations
are first validated with respect to experimental results by comparison of observed
deformation and the evolution of the centre-of-mass of the droplet, and the number
of ligaments that are formed during breakup. An analysis of the perturbations arising
on the liquid sheet surrounding the droplet shows good qualitative agreement with the
concept of transverse azimuthal modulation. From the numerical results, modes associated
with the transverse destabilization have been found by means of an azimuthal Fourier
decomposition of the flow field. These correspond to the wavenumber of ligaments which
form subsequent to the initial growth of azimuthal modulation. Finally, we experimentally
and numerically show what we believe to be the first observation of recurrent shedding
of ligaments. The first breakup event occurs at a time that depends weakly on the Weber
number and with stronger capillarity the breakup is delayed, whereas subsequent events
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occur at the same fixed time interval, independent of We. The frequency of recurrence
of breakup events is therefore driven primarily by inertia. By casting the frequency as
a Strouhal number based on the pancaked droplet diameter, which reached a value of
2D0 compared to the initial droplet diameter, independent of We, we find St ≈ 0.2, which
supports a hypothesis that this shedding behaviour is related to vortex shedding in the
wake of the deformed droplet.
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